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ABSTRACT:  The true course of the lithium salt-free Wittig 

reaction has long been a contentious issue in organic chemistry.  

Herein we report an experimental effect that is common to the 

Wittig reactions of all of the three major phosphonium ylide 

classes (non-stabilized, semi-stabilized and stabilized): there is 

consistently raised selectivity for cis-oxaphosphetane and its 

derived products (Z-alkene and erythro-β-

hydroxyphosphonium salt) in reactions involving aldehydes 

bearing heteroatom substituents in the β-position. The effect 

operates with both benzaldehydes and aliphatic aldehydes and 

is shown not to operate in the absence of the heteroatom sub-

stituent on the aldehyde.  The discovery of an effect that is 

common to reactions of all ylide types strongly argues for the 

operation of a common mechanism in all lithium salt-free Wit-

tig reactions.  In addition, the results are shown to be most easi-

ly explained by the [2+2] cycloaddition mechanism proposed 

by Vedejs and co-workers as supplemented by Aggarwal, Har-

vey and co-workers, thus providing strong confirmatory evi-

dence in support of that mechanism. Notably, a co-operative 

effect of ortho-substituents in the case of semi-stabilized ylides 

is confirmed and is accommodated by the cycloaddition mech-

anism. The effect is also shown to operate in reactions of tri-

phenylphosphine-derived ylides, and has previously been ob-

served for reactions under aqueous conditions, thus for the first 

time providing evidence that kinetic control is in operation in 

both of these cases.  

Introduction 

The Wittig reaction1,2,3 of carbonyls with phosphorus ylides is 

one of the most important and widely used methods for the syn-

thesis of alkenes4 and, even now – almost 60 years after its dis-

covery, is still being intensively studied.5,6,7,8,9,10,11,12,13 Concur-

rently, its mechanism has been the focus of intense and vigorous 

debate2,3,14,15 and could be described as one of the great long-

running investigations of organic chemistry.  Johnson3 enumer-

ated eight different mechanistic proposals that had been ad-

vanced at various times, reflecting the tortuous path to the cur-

rently emerging consensus on the mechanism. This was the re-

sult of a discontinuous uncovering of the operation of several 

different factors that can have a bearing on the mechanism and, 

especially, on the stereoselectivity of the reaction. Only in hind-

sight can we see that the results of valid and well-constructed 

studies concerned with the involvement of betaines (salt-free or 

otherwise),16,17,18 and the related issues of the effect of lithium 

cation19,20,21,22 and reversible formation of intermedi-

ate(s)23,24,25,26,27,28 led incorrectly to the twin hypotheses of the 

involvement of betaines and the operation of thermodynamic 

control in Wittig reactions.29 That these ideas persist in the 

modern literature30,31,32,33,34 perhaps may be attributed to their 

simplicity. For example, it is easy to assume (but ill-founded on 

experimental evidence)35 that reactions of stabilized ylides are 

under thermodynamic control because they are E-selective. Sim-

ilarly, the apparent involvement of betaines as intermediates was 

alluring because non-Wittig reactions deliberately designed to 

produce betaines gave the same products as the analogous Wit-

tig reactions. We know now that both processes produce oxa-

phosphetane (OPA, Scheme 1). Subsequent work has conclu-

sively shown that solutions containing only OPA (as confirmed 

by NMR monitoring of the solution) give β-

hydroxyphosphonium salt (β-HPS) upon quenching with acid,36 

and react with LiBr to give a betaine-LiBr complex.19 Thus 

there is no need to invoke the involvement of betaines in Wittig 

reactions.  Furthermore, the non-involvement of betaines has 

been unequivocally demonstrated in the reaction of a particular 

dibenzophosphole-derived non-stabilized ylide.37 Irreversible 

formation of OPAs has been established for representatives of 

all three types of ylide, which means also that reversibility of 

Wittig reactions – whether they involve betaines or not – cannot 

be invoked to explain high E-selectivity.26,35 It is significant (and 

ironic) that the very limited number of cases in which genuine 

reversibility of OPA formation occurs involve non-stabilized 

ylides.23,24,25,26 

The present emerging consensus on the mechanism centers on 

[2+2] cycloaddition of the ylide and carbonyl to give oxaphos-

phetane (OPA) directly (Scheme 1). As developed by Vedejs 

and co-workers,35,38 and modified for reactions of stabilized 

ylides by Aggarwal, Harvey and co-workers,13 it is the mecha-

nism that best accounts for experimental observations.39,40 Con-

sideration of this mechanism grew from the initial observation 

by Vedejs and Snoble41 that OPA was the only intermediate 
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observable by low temperature NMR and that the high Z-

selectivity from non-stabilized alkylidenetriphenylphosphoranes 

could be explained by a kinetically controlled [2+2] cycloaddi-

tion of ylide and aldehyde. Subsequently the Vedejs 

group,14,15,19,26,35,38,,42,43,44,45,46 did extensive work to establish the 

operation of the cycloaddition mechanism in the reactions of 

non-stabilized,26,38 semi-stabilized and stabilized ylides.35 Mar-

yanoff, Reitz and co-workers2,20,23,24,25,47 and Schlosser and co-

workers48 also contributed significantly to its development.  The 

former group of workers also identified and did extensive stud-

ies on the issue of stereochemical drift (vide infra).  More re-

cently, the extensive kinetic studies of Mayr and co-workers 

confirmed that the reactivities of stabilized ylides were con-

sistent with the cycloaddition mechanism.49 

Scheme 1.  Present understanding of the mechanism of the 

Li-salt-free Wittig reaction.a 
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a Oxaphosphetane (OPA) formation is generally irreversible, with 

well-defined exceptions (all from non-stabilized ylides, see text).  

Betaines are not formed in the process of the salt-free Wittig 

reaction, but if independently generated (e.g. from β-HPS) rapidly 

form OPAs.  Each OPA diastereomer undergoes stereospecific 

decomposition to alkene and phosphine oxide, perhaps after 

undergoing pseudorotation. 

Context of the present experiments:  

The [2+2] cycloaddition mechanism 

We may summarize the emerging consensus as follows: it has 

been categorically established that salt-free non-stabilized ylides 

react with aldehydes by rapid and irreversible formation of cis 

and trans-oxaphosphetane (OPA) intermediates,23,24,25,26,46,50,51 

with no involvement of betaine intermediates (Scheme 1 and 

Figure 1(a)) prior to OPA formation.37  In a limited number of 

cases (discussed below), “Wittig reversal” of the cis-OPA to 

ylide & aldehyde has been observed (Scheme 1), resulting in 

enhanced production of trans-OPA and hence E-

alkene.23,24,25,26,47 It is also established that the OPAs (generated 

by non-Wittig processes) that are thought to be necessary inter-

mediates in the analogous Wittig reactions of semi-

stabilized35,42,52 and stabilized35,43 ylides do not equilibrate under 

the typical experimental conditions for a Wittig reaction.  The 

presence of OPAs as intermediates has been demonstrated in the 

reaction of a particular dibenzophosphole-derived semi-

stabilized ylide,35 but not, as yet, for any stabilized ylide.  Reac-

tions of stabilized ylides have been observed to be slower in 

acetone or DMF than in benzene53 and to have large negative 

activation entropy,53 which is consistent with a cycloaddition 

mechanism.  In the reactions of all three types of ylide, the ini-

tially formed OPA (with apical carbon) undergoes facile pseu-

dorotation to place the ring oxygen in an apical position in the 

OPA trigonal bypyramid.13,37,45,51 Finally, alkene and phosphine 

oxide are formed by irreversible, stereospecific syn-

cycloreversion of the OPA.54,55 For reactions of non-stabilised 

ylides, the straightforward formation of OPA and substantial 

barrier to OPA decomposition mean that the latter is the rate-

determining step (see Fig. 1(a)).  For reactions of semi-

stabilized and stabilized ylides, the barrier to [2+2] cycloaddi-

tion is increased and that to OPA cycloreversion is significantly 

decreased (especially for OPAs derived from stabilized ylides) 

and so OPA formation is rate-determining (Fig. 1(b)).  Conse-

quently, the OPA intermediates are reasonably long-lived (at 

low temperature) and thus spectroscopically observable in reac-

tions of non-stabilized ylides, but not in those of semi-stabilized 

or stabilized ylides, with the exception of OPAs formed from 

dibenzophosphole-derived semi-stabilized ylides. 

Figure 1.  Reaction coordinate diagrams for Wittig reac-

tions.  
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(a)  Reaction of a non-stabilized ylide (R3 = Ph, R2 = alkyl), 

indicating rate-determining OPA decomposition. 

