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Abstract : The paper is devoted to such Banach lattices E that every Dunford-Pettis and
weakly null sequence (xn) ⊂ E with disjoint terms is norm null (the positive Dunford-Pettis
relatively compact property). It is established that a Banach lattice E has the positive
Dunford-Pettis relatively compact property if and only if its almost Dunford-Pettis subsets
are L-weakly compact. Consequently, we derive the following result: Banach lattices with
the property that their almost Dunford-Pettis subsets are relatively compact, are precisely
the discrete KB-spaces.
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1. Introduction

Banach spaces in which Dunford-Pettis sets are relatively compact were
introduced by G. Emmanuele [11]. Such spaces are said to have the Dunford-
Pettis relatively compact property (DPrcP). Recently, Y. Wen and J. Chen
[15] introduced a weak version of Dunford-Pettis operators, called Dunford-
Pettis completely continuous (DPcc) operators, that is, operators which carry
Dunford-Pettis and weakly null sequences to norm null ones. They showed
that, an operator T on a Banach space X is DPcc if, and only if it carries
each Dunford-Pettis set A ⊂ X to a relatively compact one. It follows that
a Banach space X has the DPrcP iff all Dunford-Pettis and weakly null se-
quences in X are norm null. Clearly, reflexive, as well as Schur spaces, have
the DPrcP. If a Banach space is a dual space, then it has the DPrcP iff it has
the weak Radon-Nikodym property [11]. Discrete KB-spaces are examples of
Banach lattices with the DPrcP [8, Corollary 3.10].

In this note we study a weak version of the DPrcP in the Banach lattice set-
ting, the positive Dunford-Pettis relatively compact property (Definition 3.2).
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The introduction of this property is motivated by the fact that it leads to a
new reformulation (Question 2) of an open question posed by K. Bouras in
[8].

Question 1. In a KB-space, is every almost Dunford-Pettis set relatively
weakly compact (resp. L-weakly compact)?

In the recent paper [9], the authors showed that the answer of the first part
of Question 1 is affirmative. In Proposition 3.14, we shall give an original and
short proof based on a known result of Meyer-Nieberg [12, Theorem 2.5.3].

However, the second part of Question 1 remains open and it is equivalent
by Theorem 3.15, to the following question.

Question 2. Does every KB-space have the positive Dunford-Pettis rel-
atively compact property?

We shall see that the converse of Question 2 is always true (Remark 3.5).
But, we are not able to answer Question 2 and it remains open.

It is also worth noting from Proposition 3.3 that, if is affirmative the answer
of each of the two equivalent questions Question 1 and Question 2, then so is
the answer of the following open problem posed by W. Wnuk in 1994.

Problem. ([16, p 234]) Does every KB-space with the weak Dunford-
Pettis property have the positive Schur property?

To study the positive Dunford-Pettis relatively compact property, we in-
troduce a new class of operators, called almost Dunford-Pettis completely
continuous operators (Definition 3.1), that characterize the latter property
through the identity operator, and present at the same time the disjoint ver-
sion of DPcc operators. Afterwards, we give some characterizations of this
class of operators (Theorems 3.9, 3.12) and hence we derive those of the pos-
itive Dunford-Pettis relatively compact property of a Banach lattice (Theo-
rem 3.15). Next, we look, under some sufficient conditions, at the relationship
between this class of operators and that of DPcc operators (Corollary 3.20).
Finally, we study in the last section the duality property for almost Dunford-
Pettis completely continuous operators and we derive a new result concerning
the relative compactness of almost DP sets in Banach lattices (Theorem 4.3).
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2. Notation and known results

The term “operator” between two Banach spaces refers to a bounded linear
mapping. X, Y will denote real Banach spaces, and E, F , G will denote real
Banach lattices. The notation BX is used for the closed unit ball of X. sol(A)
denotes the solid hull of a subset A of a Banach lattice. The positive cone
of E will be denoted by E+ and A+ := A ∩ E+ will denote the positive
part of the subset A ⊂ E. For every norm bounded subsets A ⊂ E, B ⊂ E′,
ρA : E′ → R+ and ρB : E → R+ are the lattice seminorms defined respectively
by ρA (f) = sup {|f | |x| : x ∈ A} and ρB (x) = sup {|f | |x| : f ∈ B}. Let

Ea :=
{
x ∈ E : every monotone sequence in [0, |x|] is convergent

}
.

It follows from [12, Proposition 2.4.10] that Ea is the maximal ideal in E on
which the induced norm is order continuous. The order ideal generated by a
positive element x ∈ E is

Ex :=
{
y ∈ E : ∃λ > 0 with |y| ≤ λx

}
.

