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Competition and bistability of longitudinal modes in a Raman laser
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A model for Raman lasers including several longitudinal modes is analyzed. Depending on the choice of the
parameters the system can exhibit single-mode emission, wide bistability domains, and self-pulsing. The latter
is often characterized by two frequencies, which are clearly related to single-mode and multimode instabilities,
in agreement with the interpretation of earlier experimental results.

PACS numbds): 42.55.Ye, 42.65.Pc

The Raman laser is an optically pumped three-level lasesionless time variable in Eq§l) is scaled toy, , the relax-
in which both the pump and the laser figfdequencieswp ation rate ofP, and therefore all frequencies are given in
andw, , respectively are far off resonancesee Fig. L This  units of y, .
system is commonly used to produce high gain steady-state With our notationsg and F are equal to half the Rabi
lasing emissions in the mid- to far infrared spectral regionfrequencies associated with the pumping and lasing transi-
[1]. In addition, this system can show a very rich dynamicaltions, respectivelyP and D denote as usual atomic coher-
behavior[2], including single-mode pulsations and routes toence and difference of population, respectively, of the effec-
chaos characterized by period doubling and intermittencyive two-level system formed by the levels 2 and 1.
[3]. The single-mode plane-wave model of the Raman laser The three-level scheme is shown in Figad; andwy; are
has been already studied in great detail, and experimentalhe frequencies of the transitions=® and ¥-0 and§is the
accessible parameters for which laser emission can be peudetuning between the frequeney of the pump beam and
odic or chaotic have been foud—6]. the atomic resonance,,. We define the Raman frequency

Yet an important experimental evidence, namely, multi-wg=wy;+ 6. The actual laser frequeney coincides withwg
mode emission, has not been taken into account in previousnly when it is resonant with some cavity frequengy. In
theoretical analyses. The single-mode model predicts that uryeneral, one hasw, =wgt dg. It is useful to write
stable behavior is associated with large cavity detuning. Bubg= 6() — 6z, where 8Q)=w; —wc and Sgc=wr— wc.
as the cavity detuning becomes comparable with the fre@he reason for splitting the detunirdy in the two termss(}
spectral range of the cavity, another longitudinal mode isand 8¢ is that, while éz¢ is one of the parameters of the
likely to be excited. Therefore, the effects of single-modesystem,&X2 is a function of all the parameters of the system,
and multimode instability should be visible under the saméncluding ézc. Finally, k is the cavity linewidth,y is the
parametric conditions. The observation of two dynamical fre-decay rate of the difference of populatid and X is a
quencies reported if7,8] confirms this picture. cooperativity parameter proportional to the density of atoms.

We start from the standard set of equations for the single- As already discussed in RdB], Eqs.(1) are a good ap-
mode Raman las€i6] written in a notation such that all proximation to the system of equations that describe an op-
variables and parameters are dimensionless:

dF 80 y F(D-1) - - At - -
(1a) 3
dP 4p2 _
EIWFD—(].—HA)P, (1b)
i
dD 1 ©p=wy,+3
WZ—Y[E(F*P-FFP*)*FD—].}, (1C) m
B
where 1
A= Spe— 60+ (B2—|F|?)/ 6. ) 2 /T

We have introduced some changes of variables with respect

to [6] in order to make our equations more similar to the FIG. 1. Scheme of the Raman system considered in this paper.
Maxwell-Bloch equations commonly used to describe a two-w;, is the frequency of the pump beam, is the frequency of the
level laser: the variables, W, andP used in[6] are in our  generated laser beardy is the detuning between the Raman fre-
notation—A, —D, and—ySP/(48), respectively. The dimen- quencywr=wy,+ 6 and the laser frequenay, .
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tically pumped three-level las€9] in the Raman limit, where we have introduced the dimensionless angular vari-
namely, 51, 80— 8zc<6 and |F|?, <& The first two  able 6=k, z. Integration overd by 2 is equivalent to inte-
inequalities establish the condition that the pump and lasegration overz along all the atomic medium of length

beams are far off resonance from the:@ and 01 atomic Since we limit the mode expansion to the electric field,
transitions, respectively, and that, at the same time, a twogqs.(1b) and(1c) remain unchanged, apart from the fact that
photon transition inVOlVing the absorption of one photonnow F, P, andD are functions of time and of. Equations

from the pump beam and the simultaneous emission of ong) (1p), and(1c) admit an infinite number of single-mode
photon to the generated laser beam is nearly resonant wi ationary solutionsFS'=f%e"® corresponding to each

the 2—1 atomic transition. The third inequality ensures that d
far-off-resonant conditions persist in the presence of broadr-’no en. . , .
The single-mode stationary solutioncan be destabilized

ening arising from Rabi splitting of the pump and lasing : . e
transitions. Under these conditions, the optical coherencethrough. two d|fferent. mechr?mlsmsa) am.pllflcaln'on of any
ctuation of moden itself (single-mode instabilityand (b)

between levels 0 and 2 and between levels 0 and 1 can lificati f f . £ th le of d
adiabatically eliminated and the population of the upper levefMPlification of any fluctuation of the couple of modes

