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Introduction
Gravel-dominated beaches are common in previously para-

glaciated coastal regions and coasts with steep hinterlands, and 
are widespread in New Zealand [1,2], Canada [3,4], Denmark [5,6], 
the UK [7,8] and Mediterranean countries [6]. They are also found 
when nourishment projects use gravels to protect eroded beaches 
[9,10].

Despite their societal importance, the research advances on 
gravel and mixed sand-gravel beaches are limited compared to 
those on sandy beaches [11-15]. This discrepancy is particularly 
evident for numerical models and contrasts with the increasing 
demand for reliable approaches to help assess the effects and 
consequences of sea-level rise [16,17]. To the best of the authors’ 
knowledge, the implications of sea-level rise on coastal flooding 
events on gravel beaches have not been addressed so far.

The overall goal of the present paper is to investigate the 
influence of sea-level rise on wave patterns at the nearshore  

 
region, total run-up values (including water level) and flooded area 
under three scenarios: the present situation (scenario 0), and the 
optimistic (RCP4.5) and pessimistic (RCP8.5) projections proposed 
by IPCC (2014). For this purpose, a wave model (SWAN) and a storm 
response model (XBeach-G) were jointly applied under storm 
conditions. The following sections detail the study site, the analyzed 
sea states and sea-level rise scenarios, the implementation of SWAN 
and XBeach-G, the results obtained, and the conclusions drawn.

Study site
Playa Granada is a 3-km-long gravel-dominated beach located 

on the southern coast of Spain that faces the Mediterranean Sea 
(Figure 1A). Limited to the west by the Guadalfeo river mouth 
and to the east by Punta del Santo (a shoreline horn located at 
the former location of the river mouth), this beach belongs to the 
Guadalfeo deltaic coast, extending between Salobrena Rock and the 
Port of Motril (Figure 1B).
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Abstract 
This work analyses the effects of sea-level rise on flooding events for 3 different scenarios: present situation (S0), optimistic 

projection (RCP4.5) and pessimistic projection (RCP8.5). The study area is a gravel-dominated beach in southern Spain (Playa 
Granada), where the SWAN and XBeach-G models are applied to assess wave propagation patterns, total run-up and flooded dry 
beach area. The results indicate that sea-level rise modifies wave propagation patterns, with alongshore-averaged increases in 
breaking wave height equal to 1.2% (1.9%) un-der westerly (easterly) storms in the optimistic scenario and 2.6% (2.4%) in the 
pessimistic scenario. These increments lead to maximum increases in total run-up greater than 13% (14%) for westerly (easterly) 
storms in the optimistic scenario and 16% (20%) in the pessimistic scenario. Finally, the increases in flooded dry beach area induced 
by sea-level rise under westerly (easterly) storms are equal to 1.6% (5.9%) and 1.8% (7.7%) in scenarios RCP4.5 and RCP8.5, 
respectively, and the maximum increments in flooded cross-shore distances exceed 8% in all cases. The methodology proposed in 
the present work can be extended to other coasts worldwide for assessing the in fluence of sea-level rise on coastal flooding events.
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Figure 1 : (a) Location of the study area in southern Spain, (b) plan view of the deltaic coast, indicating the studied stretch of beach (Playa 
Granada), (c) contours of the numerical grids used in the SWAN model.

The Guadalfeo River contributes most of the sediment to the 
beach [18,19]. Its basin covers an area of 1252 km2, including the 
highest peaks in the Iberian Peninsula (3; 400 m.a.s.l.), and the river 
is associated with one of the most high-energy drainage systems 
along the Spanish Mediterranean coast [20]. The river was dammed 
19 km upstream from its mouth in 2004, regulating 85% of the 
basin run-off [21].

As a consequence of river damming, the delta currently 
experiences severe erosion problems and frequent coastal flooding 
events (Figure 2). The stretch of Playa Granada has been particularly 
affected, with more severe coastline retreat in recent years than 
both the western (between Salobrena Rock and Guadalfeo River 
Mouth) and eastern (between Punta del Santo and Motril Port) 
stretches [22,23].

Figure 2 : Examples of coastal flooding events in Playa Granada.