(Ex , ∥·∥∞) is an AM-space with BEx = [−x, x] ([2, Theorem 4.21]), where
the norm ∥·∥∞ is defined by ∥y∥∞ := inf {λ > 0 : |y| ≤ λx }. Furthermore,
the canonical embedding Ex → E is continuous [14, p 102]. It is well known
(see [4, Theorem 2.13]) that the class of Banach lattices whose duals are
discrete contains that of Banach lattices satisfying the following condition of
discreteness:

Ex has a discrete dual for every x ∈ E+. (∗)

Let us recall that a norm bounded subset A ⊂ E is said to be

(1) approximately order bounded, if it is approximately order bounded set
with respect to the norm of E in the sense of [12, Remark p 73], that is,
for every ε > 0 there exists u ∈ E+ such that A ⊂ [−u, u] + εBE , equiv-
alently, for every ε > 0, there exists u ∈ E+ such that

∥∥(|x| − u)+
∥∥ ≤ ε

for each x ∈ A.

(2) L-weakly compact, if ∥xn∥ → 0 for every disjoint sequence (xn) in
sol (A). The following characterizations (see [12, Propositions 3.6.2 and
3.6.3]) of an L-weakly compact sets A ⊂ E, B ⊂ E′ will be used through-
out this paper.

(a) ρA (fn) → 0 for every disjoint norm bounded sequence (fn) ⊂ E′.
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(b) For every ε > 0 there exists u ∈ (Ea)+ such that A ⊂ [−u, u]+εBE ,
that is, A is an approximately order bounded set in Ea.

(c) ρB (xn) → 0 for every disjoint bounded sequence (xn) ⊂ E.

(3) (almost) Dunford-Pettis, if each (disjoint) weakly null sequence (fn) ⊂
E′ converges uniformly to zero in A, that is, supx∈A |fn (x)| → 0 as
n → ∞.

An operator T : X −→ Y is called Dunford-Pettis, if T carries each weakly
null sequence (xn) ⊂ X to an norm null one in Y , equivalently, T carries
relatively weakly compact subsets of X to relatively compact ones in Y . In
his thesis [13], Sanchez considered a weak version of the class of Dunford-Pettis
operators, called almost Dunford-Pettis operators, and this class of operators
was investigated later by Wnuk [16]. An operator T from a Banach lattice
E into a Banach space X is said to be almost Dunford-Pettis if the sequence
(∥T (xn)∥) converges to 0 for every weakly null sequence (xn) consisting of
pairwise disjoint elements in E. It follows from [6, Theorem 2.2] that T is
almost Dunford-Pettis if and only if ∥T (xn)∥ −→ 0 for every weakly null
sequence (xn) in E+. Moreover,

(1) an operator T : X → E is L-weakly compact, if T maps the closed unit
ball of X to an L-weakly compact set in E.

(2) an operator T : E → X is order weakly compact, if T maps each order
bounded set in E to a relatively weakly compact set in X.

(3) a Banach lattice E is said to have the (positive) Schur property if the
identity operator I on E is (almost) Dunford-Pettis, that is, ∥xn∥ −→ 0
for every (disjoint, or equivalently positive) weakly null sequence (xn)
in E.

(4) a Banach lattice E is said to have the (weak) Dunford-Pettis property
if fn (xn) → 0 for all (disjoint) weakly null sequences (xn) ⊂ E, and
all weakly null sequences (fn) ⊂ E′, equivalently, each relatively weakly
compact set in E is (almost) Dunford-Pettis set (see for more details
[7, 16]).

Finally, we refer the reader for unexplained terminology on Banach lattice
theory and positive operators to the monographs [2, 12].



banach lattices with the pdprc property 165

3. Almost Dunford-Pettis completely continuous operators

Definition 3.1. An operator T from a Banach lattice E into a Banach
space X is said to be almost Dunford-Pettis completely continuous (aDPcc
in short) if ∥T (xn)∥ −→ 0 for each Dunford-Pettis and weakly null sequence
(xn) in E consisting of disjoint terms.

Definition 3.2. A Banach lattice E is said to have the positive Dunford-
Pettis relatively compact property (PDPrcP in short) if ∥xn∥ −→ 0 provided
that the sequence (xn) ⊂ E is Dunford-Pettis and disjoint weakly null, that
is, the identity operator on E is aDPcc.

It is obvious that the positive Schur property, as well as the DPrcP, implies
the PDPrcP. However, as in a Banach lattice E with the (weak) Dunford-
Pettis property, each (disjoint) weakly null sequence (xn) ⊂ E is Dunford-
Pettis, we note easily the following result.

Proposition 3.3. A Banach lattice E has the (positive) Schur property
if and only if E has both the (positive) DPrcP and the (weak) Dunford-Pettis
property.

We are now in a position to distinguish through the following example the
PDPrcP from the positive Schur property and the DPrcP, and hence we show
that the class of operators aDPcc contains strictly that of DPcc (resp. almost
Dunford-Pettis) operators.