(b)  Reaction of a stabilised ylide (e.g. R2 = CO2Me), indicating 

rate determining OPA formation. 
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Powerful indirect evidence supporting the [2+2] cycloaddition 

as a unified Wittig mechanism is related to its use in a consistent 

explanation of the variation of the Z/E ratios in the product al-

kenes.3,14 It is postulated that alkylidenetriphenylphosphoranes 

(non-stabilized ylides) react preferentially through an early, 

puckered transition state in which the carbonyl substituent oc-

cupies a pseudo-equatorial position.  This minimizes steric in-

teractions between it and the P-phenyl groups, which are still in 

a pseudo-tetrahedral arrangement about phosphorus (see Fig. 

2(a)).  In such a transition state, the steric interactions of the 

ylide -substituent (with the P-phenyl groups in particular) are 

minimized if it is in a pseudo-axial site, and hence this transition 

state leads to cis-OPA and Z-alkene.  This TS simultaneously 

minimizes 1-2 and 1-3 interactions (see Fig. 2(a) for numbering 

of ring positions) for the particular arrangement of substituents 

about phosphorus involved, as well as allowing the forming P-O 

bond to avoid the P-phenyl group that is necessarily projecting 

in the direction of the carbonyl approach to the ylide, and is thus 

highly favored for alkylidenetriphenylphosphoranes.56 

Figure 2.  Proposed [2+2] cycloaddition transition states for 

various Wittig reactions. 
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(a) Early puckered transition state with pseudo-tetrahedral 

arrangement of phosphorus substituents, and pseudo-trigonal 

planar geometry of the ylidic and carbonyl carbon substituents 

(for non-stabilized ylides); (b)  trans-selective transition state 

for the reaction of a stabilized ylide, with favourable 

antiparallel orientation of carbonyl and C-CO2Me dipoles; (c) 

Planar cis-selective TS for the reaction of a 

triphenylphosphine-derived stabilized ylide; (d) Disfavoured 

cis-selective TS for the reaction of a stabilized ylide, with 

approximately parallel orientation of carbonyl and C–CO2Me 

dipoles. 

In reactions of triphenylphosphine-derived semi-stabilized 

ylides, the somewhat more advanced nature of the TS, and the 

shape of the sp2-hybridised substituent on the ylide, results in 

decreased 1-3 and 2-3 steric interactions.  As a consequence, a 

planar trans-selective TS can become competitive with a cis-

selective puckered TS, and poor selectivity results.  In reactions 

of semi-stabilized ylides for which one or more of the P-phenyl 

groups are replaced by alkyl group(s), the shape of the phospho-

nium moiety is such that 1-3 and 2-3 interactions are further 

reduced, resulting in a greater preference for the planar trans-

selective TS (which ensures minimal 1-2 interactions), and 

hence the trans-OPA and E-alkene. 

Stabilized ylides react through a relatively late TS.57  Recent 

calculations by Aggarwal, Harvey and coworkers indicate that 

the trans-selective TS (shown in Fig. 2(b)) in reactions of stabi-

lized ylides is puckered, but importantly that this puckering is 

of the opposite sense to that proposed for the cis-OPA selective 

TS in reactions of non-stabilized ylides (Fig. 2(a)).13  This re-

sults in a TS that has an electrostatically favorable anti-parallel 

orientation of the carbonyl C-O and ylide C-C(O) bond dipoles.  

Minimization of both 1-2 and in particular 1-3 steric interac-

tions then dictates that the large aldehyde substituent (R1) 

should be pseudoequatorial, and so this TS is selective for 

trans-OPA.  The possible (late) cis-selective TSs (planar and 

puckered) in these reactions of stabilized ylides (see Fig. 2 (c) 

and (d)) were found to be significantly higher in energy than 

the trans-selective TS.58,59 

 

Confusion in the secondary/tertiary literature about the mecha-

nism 

The evidence and arguments summarized above are the basis 

for the consensus among mechanistic organophosphorus chem-

ists on the underlying simplicity and unity of the mechanism of 

the salt-free Wittig reaction and how it manifests itself in prac-

tice.  It can be seen however that the explanation of the source 

of stereoselectivity in the [2+2] cycloaddition mechanism relies 

on fairly complex technical arguments, with a number of cave-

ats and exceptions to be explained.  This has not helped to dis-

pel (previously accepted) older descriptions of the mechanism 

involving reversible steps and/or betaine intermedi-

ates.30,31,32,33,60,61,62 The persistence of both of these issues may 

also be related to the fact that the mechanism of the Li-salt con-

taining Wittig reactions is still uncertain.33 Modern textbooks 

tend not to distinguish between Wittig reactions conducted in 

the presence of Li+, for which the mechanism is essentially un-

known, and those that occur under Li salt-free conditions, for 

which the mechanism is now well-established. 

In the present study, for the first time, we demonstrate an ef-

fect that is common to Li salt-free Wittig reactions of all three 

classes of phosphonium ylide. This is powerful confirmatory 

evidence that there is a unitary mechanism in operation in all 

kinetically controlled Wittig reactions.  In addition we shall 

demonstrate that our results are entirely consistent with the 

[2+2] cycloaddition mechanism.  We hope that the unmasking 

of an unexpected effect that is common to all ylide types and 

which is easily explicable by the cycloaddition mechanism will 

enable clarity on the mechanism of the Li-salt free Wittig reac-

tion for non-experts in organophosphorus mechanism. 

 

Preliminary remarks on the evaluation of kinetic diasterose-

lectivity in Wittig reactions 

There are many variables that may affect the mechanism of 

the Wittig reaction and thus the observed diastereomeric ratio of 

the alkene product.  An understanding of these variables has 

come about through the substantial body of work carried out by 

Vedejs & co-workers, Maryanoff, Reitz & co-workers, Ag-

garwal, Harvey & co-workers, Schlosser & co-workers and oth-

ers.  The importance of the foundations laid by these workers is 

such that it is only recently, in the aftermath of their work, that it 

has become possible to conduct meaningful experiments on the 

mechanism of the Wittig reaction with sufficient confidence that 
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the numerous variables at play are under control.  We now brief-

ly discuss these variables, the effect that they exert in the reac-

tion, and how to prevent these effects giving rise to misleading 

results in the context of the reaction mechanism.   

Operation of kinetic control 

Conditions have been established in which reactions of all 

three different ylide types occur under kinetic control – meaning 

that the OPA intermediates are formed irreversibly and undergo 

stereospecific decomposition to alkene and phosphine oxide.  

These conditions are now described. 

In reactions of non-stabilized ylides it is possible to observe 

the OPA intermediates by low temperature NMR, and also to 

quench the OPA at low temperature with acid to give β-HPS 

(whose erythro/threo ratio corresponds directly to the cis/trans 

ratio of the OPA precursor).  Both of these techniques have been 

used to determine kinetic OPA cis/trans ratios, and in cases 

where both techniques have been used, the ratios have been in 

excellent agreement.2,36 Comparison of the diastereomeric ratio 

of the intermediate determined by either method with the Z/E 

ratio of the alkene product in all but a small number of excep-

tional circumstances (see section entitled “stereochemical drift” 

below) shows the ratios to be identical.23,24,25,26,46,50,51 Thus it can 

be inferred that these reactions occur under kinetic control. 

For Li-salt free reactions of semi-stabilized and stabilized 

ylides, OPA intermediates are generally not sufficiently long-

lived to permit spectroscopic detection.63  Kinetic control has 

been established in these challenging cases by generating the 

OPA intermediates through processes independent of a Wittig 

reaction and proving that these OPAs do not interconvert, but 

instead undergo stereospecific decomposition to alkene and 

phosphine oxide.35 Triphenylphosphine-derived OPAs are not 

amenable to these routes (all of which require quaternization at 

phosphorus), and so methyldiphenylphosphine-derived OPAs, 

which are accessible by non-Wittig processes, have been em-

ployed in these experiments. 

Based on the above experiments, if one carries out a Wittig re-

action under conditions mimicking those for which the opera-

tion of kinetic control has been verified, a direct correspondence 

between the kinetic OPA cis/trans ratio and the observed alkene 

Z/E ratio can be assumed (as long as steps have been taken to 

ensure that no isomerization of the alkene occurs after the reac-

tion is complete – see the section entitled “Dependability of Z/E 

ratios” below).  The exceptional circumstances under which the 

kinetic OPA cis/trans ratio changes from its original value are 

well defined (see section on “stereochemical drift” below) and 

steps can be taken to evaluate the relevant ratio before it chang-

es. 