Playa Granada is occupied by farming settlements, an exclusive 
hotel complex, residential properties that are primarily summer 
homes, golf fields and restaurants. Hence, this stretch of beach has 
high environmental and tourism value, and its exploitation requires 
a large area of dry beach [24]. For this reason, artificial nourishment 
projects have been frequenting since the river damming [25]. 
However, the success of these interventions has been very limited 
[26,27].

This micro-tidal coast is subjected to extra-tropical Atlantic 
cyclones and Mediterranean storms [28]. Thus, the wave climate is 
bidirectional, with waves coming from the west-southwest (extra-
tropical cyclones), and east-southeast (Mediterranean storms). 
The deep water significant wave height with non-exceedance 
probabilities of 50%, 90% and 99.9% are 0.5m, 1.2m and 3.1m 
respectively Bergillos et al. [29]. The astronomical tidal range is 0.6 
m and storm surges can exceed 0.5m [30].

Methods
Sea states and sea-level rise scenarios

The effects of western and eastern storms (prevailing wave 
directions at the study site) were simulated by means of the SWAN 
and XBeach-G models. The input wave conditions for SWAN were 
deep-water significant wave height equal to 3.1m, spectral peak 
period equal to 8.4s (the most common value at the study area for 
storm conditions) and deep-water wave directions equal to 238° 
(107°) for the westerly (easterly) storm. The latter are the most 
frequent wave directions at the study site under western and eastern 
storm conditions, respectively. These sea states were modelled 
under high tide conditions and for a storm surge of 0.5m (typical 
value at the study area under storm conditions). These storms 
were modelled for three scenarios: present situation (scenario 0) 
and sea-level rises associated to the representative concentration 
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pathways (RCPs) 4.5 and 8.5 at the study area according to IPCC 
(2014), which represent optimistic and pessimistic projections, 
respectively.

SWAN model

The spectral wave model SWAN [12] was used to propagate the 
two storm sea states from deep water to the nearshore region for 
the three scenarios described in the previous section. The SWAN 
model was validated for the study area by means of comparison 
with hydrodynamic measurements collected by two ADCPs during 
a continuous 41-day field survey [26].

In this work, we used the computational grids shown in Figure 
1C, which were also employed for the calibration of the model. The 
results of the SWAN model were used to quantify the variations 
in breaking wave height values induced by the sea-level rise. 
They were also employed to provide the input conditions for the 
XBeach-G model, as detailed in the following section.

XBeach-G model

The storm impact model XBeach-G, which was specifically 
developed for reproducing the storm hydrodynamics, hydrology 
and morpho dynamics of gravel dominated beaches [31,32], was 
applied to quantify the values of the total run-up (including water 
level) under the wave conditions and scenarios detailed in Section 
3.1. The XBeach-G model was validated for the study area by means 
of comparison with morphological data measured before and after 
storm events [33,34].

The XBeach-G model was applied to 20 equally-spaced beach 
pro les (one per 100 m) along the studied stretch of beach (Figure 
3). The o shore boundary conditions for XBeach-G were computed 
through the results of SWAN at a water depth equal to 10 m for all 
the beach pro les. This value of the o shore depth is in agreement 
with all the model requirements [3]. On the other hand, the land-
side boundaries were variables alongshore depending on the 
type of occupation located landward of the beach pro les (farming 

settlements, hotel complex, golf field or residential properties, see 
Figure 3).

Figure 3 : Location of the studied beach pro les (1-22, in black).
    

         The results of the XBeach-G model were employed to compute 
the maximum values of total run-up and flooded cross-shore 
distance in every beach pro le. The values of total flooded area along 
the coastline section of Playa Granada for the analyzed scenarios 
were also obtained.

Results

Wave propagation: significant wave height at breaking

The sea-level rise and the resulting variations in wave 
propagation patterns generate changes in the significant wave 
height at breaking, as it is depicted in Figure 4. Under westerly 
storms, the sea-level rise leads to an increase in the breaking 
significant wave height along the whole studied stretch of beach. 
The increases are generally greater for the RCP8.5 scenario, except 
in the western part of Playa Granada, where the significant wave 
height at breaking are higher for the RCP4.5 scenario. The increase 
peak values are equal to 4.3% (RCP4.5) and 5.8% (RCP8.5), whereas 
the alongshore-averaged increments in Playa Granada are 1.9% 
and 2.4%, respectively.