Example 3.4. Let E = L1 [0, 1]⊕L2 [0, 1]. Then, E has the PDPrc prop-
erty but not the positive Schur property nor the DPrcP. Indeed, since the
Banach lattice L1([0, 1]) has the Dunford-Pettis property without the Schur
property, it follows that L1([0, 1]) has the positive Schur (PDPrcP) property
without the DPrcP. On the other hand, the reflexive Banach lattice L2([0, 1])
has the DPrcP (PDPrcP) without the positive Schur property.

Remark 3.5. A Banach lattice E with the PDPrcP must be a KB-space.
In fact, since the Banach lattice c0 does not have the PDPrcP (because it
has the weak Dunford-Pettis property without the positive Schur property),
it follows that E contains no lattice copy of c0. Therefore, E is a KB-space
(see [2, Theorem 4.61]).

The following lemmas will be useful in the rest of this paper.



166 k. el fahri, n. machrafi, m. moussa

Lemma 3.6. Let E be a Banach lattice and let B be a norm bounded
subset of E′. Let (xn) ⊂ B+

E and (hn) ⊂ B+ be respectively two sequences
such that

(i) h(xn) −→ 0 for all h ∈ B, and

(ii) hn(xn) > ε for some ε > 0 and for all n.

then, there exist a subsequence (zn) of (xn) and a disjoint sequence (gn) in
(sol(B))+ such that gn(zn) >

ε
2 for all n sufficiently large.

Proof. By the first part of the assumption, an easy inductive argument
shows that there exists a subsequence (zn) of (xn) and a subsequence (fn) of
(hn) such that (

4n
n∑

i=1

fi

)
(zn+1) <

1

n
∀n ≥ 1.

Put f =
∑∞

i=1 2
−ifi and gn+1 = (fn+1 − 4n

∑n
i=1 fi − 2−nf)+ for n ≥ 1. The

sequence (gn) is disjoint ([2, Lemma 4.35]) and since 0 ≤ gn ≤ fn then, (gn)
is included in (sol(B))+. Now, by the second part of the assumption we have
for every n

gn+1(zn+1) ≥
(
fn+1 − 4n

n∑
i=1

fi − 2−nf

)
(zn+1)

≥ ε− 1

n
− 2−nf(zn+1).

Since 2−nf(zn+1) −→ 0, we have gn+1(zn+1) >
ε
2 for all n sufficiently large.

Lemma 3.7. If A is a relatively weakly compact and almost Dunford-
Pettis subset of a Banach lattice E, and (xn) is a disjoint sequence in sol(A),
then (xn) is a Dunford-Pettis and weakly null sequence in E. In particular, if
(xn) is an almost Dunford-Pettis and disjoint weakly null sequence, then the
positive sequences (|xn|), (x+n ), (x−n ) are all Dunford-Pettis and weakly null.

Proof. By [2, Theorem 4.34], (xn) is well a weakly null sequence in E.
Assume by way of contradiction that (xn) is not a Dunford-Pettis sequence.
Then, there exists a weak null sequence (fn) in E′ so that |fn||xn| > ε for some
ε > 0 and for all n. On the other hand, since |xn|

w−→ 0 ([2, Theorem 4.34]),
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and if we denote by B the solid hull of the subset {fn : n ∈ N}, then a simple
application of Lemma 3.6, shows that there exist a subsequence (yn) of (xn)
and a disjoint sequence (gn) in B+ such that gn|yn| > ε

2 holds for all n greater
than some natural integer n0. Since (yn) ⊂ sol(A), there exists a sequence
(zn) ⊂ A satisfying |yn| ≤ |zn| for all n, and hence gn(|zn|) > ε

2 for all n ≥ n0.
In view of

gn|zn| = sup{|h(zn)| : |h| ≤ gn}

for each n ≥ n0 there exists some |hn| ≤ gn such that |hn(zn)| > ε
2 . This shows

that there exists a strictly increasing sequence (nk)
∞
k=1 of N with |hnk

| ≤ gnk

and |hnk
(znk

)| > ε
2 for all k. Note that the sequence (gn) (and hence (hnk

)∞k=1)
is disjoint weakly null in E′ ([2, Theorem 4.34]). The latter contradicts the
almost Dunford-Pettis property of the set A. Therefore, (xn) is a Dunford-
Pettis and weakly null sequence as desired.

Our first main result shows that operators aDPcc enjoy the following lattice
approximations.

Theorem 3.8. Let T : E → X be an aDPcc operator from a Banach
lattice into a Banach space. Then, given a relatively weakly compact and
almost Dunford-Pettis subset A ⊂ E and ε > 0, there exists u ∈ E+ such that∥∥T (|x| − u)+

∥∥ ≤ ε

holds for every x in sol (A). If in addition T : E → F is a positive operator
between two Banach lattices, then T (A) is an approximately order bounded
set in F , that is, for every ε > 0 there exists v ∈ F+ such that∥∥(|Tx| − v)+

∥∥ ≤ ε

holds for all x ∈ A.

