brought to you by 🗓 CORE

Metabolic engineering for biofuel production

Audald Lloret i Villas

Biotechnology Degree

Treball de Final de Grau

Introduction

The use of petrol as a main energetic source has severe problems and controversies. Environmental pollution, both social and economical inequality and fuel depletion carry with them the necessity of new and sustainable alternatives.

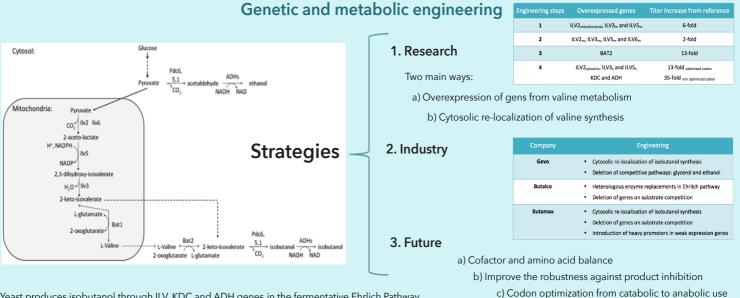
In this bibliographic report I explore biotechnology tools to produce biofuel in order to compete with conventional hydrocarburs, especially metabolic and genetic engineering. This technique is able to transform microorganisms (bacteria, yeast and fungi) into cellular factories that provides us large amounts of bioalcohols from cheap raw materials. Important research groups and giant chemical factories, in joint venture with biotech companies, are trying to develop this technology using different processes. This study focusses on the isobutanol synthesis using Saccharomyce's cerevisiae.

Goal

The goal of this report consist of an overview of the best research and industrial strategies of metabolic engineering on microorganisms to produce biofuels. In the same way, the limitations and future needed improvements of the technology are also studied.

Tools

New computer technologies provide huge knowledge that allow us to improve quickly and qualitatively the conventional engineering by avoiding the bottlenecks. These tools are part of the omic sciences: genomics, transcriptomics, proteomics, metabolomics and fluxomics.


Isobutanol		
	Ethanol	Isobutanol
Energy density	29,7 MJ/kg	36,1 MJ/kg
Average octane number	116	110
Vapor pressure	High	Low
Higroscopicity	High	Low
Corrosivity	High	Low
Compatible with current infrastructure	Low	High

Ethanol is the most up-to-date widely produced biofuel. However, Isobutanol production is the really promising alternative to petrol.

Saccharomyces cerevisiae

Escherichia coli	Saccharomyces cerevisiae	
Molecular characterization advanced	Molecular characterization advanced	
High alcohol titer	Low alcohol titer	
No homologous isobutanol pathway	Homologous isobutanol pathway	
Low tolerance in high alcohol concentration	High tolerance in high alcohol concentration	
Low robustness in industrial conditions	High robustness in industrial conditions	

In spite of being bacteria Escherichia coli the principal microorganism in industry, most succesfully biofuel companies use the yeast Saccharomyces cerevisiae.

Yeast produces isobutanol through ILV, KDC and ADH genes in the fermentative Ehrlich Pathway

Conclusion

Metabolic and genetic engineering is not only the present of biofuel production but also the future. Overcoming the process bottlenecks and being competitive in fuel production,

References

Hong, K. et al. (2012). Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries Cellular and molecular life sciences : CMLS.
De Jong, B. et al. (2012). Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Current opinion in biotechnology.
Brat, D. et al.(2012). Cytosolic re-localization of valine synthesis and catabolism enables increased isobutanol production wit the yeast Saccharomyces cerevisiae. Biotechnology for biofuels.
Chen, X., et al. (2011). Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnology for biofuels.
S. Patent US2011/0020886. Butamax. May 2011.
Patent US2011/0053235. Butalco. March 2011.

the energy paradigm change is not far away.