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Phonon hydrodynamics is used to analyze the influence of porosity and of pore size on reduction in
thermal conductivity in porous silicon, with respect to crystalline silicon. The expressions predict
that the thermal conductivity is lower for higher porosity and for smaller pore radius, as a
consequence of phonon ballistic effects. The theoretical results describe experimental data better
than the assumption that they only depend on porosity. © 2010 American Institute of Physics.
�doi:10.1063/1.3462936�

The thermal conductivity of porous silicon has been
found to decrease greatly for increasing porosity, getting two
or three orders of magnitude lower than for monocrystalline
silicon.1–11 These low thermal conductivity values allow us
to use this promising material as thermal insulator in mi-
crosensors and microsystems. Furthermore, optimization of
its use in optoelectronic applications, due to its outstanding
photoluminescence properties, requires a good knowledge
of its thermal properties. Because of these applications, this
topic has become of much interest in nanoscale heat
transport.12–14 Often this problem is treated from kinetic
theory for phonons, or from molecular simulations7 but here
we study it from a more thermodynamic perspective. We
propose to apply phonon hydrodynamics15–19 to the analysis
of the thermal conductivity of porous silicon, considered as a
solid matrix with a random inclusion of small insulating
spheres. Our aim is to explore the influence of the pore size
on the effective thermal conductivity �eff. In the simplest
theoretical models, the thermal conductivity depends only on
the porosity �, the volume fraction corresponding to the
pores, with �eff= f���k0, f��� being a function smaller than
1, as for instance f���= �1−��3.2 However, experimental re-
sults show that the pore size also plays a relevant role in the
reduction in thermal conductivity.2,11 A detailed knowledge
of this dependence may have valuable practical conse-
quences. Since increasing porosity also deteriorates the elec-
tron transport properties,20,21 being able to reduce thermal
conductivity by several alternative procedures opens a wider
range of possibilities, which may be of interest in thermo-
electric applications.

In a series of papers22–24 we have used phonon hydrody-
namics to describe heat transfer along nanowires and thin
layers, taking into account boundary conditions describing
the phonon-wall interactions. In contrast with Fourier’s law,
this approach incorporates nonlocal effects dependent on the
ratio of the mean free path � to the characteristic size of the
system a, the so-called Knudsen number Kn�� /a, and pro-
vides a much simpler approach to a quantitative expression

for the thermal conductivity than solving the full Boltzmann
transport equation.

When the mean free path becomes comparable or longer
to size of the system, the classical Fourier equation for heat
transport is no longer valid and nonlocal effects must be
incorporated. Here, we start from the Guyer–Krumhansl
equation for the heat flux, as follows:15–19

�
dq

dt
+ q = − �0 � T + �2��2q + 2 � �� · q�� , �1�

where q is the heat flux, � the mean free path of the phonons,
�0 the bulk thermal conductivity, and � the relaxation time of
the heat flux.

This equation has been widely studied for porous
media.25–28 However, since we will be working in situations
for which the radius of the obstacles is less than the mean
free path, we will also consider slip boundary conditions
over the surface of the obstacles, which is found when one
considers the flow of rarefied gases.29–31 In our case, we take
for the characteristic size a the radius of the pores.

For steady situations, when the first and the last term in
�1� are zero, and in situations where the spatial variation in
the heat flux is higher than the heat flux itself, namely, in the
high-Knudsen regime, the term in q in �1� may be also ne-
glected, and �1� reduces to �0�T=�2�2q. This equation is
analogous to the Navier–Stokes equations for Poiseuille flow,
and it may also be used for Stokes problem for small Rey-
nolds number, when nonlinear terms in the time derivative of
the velocity are negligible. In this case, �T plays the role of
the pressure gradient, �p, and �2 /�0 the role of the viscosity.
In Refs. 22–24 we have applied it to nanowires, taking into
account suitable boundary conditions for the heat flux on the
walls. For small values of the heat flux, this equation may be
applied to describe the phonon heat flux around an insulating
sphere. Thus, we may translate from results of fluid dynam-
ics to the description of heat transfer in these circumstances.