 

Dependability of Z/E ratios 

In the present work, the kinetic selectivity of the OPA forming 

step in Wittig reactions of semi-stabilized and stabilized ylides 

is inferred from the observed Z/E ratio of the alkene product.  It 

is thus very important to be sure that the alkene Z/E ratio is truly 

reflective of the kinetic OPA cis/trans ratio, and to be aware of 

possible means by which there may arise a non-correspondence 

between the two ratios.  Changes may occur to the Z/E ratio 

after completion of the reaction and/or during work-up or chro-

matographic purification of the alkene product.  It is not suffi-

ciently recognized that Z-1,2-disubstituted alkenes are quite 

easily converted, under a variety of conditions, to a Z/E mixture 

and sometimes completely to the E-isomer.  Therefore the Z/E 

ratio resulting from the reaction is fragile and can be affected, 

by the presence of acids,64 strong bases,65 the chromatographic 

stationary phase used, the solvent, heat and sunlight.  Both our-

selves66 and Vedejs and Peterson14 have identified multiple pre-

vious literature reports where there was undoubtedly isomeriza-

tion in favor of the E-alkene subsequent to the actual Wittig 

reaction.67  It may even occur simply if the reaction mixture is 

allowed to stand for a period.68  We have taken extensive pre-

cautions69,70 and performed a substantial number of control ex-

periments71 to ensure that our observed Z/E ratio is truly reflec-

tive of that rendered by the Wittig reaction in question. 

 

Stereochemical Drift 

This is a more mechanistically significant source of variation 

in stereochemistry.  Under certain circumstances, the proportion 

of trans-OPA present in the initially formed mixture of OPA 

isomers (which reflects the extent to which the trans-OPA is 

preferred kinetically) may be augmented at the expense of the 

cis-OPA,14,25,26,47 leading to a different ratio of cis & trans OPAs 

and therefore a Z/E alkene ratio which is not reflective of the 

intrinsic kinetic selectivity of the [2+2] cycloaddition step.  This 

phenomenon has been termed “stereochemical drift”.25 Reac-

tions conducted in the presence of additives such as salts that are 

soluble in the reaction solvent – in particular lithium cation,14,20 

but also iodide anion,52 lithium halide with small amounts of 

alcohol,72 and benzoic acid64 have been shown to give Z/E ratios 

that are altered with respect to reactions conducted in the ab-

sence of such additives.  The effect of lithium ion is solvent 

dependent, with a profound effect being observed for reactions 

in non-polar solvents, and essentially no effect in solvents that 

effectively complex Li+.3,20 Hydroxylic solvents and high tem-

perature have also been implicated as possible initiators of OPA 

equilibration in reactions of aromatic aldehydes.14 

More challenging is that, in certain reactions of non-stabilized 

ylides, stereochemical drift can occur in the absence of dis-

solved salts (Li or otherwise).  This has been observed to occur 

for OPAs derived from trialkylphosphonium alkylides with ter-

tiary or aromatic aldehydes, 23,24,25,26,47 and for OPAs derived 

from ethylidenetriphenylphosphorane with benzaldehyde (alt-

hough in the latter of these, stereochemical drift only occurs at 

or above the temperature at which OPA can decompose to al-

kene, while below this temperature the OPA diastereomeric 

ratio remains identical to the low temperature kinetic ratio).19 By 

the use of crossover experiments, the enhanced production of 

trans-OPA in these examples was shown to arise from reversal 

of the cis-OPA exclusively to ylide and aldehyde and subse-

quent recombination of these reactants.  In each of the above 

examples, the OPAs were generated by deprotonation of β-HPS.  

In the course of the present study the occurrence of this phe-

nomenon has been confirmed by comparison of the kinetic 

cis/trans ratio of the OPA and the Z/E ratio of the alkene pro-

duced in the reactions of non-stabilized ylides ethylidenetri-

phenylphosphorane,73 P-

(ethylidene)ethyldiphenylphosphorane,73 and P-(ethylidene)-P-

phenyldibenzophospholane74 with each of benzaldehyde and 2-

bromobenzaldehyde.  In each case, a greater proportion of the 

E-isomer was observed to be present in the alkene product than 

would have arisen from the trans-OPA initially generated. 
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Our interest in this area 

This arose some years ago,66 when we reported on a curious 

phenomenon in the Wittig reactions of triphenylphosphonium 

benzylides with ortho-substituted benzaldehydes.  Strong ortho-

effects from substituents on phosphorus were already well 

known through the work of McEwen and co-workers75,76 and 

these had been extended to the Wittig reaction, although with 

conflicting results.77,78 It was also known that Z-selectivity in 

stilbene synthesis could be induced by ortho-substituents with 

heteroatom lone pairs on the aldehyde79,80 However, remarkably, 

we found that this latter Z-selectivity could be substantially 

augmented by an additional ortho-substituent on the benzylide, 

despite the fact that such a substituent would ordinarily lead to 

E-selectivity.  This counter-intuitive cooperative effect was 

strong enough to be preparatively useful (Z/E up to 95:5) and 

the resulting Z-2,2’-disubstituted stilbenes have been used to 

good effect in synthesis by others.81,82  At the time, we rational-

ized the results within the cycloaddition mechanism by propos-

ing that the increased Z-selectivity arose from the induction by 

the ortho-heteroatom of a lowered energy transition state (TS) in 

the kinetically controlled cycloaddition step leading to a low-

ered energy cis-OPA.  However, the experimental conditions 

employed (aqueous, room temperature, presence of sodium salts 

in solution, use of triphenylphosphine derived ylides), while 

very convenient, were not such that kinetic control in the Wittig 

reaction could be assumed and rendered the analysis provisional 

at best.  We have now re-investigated comprehensively the orig-

inal ortho-heteroatom phenomenon under conditions ensuring 

kinetic control but, much more significantly, we have extended 

it to non-stabilized and stabilized ylides, and also to aliphatic 

aldehydes. 

 

Standard Wittig reaction conditions used in this work 

For Wittig reactions of semi-stabilized and stabilized ylides, we 

adopted a standard set of conditions designed: (i) to ensure ki-

netic control; (ii) to avoid possible initiators of stereochemical 

drift and (iii) to ensure that the Z/E ratio of the alkene product 

rendered by the reaction remains unchanged after completion of 

the reaction.  For each reaction, the (Li salt-free) ylide was pre-

generated from the parent phosphonium bromide or chloride salt 

using non-nucleophilic bases NaHMDS or KHMDS in dry apro-

tic solvent (THF) under an atmosphere of dry nitrogen.  The 

ylide solution was cooled to -78 ˚C, and aldehyde (verified free 

of carboxylic acid by 1H NMR), was then added drop-wise.  The 

operation of kinetic control in reactions of methyldiphe-

nylphosphine-derived semi-stabilized and stabilized ylides has 

been unequivocally verified for just these reaction conditions,35 

and so the bulk of our reactions involve such ylides.  We have 

also carried out some reactions of triphenylphosphine-derived 

ylides for comparison.  The inorganic salts produced in these 

reactions (NaCl, NaBr, KCl, KBr) are insoluble in THF, and are 

thus out of solution and exert no effect on the reaction of ylide 

with aldehyde.83  For reactions of semi-stabilized ylides, the 

reaction mixture was allowed to warm to room temperature, 

while reactions of stabilized ylides were quenched at -78 ˚C by 

addition of NH4Cl solution to ensure that the reaction had oc-

curred at low temperature.  The Z/E ratio was established based 

on integrations of characteristic signals in the 1H NMR of the 

crude alkene obtained after minimal aqueous work-up and be-

fore chromatographic purification (unless otherwise indicated).  

Thus every effort has been made to ensure that the Z/E ratios we 

have observed in these reactions correspond directly to the ki-

netic OPA cis/trans ratio produced in the Wittig reaction.  For 

reactions of non-stabilized ylides with benzaldehydes, alkene 

Z/E ratios are not used to infer the kinetic selectivity of OPA 

formation, since in principle it may be possible for stereochemi-

cal drift to occur 

at or above the temperature at which OPA decomposition to 

alkene and phosphine oxide commences.  We instead rely on 

OPA cis/trans ratios (obtained by low temperature 1H and 31P 

NMR of the Wittig reaction mixture) and β-HPS erythro/threo 

ratios (from low temperature acid quenching of Wittig reac-

tions) to establish the kinetic cis/trans ratio of OPA.  In all cas-

es, as expected,36 these two methods were in agreement. 

Finally we note that, in general, the OPA cis/trans ratio for a 

Wittig reaction must be at least as high as the observed alkene 

Z/E ratio since OPA decomposition is stereospecific and irre-

versible, reflecting the fact that cis-OPAs are normally higher in 

energy than trans-OPAs.  Therefore, as long as the cis-OPA is 

indeed higher in energy than the trans isomer, it can be assumed 

that the reactions that are highly selective for the Z-alkene are 

under dominant or total kinetic control.26 The consequence is 

that it is not ordinarily possible to obtain Z-selectivity by acci-

dent or by intervention of equilibration.  Therefore it is apposite 

that our conclusions (vide infra) are dependent on high Z/E rati-

os, which have a high likelihood of being the "true" values. 

 

Reactions of benzaldehydes 

Results for semi-stabilized ylides 

Salts 1a-g (and selected triphenyl analogues 2) were converted 

to the corresponding ylides 3a-g (and analogues 4) and reacted 

with benzaldehydes 5a-i.  The Z/E ratios of the stilbene products 

(6-27) obtained in these reactions are shown in Tables 1 and 2.  

