brought to you by CORE

EXTRACTA MATHEMATICAE Vol. **30**, Núm. 2, 153–159 (2015)

Real Analytic Version of Lévy's Theorem

A. EL KINANI, L. BOUCHIKHI

Université Mohammed V, Ecole Normale Supérieure de Rabat, B.P. 5118, 10105 Rabat (Morocco) abdellah_elkinani@yahoo.fr

_____*y*____

Presented by Alfonso Montes

Received July 24, 2014

Abstract: We obtain real analytic version of the classical theorem of Lévy on absolutely convergent power series. Whence, as a consequence, its harmonic version.

Key words: Fourier series, Lévy's theorem, weight function, weihgted algebra, commutative Banach algebra, Hermitian Banach algebra, Gelfand space, functional calculus, real analytic function, harmonic function.

AMS Subject Class. (2010): 46J10, 46H30

1. INTRODUCTION

Let A be a complex Banach algebra with the involution $x \mapsto x^*$ and unit e. The spectrum of an element x of A will be denoted by Spx. An element h of A is called hermitian if $h^* = h$. The set of all Hermitian elements of A will be denoted by H(A). We say that the Banach algebra A is Hermitian if the spectrum of every element of H(A) is real ([9]). For scalars λ , we often write simply λ for the element λe of A. Let $p \in [1, +\infty[$. We say that ω is a weight on \mathbb{Z} if $\omega : \mathbb{Z} \longrightarrow [1, +\infty[$, is a map satisfying

$$c(\omega) = \sum_{n \in \mathbb{Z}} \omega(n)^{\frac{1}{1-p}} < +\infty.$$
(1)

We consider the following weighted space:

$$\mathcal{A}^{p}(\omega) = \{ f : \mathbb{R} \longrightarrow \mathbb{C} : f(t) = \sum_{n \in \mathbb{Z}} a_{n} e^{int}, \ a_{n} \in l^{p}(\mathbb{Z}, \omega) \}.$$

Endowed with the norm $\|.\|_{p,\omega}$ defined by:

$$||f||_{p,\omega} = \left(\sum_{n \in \mathbb{Z}} |a_n|^p \omega(n)\right)^{\frac{1}{p}}$$
, for every $f \in \mathcal{A}^p(\omega)$,

153

the space $\mathcal{A}^p(\omega)$ becomes a Banach space. Moreover, if there exists a constant $\gamma = \gamma(\omega) > 0$ such that

$$\omega^{\frac{1}{1-p}} \ast \omega^{\frac{1}{1-p}} \le \gamma \omega^{\frac{1}{1-p}} \tag{2}$$

then $(\mathcal{A}^{p}(\omega), \|.\|_{p,\omega})$ is closed under pointwise multiplication and it is a commutative semi-simple Banach algebra with unity element \hat{e} given by $\hat{e}(t) = 1$ $(t \in \mathbb{R})$ ([4]). For the weight function ω on \mathbb{Z} satisfying (2) and

$$\omega(n+m) \le \omega(n)\omega(m), \text{ for every } n, m \in \mathbb{Z}, \tag{3}$$

it is also shown in ([4]), that the character space of $(\mathcal{A}^p(\omega), \|.\|_{p,\omega})$ can be identified with the closed annulus:

$$\Gamma_{\omega}(\rho_1,\rho_2) = \{\xi \in \mathbb{C} : \rho_1(\omega) \le |\xi| \le \rho_2(\omega)\},\$$

in such a way that each character has the form $f \mapsto \sum_{n \in \mathbb{Z}} a_n \xi^n$ for some $\xi \in \Gamma_{\omega}(\rho_1, \rho_2)$, where $f = \sum_{n \in \mathbb{Z}} a_n u^n \in \mathcal{A}^p(\omega)$ with $u(t) = e^{it}$, for every $t \in \mathbb{R}$. For ρ_1 and ρ_2 , they are given by:

$$\rho_1 = e^{-\sigma_2} \text{ and } \rho_2 = e^{-\sigma_1}$$

where

$$\sigma_1 = \sup\left\{\frac{-1}{np}\ln(\omega(n)), n \ge 1\right\}$$
 and $\sigma_2 = \inf\left\{\frac{1}{np}\ln(\omega(-n)), n \ge 1\right\}.$

The real analytic functional calculus is defined and studied in [1]. To make the paper self-contained, we recall the fundamental properties of this calculus. Let U be an open subset of \mathbb{R}^2 and $F: U \longrightarrow \mathbb{C}$ be real analytic function. Then there exists an open subset V, of \mathbb{C}^2 , and an holomorphic function $\tilde{F}: V \longrightarrow \mathbb{C}$ such that

$$V \cap \mathbb{R}^2 = U$$
 and $F_{|U} = F$.