First, we recall some results of fluid dynamics necessary
for our problem. In the presence of a sphere of radius a in an
infinite medium, the resistance force is given by the Stokes
formula F=6��av, where � is the shear viscosity of the
fluid and v the relative velocity of the sphere with respect to
the fluid. For rarefied flows, the tangential velocity �or slip
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flow� on the surface of the sphere must also be taken into
account. For high Knudsen numbers, the expression are very
complicated but we may use a generalization of the Stokes
law to arbitrary Knudsen numbers, given by32

F =
6��a

1 + A���/a�
v , �2�

where A� is a numerical function of Kn which varies from
0.700 for small Kn to 1.164 for large Kn. This expression
describes the transition from the diffusive limit �Kn=0� for
which F�a to the highly ballistic limit �high Kn� where F
�a2. Millikan32 proposed for A� the heuristic form A�=A1
+B1 exp�−�a /��, with A1=0.864, B1=0.290, and �=1.25.
Other proposals have been done33,34 but here this one will be
sufficient for our purposes. In particular, an asymptotic ex-
pansion of a hierarchy of higher-order equations including
�1� as the first term allows to describe the diffusive-to-
ballistic transition, leading to analogous asymptotic behav-
iors as �2� �Ref. 35� but here it is not necessary to go to so
many details.

Since in our problem there is not a single sphere but an
array of spheres, and since the effects of the several spheres
are not simply additive, the calculation of the effects is very
complicated but it has been explored in the literature.25–27,36

We assume a random array of spheres and use the result by
Brinkman25

F =
6��a

1 + A���/a��1 +
3
�2

��	v , �3�

where � is the porosity, i.e., the volume fraction of spheres
�= �4� /3�N�a /L�3, L being the separation of the centers of
the spheres. This gives the influence of other spheres on the
force on a given sphere.

We may now apply the results �2� and �3� to phonon
hydrodynamics, taking into account the parallelism presented
above between pressure gradient and temperature gradient
and between shear viscosity and �2 /�0. The contribution of
N randomly distributed spheres to the thermal resistance may
be written as

FN = 6�N
�2

�0

a

1 + A���/a��1 +
3
�2

��	Q = A�T , �4�

where Q is heat flow, A the transversal area of the system
�perpendicular to the direction set by the temperature gradi-
ent� and FN the total “resistance force” exerted by the
spheres on the phonon flow, which must be equated to
the “driving force” of the temperature difference. This
“resistance” of the spheres must be added to the normal re-
sistance of heat transport in the medium, which will be
A�T= �f����0�−1Q, f��� being a function which describes
the geometrical effects of the porosity in reducing the effec-
tive thermal conductivity, as mentioned in the introduction.
Dividing both terms in �4� by the volume AL� of the system,
with L� the distance between the opposite boundaries of the
system in the direction of the temperature gradient, express-
ing N in terms of the porosity �, and adding the normal
diffusive resistance, we obtain for the effective thermal con-
ductivity of the porous medium.

�eff = �0
1

1

f���
+

9

2
�

��/a�2

1 + A���/a��1 +
3
�2

��	 . �5�

For small mean free path �	a this reduces to �eff= f����0,
whereas the second term in the denominator describes the
role of the pore size. For the sake of comparison with experi-
mental data we take, following Ref. 2, f���= �1−��3. This
comes from a model37,38 in which �eff= �1−��g�0, where g
is the percolation strength, which is related to the fraction of
the solid phase which is topologically interconnected and
that contributes to the conductivity. This factor is often ap-
proximated as g= �1−��2;

In,7 Lee et al. have also studied the influence of the pore
size on the effective thermal conductivity, taking into ac-
count the ballistic character of phonon transport. They de-
rived from kinetic theory for a two-dimensional system with
cylindrical transverse pores of radius a that

�eff = �0
1

1

f���
+ 


��

F���
1

a

, �6�

with the constant 
=25.5 and the functions being f���= �1
−�� / �1+1821.1�1.9� and F���= �4� /��1/2
sin−1��4� /��1/2�
−� /2�+ �1− �4� /���1/2. According to Ref. 7, f��� accounts
for the phonon diffusion in the reduced space left by the
porosity, and F��� for the ballistic character of the phonons.
Note that in the denominator of �6� the influence of the pore
size takes the form 1 /a, as well as in the denominator of �5�
for high values of the Knudsen number. However, Eq. �5� is
valid for three-dimensional systems and it gives not only the
extreme ballistic phonon influence on the pores but also their
influence in the diffusive-to-ballistic transition.