At the outset, we note that in reactions with benzaldehyde, the 

unsubstituted benzylide of methyldiphenylphosphine shows 

high E-selectivity (Table 1 entry 15), in good agreement with 

literature precedent,84 whereas that from triphenylphosphine is 

known to show slight Z-selectivity (Table 2 entry 8).84 Tables 1 

and 2 show the following trends: 

1. Reactions of unsubstituted benzylides with benzaldehydes 

bearing an ortho-heteroatom (lone pair bearing) substituent 

show very marked Z-selectivity (see Table 1, entries 1-4, 6 & 7 

and Table 2, entries 1-4).  This effect is observed for both ben-

zaldehydes that are more electrophilic at the carbonyl (“reac-

tive”) than benzaldehyde itself, and for ortho-alkoxy substituted 

benzaldehdyes, which are less electrophilic than benzaldehyde.  

The effect is less pronounced with an ortho-methylthio substitu-

ent (Table 1 entry 8).  Considering their very different starting 

points (Table 1, entry 15 vs. Table 2, entry 8), the magnitude of 

the shift towards Z-selectivity on ortho-substitution is very 

much greater in the methyldiphenyl series than in the triphenyl 

series (Table 1 entries 1-3, & 6 vs. Table 2 entries 1-4).85 There 

appears to be a trend in the observed Z-selectivity depending on 

the identity of the aldehyde ortho-heteroatom substituent, in-

creasing in the order F < O < Cl < Br < I. 
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P

Ph

Ph
R3

X

1 R3 = Me

2 R3 = Ph

NaHMDS

CHO

Y
5

-78 °C

X

Y
Z

P

Ph

Ph
R3

X

3 R3 = Me

4 R3 = Ph

THF

6-27

1,2,3,4,5
a.  H
b.  F
c.  Cl
d.  Br
e.   I
f.   OMe
g.  Me
h.  OEt
i.   SMe  

Table 1. Z/E ratioa for stilbenes 6-27 produced in the reactions of benzylidenemethyldiphenylphosphoranes 3a-g, derived 

from phosphonium saltsb 1a-g (with ortho-substituent X) with benzaldehydes 5a-i (with ortho-substituent Y). 

Entry 
Ylide 

X 

Ald 

Y 

Z/E 

ratio 
Entry 

Ylide 

X 

Ald 

Y 

Z/E 

ratio 
Entry 

Ylide 

X 

Ald 

Y 

Z/E 

ratio 
Entry 

Ylide 

X 

Ald 

Y 

Z/E 

ratio 

1 H Cl 92:8 9 Cl H 34:66 16 Cl Cl 97:3  24c Me Cl 94:6 

2 H Br 94:6 10 Br H 33:67 17 Br Br 98:2 25 Br Me 70:30 

3 H I 96:4 11 I H 28:72 18 I I 99:1 26 Cl Me 73:27 

4 H F 84:16 12 F H 41:59  19d F Br 94:6 27 F Me 52:48 

5 H Me 35:65  13c Me H 7:93  20c Me Me 31:69  28c OMe Me 66:34 

6 H OMe 86:14  14c OMe H 12:88  21e OMe OMe 44:56     

7 H OEt 77:23     22 Br OEt 92:8 29 Br OMe 95:5 

8 H SMe 42:58 15 H H 15:85 23 Br SMe 61:39 30 OMe Br 72:28 

 

Table 2. Z/E ratioa for stilbenes produced in the reactions of selected benzylidenetriphenylphosphoranes 4a and 4d-g de-

rived from phosphonium saltsb 2a and 2d-g (with ortho-substituent X) with selected benzaldehydes 5a and 5c-f (with ortho-

substituent Y). 

Entry 
Ylide 

X 

Ald 

Y 
Z/E ratio Entry Ylide X 

Ald 

Y 
Z/E ratio Entry 

Ylide 

X 

Ald 

Y 
Z/E ratio 

1f H Cl 90:10 5f Cl H 51:49  9f Cl Cl 94:6 

2 H Br 87:13 6 Br H 42:58 10 Br Br 94:6 

3 H OMe 90:10  7c OMe H 42:58 11 OMe OMe 90:10 

4 H I 88:12  8g H H 59:41 12 I I 94:6 

        13 Me Cl 95:5 

 

a  Z/E ratio determined by 1H NMR analysis of the crude product obtained after minimal aqueous work-up.  See Supplementary Information for full details 

of the reaction, work-up, Z/E analyses and characterisation of the starting materials and product alkenes. 
b  Counterion Z = Br- in all cases except where otherwise noted. 
c  Counterion Z = Cl-.  
d  The corresponding result for X = Br, Y = F: Z/E = 84:16. The case X = Y = F is excluded because the alkene is especially prone to isomersisation. 
e  This reaction was also carried out using the phosphonium chloride salt, and the Z/E ratio was found to be 46:54. 
f Phosphonium salt used for this reaction was not dried in the standard manner and was not stored under argon; as a consequence, the yield of alkene from 

the Wittig reaction was lower and the amount of phosphine oxide produced by ylide hydrolysis higher. 
g  From reference 14, KHMDS used to generate the ylide 

 

2. Reactions of ortho-substituted benzylides with benzaldehyde 

are moderately E-selective.  This is less pronounced in the tri-

phenylphosphine series  (Table 2, entries 5/6/7) than in the 

methyldiphenylphosphine series (Table 1, entries 9-14) and in 

the latter series, ylides with electron donating groups (“reac-

tive”) give the highest E-selectivity (Table 1, entries 13, 14). 

3. Reactions of ortho-substituted benzylides with ortho-

heteroatom substituted benzaldehydes show equivalent or even 

greater Z-selectivity than the corresponding reactions of the 

same aldehydes mentioned in point 1.  This is almost always 

the case for either electron withdrawing or donating substitu-

ents (Table 1, entries 16-19, 22, 24, 29 and footnote d; Table 2, 

entries 9-13 and reference 69).  The only notable exceptions are 

the reactions of ortho-heteroatom substituted benzaldehydes 

with 2-methoxybenzylidenemethyldiphenylphosphorane 3f 

(Table 1, entries 21 & 30).  Once again the increase in Z-

selectivity in these reactions in comparison with the reaction of 

the same ylide with benzaldehyde is generally much greater85 

in the methyldiphenylphosphine series (Table 1, entries 16-18, 

24 vs. Table 2, entries 9, 10, 12, 13), with the exception of re-

actions of 3f.  As with the reactions in point 1, the magnitude of 

the Z-selectivity appears to depend on the identity of the het-

eroatom, increasing in the order F < O < Cl ≤ Br ≤ I, culminat-

ing in the particularly striking di-iodo cases (Table 1, entry 18 

and Table 2, entry 12).  Although the reaction of 2-

(methylthio)benzaldehyde (5i) with the ortho-bromo benzylide 

3d does show increased Z-selectivity (Table 1, entry 23 vs. 

entries 8 & 10) the magnitude of the increase is not as great as 

with other aldehydes. 

4. The reaction of 2-methylbenzaldehyde with the unsubstituted 

methyldiphenylphosphine-derived benzylide shows moderate 

E-selectivity (Table 1, entry 5), as does its reaction with 2-
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methyl substituted ylide (entry 20). Its reaction with ortho-

heteroatom substituted benzylides shows poor to moderate Z-

selectivity (Table 1 entries 25-28).  That high Z-selectivity is 

not observed in these reactions shows that the unusual effects 

observed in the reactions of ortho-heteroatom substituted ben-

zaldehydes is dependent on the ortho-substituent being lone-

pair bearing – i.e. the effect is not of steric origin 

In summary, lone-pair bearing ortho-substituents on benzal-

dehyde result in significantly enhanced Z-selectivity with ben-

zylides.  There is also a counter-intuitive secondary effect 

whereby this Z-selectivity is increased by ortho-substituents on 

the benzylide.  

The reactions in Table 1 have been carried out under condi-

tions for which irreversible OPA formation has been verified in 

reactions of semi-stabilized ylides,35 and many of them show 

very high Z-selectivity.  Consequently, we are confident that 

kinetic control is in operation in these reactions.26 Table 2 

shows that the same magnitudes and trends in Z/E ratios are 

obtained in the analogous reactions of benzylidenetri-

phenylphosphoranes, including the unusual ortho-heteroatom 

effects.  This continuity of unexpected effects is strong evi-

dence that the triphenyl cases too are under kinetic control.  

Furthermore, the trends in the results shown in Table 2, again 

including the signature ortho-effects are entirely consistent 

with those obtained in our previous report66 except that the 

observed Z-selectivities are in general higher here.  This, again, 

is evidence that kinetic control persists even under the aqueous 

bi-phasic conditions that we previously used.  The effect per-

sists even when non-dry phosphonium salt is used (Table 2 

entries 1, 5 and 9), so the THF solvent is wet to some degree 

due to water of crystallization in the phosphonium salt.  In 

these reactions of non-dry phosphonium salts, a significant 

amount of phosphine oxide is produced by ylide hydrolysis 

and, consequently, the yield of alkene is lower.  Thus the anhy-

drous conditions we adopted for the purposes of ensuring kinet-

ic control also improve the preparative utility of the reactions. 

