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In this paper, we demonstrate that in Ta/MgO/IrMn tunneling junctions, containing no

ferromagnetic elements, distinct metastable resistance states can be set by field cooling the devices

from above the N�eel temperature (TN) along different orientations. Variations of the resistance up to

10% are found upon field cooling in applied fields, in-plane or out-of-plane. Well below TN, these

metastable states are insensitive to magnetic fields up to 2 T, thus constituting robust memory states.

Our work provides the demonstration of an electrically readable magnetic memory device, which

contains no ferromagnetic elements and stores the information in an antiferromagnetic active layer.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4804429]

Magnetic tunnel junctions used in modern hard-drive

read heads and magnetic random access memories comprise

two ferromagnetic electrodes whose relative magnetization

orientations can be switched between parallel and antiparal-

lel configurations, yielding the tunneling magnetoresistance

effect.1 Recently, large magnetoresistance signals have been

observed on NiFe/IrMn/MgO/Pt stacks with an antiferro-

magnet (AFM) on one side and a non-magnetic metal on the

other side of the tunnel barrier.2,3 In these devices, ferromag-

netic moments in NiFe are reversed by external magnetic

field and the exchange-spring effect of NiFe on IrMn induces

the rotation of the AFM moments in IrMn. This is then elec-

trically detected via the measurement of the AFM tunneling

anisotropic magnetoresistance (TAMR). The work has

experimentally demonstrated the feasibility of a spintronic

concept4,5 in which the device transport characteristics are

governed by an AFM.

The lack of magnetic stray fields and the relative insensi-

tivity to external magnetic fields make AFM materials poten-

tially fruitful complements to ferromagnets in the design of

spintronic devices.6 The zero net moment of compensated

AFMs, however, also implies that weak magnetic fields of

the order of the typical magnetic anisotropy fields in magnets

cannot be directly applied to rotate the AFM moments. In the

devices reported in Refs. 2 and 3, the problem was

circumvented by attaching an exchange-coupled ferromagnet

to the AFM electrode to form an exchange-spring.7 This

method, however, limits the thickness of the AFM layer to

values not exceeding the domain wall width in the AFM.

Since the exchange spring triggers rotation of the AFM

moments at the opposite interface to the AFM/tunnel-barrier

interface, the AFM TAMR effect can be observed only in

AFM films which are thinner than the domain wall width in

the AFM. Recent experiments in [Pt/Co]/IrMn/AlOx/Pt

stacks8 have demonstrated that room-temperature AFM

TAMR can be achieved in exchange-spring tunnel junctions

only in a narrow window of AFM thickness. A subtle balance

is required between a thin enough AFM to allow for the

exchange-spring rotation of AFM moments across the entire

width of the AFM and a thick enough AFM to avoid the

decrease of the N�eel temperature TN below room temperature

by the size effects. We also point out that as a memory ele-

ment, the exchange-spring AFM tunnel junctions can be dis-

turbed by weak magnetic field perturbations as they still

contain a ferromagnetic element.

To fully exploit the potential robustness of the AFM

based spintronic device against magnetic fields, we have fab-

ricated magnetic tunnel junctions analogous to those in Refs.

2 and 3, but without the auxiliary ferromagnetic NiFe layer.

In these antiferromagnetic tunnel junctions (ATJs), we show

that metastable states can be set by cooling the sample and

crossing the N�eel temperature in external magnetic fieldsa)Electronic email: xaviermarti@berkeley.edu
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with different orientations. These metastable states can be

detected electrically, due to an analogous effect to the AFM

TAMR reported in Refs. 2, 3, and 8. Since our field-cooling

approach for writing does not require any ferromagnetic

layer, the limitation on the AFM thickness is removed in our

devices. Our work provides the demonstration of an electri-

cally readable magnetic memory device which contains no

ferromagnetic elements and which stores the information in

an AFM.