Proof. By Lemma 3.7, every disjoint sequence (yn) ⊂ sol(A) is Dunford-
Pettis and weakly null, and hence as T is aDPcc, ∥T (yn)∥ −→ 0. Thus, it
follows from [2, Theorem 4.36], that there exists some u ∈ E+ lying in the
ideal generated by A such that ∥T (|x| − u)+∥ < ε for all x ∈ sol (A). For the
second part, let u ∈ E+ be such that ∥T (|x| − u)+∥ < ε

2 for all x ∈ sol (A),
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and put v = 2Tu. Then for every x ∈ A we have

|Tx| − v ≤ T |x| − v

= Tx+ − Tu+ Tx− − Tu

≤ Tx+ − T
(
x+ ∧ u

)
+ Tx− − T

(
x− ∧ u

)
= T

((
x+ − u

)+)
+ T

((
x− − u

)+)
from which we get

(|Tx| − v)+ ≤ T
((

x+ − u
)+)

+ T
((

x− − u
)+)

and thus∥∥(|Tx| − v)+
∥∥ ≤

∥∥∥T ((
x+ − u

)+)∥∥∥+
∥∥∥T ((

x− − u
)+)∥∥∥ < ε

holds for all x ∈ A. This completes the proof.

In the next result, we show that we can replace (resp. restrict) sequences
appearing in the definition of aDPcc operators by positive (resp. disjoint
positive) sequences.

Theorem 3.9. For every operator T from a Banach lattice E into a Ba-
nach space X, the following assertions are equivalent:

(1) T is aDPcc operator;

(2) for every almost Dunford-Pettis and weakly null sequence (xn) in E+,
we have ∥T (xn)∥ −→ 0;

(3) for every Dunford-Pettis and weakly null sequence (xn) in E+, we have
∥T (xn)∥ −→ 0;

(4) for every Dunford-Pettis and disjoint weakly null sequence (xn) in E+,
we have ∥T (xn)∥ −→ 0.

Proof. (1) ⇒ (2) Let (xn) be an almost Dunford-Pettis and weakly null
sequence (xn) in E+ and let ε > 0. By Theorem 3.8 there exists some u ∈
E+ satisfying ∥T (xn − u)+∥ < ε for all n. On the other hand, it follows
easily from [5, Theorem 2.5] and [2, Theorem 5.57] that the aDPcc property
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of T implies its order weak compactness, and thus by [12, Corollary 3.4.9]
∥T (xn ∧ u)∥ −→ 0. Hence, from

∥T (xn)∥ =
∥∥T (xn − u)+ + T (xn ∧ u)

∥∥
≤ ∥T (xn − u)+)∥+ ∥T (xn ∧ u)∥
≤ ε+ ∥T (xn ∧ u)∥

we show that lim sup ∥T (xn)∥ ≤ ε. As ε > 0 is arbitrary, we have ∥T (xn)∥ → 0
as desired.

(2) ⇒ (3) and (3) ⇒ (4) are obvious.

(4) ⇒ (1) Let (xn) be a Dunford-Pettis and disjoint weakly null sequence in
E. By Lemma 3.7 (x+n ) and (x−n ) are both Dunford-Pettis and disjoint weakly
null in E+. This shows from the inequality ∥T (xn)∥ ≤ ∥T (x+n )∥ + ∥T (x−n )∥
that ∥T (xn)∥ → 0 and therefore T is an aDPcc operator.

A simple application of [10, Corollaries 2.6 and 2.7] and Theorem 3.9, gives
another characterization of positive aDPcc operators.

Corollary 3.10. For a positive operator T : E → F between Banach
lattices, the following assertions hold:

(1) T is an aDPcc if and only if fn(Txn) −→ 0 for every Dunford-Pettis
(resp. almost DP) and weakly null sequence (xn) in E+ and every
disjoint norm bounded sequence (fn) ⊂ (F ′)+.

(2) T ′ is an aDPcc if and only if fn(Txn) −→ 0 for every Dunford-Pettis
(resp. almost DP) and weakly null sequence (fn) in (F ′)+ and every
disjoint bounded sequence (xn) ⊂ E+.

Contrary to DPcc operators (see example of [15, p 9]), positive aDPcc
operators satisfy the domination property as shown in the following corollary.

Corollary 3.11. If a positive operator S : E −→ F between Banach
lattices is dominated by an aDPcc operator then, S itself is aDPcc.

Proof. Let S and T be an operators from E into F such that 0 ≤ S ≤ T
and T is aDPcc. Let (xn) be a Dunford-Pettis and weak null sequence in E+.
Since 0 ≤ S(xn) ≤ T (xn) and ∥Txn∥ −→ 0, then ∥S(xn)∥ −→ 0. This proves
that S is an aDPcc operator.
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The following result gives some set and operator characterizations of pos-
itive aDPcc operators between two Banach lattices when the range space has
order continuous norm.