For the construction of V, we have $V = \bigcup_{x \in U} \Omega_x$, where Ω_x is an open of \mathbb{C}^2 centered at x. We denote by $\Lambda_0(U)$ the set of all open subset V described us above and we consider, in $\Lambda_0(U)$, the order given in the following way:

$$V \preceq W \Longleftrightarrow W \subset V.$$

For $V \in \Lambda_0(U)$, we denote by $\mathcal{O}(V)$ the set of holomorphic functions on V. Now we consider the family $(\mathcal{O}(V))_{V \in \Lambda_0(U)}$ of algebras and for every $V, W \in \Lambda_0(U)$ with $V \preceq W$, let

$$\pi_{W,V}: \mathcal{O}(V) \longrightarrow \mathcal{O}(W): F \longmapsto F_{|W|}$$

The family of algebras $(\mathcal{O}(V))_{V \in \Lambda_0(U)}$ with the maps $\pi_{W,V}$ is an inductive system of algebras and it is denoted by $(\mathcal{O}(V), \pi_{W,V})$. Let $\varinjlim (\mathcal{O}(V), \pi_{W,V})$ its inductive limit. We shall denote this simply by $\lim \mathcal{O}(V)$ and we have:

$$\varinjlim \mathcal{O}(V) = \bigcup_{V \in \Lambda_0(U)} \mathcal{O}(V)$$

In the sequel, we denote by $\mathcal{A}(U)$ the algebra of real analytic functions on U. By lemma 2.1.1 of [1], the map

$$\Psi: \mathcal{A}(U) \longrightarrow \varinjlim \mathcal{O}(V): f \longmapsto \Psi(f)$$

is an isomorphism algebra. Now let A be a commutative and unital Hermitian Banach algebra (with continuous involution) and $a \in A$. Then a = h + ik with $h, k \in H(A)$. Put a' = (h, k) and Sp_Aa' the joint spectrum of (h, k). We denote by $\Theta_{a'}$ the map that defined the holomorphic functional calculus for a'. One has $Sp_A(h, k) \subset Sp_Ah \times Sp_Ak \subset \mathbb{R}^2$. By the identification $\mathbb{R}^2 \simeq \mathbb{C}$, via the map $(x, y) \longmapsto x + iy$, we can consider that

$$Sp_A a \simeq Sp_A(h,k)$$

and this motivates the following definition:

DEFINITION 1.1. ([1], DÉFINITION 2.1.2) Let A be a commutative and unital Hermitian Banach with continuous involution, $a \in A$, U an open subset, of \mathbb{R}^2 , containing $Sp_A a$ and $f \in \mathcal{A}(U)$. We denote by f(a) the element of Adefined by:

$$f(a) = \Theta_{a'}(\Psi(f)) = \Psi(f)(h,k),$$

where a = h + ik and a' = (h, k) with $h, k \in H(A)$.

The fundamental properties of this functional calculus are contained in the following result:

PROPOSITION 1.2. ([1]) 1. The mapping $f \mapsto f(a)$ is a homomorphism of $\mathcal{A}(U)$ into A that extends the involutive homomorphism from h(U) into A, where h(U) is the set of all harmonic functions on U.

2. "Spectral mapping theorem":

$$Sp_A f(a) = f(Sp_A a)$$
, for every $f \in \mathcal{A}(U)$.