Figure 4: Significant wave height at breaking along the studied stretch of beach under westerly (a) and easterly (b) storms. Scenarios 0, 
RCP4.5 and RCP8.5.

http://dx.doi.org/10.33552/GJES.2019.01.000513
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Under eastern storm conditions, the increases in breaking 
significant wave height is primarily relevant in the western and 
eastern boundaries of the studied coastline section, and the 
maximum increases with respect to scenario 0 are up to 3.7% 
and 5.8% for RCP4.5 and RCP8.5, respectively. Under these wave 
conditions, the alongshore-averaged increases induced by sea-level 
rise in scenarios RCP4.5 and RCP8.5 are equal to 1.2% and 2.6%, 
respectively.

For both wave directions, it is observed that generally the 
greater the sea level rise, the greater the breaking wave height 

values. Thus, global warming will not only induce sea-level rise, 
but these variations in sea level will also lead to greater values of 
wave height and energy at the breaking zone. Both sea-level rise 
and increase in wave height will affect negatively to coastal flooding 
issues, as will be detailed in the following sections.

Total run-up

As indicated in Section 3.3, the total run-up values (including 
water level) were computed with the XBeach-G model in the 22 
beach pro les shown in Figure 3. The results for the wave directions 
and scenarios modelled are shown in Figures 5 & 6.

Figure 5: Total run-up values in the studied beach pro les under westerly (a) and easterly (b) storms. Scenarios 0, RCP4.5 and RCP8.5.

Figure 6: Variation in total run-up for scenarios RCP4.5 and RCP8.5 with respect to scenario 0 under westerly (a) and easterly (b) storms.

Under western storms, the sea-level rise increases the total run-
up along the study site, with maximum percent increments respect 
to scenario 0 equal to 13.6% and 16.3% in RCP4.5 and RCP8.5, 
respectively. The alongshore-averaged increases in total run-up 
along the studied stretch of beach for scenarios RCP4.5 and RCP8.5 
are equal to 7.9% and 11.4%, respectively. Thus, as expected, the 
increments are more significant in scenario RCP8.5 than those in 
scenario RCP4.5 (Figures 5 & 6).

On the other hand, under eastern storm conditions, the sea-level 
rise leads to maximum (alongshore-averaged) increases in total 
run-up equal to 14.2% (11.8%) and 20.7% (16.1%) for RCP4.5 and 

RCP8.5, respectively. Under these wave conditions, the total run-up 
values are generally lower than those under western storms. This 
is due to the orientation of the coastline in Playa Granada, which 
is almost normal to the prevailing western direction under high 
energy conditions.

Flooded cross-shore distances

This section reports the flooded cross-shore distances for the 
two wave conditions and three scenarios analyzed. These flooded 
distances, which are influenced by both the total run-up values 
shown in Figure 5 and the morphologies of the emerged beach pro 
les, are shown in Figure 7. For westerly storms, increases in flooded 
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distances occur between pro les 17 and 21 in both RCP scenarios 
(Figure 8). This is due to the overs wash of the whole beach in 
pro les 1-17 in scenario 0 under westerly storm conditions. The 
maximum (alongshore- averaged) increments in flooded cross-

shore distances induced by the sea-level rise under these conditions 
for scenarios RCP4.5 and RCP8.5 are equal to 8.5% (1.2%) and 
9.6% (1.4%), respectively.

Figure 1

Figure 7: Flooded cross-shore distances in the studied beach pro les under westerly (a) and easterly (b) storms. Scenarios 0, RCP4.5 and 
RCP8.5.

Under easterly storms, the flooded distances are increased due 
to sea-level rise in pro les 11 to 21 (Figure 6 & 7). In pro les 1 to 
10, the beach is over washed in all scenarios in the same way as 
for westerly storms. This is due to the lower dry beach area in this 
stretch, which is closer to the river mouth and has experienced 

greater values of shoreline retreat in recent years due to river 
regulation [19]. For eastern storm conditions, the maximum 
(alongshore-averaged) increments in flooded cross-shore distances 
induced by sea-level rise in scenarios RCP4.5 and RCP8.5 are equal 
to 15.8% (5.5%) and 23.9% (6.9%), respectively [35,36].

Figure 8: Variation in total flooded cross-shore distance for scenarios RCP4.5 and RCP8.5 with respect to scenario 0 under westerly (a) and 
easterly (b) storms.