Theorem 3.12. Let E and F be two Banach lattices. For a positive
operator T : E → F , consider the following statements:

(1) T is aDPcc;

(2) T carries each relatively weakly compact and almost Dunford-Pettis
subset of E to an approximately order bounded subset of F ;

(3) T carries each relatively weakly compact and almost Dunford-Pettis
subset of E to an L-weakly compact subset of F ;

(4) for each operator S from an arbitrary Banach space X into E, the
product TS is L-weakly compact provided that S is weakly compact
and the adjoint S′ is an almost Dunford-Pettis operator.

Then, (3) ⇒ (4) ⇒ (1) ⇒ (2) and if the norm of F is order continuous, then
the assertions (1)-(4) are equivalent.

Proof. (3) ⇒ (4) Obvious.

(4) ⇒ (1) Let (xn) be an almost Dunford-Pettis and weakly null sequence
of E+ and let (fn) ⊂ (E′)+ be a disjoint norm bounded sequence. We shall
shaw by Corollary 3.10 that fn(Txn) −→ 0. To this end, consider the operator

S : ℓ1 −→ E, (λn)n 7−→
∞∑
n=1

λnxn

and note that its adjoint S′ is defined by

S′ : E′ −→ ℓ∞, f 7−→ {f(xn)}n≥1.

From [2, Theorem 5.26] S is well weakly compact and by the almost Dunford-
Pettis property of (xn), S

′ is an almost Dunford-Pettis operator. According
to our hypothesis TS is L-weakly compact and so A = TS(Bℓ1) is L-weakly
compact set in F . This shows that

|fn(Txn)| = |fn(TSen)| ≤ |fn||TSen|
≤ sup{|fn||y| : y ∈ A} = ϱA(fn) −→ 0
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as desired.
(1) ⇒ (2) Follows from Theorem 3.8.
(2) ⇒ (3) As the norm of F is order continuous, it follows that the set

T (A) is approximately order bounded in F = F a, i.e., T (A) is L-weakly
compact in F . This completes the proof.

In the following example, we show that the order continuity of the norm of
F is essential to have the equivalence of the assertions in the above theorem.

Example 3.13. Let E = L1 [0, 1], F = c. By [17, Theorem 2] there exist
two operators T , S with 0 ≤ S ≤ T , T is Dunford-Pettis (aDPcc) but S is
not. From Corollary 3.11 S is well aDPcc. Now, by [2, Theorem 5.81], let
A be a relatively weakly compact subset of E so that S (A) is not relatively
norm compact, and note that A is Dunford-Pettis since E has the Dunford-
Pettis property as an AL-space (see [2, Theorem 5.85]). Now, assume that
S (A) is an L-weakly compact set in F and let ε > 0. Let v ∈ (F a)+ so
that S (A) ⊂ [−v, v] + εBF . Since F is discrete then F a is so. Therefore,
[1, Corollary 21.13] implies the norm compactness of [−v, v] and hence the
relative norm compactness of S (A). This contradiction shows that S (A) is
not L-weakly compact.

Now, to derive a characterization of the PDPrcP of a Banach lattice, we
need to state the following proposition in which we see that the answer of the
first part of Question 1 is affirmative.

Proposition 3.14. A Banach lattice E is a KB-space if, and only if, each
almost Dunford-Pettis set in E is relatively weakly compact.

Proof. The “if” part is trivial as in this case E contains no lattice copy of
c0.

For the “only if” part, let A be an almost Dunford-Pettis subset of E.
According to [12, Theorem 2.5.3], it suffices to show that ϱA(fn) −→ 0 for
every order bounded disjoint sequence (fn) in E′. Otherwise, there exist an
order bounded disjoint sequence (fn) ⊂ E′ and a sequence (xn) ⊂ A so that
|fn| (|xn|) > ε for some ε > 0 and for all n. Now, by [2, Theorem 1.23] one
can find a sequence (gn) ⊂ E′ such that

|gn| ≤ |fn| and gn (xn) = |fn| (|xn|) > ε

hold for all n. Note that the sequence (fn) is weakly null [2, p 192] and hence
so is the disjoint sequence (gn) [2, Theorem 4.34]. This contradicts the almost
Dunford-Pettis property of A and the proof is finished.
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Theorem 3.15. For a Banach lattice E, the following statements are
equivalent:

(1) E has the PDPrcP;

(2) ∥xn∥ −→ 0 for every almost Dunford-Pettis and weakly null sequence
(xn) of E

+;

(3) ∥xn∥ −→ 0 for every Dunford-Pettis and weakly null sequence (xn) of
E+;

(4) ∥xn∥ −→ 0 for every Dunford-Pettis and disjoint weakly null sequence
(xn) of E

+;

(5) fn(xn) −→ 0 for every Dunford-Pettis and weakly null sequence (xn) of
E+ and every disjoint norm bounded sequence (fn) ⊂ (E′)+.