Now, we compare the results obtained from �5� and from
the simple proposal2

�eff = �0�1 − ��3, �7�

with experimental results. In the Table I we list several
data for the thermal conductivity of porous Si at several po-
rosities and with different pore radii at T=300 K, obtained
by different methods. We recall that at this temperature
�0=148 W m−1 K−1 and �=40 nm.

TABLE I. Experimental data on the thermal conductivity of amorphous Si
for different porosities and pore radii, and theoretical results obtained from
Eqs. �5� and �7�. In the first column it is indicated the corresponding biblio-
graphical reference.

Case
Porosity

�%�
Radius
�nm�

Experimental
�W m−1 K−1�

Equation �5�
�W m−1 K−1�

Standard �Eq. �7��
�W m−1 K−1�

1a 40 1–5 1.2 1.0–4.6 32
2c 40 100 31.2 29.6 32
3c 50 10 3.9 5.9 18.5
4c 60 10 2–5 4.0 9.5
5b 64 2 0.20 0.29 0.35
6b 71 2 0.14 0.16 0.18
7b 79 3 0.06 0.10 0.10
8b 89 5 0.04 0.02 0.02

aReference 1.
bReference 2.
cReference 3.

033103-2 Alvarez, Jou, and Sellitto Appl. Phys. Lett. 97, 033103 �2010�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

158.109.223.71 On: Tue, 18 Feb 2014 14:19:35



The four first values �obtained from Refs. 1 and 3� cor-
respond to crystalline Si with pores, whereas the other four
results �from Ref. 2� correspond to porous polycrystalline
silicon. In this case, the size of the individual crystallites is
that indicated as pore size in the Table because we have
assumed that the size of the pores is of the same order as that
of crystallites. The difference between the bulk thermal con-
ductivity of crystalline Si and of polycrystalline Si is dra-
matic, because the mean free path �40 nm in crystalline Si�
becomes of the order of the crystallite sizes in the second
material, thus leading to a drastic shortening of it and, con-
sequently, to a strong reduction in the bulk material, even in
the absence of pores. The reduction is given by the ratio of
the crystallite size to the mean free path in crystalline Si,
namely �0,pol=�0�d /��. Consistently with this fact, in these
cases we have taken in �5� for the bulk thermal conductivity
of the Si matrix the values 7.4 �experiments 5 and 6�, 11,1
�experiment 7� and 18,5 �experiment 7�, and for the mean
free path the crystallite size �i.e., in cases 5–8 we have taken
� /a=1, because both the mean free path and pore size have
been assumed to have the same value�.

In the last two columns we list the values obtained from
Eq. �5� and those from �7�. Comparing cases 1 and 2, corre-
sponding to the same porosity, it is clearly seen that the pore
radius may be very influential. In general, the results of Eq.
�5� are closer to the experimental values because they incor-
porate the influence of the pore size which, according to �5�
contribute to a reduction in the conductivity.

It follows from �5� that thermal conductivity not only
depends on the porosity but also on the pore size, leading to
thermal conductivities lower than those expected by porosity
when the factor � /a is relevant. Small-pore samples have
smaller thermal conductivity compared to large pores, at
equal porosity values because for the same mean free path
the ratio � /a in the denominator is bigger for the smaller
radius. In microscopic terms, the reduction in the thermal
conductivity of smaller pore radius may be interpreted as
increased phonon scattering at the pore surfaces.7

The effect of an inclusion of spheres of radius a and
thermal conductivity �2 inside a matrix of a material of ther-
mal conductivity �1 is a classical problem that was already
studied by Lord Rayleigh in 1892 �see Ref. 39 for refer-
ences�. The interest in nanosystems has pushed these topics
to the consideration of very small scales, where the pore size
and the separation between pores is comparable of smaller
than the mean free path, where the effect of the reduction is
much stronger.

In summary, phonon hydrodynamics, complemented
with classical hydrodynamic results for rarefied flows in po-
rous media, provides a phenomenological way to describe
the effects of the pore size on the thermal conductivity re-
duction, which may be rather strong. Combining the two
parameters porosity and pore size, would allow more possi-
bilities to optimize some material functions of the porous Si.
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