The stacks for the fabrication of the tunneling junctions

used in this study have been deposited by magnetron sputter-

ing (AJA ATC Orion 8 system). A Ta(20)/Ru(18)/Ta(2)/

Ir0.2Mn0.8(2-8)/MgO(2.5)/Ta(20) (layer thicknesses are in

nm) stack was deposited on SrTiO3 (STO) single crystal after

a chemical cleaning of the substrate. STO was chosen as a

suitable insulating substrate with limited impact on the de-

vice behavior because our measurements are performed

above 100 K, i.e., in a temperature range where STO does

not present structural transitions. The metallic layers have

been deposited in dc mode, while MgO in rf mode. To repro-

duce the experimental conditions optimized for the fabrica-

tion of MgO based tunneling junctions, a magnetic field of

30 mT was applied along the STO[100] direction during the

stack growth. A post growth annealing of 250 �C has been

performed in a dedicated system with an external magnetic

field of 400 mT applied along the same STO[100] direction

and with a field cooling until reaching room temperature

(without crossing the N�eel Temperature of IrMn).9

The core of the stack employed for the fabrication of

our devices is the Ir0.2Mn0.8(2-8)/MgO(2.5)/Ta(20) ATJ

where the IrMn layer is in direct contact with the insulating

barrier. In this way, modifications of its relativistic spin-orbit

coupled band structure for different AFM configurations can

yield the TAMR.4 The high structural quality of our hetero-

structures is evident from Fig. 1, where we show STEM

images taken on a sample with a 8 nm thick IrMn film. In

particular, the top panel shows the continuity of the MgO

barrier over long distances, which is crucial for the realiza-

tion of macroscopic tunneling junctions. The expected high

quality of the MgO layers on IrMn was one of the reasons

for choosing this material for the stack. While the concept

shown in this paper could in principle work also with other

insulating barriers, such as AlOx which have been already

used in TAMR devices,8,10 the investigation of different

materials for the insulating barrier is definitely beyond the

scope of this paper. A Nion UltraSTEM operated at 100 kV

and equipped with a Nion aberration corrector was used.

Low and high resolution STEM Z contrast images show that

the stacking comprises continuous films over large distances.

This is consistent with atomic force microscopy analyses at

intermediate growth steps, which revealed that each new

layer preserved an RMS roughness of less than 1 nm (data

not shown). The image shown in the inset of Fig. 1 highlights

the recrystallization of MgO after annealing at 250 �C for 1 h.

The MgO insulating barrier is highly textured along the out-

of-plane [001] direction, parallel to the IrMn [111] texturation,

as found in our preceding works2 and confirmed by X-ray dif-

fraction measurements (data not shown).

Pillar structures with different cross sectional areas, rang-

ing from 4 to 100 lm2, were patterned by optical lithography

in order to define the ATJs for electrical measurements. The

devices show tunneling I(V) characteristics (see supplemen-

tary material)14 and resistance area products (RA) typical of

standard MgO magnetic tunneling junctions with the same

MgO thickness (RA� 2.5� 105 X lm2 at 100 mV and 300 K).

A Quantum Design Physical Property Measurement System

(PPMS) and an Oxford Instruments cryostat furnished with

vector magnet were used to perform the magneto-transport

measurements.

As calorimetry measurements showed that TN of a 2 nm

thick IrMn is reduced to �173 K (see Fig. 3 and discussion

thereafter), we performed the field cooling procedure from

room temperature down to 120 K, thus covering a sufficiently

FIG. 1. High resolution Z contrast image of the heterostructure studied here.

In the inset a high resolution image of the Ta/MgO/IrMn tunneling junction

is shown. The reference system reported on the right is that used for index-

ing the magnetic fields during field cooling. (Top): TEM image showing the

continuity of the layers over large lateral distances.

