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The progressive breakdown of ultrathin ��2nm� SiO2 gate oxides subjected to constant electrical
stress is investigated using a simple equivalent circuit model. It is shown how the interplay among
series, parallel, and filamentary conductances that represent the breakdown path and its
surroundings leads under certain hypothesis to a sigmoidal current-time characteristic compatible
with the experimental observations. The dynamical properties of the breakdown trajectories are
analyzed in terms of the logistic potential function, the Lyapunov exponent, and the system’s
attractor. It is also shown that the current evolution is compatible with Prigogine’s minimum entropy
production principle. © 2011 American Institute of Physics. �doi:10.1063/1.3602318�

Ultrathin �oxide thickness �2 nm� SiO2 dielectric films
exhibit a gradual change in their insulating properties when
subjected to constant electrical stress.1 This is called progres-
sive breakdown �BD� and is the result of the aggregation of
defects and the subsequent formation of a localized leakage
path across the oxide layer. Several letters have revealed that
after the BD onset, the current flowing through the structure
increases, and reaches a saturation level determined by the
final resistance of the BD path circuit.2 The current incre-
ment is related to the enlargement of the BD spot size and
therefore to an increase in its conductance. However, the way
the current increases is still controversial, yet a power-2 and
an exponential-law3 seem to have the widest consensus. If a
self-limiting mechanism for the current is invoked, the logis-
tic curve can be fitted to the experimental current-time �I-t�
characteristic.4 This is the solution of the Verhulst equation,
which is the standard model for population growth with lim-
ited resources. In a subsequent work, the sigmoidal behavior
was linked to the physics of mesoscopic conductors and to
the power dissipated inside the BD path,5 but a derivation of
the logistic model was still missing. Even though the model
proposed here relies on some of these earlier ideas, the re-
sulting closed-form expressions provide a more clear picture
of what’s going on inside the system under study. The fun-
damental difference with previous approaches is the starting
hypothesis which involves a self-limited current increase
driven by the “free-motion” conductance of the BD spot. As
it will be demonstrated in this letter, this basic premise leads
to a sigmoidal I-t characteristic. Moreover, thanks to the
oversimplified treatment, classical mathematical tools mainly
developed to characterize the trajectory of mechanical sys-
tems, such as the potential function, the Lyapunov exponent
�LE�, and the attractor space can be brought into play. Since
we are dealing with the formation of an out-of-equilibrium
dissipative structure, a thermodynamic interpretation for the
system’s evolution based on Prigogine’s minimum entropy
principle is also provided.

Figure 1 shows the equivalent electrical circuit consid-
ered for the broken down gate oxide. GS is the series con-

ductance �external or internal�, GP is the tunneling conduc-
tance �in an extended model it comprises information about
the oxide thickness and device area�, GBD is the BD path
conductance, and V the applied bias. For the sake of simplic-
ity, it is assumed that all circuit elements obey Ohm’s law
and any possible classical residual6 or contact resistances
associated with quantum mismatches at the two ends of the
constriction5 is disregarded. While GP and GS provide the
physically necessary lower and upper bounds for the BD
trajectory, GBD�t� represents the evolution of the spot’s trans-
mission properties without constraints. In particular, for the
exponential dynamics, GBD reads

GBD�t� = GBD0e�t = e��t-��, �1�

where ��0 is a constant and GBD0 the conductance at
t=0. Notice that GBD0 is equivalent to a time shift
�=−ln�GBD0� /�. For practical purposes, � will also include
the time-to-BD. Eq. �1� expresses that the BD constriction
evolves toward a ballistic filamentary path. Then the current
at any time is given by the relationship

I�t� =
I�

1 + GS�e��t-�� + GP�−1 , �2�

where I�=GSV is the current for t→�. Notice that Eq. �2�
yields a sigmoidal I-t characteristic as proposed in Refs. 4
and 5. Figure 2�b� shows experimental and simulation results
obtained from Eq. �2�. Detailed information about the de-
vices used in this study and stress conditions can be found in
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FIG. 1. Equivalent circuit model for the broken down gate oxide. GS is the
series conductance, GP the tunneling conductance, GBD is the BD path con-
ductance, and V the applied bias. I, IP, and IBD are the currents flowing
through the system. t is the time.
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Ref. 5. The same figure shows the evolution of the power
dissipated in the BD spot

PBD�t� = �V − GS
−1I�IBD=e��t-���V − GS

−1I�2. �3�

Notice that, as pointed out in Ref. 5, as the degradation pro-
ceeds, the power dissipated in the BD spot goes through a
maximum and finally decreases to zero, indicating that, at
this point, the power is entirely dissipated in GS. When this
occurs, the degradation stops and the system enters into an
stationary phase compatible with the external constraint �ap-
plied voltage�. This is consistent with the mesoscopic view-
point for a ballistic conductor in which power dissipation
takes place at the electron reservoirs.7

The logistic differential equation associated with Eq. �2�
can be expressed as

F�I� =
dI

dt
= �I�

GP

GS
� I

I�

− 1��1 −
I

I−�
� , �4�

where I−�= �GSGP /GS+GP�V is the current in the limit t→
−�. Equation �4� has a positive equilibrium at I� that is
stable, which, as shown below, is the attractor for all current
initial conditions. On the contrary, I−� is an unstable equilib-
rium. This can be clearly seen from the potential equation
F�I�=−d��I� /dI, where