The high Z selectivity in these reactions of semi-stabilized 

ylides points to an energy lowering of the transition state (TS) 

leading to the cis-oxaphosphetane (cis-OPA, see later discus-

sion).   

 

Stabilized Ylides 

We reasoned that, if a low energy TS that is strongly selective 

for the cis-OPA is available to the Wittig reactions of benzyli-

denephosphoranes with ortho-heteroatom substituted benzalde-

hydes, there might be a similar low energy TS available to the 

reactions of stabilized ylides such as (alkoxycarbonylmethyli-

dene)methyldiphenylphosphoranes 29.  Reactions of such 

ylides have previously been shown to be under kinetic control 

by stereospecific formation of Z-alkene from the erythro-β-

hydroxyphosphonium salts derived from (ethoxycarbon-

ymethylidene)methyl-diphenylphosphorane and each of several 

aldehydes (including benzaldehyde).35 Therefore we examined 

several Wittig reactions of heteroatom-substituted aldehydes 

with such ylides, generated in situ from the corresponding 

phosphonium salt 28, under the same conditions as were em-

ployed for the reactions of semi-stabilized ylides.  The Z/E 

ratios determined for these reactions are shown in Table 3. 

 

Table 3. Z/E ratios for reactions of selected (alkoxycarbon-

ylmethylidene)methyldiphenylphosphoranes 29f,h,j (gen-

erated in-situ from the corresponding phosphonium salts 

28) with selected benzaldehydes 5 to give enoates 30-42.a 

P

Ph
Ph

Me

OR

OZ
THF

P

Ph
Ph

Me

OR

O -78 °C

CHO

Y

(i)

(ii) H

-78 °C

Y

O

OR

28 29

5

28 & 29
R = f. OMe; h. OEt; j. O(t-Bu)

30-42
NaHMDS 
     or 
 KHMDS  

a All reactions were carried out at -78 °C, and subsequently 

quenched with aqueous ammonium chloride at this temperature.  

Z/E ratio determined by 1H NMR analysis of the crude product 

obtained after aqueous work-up of the reaction mixture – see 

Supplementary Information for full details.  Phosphonium salt 

counter-ion Z = Br unless otherwise indicated. 

b Phosphonium salt counter-ion Z = Cl-. 

The Z/E ratio for the reaction of ester stabilized ylide (ethox-

ycarbonylmethylidene)triphenylphosphorane86 with benzalde-

hyde in THF at 20 °C has previously been found to be 

23:77.14,35 The reactions of benzaldehyde with the (alkoxycar-

bonylmethylidene)methyldiphenyl-phosphoranes investigated 

here show slightly decreased E-selectivity compared to this 

literature example (see Table 3 entries 1-3).  The reactions of 

the same ylides with ortho-heteroatom substituted benzalde-

hydes show significantly enhanced Z-selectivity, both in reac-

tions in which the aldehyde is more reactive than benzaldehyde 

itself (Table 3 entries 4-6) and in those where it is less reactive 

than benzaldehyde (Table 3 entries 8-12), as well as in reac-

tions of benzaldehydes of similar reactivity to benzaldehyde 

itself (Table 3 entries 7 & 13).  Such selectivity is almost un-

precedented outside of alcohol solvents.2,14 As in the reactions 

of semi-stabilized ylides, 2-(methylthio)benzaldehyde 5i shows 

somewhat reduced Z-selectivity compared to other ortho-

heteroatom substituted benzaldehydes. 

These results are entirely consistent with those observed in 

the reactions of the semi-stabilized ylides, with the aldehydes 

bearing the larger bromo and iodo-substituents showing the 

highest Z-selectivity, again strongly imply that the reactions 

occur under kinetic control. 

Entry 
Ylide  

OR 

Aldehyde  

Y 

Enoate  

Z/E ratio 

  1b OMe H 36:64 

2 OEt H 36:64 

3 O(t-Bu) H 40:60 

4 OEt OMe 66:34 

5 O(t-Bu) OMe 77:23 

6 O(t-Bu) OEt 77:23 

7 O(t-Bu) SMe 70:30 

8 OMe Cl 79:21 

9 OEt Cl 77:23 

  10b OMe Br 83:17 

11 OEt Br 83:17 

12 O(t-Bu) Br 85:15 

13 O(t-Bu) I 84:16 
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Non-stabilized Ylides 

The Li-salt free reactions of alkylidenetriphenylphosphoranes 

with aldehydes normally show exceptionally high Z-

selectivity.14 Therefore it is experimentally almost impossible 

to demonstrate unequivocally an enhancement in Z-selectivity 

due to the presence of an ortho-heteroatom on the benzalde-

hyde in such Wittig reactions.  In our search for suitable candi-

dates we settled on the ylides shown in Chart 1, which do not 

show intrinsically high selectivity for cis-OPA in their reaction 

with benzaldehyde.  This meant that there could be a demon-

strable change in the selectivity for reactions of these ylides 

with an ortho-heteroatom substituted benzaldehyde.  Although 

reactions of ethylidenetriphenylphosphorane (47, see Chart 1) 

are typically highly Z-selective, there was still some scope for 

increased Z-selectivity with this particular ylide that would not 

be available with longer chain alkylidenetriphenylphospho-

ranes.  

 

Chart 1.  Non-stabilized ylides (47-50) used in this study.a,b  

P

Ph

R2PPh

R3

Ph

47. R3 = Ph

48. R3 = Et

49. R2 = Me

50. R2 = i-Pr  
a Generated in situ by treatment of the parent phosphonium 

bromide salts 43-46 with NaHMDS or KHMDS. 
b The P-ethyl ylide 48 (rather than the P-methyl analogue) had 

to be used to avoid transylidation.   
 

However, a complication in the context of this project was 

that in several instances in the reaction of ethylidenetri-

phenylphosphorane with benzaldehyde it has been shown that 

kinetic control does not operate, even under Li salt-free condi-

tions, and so enhanced production of E-alkene is observed (see 

section on “stereochemical drift” above).19,25 Based on this, we 

felt that we could not infer the kinetic OPA cis/trans ratio from 

alkene Z/E ratio with certainty in Wittig reactions of non-

stabilized ylides with benzaldehydes.  In order to circumvent 

these limitations, we decided to deal with the stereochemical 

drift issue by determining the kinetic selectivity of the reactions 

through evaluation of low temperature OPA cis/trans ratios or 

erythro/threo ratios of -HPS obtained by low temperature acid 

quenching of the reactions. 

The erythro/threo ratio of the β-HPSs produced in the reac-

tions of some non-stabilized ylides with benzaldehydes are 

shown in Table 4.  The proportion of erythro--HPS was found 

to be larger in each of the reactions of ethylidenetri-

phenylphosphorane (47) and of (ethyli-

dene)ethyldiphenylphosphorane (48) with 2-

bromobenzaldehyde (see Table 4, entries 2 and 4) than in the 

reactions of the same ylides with benzaldehyde (see Table 4, 

entries 1 and 3).  However in the latter case the increase is 

modest best.  The Z/E ratios for the alkenes produced in the 

corresponding unquenched Wittig reactions are also shown in 

Table 4 (and in Table 5 below).  In certain cases, these provide 

evidence for the occurrence of stereochemical drift in the pro-

cess of OPA decomposition (see below).  

 

 

Table 4. Results of Wittig reactions of non-stabilized ylides 

47 & 48 with selected benzaldehydes 5a and 5d to give 

OPA (initially), and subsequently β-HPS (51-54) after low 

temperature acid quenching of OPA.a  

CHO

Y

R3Ph2P OH

Me
Br

 THF
-78 °C

   HCl
 -78 °C

47. R3 = Ph
48. R3 = Et

5
51-54

PPh

R3

Ph

Me PPh

Ph

O
R3

Me

Y Y

 

a Ylides 47 & 48 (see Chart 1) were generated from the parent 

phosphonium bromide salts 43 & 44 respectively using 

NaHMDS at 20 °C.  All Wittig reactions were carried out at -78 

°C, and subsequently quenched by cannulation of the reaction 

mixture into HCl solution in THF/methanol.  See Supplemen-

tary Information for full details. 

b  The erythro/threo ratio was determined by 1H and 31P NMR of 

the crude product after minimal aqueous work-up. 

c  Alkene Z/E ratio from the corresponding unquenched Wittig 

reaction allowed to warm to room temperature after 15 minutes 

at -78 °C, as determined by integration of characteristic signals 

in the 1H NMR of the crude product. 

d  Stereochemical assignments verified from crystal structure of 

the erythro-isomer.87 

The reactions of phenyldibenzophosphole-derived ylides with 

benzaldehydes were also investigated and provided more clear-

cut evidence of the operation of the ortho-heteroatom effect for 

non-stabilized ylides.  These reactions have the advantage of 

furnishing OPAs that are stable at room temperature (although 

still air sensitive), and thus it is possible to directly investigate 

kinetic OPA cis/trans ratios by NMR at temperatures signifi-

cantly higher than -78 ˚C.  The OPA cis/trans ratios for the 

reactions of benzaldehyde and 2-bromobenzaldehyde respec-

tively with each of the ylides P-

(ethylidene)phenyldibenzophospholane (49), P-(iso-

butylidene)phenyldibenzophospholane (50), and (ethyli-

dene)ethyldiphenylphosphorane (48) are shown in Table 5, as 

are the alkene Z/E ratios from the same reactions after OPA 

decomposition at higher temperature.  The OPA cis/trans ratios 

were assigned by integration of characteristic signals from -60 

to -70 ppm in the 31P NMR spectrum of the reaction mixture.  