FIG. 2. Tunnel resistance data for field-cooling along positive and negative

out-of-plane z-directions of the field and for the in-plane x-direction. The

splitting of the two resistance traces, corresponding to the non-zero aniso-

tropic magnetoresistance, is observed near TN. Inset shows the stability of

the state realized by field-cooling in the out-of-plane field. Below TN, at

T¼ 120 K, the resistance remains constant when sweeping the magnetic

field between þ2 and �2 T along out-of-plane (z) or orthogonal in-plane

(x,y) directions.

192404-2 Petti et al. Appl. Phys. Lett. 102, 192404 (2013)
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large temperature range around TN. In the case of data

reported in the main panel of Fig. 2, we applied an external

field l0Hz of 62 T oriented perpendicular to the sample sur-

face (scattered and red curves) and l0Hx¼þ2 T oriented in

the plane of the sample, along the [100] axis of the STO sub-

strate (thick green curve). The RA product (measured at a

fixed bias of 20 mV) is identical for the three field orienta-

tions in the temperature interval from 300 K to approximately

170 K, while below this temperature the RA traces for out-of-

plane and in-plane field orientations split. At 120 K, the dif-

ference is more than 10%. Remarkably, these states are meta-

stable at temperatures sufficiently below TN, as illustrated in

the inset of Fig. 2. In the measurement, the higher resistance

state was prepared by in-plane field cooling and then the tem-

perature was stabilized at 120 K. The RA product (at 20 mV

bias) was then monitored while continuously sweeping the

magnetic field in the out-of-plane direction (Hz) and also in

the two orthogonal in-plane directions (Hx and Hy) between

þ2 T and �2 T, for 10 h. No changes in the tunneling resist-

ance are observed within the experimental noise, which is

much smaller than the difference between the higher and

lower resistance states observed in the main panel of Fig. 2.

This demonstrates that the state prepared by field cooling is

metastable and insensitive to relatively large external mag-

netic fields. Note that metastable states showing different tun-

neling resistances at zero magnetic field were also observed

in Ref. 2, where the configuration of the AFM moments in

IrMn was controlled below TN using the exchange-spring

effect of a ferromagnet. Noteworthy, the observed field-cool

induced magnetotransport effect shows the key signatures of

an anisotropic magnetoresistance. In Fig. 2, while the

temperature-dependent resistance traces for the in-plane and

out-of-plane fields split below TN, we observe no difference

between field-cool measurements performed at fields with the

opposite polarity.

In Fig. 3, we highlight that the onset of the splitting of the

RA traces for cooling in fields with different directions coin-

cides with the transition to the ordered AFM state in the 2 nm

IrMn film. Side by side we plot in the figure the normalized

variation of the tunneling resistance (R(Hx)-R(Hz))/R(Hz) in

one of our 2 nm IrMn pillar devices and the differential specific

heat of a 2 nm IrMn layer as a function of temperature. Quasi-

adiabatic nanocalorimetry (QAnC) is an ideal technique for

investigating the N�eel temperature of thin IrMn films. This

technique allows for a direct measurement of the specific heat

of the sample, enabling the observation of the critical behavior

in the specific heat near TN. Identical multilayers to those used

in the tunnel junctions were sputtered onto self-standing silicon

nitride membranes that form the nanocalorimetric cells. A twin

calorimeter loaded with a reference multilayer sample without

IrMn was used for differential measurements of the specific

heat.9 The N�eel temperature inferred from the inflexion point

of the specific heat singularity11 is approximately 173 K, i.e., it

is significantly reduced in the 2 nm IrMn film as compared to

the bulk IrMn, having TN> 1000 K. This is in agreement with

previous observations in case of other AFMs, e.g., CoO.9 The

reproducibility of the specific heat method has been confirmed

in different samples prepared in separate growth runs under the

same growth conditions. Moreover, the correspondence

between TN and the onset of the field-cool AFM TAMR has

been confirmed by independent measurements using the

PPMS and the vector magnet cryostat, and studying different

ATJs with the same nominal layer structure. All samples show

a negligible magnetoresistance in the paramagnetic phase and

a reproducible splitting of the RA traces when continuing the

field-cooling below TN with in-plane and out-of-plane mag-

netic fields. The percentage difference between the two meta-

stable resistance states obtained at 120 K varies from 2% to

10% in different ATJ samples. Higher values were found in

devices with larger RA, thus indicating that tunneling is the or-

igin of the observed magnetoresistance. The last one simply

decreases in devices with thinner barriers, where defects can

create parallel conductive paths partially masking the effect of

anisotropic tunneling.

