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Ultrarelativistic bound states in spinor and scalar QED
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Nonperturbative integral equations are developed variationally for two-particle bound states in

spinor and scalar quantum electrodynamics. The equations are solved numerically in the massive
case and analytically in the massless case. The coupling constant is varied in order to study the
bound states in the ultrarelativistic region.

I. INTRODUCTION

Producing the hadron spectrum from quantum chro-
modynamics (QCD) has proven to be a formidable task
indeed. This is essentially because the low-energy modes
in the theory couple strongly, making the problem inac-
cessible to perturbation theory. The strong-coupling
problem can be divided (somewhat artificially) into two
aspects. In a Fock-space expansion of the states, strong
coupling will imply large mixings and slow convergence
to the physical states. Even within a limited sector of
Fock space, relativistic effects will be large and perturba-
tion theory will not be useful.

Although the variational technique, ' which we advo-
cate in this paper, is in principle suitable to attacking
both aspects, it is the latter, more modest aspect of the
problem to which we address ourselves at least as a first
step.

To this end we study spinor and scalar quantum elec-
trodynamics (QED). (In a limited Fock space only the
Abelian part of QCD survives).

In Sec. II we present the respective Hamiltonians and
variationally derive the corresponding integral equations
for the bound-state wave functions. In Sec. III we
present our numerical method and results. Comparisons
with analytic results of the massless theory are made in
Sec. IV along with our concluding remarks.

II. HAMILTONIANS

A. Spinor QED

In radiation gauge the QED Hamiltonian is

H =f d x(g [a [(I/i)V eA]+P—m]g

+ ( (E2+B2))

Ie+e )=fd'xd'y f(Ix —yI):P(x)I P(y):IO) . (2)

Expanding the field operators in the standard way, this
expression Fourier transforms itself and becomes

le+e &= 1 d'p xf(p(u(p, sg'u( —p, s')
$$

Xb (p, s)d ( —p, s')IO),

where f(p) is the momentum-space wave function de-
pending only on magnitude p. The angular and spin in-
formation is contained in the spinor factor with the ma-
trix I chosen to be y5, 1,y, y5y, depending on whether
we wish to construct a pseudoscalar, scalar, vector, or
pseudovector state, respectively. The expectation value
of the Hamiltonian is now calculated. We normal order
the theory so that we can read off the bound-state mass
directly since the Hamiltonian listed in (1) with ansatz (2)
wi11 give rise to Coulomb self-energy mass renormaliza-
tion. Thus we calculate

M[f ( )]
&e+e IHle+e
(e+e Ie+e

(4)

which we variationally optimize with respect to f(p).
This leads to the integral equation

where

E =E +E E, = —A, B=VXE,
e'

3 g (x)tP(x)f (y)g(y)
4~

"' Ix-yI
We construct an ansatz for the fermion-antifermion

bound state by acting on the vacuum with a bilocal
operator folded against a probability amplitude, namely

(2E —M)Tr[(P+m)I (P —m)I ]f(p),

f [Tr(p'+m)l (gf
—m)(g —m)I t(g +m)]f(q)=0 .8~' E~&, Ip

—qI'
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The traces and angular integration are now performed for the cases considered here and we obtain one-dimensional
integral equations of the form

Mf(p)=2E f(p) —I K(p, q)f(q)dq,4~ p

where M is the bound-state eigenvalue. The kernels are

(Ep+E )
0 +: K(p, q)= ln — (Ref. 3),

E~E p —
q E E (7a)

(Ep+Eq ) (E~Es m ) p +q 2m 2
0++: K(p, q)= ln —2—

pqE E p —
q EE (7b)

1:K(p q)= 2pq

[(2E +m )(2E +m )]'

(Ep+Eq) [(E +Eq) +2m ] p+q E E
X lnP q —2—

4pqEpEq p —
q 2E 2E

(7c)

(E+E ) [(E+E ) —4m ] p+q E E1++. K( )
P 9 P 0

1
P q 2

4pqEpEq p —
q 2E 2E E E (7d)

B. Scalar QED

Proceeding as in the previous section the SQED Ham-
iltonian in radiation gauge is

I= d x m ~+ +ieA ' —ieA

+m P'P+ A(P'P) + ,'(E +B—)]
where

E =E +E Et= —A, B=VX A,

EI=+ g, p X =l 7T 1T
p(~)p(y)
lx-yl

Our two-particle scalar ansatz is

&
= f d'~d'V f(IX y I

):P'(x)P—(y):I0& .

This leads, as before, by variational optimization, to an
integral equation of the form (6). We find that to obtain
solutions for all values of a, the value of A, cannot be left
arbitrary. This is due to the lack of convergence in the
ultraviolet region of the integration. The singular be-
havior is removed by fixing A, =ma.

In fact, at this value of A. the integral equation is identi-
cal to the spinor pseudoscalar equation (7a) [after a suit-
able redefinition off(p )].