(6) E is a KB-space and each almost Dunford-Pettis subset of E is approx-
imately order bounded;

(7) each almost Dunford-Pettis subset of E is L-weakly compact;

(8) each operator S from an arbitrary Banach space X into E is L-weakly
compact provided that the adjoint S′ is an almost Dunford-Pettis oper-
ator.

Proof. The equivalence of the assertions (1)-(5) follows from Theorem 3.9
and Corollary 3.10.

(1) ⇒ (6) Follows from Theorem 3.12 combined with Remark 3.5 and
Proposition 3.14.

(6) ⇒ (7) Follows from Theorem 3.12 combined with Proposition 3.14.

(7) ⇒ (8) Obvious.

(8) ⇒ (1) It is enough to repeat the same arguments of the implication
(4) ⇒ (1) of Theorem 3.12.

Corollary 3.16. If the bidual E′′ of a Banach lattice E is a KB-space
then, E has the PDPrcP.

Proof. Let (xn) ⊂ E+ , (fn) ⊂ (E′)+ be respectively a Dunford-Pettis and
weakly null sequence and a disjoint norm bounded sequence. As the norm
of E′′ is order continuous ([2, Theorem 4.69]), then by [12, Theorem 2.4.14]
fn

w→ 0. From the Dunford-Pettis property of (xn) we see that fn (xn) → 0.
Now, the desired conclusion follows from Theorem 3.15.
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Remark 3.17. The equivalences (1) ⇔ (7) and (1) ⇔ (8) in Theorem 3.15
present respectively a generalisation of Theorem 2.9 and Corollary 2.12 of [8].
Indeed, by Corollaries 3.16 and 4.2, each of the two assumptions “(i) E′′ has an
order continuous norm” and “(ii) E is a dual KB-space” implies the PDPrcP
of the Banach lattice E. However, the PDPrcP of E does not necessarily
imply (i) (resp. (ii)). For instance, the Banach lattice E = ℓ1 (ℓ∞n ) is a dual
KB-space (and hence it has the PDPrcP by Corollary 4.2) whose bidual E′′

fails to have an order continuous norm (see [12, p 95]). On the other hand,
L1 [0, 1] has the PDPrcP but it does not have a predual.

Next, we show that the PDPrcP of Banach lattices is an hereditary prop-
erty in the sense of the following theorem.

Theorem 3.18. If a Banach lattice E has the PDPrcP, then every closed
sublattice of E has the PDPrcP.

Proof. Let E0 be a closed sublattice of E. Consider an operator T : X →
E0 defined on an arbitrary Banach space such that the adjoint T ′ is almost
Dunford-Pettis. Let i : E0 → E be the canonical lattice embedding. Now,
using the characterization by positive weakly null sequences of almost DP
operators (see [6, Theorem 2.2]) it follows that (i ◦ T )′ = T ′ ◦ i′ is likewise
almost DP. As E has the PDPrcP, it follows from Theorem 3.15 that i ◦ T :
X → E is L-weakly compact, and hence clearly T is also L-weakly compact.
Now, again by Theorem 3.15 E0 has the PDPrcP. This ends the proof.

Let us recall that the lattice operations in a Banach lattice E are said to be
sequentially weakly continuous if for every (xn) ⊂ E, xn

w→ 0 implies |xn|
w→ 0.

In our following result we state a sufficient conditions, under which, a positive
operator between two Banach lattices that factors through a Banach lattice
with sequentially weakly continuous lattice operations is an operator DPcc.

Theorem 3.19. Consider the scheme of positive operators between Ba-

nach lattices E
T→ F

S→ G such that the lattice operations in F are sequentially
weakly continuous. If T is an aDPcc operator and S is order weakly compact,
then the product ST is an operator DPcc.

Proof. Let (xn) ⊂ E be a Dunford-Pettis and weakly null sequence. We
shall see that ∥ST (xn)∥ → 0. To this end, let ε > 0. As T is aDPcc operator
then, by Theorem 3.8, pick some u ∈ F+ such that∥∥(|Txn| − u)+

∥∥ ≤ ε
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holds for all n. Now, from the inequality

|ST (xn)| ≤ S |T (xn)|
= S

(
(|Txn| − u)+

)
+ S (|Txn| ∧ u)

we see that

∥ST (xn)∥ ≤ ∥S∥
∥∥(|Txn| − u)+

∥∥+ ∥S (|Txn| ∧ u)∥
≤ ∥S∥ ε+ ∥S (|Txn| ∧ u)∥

holds for all n. Or, as the lattice operations in F are sequentially weakly
continuous, then the sequence (|T (xn)| ∧ u) is order bounded weakly null in
F+. It follows from [12, Corollary 3.4.9] that ∥S (|T (xn)| ∧ u)∥ → 0. This
shows that lim sup ∥ST (xn)∥ ≤ ∥S∥ ε. As ε > 0 is arbitrary, we infer that
∥ST (xn)∥ → 0 as desired.