We point out that the observed magnetoresistance can-

not be ascribed to magnetization-independent tunneling

transport phenomena due, e.g., to Lorentz force effects of the

magnetic fields applied along different directions with

respect to the tunneling current direction. These types of

phenomena can be excluded since the field-cooling magneto-

resistance disappears above TN and since we observe a negli-

gible resistance variation upon application of external fields

when the temperature is stabilized below TN, as shown in the

inset of Fig. 2. For the same reason, we exclude that possible

Mn interdiffusion within the oxide layer is responsible for

the observed metastable magnetic states. The coincidence

between the N�eel temperature and the onset of the resistance

splitting is a strong evidence for the linking of the observed

phenomena to the antiferromagnetism of the IrMn layer and

not to the magnetic behavior of some Mn atoms dispersed in

the tunneling barrier. We also note that the microscopic

mechanism which yields the field-cool TAMR in IrMn is dis-

tinct from the high-field magnetotransport effects previously

observed in iron pnictide AFMs.12 In the latter materials, the

phenomenon has been ascribed to field-induced selection of

structural crystal twin domains.10 IrMn does not undergo a

crystal phase change near TN and we therefore ascribe the

distinct metastable states realized by field-cooling purely to

distinct AFM configurations of uniform IrMn film.

FIG. 3. Red scattered curve: Differential specific heat measurements of the

2 nm IrMn samples indicating TN� 173 K. Data were obtained on samples

with a 2 nm thick IrMn layer, by averaging 1000 consecutive scans. Black

curve: Temperature dependence of the tunneling magnetoresistance corre-

sponding to the relative difference between field-cool resistance measure-

ments in 2 T fields applied along the out-of-plane (z) and in-plane (x)

directions. The onset of a non-zero anisotropic magnetoresistance is

observed when crossing TN.
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The precise microscopic identification of these states

requires a detailed study, which is beyond the proof-of-

concept work presented in this paper. Here, we recall the the-

oretical study13 on IrMn which for Ir20Mn80 identified two

non-collinear AFM phases 2Q and 3Q (confining the mag-

netic spins in the plane or yielding an out-of-plane compo-

nent, respectively) with an energy difference of only

�0.25 mRy/atom, and a collinear phase whose energy is

�1.25 mRy/atom higher. We surmise that depending on the

direction and strength of the applied field, the field-cooling

procedure starting from temperatures above TN can favor

spin configurations with different proportion of these distinct

metastable AFM phases. Finally, we remark that in the previ-

ously studied NiFe/IrMn exchange-spring AFM tunnel junc-

tions,2,3 the formation of the distinct magnetic configurations

affecting the tunnel transport could be ascribed to bulk prop-

erties of the AFM or to the interface effects with the ferro-

magnet. From this perspective, our present experiments

provide valuable complementary evidence showing that the

interface with another magnetic layer is not required for sta-

bilizing distinct states in the IrMn AFM.

To summarize, we have demonstrated the storage of in-

formation in an AFM/insulator/normal-metal tunneling de-

vice comprising no ferromagnetic elements. Different

metastable configurations, yielding the high and low resist-

ance states of the ATJ, can be set by cooling the AFM from

above TN in magnetic fields with different orientations. By

increasing the AFM layer thickness, the N�eel temperature of

the AFM film is expected to increase, virtually allowing set-

ting the TN above room temperature. The absence of stray

fields and the robustness against magnetic field perturbations

are the key features of these devices, which hold potential for

the development of spintronic devices without ferromagnets.
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