��I� = �
GP

GS
I��I − � 1

I�

+
1

I−�
� I2

2
+ � 1

I�I−�
� I3

3
	 �5�

and which is plotted in Fig. 3. The minimum in this plot
corresponds to the positive equilibrium situation and F�I�
can be regarded as the field force in which the system
evolves. The region I� I� is only accessible through sys-
tem’s fluctuations �not considered here�. Within this dynami-
cal context, a measure of the divergence or convergence of
nearby trajectories is given by the LE, a key tool of chaotic
dynamics.8 LE is an average over the deterministic attractor
and can be calculated from the Jacobian of the logistic model
as

LE = 
dF

dI



I=I�

= − � � 0. �6�

The negative sign of LE confirms the absence of determin-
istic chaos, as it is expected for a one-dimensional autono-
mous differential equation.9 However, it is worth mentioning
that the eigenvalue of the derivative dF�I*� /dI=0, at which
maximum dissipation in the BD spot occurs, is the average
current I*= �I�+ I−�� /2. I� separates the state space of cur-
rents I-t into two regions as illustrated in Fig. 4. This means
that two initial conditions satisfying I�t=0�� I� separated by
a small distance will have trajectories that diverge from each
other for a short time period. For larger injection times both
currents will reach the region I� I� and their distance will
eventually decrease as the trajectories approach I�. In other
words, the system is insensitive to the initial conditions in
the long term run, where GS plays a dominant role. This
behavior is illustrated in Fig. 4 for two experimental curves
with different time-to-BD. A common practice in connection
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FIG. 2. �Color online� �a� Dissipation function � as function of time
�see Eq. �8��. �b� I-t characteristics during a constant voltage stress
�V=3.75 V� for a 2-nm-thick oxide layer in a metal-oxide-semiconductor
structure. The noisy solid line is the experimental data, the thin solid line the
simulated current using Eq. �2�, the dashed lines are the currents flowing
through the branches of the circuit illustrated in Fig. 1. The heavy solid line
is the power dissipated in the BD spot Eq. �3�.
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FIG. 3. �Color online� Logistic potential function vs the current flowing
through the circuit. Three regions are identified: a forbidden region for cur-
rents lower than I�-�� �the current cannot be lower than the tunneling cur-
rent IP�, the deterministic region in which the system evolves, and a region
above I�	�� only accessible through current fluctuations �not included in
the reported treatment�. The stable state is the minimum of the function.
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FIG. 4. �Color online� I-t characteristics measured in two different devices.
Two regions are considered: below I*, the region of divergent trajectories,
above I*, the region of convergent trajectories. I� separates the space into
these two regions.
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with progressive BD is to calculate the degradation rate DR
from the slope of the current in the rapidly growing phase.3

From Eq. �4�, DR can be calculated as

DR = F�I�� =
�GS

2V

4�GS + GP�
, �7�

which occurs at a time t�=�−1 ln�GS+GP�+�. Equation �7�
shows that DR is not an inherent property of the BD spot
�like �� but that it is affected by the series and parallel resis-
tances in the post-BD circuit. For the data shown in Fig.
2�b�, DR=1.35
10−4 A /s while dIBD /dt=1.81
10−4 A /s.

The above dynamical analysis would be incomplete if
the irreversibility of the oxide degradation process is not
taken into consideration. Let us now calculate the entropy
production associated with the conversion of electrical en-
ergy into heat for the circuit illustrated in Fig. 1. To this end,
we invoke Prigogine’s or Onsager-Prigogine’s �OP� mini-
mum entropy production principle, which establishes that “in
the linear regime, the total entropy production rate dS /dt in a
system subject to flow of energy and matter reaches a mini-
mum value at the stationary state.”10 This principle is also
valid for mesoscopic systems.11 Notice that since we are ex-
clusively dealing with a resistor network and the circuit is
assumed isothermal, OP’s principle is equivalent to Max-
well’s minimum dissipation theorem,12 from which Kirch-
hoff’s laws for circuits can be derived. As claimed several
times, caution should be exercised with the application of
these “general” principles to more complex circuits since
some restrictions apply.13 For a resistor network with a gen-
erator V �see Fig. 1�, the dissipation function � 14,15 reads

� = TdS/dt = GS
−1�IP + IBD�2 + GP

−1IP
2

+ GBD
−1 IBD

2 − 2V�IP + IBD� = − VI , �8�

where T is the absolute temperature and I the current given
by Eq. �2�. Clearly, the global minimum of Eq. �8� is reached
for t→� as shown in Fig. 2�a�, in total consistency with OP
principle. Notice also that �� /�IP=�� /�IBD=0 yields the
mesh equations for the circuit in Fig. 1. It is worth pointing
out that a resistive network with constant sources is always

in the steady state, since there are no dynamic elements as-
sociated with energy storage. In our case, the way the system
approaches the attractor is ultimately ruled by GBD�t�.

In summary, a simple analytic model for the progressive
BD dynamics was presented. The ideas exposed here can be
easily extended to more complex dynamics including nonlin-
ear circuit elements �i.e., for the tunneling conductance� or
using other dynamical models for the filament conductance
�such as a power-law�. Moreover, an stochastic model can
also be generated including a noise term in �. We have
shown that an alternative description based on well-known
dynamical concepts can open a new road to the interpretation
of oxide BD phenomenology.
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