Corollary 3.20. Let E and F be two Banach lattices such that F is
discrete with order continuous norm. Then a positive operator T : E → F is
aDPcc if and only if it is DPcc.

Proof. Assume that T : E → F is an aDPcc operator. As F is discrete
with order continuous norm then, it follows from [12, Proposition 2.5.23] that
the lattice operations in F are sequentially weakly continuous. Furthermore,
since the norm of F is order continuous then, the identity operator I : F → F
is order weakly compact. Now, it follows from Theorem 3.19, that T = IT is
a DPcc operator as desired.

It is well known that for the class of discrete Banach lattices, the Schur
and the positive Schur properties are the same. In the following corollary we
prove a similar result for the DPrcP. Also, the same fact holds for Banach
lattices satisfying the condition of discreteness (∗). The detail follows.

Corollary 3.21. Let E be a Banach lattice such that

(i) E is discrete, or

(ii) Ex has a discrete dual for each x ∈ E+.

Then, E has the PDPrcP if and only if it has the DPrcP.
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Proof. (i) Follows from Corollary 3.20 by noting that the PDPrcP implies
the order continuity of the norm.

(ii) Assume that E has the PDPrcP and let (xn) be a Dunford-Pettis
and weakly null sequence of E. Put A = {xn : n ∈ N}, and let ε > 0.
Theorem 3.15 implies the existence of x ∈ E+ such that A ⊂ [−x, x] + εBE .
On the other hand, the canonical embedding i : Ex −→ E is a weakly compact
operator and hence so is i′ : E′ −→ (Ex)

′. Then i′(BE′) is a relatively weakly
compact subset of (Ex)

′. Since (Ex)
′ is an AL-space, it follows that (Ex)

′

has the positive Schur and hence the Schur property since (Ex)
′ is discrete.

Therefore i′(BE′) is a relatively compact subsets of (Ex)
′. This shows that the

operator i′ (and then i ) is compact. Thus, [−x, x] = i(BEx) is compact for
the norm of E. This shows that A is a relatively compact set in E. Therefore,
∥xn∥ −→ 0 and we are done.

4. Duality property of aDPcc operators

As for DPcc operators, the class of aDPcc operators does not satisfy the
duality property. In fact, the identity operator of the Banach lattice ℓ1 is
aDPcc (because ℓ1 has the Schur (PDPrcP) property); but its adjoint, which
is the identity operator of the Banach lattice ℓ∞, is not aDPcc (because ℓ∞

does not have the PDPrcP). Conversely, the identity operator of the Banach
lattice ℓ∞ is not aDPcc, but its adjoint, which is the identity operator of the
Banach lattice (ℓ∞)′, is aDPcc (Corollary 4.2).

In the following theorem we give necessary and sufficient conditions under
which the adjoint of each positive aDPcc operator between Banach lattices is
likewise aDPcc.

Theorem 4.1. For a Banach lattices E and F , the following assertions
are equivalent:

(1) each positive operator T : E −→ F has an aDPcc adjoint;

(2) each positive aDPcc operator T : E −→ F has an aDPcc adjoint;

(3) at least one of the following conditions is valid:

(a) F ′ has the PDPrcP;

(b) the norm of E′ is order continuous.

Proof. (1) ⇒ (2) Obvious.



176 k. el fahri, n. machrafi, m. moussa

(2) ⇒ (3) It suffices to prove that if the norm of E′ is not order continuous,
then F ′ has the PDPrcP. By Corollary 3.10, it suffices to show that fn(xn) −→
0 for every Dunford-Pettis and weakly null sequence (fn) of (F

′)+ and every
disjoint bounded sequence (xn) ⊂ F+. Since the norm of E′ is not order
continuous, [12, Theorem 2.4.2] implies that there exists an order bounded
disjoint sequence (gn) of (E′)+ satisfying ∥gn∥ = 1 for all n. Consider the
positive operators

S1 : E → ℓ1, x 7−→ (gn(x))
∞
n=1 ,

S2 : ℓ
1 → F, (λn)

∞
n=1 7−→

∞∑
n=1

λnxn,

and

T = S2 ◦ S1 : E → F, x 7−→
∞∑
n=1

gn(x)xn.

Since T = S2 ◦ Idℓ1 ◦ S1 and ℓ1 has the PDPrcP, the operator T is aDPcc
and hence by hypothesis T ′ is aDPcc. Now, for every n we have

0 ≤ fn(xn)gn ≤
∞∑
k=1

fn(xk)gk = T ′(fn)

and hence

|fn(xn)| = ∥fn(xn)gn∥ ≤ ∥T ′(fn)∥ −→ 0.