Let $f(t) = \sum_{n \in \mathbb{Z}} a_n e^{int}$ be a periodic function such that $\sum_{n \in \mathbb{Z}} |a_n| < +\infty$. If F is an holomorphic function defined on an open set containing the image of f, then F(f) can be developed in trigonometric series $F(f)(t) = \sum_{n \in \mathbb{Z}} c_n e^{int}$ such that $\sum_{n \in \mathbb{Z}} |c_n| < +\infty$. This result due to P. Lévy ([7]) generalizes the famous theorem of N. Wiener ([10]) which states that the reciprocal of a nowhere vanishing absolutely convergent trigonometric series is also an absolutely convergent trigonometric series is also an absolutely convergent trigonometric series of a weight ω on \mathbb{Z} which satisfies (2), (3) and

$$\lim_{|n| \to +\infty} \left(\omega(|n|) \right)^{\frac{1}{n}} = 1.$$
(4)

We then consider $f \in \mathcal{A}^p(\omega)$ and F an analytic function in two real variables on a neighborhood U of Spf. In this case, we obtain a weighted analogues of Lévy's theorem which states that F(f) can be developed in trigonometric series $F(f)(t) = \sum_{n \in \mathbb{Z}} c_n e^{int}$ such that

$$\sum_{n\in\mathbb{Z}}\left|c_{n}\right|^{p}\omega(n)<+\infty.$$

To proceed, we consider the Banach algebra $(\mathcal{A}^p(\omega), \|.\|_{p,\omega})$ endowed with the involution $f \longmapsto f^*$ defined by:

$$f^{\star}(t) = \sum_{n \in \mathbb{Z}} \overline{a_{-n}} e^{int}$$
, for every $f \in \mathcal{A}^p(\omega)$.

We prove that $(\mathcal{A}^{p}(\omega), \|.\|_{p,\omega})$ is Hermitian. In the particular case where F is a harmonic function in a neighborhood of $f(\mathbb{R})$, we prove that the expression of F(f) is also given by the Poisson integral formula ([1]).

2. Real analytic version of Levy's Theorem

Now we are ready to generalize Levy's theorem for real analytic functions.

THEOREM 2.1. (REAL ANALYTIC VERSION OF LÉVY'S THEOREM) Let $p \in]1, +\infty[$ and ω be a weight on \mathbb{Z} satisfying (2), (3) and (4). Let $f(t) = \sum_{n \in \mathbb{Z}} a_n e^{int}$ be a periodic function such

$$\sum_{n \in \mathbb{Z}} |a_n|^p \omega(n) < +\infty.$$

Let F be an analytic function in two real variables on an open U containing the image of f, then the function F(f) also can be developed in a trigonometric series $F(f)(t) = \sum_{n \in \mathbb{Z}} c_n e^{int}$ such that

$$\sum_{n \in \mathbb{Z}} |c_n|^p \,\omega(n) < +\infty.$$

Proof. We consider the Banach algebra $(\mathcal{A}^p(\omega), \|.\|_{p,\omega})$ endowed with the involution $f \longmapsto f^*$ defined by:

$$f^{\star}(t) = \sum_{n \in \mathbb{Z}} \overline{a_{-n}} e^{int}$$
, for every $f \in \mathcal{A}^p(\omega)$.

One can prove that the map $f \mapsto f^*$ is an algebra involution on $(\mathcal{A}^p(\omega), \|.\|_{p,\omega})$. Moreover, it is continuous for the algebra is semi-simple. By the real analytic functional calculus given by Definition 1.1, the proof will be completed by proving that the last involution is hermitian in $(\mathcal{A}^p(\omega), \|.\|_{p,\omega})$. By hypothesis, $\lim_{|n| \to +\infty} (\omega(|n|))^{\frac{1}{n}} = 1$. Then the character space $\mathcal{M}(\mathcal{A}^p(\omega))$ of $(\mathcal{A}^p(\omega), \|.\|_{p,\omega})$ can be identified with $[0, 2\pi]$ in such a way that each character is an evaluation at some $t_0 \in [0, 2\pi]$. This implies that

$$Spf = \{f(t) : t \in [0, 2\pi]\}, \text{ for every } f \in \mathcal{A}^p(\omega).$$

Now, it is clear, that $f(t) = \sum_{n \in \mathbb{Z}} a_n e^{int}$, $t \in \mathbb{R}$, is a hermitian element of $\mathcal{A}^p(\omega)$ if and only, if

$$u_{-n} = \overline{a_n}$$
, for every $n \in \mathbb{Z}$

C

and so $Sp(f) \subset \mathbb{R}$. Whence $(\mathcal{A}^p(\omega), \|.\|_{p,\omega})$ is Hermitian with continuous involution. This completes the proof.