All the reactions investigated gave Z-alkene as the major prod-

uct, and thus the largest OPA signal was assigned to the cis-

OPA in the 31P NMR spectra of the reaction mixtures, with the 

exception of entry 5, for which OPA diastereomers could not 

be resolved spectroscopically. 

Comparison of Table 5 entries 2 and 4 with entries 1 and 3 

again shows a distinct increase in the preference for the for-

Entry 
Ylide 

R3 

Ald 

Y 

β-HPS 

erythro/threo 

ratiob 

Alkene 

Z/E 

ratioc 

1 Ph H 92:8 85:15 

2 Ph Br 97:3d 79:21 

3 Et H  54:46d 32:68 

4 Et Br 65:35 56:44 
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mation of cis-OPA in the reactions of 2-bromobenzaldehyde 

relative to the reactions of benzaldehyde.  The diastereomeric 

ratio of the OPA produced in the reaction of benzaldehyde with 

(ethylidene)ethyldiphenylphosphorane (48) could not be deter-

mined.  However, the cis/trans ratio of the OPA from the reac-

tion of the same ylide with 2-bromobenzaldehyde matches the 

erythro/threo ratio of the -HPS produced in the corresponding 

low temperature acid quenching experiment using the same 

reactants, thus affirming conclusions drawn based on the results 

in Table 4. 

 

Table 5. Results of Wittig reactions of non-stabilized ylides 

48-50 with benzaldehydes 5a and 5d to give OPAs 55-60 

(initially), and subsequently alkenes 61-64.a 

PRa

Ra

Rb

R2 PRa

Ra

O
Rb

R2

Y
R2

Y

CHO

Y

5

-78 °C

55-60 61-64

48-50

THF

 

Entry 

 Ylide  
Ald 

Y 

OPA 

cis/trans 

ratio 

Alkene 

Z/E 

ratiob Ra
2RbP R2 

1c  PhDBPd Me H 71:29 53:47 

2c PhDBP Me Br     94:6 82:18 

3e PhDBP i-Pr H 89:11 89:11 

4e PhDBP i-Pr Br     94:6   91:9 

5 EtPh2P Me H - f 32:68 

6 EtPh2P Me Br 64:36g 56:44 

a Ylides 48-50 (see Chart 1) were generated from the parent 

phosphonium bromide salts 44-46 respectively using KHMDS 

unless otherwsie indicated.  All Wittig reactions were carried 

out at -78 °C.  OPA cis/trans ratios were determined by 31P 

NMR after cannula filtration of the reaction mixture into an 

NMR tube under an inert atmosphere and addition of toluene-d8.  

The 31P NMR spectra all indicated the presence of small 

amounts of phosphine oxide by-product, which were shown to 

be derived from the ylide by control reactions in which no alde-

hyde was added, and by the fact that no alkene product could be 

observed by NMR prior to heating. 

b Alkene Z/E ratios were determined by integration of characteris-

tic signals in the 1H NMR of the crude product.  DBP-derived 

OPAs were heated to 80 °C for 2 hours to effect alkene for-

mation, while the EtPh2P-derived OPA began to decompose to 

alkene and phosphine oxide at ca. –10 °C. 

c  The ylide was generated at -20 ˚C, and then stirred for 0.5 hours 

at -45 ˚C before cooling to -78 °C for the reaction.  The OPA 

generated in this reaction was monitored by 31P NMR at -20 °C. 

d  PhDBP = P-phenyldibenzophosphole moiety of ylide. 

e  NaHMDS was used to generate the ylide from the parent phos-

phonium salt. 

f  OPA signals have the same 31P chemical shifts at –40 °C and –

20 °C, so no diastereomeric ratio could be determined. 

g  OPA cis/trans ratio determined at –40 °C. 

Based on the low temperature acid quenching experiments 

detailed in Table 4 and the low temperature NMR experiments 

in Table 5, we conclude that the ortho-heteroatom induced 

effect is indeed in operation in the reactions of non-stabilized 

ylides. 

A non-correspondence was observed between the kinetic 

OPA cis/trans ratios (evaluated as the β-HPS erythro/threo 

ratio) shown in Table 4 with the alkene Z/E ratio obtained in 

the relevant Wittig reactions.  Similar non-correspondence was 

also observed in the decomposition of the OPA adducts of P-

(ethylidene)phenyldibenzophospholane (Table 5 entries 1 and 

2) and of (ethylidene)ethyldiphenylphosphorane (Table 5 entry 

5).  This demonstrates the operation of stereochemical drift in 

these reactions, even under Li-salt free conditions, in keeping 

with earlier observations of this phenomenon in reactions of 

ethylidenetriphenylphosphorane with aromatic aldehydes.19 

However, no variance of the OPA cis/trans ratio was observed 

at temperatures well below that required to effect alkene for-

mation, so the diastereomeric ratios of the β-HPSs and OPAs 

can reliably be equated to the kinetic ratios of the OPA-forming 

steps of the reactions.  Negligible stereochemical drift was ob-

served in the formation of alkene by heating the OPA adducts 

of P-(iso-butylidene)phenyldibenzophospholane (ylide 50, see 

Table 5 entries 3 and 4).  It appears that the irreversibility or 

otherwise of OPA formation in reactions of non-stabilized 

ylides with benzaldehydes is heavily dependent on the structure 

of the non-stabilized ylide, and especially on the nature of the 

alkylidene moiety.  There may now be sufficient evidence to 

suggest that the Li salt-free reactions of ethylides generally 

undergo stereochemical drift.  The reactions of longer chain 

alkylidenetriphenylphosphoranes with benzaldehyde may gen-

erally be under kinetic control, although there are an insuffi-

cient number of examples to allow definitive conclusions to be 

made. 

 

Reactions of non-aromatic aldehydes 

The results described above are common to all three ylide 

classes.  They are also self-consistent and, as will be shown 

below, can be explained by a common transition state argu-

ment.  Therefore they indicate a common mechanism for the 

Wittig reaction of all ylide types.  However, it could be coun-

ter-argued that the effect is solely confined to ortho-heteroatom 

substituted benzaldehydes and might not extend to other alde-

hydes. Therefore we were anxious to find other examples. 

As it turns out, we did not have far to look. Enhanced Z-

selectivity is a known effect in Wittig reactions of aldehydes 

bearing a heteroatom substituent (typically an oxygen) on the  

carbon relative to the carbonyl group (i.e. similarly disposed 

relative to the carbonyl as the ortho-heteroatoms in benzalde-

hydes).88 There are literature examples of this phenomenon 

(although in these, the mechanistic origin of the high Z-

selectivity has not been identified), most involving stabilized 

ylides,2,14,89,90 but there are also some examples involving a 

semi-stabilized ylides.2,88 In many of these examples, the car-

bonyl and the -substituent of the aldehyde are substituents on 

a ring, and high Z-selectivity is observed only if the carbonyl 

and -heteroatom are oriented cis with respect to each other, 

and it is highest in alcohol solvents.  High E-selectivity is ob-

served for similar aldehydes in which the carbonyl and -

heteroatom have trans relative orientation89,90,91,92,93 or if there is 

no -heteroatom.89,90 
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We chose the aliphatic aldehyde, 1,2-O-isopropylidene-3-O-

methyl-α-D-xylopentodialdofuranose-(1,4)94 (65, see Chart 2) 

as our non-benzaldehyde test and we reacted it under our 

standard reaction conditions with some of the same ylides used 

in the reactions described above. The carbonyl group of this 

aldehyde is a substituent on a five-membered ring and there is a 

-methoxy substituent oriented cis with respect to the carbon-

yl.88 High Z-selectivity is observed in the reactions of this alde-

hyde with both semi-stabilized ylides 3a,d and 78 (Table 6 

entries 1, 2 and 6) and stabilized ylides 29f,h,j (Table 6 entries 

3-5) to give alkenes 67-72.95 The reaction of benzylide 78 with 

a control aldehyde (66) lacking a -heteroatom substituent 

showed complete E-selectivity. 