This completes the proof.

(3.a) ⇒ (1) Obvious.

(3.b) ⇒ (1) Let T : E −→ F be a positive operator. Let (xn) ⊂ E+,
(fn) ⊂ (F ′)+ be respectively a disjoint bounded sequence and a Dunford-
Pettis weakly null sequence. By [8, Corollary 2.15], A = {T ′(fn) : n ∈ N} is
an L-weakly compact set in E′. Hence

|fn (Txn) | ≤ |T ′(fn)||xn| ≤ sup{|g||xn| : g ∈ A} = ρA(xn) −→ 0.

Now, the desired conclusion follows from Corollary 3.10.

Recall that a Banach lattice E is said to be a dual Banach lattice if E = F ′

for some Banach lattice F . As consequence of the previous theorem, dual
Banach lattices with the PDPrcP are precisely those that are a KB-spaces.
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Corollary 4.2. A dual Banach lattice E has the PDPrcP if and only if
it is a KB-space.

Proof. It is enough to see that if E is a KB-space, then E has the PDPrcP.
For this, apply Theorem 4.1 for the identity operator I : G → G where
E = G′.

We are now in a position to show that the result in Proposition 3.14 is
sharpened as follows.

Theorem 4.3. A Banach lattice E is a discrete KB-space if, and only if,
each almost Dunford-Pettis set in E is relatively compact.

Proof. The “if” part: That E is a KB-space is trivial as it is shown before.
Note that each order interval of E is an almost Dunford-Pettis set (see [8,
Corollary 2.2]) and hence norm compact. Now, the discretness of E follows
from [1, Corollary 21.13].

The “only if” part: Let A ⊂ E be an almost DP set. If E is a discrete
KB-space, then it is a dual [12, Exercise 5.4.E2]. Now, from Corollary 4.2,
E has the PDPrcP. It follows from Theorem 3.15 that A is approximately
order bounded, that is, for every ε > 0 there exists u ∈ E+ so that A ⊂
[−u, u]+εBE . Now, since [−u, u] is norm compact (again [1, Corollary 21.13])
it follows that A is relatively compact as desired.

We conclude this paper by giving necessary and sufficient conditions under
which each positive operator between Banach lattices is aDPcc whenever its
adjoint is aDPcc.

Theorem 4.4. Let E and F be two Banach lattices such that F is a dual
Banach lattice. Then the following conditions are equivalent:

(1) each positive operator T : E −→ F is aDPcc;

(2) each positive operator T : E −→ F is aDPcc whenever its adjoint T ′ is
aDPcc;

(3) one of the following assertions is valid:

(a) E has the PDPrcP;

(b) the norm of F is order continuous.
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Proof. (1) ⇒ (2) Obvious.
(2) ⇒ (3) It suffices to prove that if the norm of F is not order continuous,

then E has the PDPrcP. We shall show that fn(xn) −→ 0 for every Dunford-
Pettis and weakly null sequence (xn) of E

+ and every disjoint norm bounded
sequence (fn) ⊂ (E′)+. Consider the positive operator S1 : E −→ ℓ∞ defined
by S1(x) = (fn(x))n. Since the norm of F is not order continuous, it results
from [2, Theorem 4.51] that ℓ∞ is lattice embeddable in F , i.e., there exist a
lattice homomorphism S2 : ℓ∞ −→ F and two positive constants M and m
satisfying

m ∥(λk)k∥∞ ≤ ∥S2 ((λk)k) ∥ ≤ M ∥(λk)k∥∞
for all (λk)k ∈ ℓ∞. Put T = S2 ◦ S1 : E −→ ℓ∞ −→ F and note that T ′ =
S′
1 ◦ Id(ℓ∞)′ ◦ S′

2 is aDPcc (because (ℓ∞)′ has the PDPrcP by Corollary 4.2).
From our hypothesis, T is aDPcc. Hence, since (xn) ⊂ E+ is a Dunford-Pettis
and weakly null sequence, it follows that

|fn(xn)| ≤ ∥S1(xn))∥∞ ≤ 1

m
∥S2 ◦ S1(xn)∥ =

1

m
∥T (xn)∥ −→ 0

as desired.
(3.a) ⇒ (1) Obvious.
(3.b) ⇒ (1) As F is a dual Banach lattice with order continuous norm,

then it has the PDPrcP by Corollary 4.2. Therefore, (1) is obviously true.

Remark 4.5. The condition “F is a dual Banach lattice” is not superfluous
in the above theorem. Indeed, every positive operator T : ℓ∞ −→ c is weakly
compact and hence DPcc (since it factors through a reflexive Banach space).
However, neither the assertion (a) nor (b) is valid.
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