With all the integral equations now in place we can
proceed to their solution.

III. NUMERICAL METHOD AND RESULTS

We use two methods to calculate the eigenvalues for
the kernels listed in the previous section. In the basis-

1'(p)= g a, u, (p,po), (10)

where the u;(p, po) are the eigenstates of the nonrela-
tivistically reduced kernels (of the momentum-space
Schrodinger equation), where the linear parameters a;
and the nonlinear parameter po (the inverse Bohr radius)
are optimized. This leads to a standard matrix-
diagonalization problem. The method gave good results
for low a but near the critical region (i.e., where the
bound-state mass vanishes) the convergence was poor, re-
sulting in a very rapid growth in the number of basis
states required. The results for this method in the trivial
case of one expansion function was presented in Ref. 4.

We could, however, obtain reasonable convergence
right up to the critical value with the optimized discreti-
zation method. The integral equation is solved on a lat-
tice. The semi-infinite range is first mapped onto a finite
interval. The logarithmic singularity at p =q, although
integrable, is numerically troublesome and can be tamed
with a standard trick. To this end we write

JK(p, q)f(q)dq= f(p) JK(p, q)dq

+ J«p q)[f(q) f(p)]dq—
where the first integral can be performed analytically (or
numerically as the case may be).

Optimized discretization leads again to a matrix eigen-
value problem, namely

g 8;I,
'

Ai,
——5; f (g )=0, (12)

j k

where

expansion method we decompose the solution using a
complete set of functions, namely
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sider the massless theory the respective kernels become
identical. This is a reAection of the fact that the m =0
theory is chirally symmetric. In the absence of spontane-
ous symmetry breaking one expects parity doubling in
the spectrum. Furthermore, we have explicitly solved the
massless integral equations and find that the critical
values are

a (0-+ 0++)= 4 =1.81,/2.+2/m

, ( 1,1++
) = — — =2. 20 .

n &3/4+ 4/&3n

(13)

0
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In both cases f (p) =p
These values are very close to our best numerical

values for the massive theory:

FIG. 1. Two-particle bound-state mass vs a. The quantum
numbers of the curves are indicated 0 +, 1,0+, and 1++.
The dashed curves show the nonrelativistic dependence
2 —(y2/4n ~.

1

lJ 4

+P, . f—K (g, , q)dq

—g W~ K((„gk)
k

B; =5; [2E(g;)—M], ,

K(g, , g, )=0 .

The weighting coefficients W; and the roots g, are chosen
according to the method of Gaussian quadrature.

Convergence was obtained typically to five figures with
100 points for most of the curve. At the critical point
300 points were required to obtain close to three-figure
accuracy.

The results are presented in Fig. 1 where we have plot-
ted the bound-state mass versus a. We remind the reader
of the nonrelativistic correspondence: (J, '+'LJ),
(0 +, 'So), (1, S& ), (1++, P, ), (0++, Po), where, for
the vector case, we have listed only the lowest of the two
possible L states. The curves at low a follow the
2 —a /4n nonrelativistic behavior. It is surprising how
closely the curves follow the nonrelativistic curves for a' s
up to a = 1. This is due to a fortuitous cancellation of the
relativistic kinetic- and potential-energy corrections.

The most dramatic feature of the curves is the rapid
turnaround behavior near the critica1 value and the de-
generacy of the 0 + and 0++ as well as the 1 and
1+ states. Note in both cases this is a degeneracy of a,
of what was at low a 1S and 2P states. This can be un-
derstood in the following way. If for the moment we con-

a, (0++ ) = 1.826,

a, (0 +
) = 1.828 (and scalar in SQED),

a, (1 ) =2.216,

a, ( 1++
) =2.221 .

The lack of rapid convergence near the critical value is
the result of large cancellations between the kinetic and
potential energies which just precisely balance when the
wave function goes over to the massless form f(p) =p
This is a state which is extremely localized in
configuration space sitting deep in the potential well at
the origin. The energies involved are so large that a small
fermion mass becomes irrelevant.

We believe that even though we have a limited Fock
space and we are not sensitive to field-theoretic effects,
this qualitative feature will persist. In the absence of
spontaneous symmetry breaking, it will certainly remain
true in the massless theory. We would find it surprising if
the massive theory which joins so smoothly to the mass-
less one at this order in Fock space would cease to do so
at higher order.

To summarize and to also leave a clear impression with
the reader, we would like to emphasize that although sys-
tematic improvement and enhancement of the Fock space
is possible (work in this direction is in progress), at the
present level we can only claim to have studied the rela-
tivistic two-body problem. Since the formalism is sound-
ly based on the quantum-field-theoretic Hamiltonian and
no pathologies appear (imaginary eigenvalues, etc. ), we
feel it is a desirable and promising technique.
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