The increases in flooded cross-shore distances for easterly 
storm conditions are extended along the whole urbanized stretch 
of beach, with maximum values of 5 m (8.7 m) for scenarios 
RCP4.5 (RCP8.5); whereas under westerly storms the increments 

are concentrated in the occupations located in the eastern part of 
Playa Granada, reaching values up to 3.6 m and 4.1 m for scenarios 
RCP4.5 and RCP8.5, respectively (Figures 8 & 9).

Figure 9: Flooded area along the urbanized stretch of beach under westerly (a) and easterly (b) storms. Scenarios 0, RCP4.5 and RCP8.5.
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Figure 10: Total flooded area in the scenarios 0, RCP4.5 and RCP8.5 under westerly (a) and easterly (b) storms.

Flooded area

Figure 10 represents the total flooded dry beach areas for the 
three scenarios under both western and eastern storm conditions. 
Under westerly storms, the increases in coastal flooding induced by 
the sea-level rise are equal to 1,086.8 m2 (1.57%) and 1,238.7m2 
(1.79%) for scenarios RCP4.5 and RCP8.5, respectively.

For eastern storm conditions, the increments in flooded dry 
beach area with respect to scenario 0 are equal to 3,869.5m2 
(5.9%) and 4,987.1m2 (7.7%) for scenarios RCP4.5 and RCP8.5, 
respectively. Under both wave directions, the coastal flooding 
increases with increasing values of sea-level rise, but the 
increments are significantly greater under easterly storms, so that 
the effects of global warming will be particularly severe for these 
wave conditions.

Conclusion
This paper analyses the effects of sea-level rise in storm-

induced coastal flooding events on a gravel-dominated beach 
(Playa Granada, southern Iberian Peninsula) under three scenarios: 
present situation (scenario 0), optimistic projection (RCP4.5) and 
pessimistic projection (RCP8.5). With this purpose, the SWAN 
and XBeach-G models, previously validated for the study site, 
were coupled and applied to 22 beach pro les in order to assess 
wave propagation patterns, total run-up values (including water 
level), flooded cross-shore distances and total flooded area 
for the prevailing storm directions (SW and SE) and the three 
aforementioned scenarios.

In terms of wave propagation patterns, under westerly storms, 
the sea-level rise leads to an increase in significant wave height at 
breaking, with alongshore- averaged increments with respect to 
scenario 0 equal to 1.9% and 2.4% for scenarios RCP4.5 and RCP8.5, 
respectively. Conversely, the alongshore-averaged increases in 
breaking wave height under easterly storms are equal to 1.2% and 
2.6% for scenarios RCP4.5 and RCP8.5, respectively.

On the other hand, the total run-up is increased under western 
storms along the studied coastline section, with maximum 

(alongshore-averaged) increments in scenarios RCP4.5 and RCP8.5 
equal to 13.6% (7.9%) and 16.3% (11.4%), respectively; whereas 
under eastern storm conditions the total run-up increases up 
to 14.2% and 20.7% for RCP4.5 and RCP8.5, respectively. Under 
easterly storm conditions, the alongshore-averaged increments 
are equal to 11.8% and 16.1%, with total run-up values generally 
lower than those under western storms. This is induced by the 
shoreline orientation in Playa Granada, which is almost normal to 
the incoming westerly waves.

Regarding flooded cross-shore distances, they are increased 
due to sea-level rise under westerly storm up to 8.5% and 9.6% for 
scenarios RCP4.5 and RCP8.5, respectively; whereas the alongshore-
averaged increments are equal to 1.2% and 1.4%, respectively. 
Under eastern storms, the maximum (alongshore- averaged) 
increments for scenarios RCP4.5 and RCP8.5 respect to scenario 0 
are equal to 15.8% (5.5%) and 23.9% (6.9%), respectively. Finally, 
the increases in flooded dry beach area induced by sea-level rise 
under westerly (easterly) storms are equal to 1.57% (5.9%) and 
1.79% (7.7%) in scenarios RCP4.5 and RCP8.5, respectively.

Thus, the increments are significantly greater under easterly 
storms, so that the impact of global warming will be particularly 
severe for these wave conditions. The methodology followed in this 
paper to quantify the effects of sea-level rise on coastal flooding 
is feasibly extensible to other gravel-dominated coasts across the 
globe.
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