Remark 2.2. Actually, the reader can prove that the algebra $(\mathcal{A}^p(\omega), \|.\|_{p,\omega})$ is Hermitian if and only if $\lim_{|n| \to +\infty} (\omega(|n|))^{\frac{1}{n}} = 1$. Indeed if the algebra $(\mathcal{A}^p(\omega), \|.\|_{p,\omega})$ is Hermitian. Let $f: t \mapsto \sum_{n \in \mathbb{Z}} a_n e^{int}$ be a hermitian

element of $(\mathcal{A}^p(\omega), \|.\|_{p,\omega})$. Then $Sp(f) \subset \mathbb{R}$. Hence

$$\Phi_{\zeta}(f) = \overline{\Phi_{\zeta}(f)}, \text{ for every } \zeta \in \Gamma_{\omega}(\rho_1, \rho_2),$$

where

$$\Phi_{\zeta}(f) = \sum_{n \in \mathbb{Z}} a_n \zeta^n \text{ and } \overline{\Phi_{\zeta}(f)} = \sum_{n \in \mathbb{Z}} a_n \overline{\zeta^{-n}}, \text{ for every } \zeta \in \Gamma_{\omega}(\rho_1, \rho_2).$$

It follows that

$$|\zeta| = 1$$
, for every $\zeta \in \Gamma_{\omega}(\rho_1, \rho_2)$.

This yields $\rho_1 = \rho_2 = 1$, and one obtains that

$$\lim_{|n| \to +\infty} \left(\omega(|n|) \right)^{\frac{1}{n}} = 1.$$

Harmonic functions are particular real analytic functions. In this case, we have the following:

COROLLARY 2.3. (HARMONIC VERSION OF LÉVY'S THEOREM) Let $p \in$]1, + ∞ [and ω be a weight on \mathbb{Z} satisfying (2), (3) and (4). Let $f(t) = \sum_{n \in \mathbb{Z}} a_n e^{int}$ be a periodic function such

$$\sum_{n\in\mathbb{Z}}|a_n|^p\omega(n)<+\infty.$$

Let U be an open subset of \mathbb{C} , $z_0 \in U$ such that $\overline{D(z_0, r)} \subset U$ (r > 0) and $f(\mathbb{R}) \subset D(z_0, r)$. If $F \in h(U)$, then

$$F(f) = \frac{1}{2\pi} \int_{|z-z_0|=r} F(z) Re[(z+f-2z_0)(z-f)^{-1}] \frac{|dz|}{r}$$

can be developed in a trigonometric series $F(f)(t) = \sum_{n \in \mathbb{Z}} c_n e^{int}$ such that

$$\sum_{n\in\mathbb{Z}}|c_n|^p\,\omega(n)<+\infty.$$

References

- M. AKKAR, A. EL KINANI, M. OUDADESS, Calculus fonctionnels harmonique et analytique réel, Ann. Sci. Math. Québec 12 (2) (1988), 151–169.
- [2] S.J. BHATT, H.V. DEDANIA, Beurling algebra analogues of the classical theorems of Wiener and Lévy on absolutely convergent Fourier series, Proc. Indian Acad. Sci. Math. Sci. 113 (2) (2003), 179–182.
- [3] A. EL KINANI, A version of Wiener's and Lévy's theorems, Rend. Circ. Mat. Palermo (2) 57 (3) (2008), 343-352.
- [4] A. EL KINANI, L. BOUCHIKHI, A weighted algebra analogues of Wiener's and Lévy's theorems, *Rend. Circ. Mat. Palermo (2)* **61**(3) (2012), 331–341.
- [5] A. EL KINANI, L. BOUCHIKHI, Wiener's and Levy's theorems for some weighted power series, *Rend. Circ. Mat. Palermo (to appear).*
- [6] I. GELFAND, Normierte Ringe, Rec. Math. [Mat. Sbornik] 9(51) (1941), 3-24.
- [7] P. LÉVY, Sur la convergence absolue des séries de Fourier, Compositio Math. 1 (1935), 1–14.
- [8] S. MAZUR, Sur les anneaux linéaires, C. R. Acad. Sci. Paris 207 (1938), 1025– 1027.
- [9] V. PTÀK, Banach algebras with involution, Manuscripta Math. 6 (1972), 245– 290.
- [10] N. WIENER, Tauberian theorems, Ann. of Math. (2) 33 (1) (1932), 1–100.