Chart 2.  Structures of aldehydes 65 & 66, and of ylide 78.a 

O

O

O

MeO

65. R1 =

P

Ph

Ph

78

For
H R1

O

66. R1 =

 

a Ylide 78 was generated in situ from the parent phosphonium 

bromide salt. 

The reaction of aldehyde 65 with non-stabilized ylide P-(iso-

butylidene)-P-phenyldibenzophospholane (50) was also inves-

tigated,96 and 31P NMR observation of the kinetic cis/trans ratio 

of the resulting OPA (73) at -20 ˚C showed it to be 94:6, as 

corroborated by the Z/E ratio of 92:8 observed for the alkene 

product (75) after heating of the OPA solution to effect OPA 

decomposition (Table 6 entry 8).  To show that this selectivity 

is indeed out of the ordinary, the reaction of the same non-

stabilized ylide with cyclopentanecarbaldehyde (66) was car-

ried out.  Observation of the cis/trans ratio of OPA 74 (by 31P 

NMR) for this reaction showed it to be 45:55. Subsequent 1H 

NMR observation of the Z/E ratio of the alkene (76) produced 

by heating the OPA solution showed it to be 43:57 (Table 6 

entry 9), again indicating a close correspondence between the 

OPA and alkene diastereomeric ratios. 

Thus a very striking shift in selectivity in favor of the Z-

alkene occurs in reactions of non-stabilized ylides with 1,2-O-

isopropylidene-3-O-methyl-α-D-xylopentodialdo furanose-

(1,4) (65) compared to a similar aliphatic aldehyde lacking a 

suitably oriented β-heteroatom.  This non-aromatic aldehyde 

was shown not to undergo epimerization at the α-carbon under 

our reaction conditions.  Using 1D and 2D NOESY NMR, it 

was shown that the hydrogen that had been at the α-carbon of 

the aldehyde remains cis to the α-hydrogen in each of the Z-

alkene products (see supporting information for details).  This 

is consistent with earlier reports of non-epimerization of this 

and other related aliphatic aldehydes in Wittig reactions carried 

out under similar conditions. 89,90,91,92,93,97 

Comparing phospholium ylides 50 and 78, it is noticeable 

that there is a much greater shift from E to Z selectivity for the 

semi-stabilized analogue 78 in its respective reactions with 66 

and 65.  Thus it shows complete E-selectivity in its reaction 

with 66,98 but very high Z-selectivity in its reaction with 65 

(albeit not quite as high as the MePh2P-derived analogue), 

demonstrating a very dramatic shift in the energy of the cis-

selective TS as a consequence of the presence of the heteroa-

tom. 

 

 

Table 6. Z/E ratios for Wittig reactions of aliphatic 

aldehydes 65 and 66a with semi-stabilized ylides (3a, 3d & 

78),  stabilized ylides (29f,h,j), and non-stabilized ylide 50.b  

Ra
2RbP

H R1

O

P

OPh

R1

i-Pr
80 °C

2 hrs.
i-Pr R1

75,76

73,74

3a. Ar = Ph
3d. Ar = 2-BrC6H4

78. Ar = Ph

MePh2P CO2R

29f.  OR = OMe
29h. OR = OEt
29j.  OR = O(t-Bu)

R1 CO2R

Ar

67-6970-72
Ar R1

P

Ph
50

 

 

Entry 

 

Ald. 
Ylide Alkene 

Z/E 

ratio Ra
2RbP R2 

1 65 MePh2P Ph   95:5 

2 65 MePh2P 2-BrC6H4   95:5 

 3c 65 MePh2P CO2Me 79:21 

 4c 65 MePh2P CO2(t-Bu) 79:21 

 5c 65 MePh2P COOEt 79:21 

6d 65 PhDBP Ph 85:15 

 7d 66 PhDBP Ph    0:100 

8 65 PhDBP i-Pr  92:8e 

9 66 PhDBP i-Pr  43:57f 

a See Chart 2 for definition of R1 in structure of 65 and 66. 

b Ylides 3, 29 and 50 were generated from the parent 

phosphonium bromide salts 1, 28 and 46 respectively using 

NaHMDS at 20 ˚C.  All Wittig reactions were carried out at -78 

°C.  Alkene Z/E ratios were determined by integration of char-

acteristic signals in the 1H NMR of the crude product.   

c Reactions of stabilized ylides were quenched at -78 ˚C by addi-

tion of aqueous NH4Cl in order to ensure the reaction had oc-

curred at this temperature. 

d Ylide 78 was generated from the correspoding phospholium 

bromide (77) at -20 ˚C by addition of THF to a mixture of the 

salt and KHMDS. 

e  The kinetic OPA cis/trans ratio was observed by 31P NMR at -

20 ˚C and found to be 94:6.  The OPA solution was heated to 80 

°C for 2 hours to effect alkene formation. 

f The kinetic OPA cis/trans ratio was observed by 31P NMR at 30 

˚C and found to be 45:55.  The OPA solution was heated to 80 

°C for 2 hours to effect alkene formation. 

 

This high selectivity for cis-OPA and/or Z-alkene in reactions 

of stabilized, semi-stabilized and non-stabilized ylides with 

non-aromatic aldehyde (65) is strikingly similar to the effect 
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seen with benzaldehydes.  Therefore we ascribe it to be a con-

sequence of the same remote heteroatom effect. 

 

Rationalization of the effects within the cycloaddition mecha-

nism 

The reactions detailed in this paper have been carried out in 

conditions under which OPAs derived from similar reagents to 

those we use have been shown not to equilibrate,26,35 therefore 

they can be assumed to be under kinetic control.  We rational-

ize the signature aldehyde -heteroatom effect within the tran-

sition state model for the [2+2] cycloaddition mechanism38 with 

the single additional proposal of the existence of a stabilizing 

phosphorus-heteroatom bonding interacction66,79 in the cis-

selective cycloaddition TS (see Figure 3).  This results in a 3-

centre-4-electron bond, with the acceptor orbital being one of 

the P-C bond * orbitals, analogous to the (orthogonal) interac-

tion forming the P-O bond. The proposal of such a through-

space interaction has long-time precedent in organophosphorus 

chemistry, having been used most notably by McEwen and co-

workers in simple rationalizations of the rates of quaternization 

of ortho-substituted arylphosphines,75 and ω-N,N-

dimethylaminoalkylphosphines,99 and hydrolysis of ortho-

substituted arylphosphonium salts.76,100 More recently similar 

through-space interactions have been proposed to explain O-Se 

peri-interactions in 1,8-substituted naphthalenes101,102 and an-

throquinones103 and large long-range PP coupling constants in 

1,8-diphosphanaphthalenes,104,105,106 a phosphorus-containing 

carborane,107 tetraphosphine ferrocenyl complexes108 biaryl 

bisphosphines109 and calix[4]arene bisphosphites.110 

The immediate consequence of the postulated phosphorus-

heteroatom bond is that the TS is forced to be puckered in order 

to facilitate the existence of this bond (i.e. to get the heteroatom 

within bonding range of phosphorus).  The already sterically 

encumbered environment around phosphorus becomes even 

more crowded, and the six substituents around phosphorus 

assume pseudo-octahedral geometry.  There now exists the 

potential for significant increases in the steric interactions be-

tween the phosphorus substituents and the ylide α-carbon sub-

stituent (2-3 interactions), in particular if the α-carbon substitu-

ent is in a pseudo-axial site on the forming ring.  These are 

minimized when the α-carbon substituent R2 is in a pseudo-

equatorial site and thus points to the same side of the forming 

ring as the aldehyde substituent (see Fig. 3 (a) and (b)).  This 

then is the source of the stabilization of the TS to cis-OPA.  It 

is noteworthy that this cis-selective TS is very similar to the 

trans-selective TS proposed by Aggarwal, Harvey and cowork-

ers13 for reactions of stabilized ylides (see Fig. 2(b) above).  

The similarity is that the ring-puckering angle is negative – 

meaning that the dihedral angle between the C-O and C-R2 

bonds is greater than in a planar TS.  This is the opposite of a 

cis-selective TS in a reaction of a non-stabilized ylide, so the 

C-O bond is approximately anti-parallel to the ylide C-R2 bond 

(Fig. 3 (a)).  The important difference in this case is that it is 

favorable for the aldehyde substituent to be close to phosphorus 

(i.e. in a pseudo-axial position in the forming ring) due to the 

phosphorus-heteroatom bond.  In the absence of this bond, 1-3 

interactions would dictate that the aldehyde substituent would 

preferentially take up a pseudo-equatorial position.  The geom-

etry of the proposed TS is consistent with the fact that high Z-

selectivity is observed even in reactions of stabilized ylides. 

Such a TS should benefit from both the phosphorus-heteroatom 

bond and the advantageous anti-parallel orientation of the car-

bonyl C-O and ylide C-R2 bond dipoles that is normally only 

present in a trans-selective TS.13 

 

Figure 3. (a) and (b) show different perspectives of the 

puckered cis-selective TS with phosphorus-heteroatom 

bonding.  The ylidic substituent R2 is oriented as shown to 

minimize 2-3 steric interactions by avoiding the phosphorus 

R3 substituents. (c) A trans-selective TS with phosphorus-

heteroatom bonding suffers from large 2-3 steric interac-

tions.     

 

O

P

R3

R3

Y

R3

R2

H

O

P

R3

R3

Y

R3

H

R2

(b) (c)

 

Apart from its precedence in organophosphorus chemistry, 

factors that argue for the existence of phosphorus-heteroatom 

bonding in the cycloaddition TS are: (i) the effect is observed 

for both aromatic and aliphatic aldehydes bearing a suitably-

oriented remote heteroatom - aldehydes with no such heteroa-

tom substituent do not show such high Z-selectivity;89,90 (ii) the 

effect is seen for benzaldehydes with both electron donating 

and with electron withdrawing ortho-heteroatom substituents 

but hardly at all with a methyl substituent; (iii) the effect in-

creases as the heteroatom polarizability increases and electro-

negativity decreases - in the order F, OMe, Cl, Br, I (e.g. see 

Table 1, entries 1-4 and 6 and Table 3 entries 4-13) which 

would correlate with the ability of the heteroatom to bond to 

phosphorus – this has precedent in the reported structures of 

1,8-selenylsubstituted naphthalenes,101,102 where the magnitude 

of the proposed 3c4e selenium-heteroatom bonding interaction 

also appears to increase in the order F < Cl < Br; (iv) related to 

point (iii) is the fact that cis-selectivity also increases in line 

with the bond length of the carbon-heteroatom bond of the al-

dehyde – the longer this bond and the larger and more polariza-

ble the heteroatom, the closer the heteroatom can approach to 

phosphorus in the TS, thus facilitating stronger phosphorus-

heteroatom bonding; (v) when the heteroatoms are switched 

(Table 1 entry 19 and footnote d), the effect is stronger for the 

bromo aldehyde than the fluoro; (vi) there must be some signif-

icant effect lowering in the energy of the cis-OPA selective 

cycloaddition TS particularly to make Z-alkene formation pre-

dominant in the reactions of ester-stabilized ylides.   

With reference to points (iii) and (iv) above, we emphasise 

that the strength of the phosphorus-heteroatom bond is ex-
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pected to depend on the ability of the heteroatom to be in close 

proximity to phosphorus, and therefore need not correlate with 

the (much greater) strengths of the corresponding phosphorus-

heteroatom single bonds of stable compounds.111 It is also ex-

pected to be subject to the intervention of steric effects, espe-

cially in reactions of semi-stabilised ylides where 2-

ethoxybenzaldehyde and 2-(methylthio)benzaldehyde show 

less dramatic shifts towards Z-selectivity than other ortho-

heteroatom substituted benzaldehydes. In these cases there also 

exists the possibility of -symmetry repulsive steric interac-

tions between the heteroatom lone pairs or the S-Me  bond  

and the P-C -bonds. Another factor that could militate against 

phosphorus-heteroatom bonding in certain circumstances is that 

its existence in the cis-selective TS may require the conjugation 

between the heteroatom and the benzaldehyde ring to be bro-

ken, which would also have an associated energy cost.  

The magnitude of the heteroatom-induced energy decrease of 

the cis-selective TS also appears to be affected by the degree of 

steric congestion about phosphorus.  For reactions of semi-

stabilised ylides the shift is greater for benzylides derived from 

P-phenyldibenzophosphole and methyldiphenylphosphine than 

for those derived from triphenylphosphine.  For non-stabilised 

ylides, the shift towards Z-selectivity decreases in the order P-

phenyldibenzophosphole > triphenylphosphine > ethyldiphe-

nylphosphine.  Stabilised ylides derived from methyldiphe-

nylphosphine show markedly increased Z-selectivity compared 

to those derived from triphenylphosphine.14,68  

The strongest and most compelling evidence for a phospho-

rus-heteroatom interaction however is its ability to easily ac-

commodate and explain the counterintuitive co-operative effect 

found in the semi-stabilized ylide cases.  As alluded to above, 

Z-selectivity in reactions of benzylides with ortho-heteroatom 

substituted benzaldehydes is consistently higher when the ben-

zylide also bears an ortho-substituent compared to the corre-

sponding reaction of the unsubstituted benzylide (see Tables 1 

and 2, and the associated text).  This can be explained as due to 

the cis-selective TS being better able to accommodate the in-

creased steric demands (and especially 2-3 interactions) of the 

bulkier ylidic substituent than is the trans-selective TS, result-

ing in greater discrimination between the two.  The high Z-

selectivity obtained in the reactions of the ortho-heteroatom 

substituted benzaldehydes with the ortho-methyl substituted 

benzylides (Table 1 entry 24, Table 2 entry 13) shows that this 

is a steric effect.  This subtle augmentation of the remote het-

eroatom effect in reactions of benzylides with benzaldehydes 

appears to be specific to these reactions only.  It must be very 

dependent on the shape of the cycloaddition TSs in this particu-

lar class of reactions because we found no noticeable change in 

cis or Z-selectivity in the reactions of bulky non-stabilized or 

ester-stabilized ylides with heteroatom substituted aldehydes.  

This observation is consistent with others indicating that the 

energy of the cis-selective TS in reactions of semi-stabilised 

ylides is more sensitive to steric effects than analogous TSs in 

reactions of non-stabilized and stabilized ylides leading to a 

greater influence on selectivity from the nature of the phospho-

nium moiety, the ylide C-substituent and the aldehyde heteroa-

tom substituent (if present). 

Some further insight into the nature of the proposed cycload-

dition TS can be gleaned from the 31P NMR shifts of the OPA 

reaction intermediate in these reactions.  We looked for any 

evidence of phosphorus-heteroatom bonding in the OPAs de-

rived from the non-stabilized ylides P-

(ethylidene)phenyldibenzophospholane (53) and P-(iso-

butylidenephenyldibenzophospholane (54) with 2-

bromobenzaldehyde and also with  1,2-O-isopropylidene-3-O-

methyl-α-D-xylopentodialdofuranose-(1,4) for the latter ylide.  

These OPA intermediates have a reasonable lifetime at low 

temperature.  We found that the 31P NMR chemical shifts of all 

of the OPAs generated in the course of this project were in the 

range  –60 to –70 ppm.  An OPA with a phosphorus-

heteroatom bond (and thus hexacoordinate phosphorus) would 

be expected to have a significantly more negative chemical 

shift in the 31P NMR, analogous to oxaphosphetanides, which 

have previously been reported to have chemical shifts below –

100 ppm.112,113 We conclude that the phosphorus in the OPA 

intermediates in these reactions is pentaco-ordinate.  We reason 

that, although the phosphorus-heteroatom bond could in princi-

ple be present in either a puckered or a planar TS, it seems like-

ly that if a planar TS was capable of engaging in this stabilizing 

interaction, then the resulting OPA should also benefit from 

such stabilization.  The lack of any noticeable phosphorus-

heteroatom interaction in the planar OPA is then consistent 

with the proposed puckered cis-selective TS. 

 

Conclusion 

The high Z-selectivity observed here in the Wittig reactions 

of heteroatom substituted aldehydes with all ylide types is easi-

ly explicable if all ylides react with aldehyde to form OPA by 

irreversible direct cycloaddition through a puckered TS.  The 

results obtained here then, in tandem with the computational 

results of Aggarwal, Harvey and co-workers, corroborate the 

cycloaddition mechanism proposed by Vedejs and strongly 

support the contention that there is a common mechanism of 

the Wittig reaction for all ylide types and that, ordinarily, it 

operates under kinetic control.  In particular we believe that the 

results for the reactions of ester-stabilized ylides with ortho-

heteroatom substituted benzaldehydes provide striking evi-

dence that the reactions of stabilized ylides occur by irreversi-

ble cycloaddition of the reactants to give OPA.  We hope there-

fore that our results will ensure that the following becomes 

widely known: 

A: there is one mechanism of the salt-free Wittig reaction 

B: it is an irreversible [2+2] cycloaddition to OPA followed by 

a stereospecific syn-cycloreversion to give alkene and 

phosphine oxide. 

C: the stereoselectivity of all Wittig reactions is explicable by 

the single mechanism (especially stabilized ylide cases). 

Corollaries of A-C are: 

D: OPAs are the first-formed and only intermediates in Li salt-

free Wittig reactions. 

E: with very limited exceptions, no salt-free Wittig reaction is 

reversible. 

Our view is that the now established Li-salt free [2+2] cy-

cloaddition mechanism should be presented in textbooks, and 

that a clear distinction should be made between this mechanism 

and that of Wittig reactions conducted in the presence of lithi-

um salts, for which the mechanism is as yet unknown.  
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betaine or trans-OPA.29 However, the operation of kinetic control in Li salt-free Wittig reactions of all three ylide types has 
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