0 is practically unaffected by the pumping and laser field@nd 21— m, with m#n (multimode instability. _
and may be set to zero. As a consequence, the three-level e assume that the Raman resonangealways lies be-
system is described by only two variables: the two-photorfWeéen o and w,. Therefore, the stationary solutions with
atomic coherencd® and the population differenc® be-  lowest threshold are either O or 1 and we limited our study to
tween levels 2 and 1. The pump laser amplitygde assumed them. However, in the linear stability analysis other modes
to be a space- and time-independent control parameter; tf@®@me into play: for instance, mode 0 is destabilized at the
remaining evolution equatiofila) gives the amplitudé of  same time by modes 1 anel and mode 1 by modes 0 and
the generated laser. 2. In our numerical simulations we always considered seven
We now abandon the single-mode approximation and asnodes, from—3 to 3, always checking that the intensities of
sume that the electric field depends on the longitudinal coormodes*3 were some orders of magnitude smaller than the
dinatez. When one takes into account the boundary condiothers. Sometimes we have also run the program including
tions imposed by the mirrors of the resonator that containgther modes, up to 15, and we have verified that their inten-
the active mediunf10], one finds that the slowly varying sity is always very small. We can then conclude that, with
envelopeF(z,t) of the laser field obeys the equation our choice of parameters, the laser behaves essentially as a
two-mode laser, in the sense that modes different from 0 or 1
dF cL oF ; i
— = {( ),: are never selected by the laser as stationary solutions and
at -y 7~ oz their intensities in all dynamical regimes are always very

L o0
s

small. That is the reason why in the figures we show only the
] , (3) intensities of modes 0 and 1.

The choice of the right parameters is a delicate problem in
o ; epi ; the study of the Raman laser because of their large number
where 'is the cavity round-trip and. is the length of the and because some of them can hardly be estimated with suf-

active medium. The time variable is now defined in such aficient accuracy in the experiments. Thus we decided to

way that it includes the delay occurring in that part of theadOIOt exactly the same parameters usddjnamelyk=3
cavity not occupied by the active medidti0]. Therefore the 2C=60, y—0.83, andd—14. In addition, we took the value

boundary conditions for the electric field are isochronous #=8 for the free spectral range, on the basis of the data

F(01)=F(L,t) (4) reported in[3]. The free parameters are the pump amplitude
B and the cavity detuninggc.
andF can be expanded in Fourier components, or longitudi- In Fig. 2 we plotted the lasing thresholds and instability
nal modes, labeled by the index n=0 being the reference boundaries, calculated using a standard linear stability analy-
mode sis, for the two single-mode solutions. The value of the de-
tuning &g varies from O(perfect resonance with mode ©
2 8 (rc=a, perfect resonance with mode. This means that
Fzt)= 2 fo(texplik,z), Kn=—""- (5)  the atomic line is always between the two modes. In this
=T picture the labelNaM denotes the instability boundary of
modeN against modeM and mode XN-M. Mode O is un-
We Ca”-w” the frequency of thenth mode. The frequency e%able to the right of line 0a0 due to a single-mode instability
_ _and above line 0al due to a multimode instability caused by
free spectral range=2mc/°7y, . We take as reference cav modes 1 and-1. Mode 1 is unstable below line 1a0 due to a

ity frequency the frequency of mode 8= w,. _ : .
By projecting Eq.(3) onto each modg, Wé’ obtain an infi- mulnmode instability caused by modes 0 and 2 and below

nite set of dynamical equations for each mode amplitijde line 1a—1 due to a multimode instability caused by modes

F(D—1)

Y .
—ZC[Z P+i 55

+ oo

-1 and 3.
df, 5O 27 do . It must be kept in mind that in a single-mode Raman laser
H=—inafn—k{(1—i T)f” f 5 g n? the first bifurcation(threshold bifurcation may be either

super- or subcritical, depending on the values of the param-
y F(D—l)“ eters. The first bifurcation is subcritical whéi is larger

X|— (6)  than a certain critical valuéikc given by

Y
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FIG. 2. Stability domains of the two single-mode solutions 0 k|G, 3. Adiabatic sweegforward and backwajdof the detun-
and 1. Mode 0 is unstable to the right of line 0a0 due to a single-,ng Sac for B=4. A large hysteresis cycle is visible.

mode instability and above line 0al due to a multimode instability.

Mode 1 is unstable below lines 1a0 and-Tladue to multimode

instabilities. Oth and 1th are the threshold lines for modes 0 and 1Fig. 3. In the forward sweep the laser switches to mode 1 at
respectively. Since the threshold bifurcation of mode 0 is subcriticabrc=6.78; the reverse switch occurs in the backward sweep
for some values ofdzc, the single-mode solution O also exists at drc=4.98. It must be noted that the upper and lower

below threshold inside the region delimited by lines Oth and Omin.branches in the bistable domain differ not only for the output

In regionA both single-mode solutions 0 and 1 are stable. intensity (as in standard optical bistabilityout also for the
) frequency. The heterodyne power spectra obtained by mak-
¢ = oyt 2k) - 7+2k) } ing the laser output in the upper and lower branches at
RCT8 6 Y 1+k 6rc=6 interfere with a probe beam whose frequency coin-

2 cides with the empty cavity frequency of mode 0 gives the
] @) following results: the beat frequency is 6.09 for mode 0 and
7.87 for mode 1, resulting in a frequency difference of 1.78
between the two single-mode solutions, not far from the
ﬁllode—pulled free spectral rangé(1+k)=2.
Bistability between the nonlasing and lasing states has
been already reported for a single-mode Raman [@gebut

2

X11—|1-16

8 \2 1+k
2C v+ 2k

If the argument of the square root is negative, the expressio
of Skc is useless and the first bifurcation is supercritical for
all values oféz¢. If the argument of the square root is posi-

tive, k¢ is positive sincey is always smaller than 1. The . o de | the bistability d X b h
previous discussion can be summarized easily in the follow!" @ tWo-mode laser the bistability domain can be much more

ing way: the first bifurcation is supercritical if the atomic line €Xtended. Bistability between longitudinal modes was found
is on the left of the cavity linédx. negativé and it becomes also in two-level laserfgl0], bu_t in Raman lasers |t_ is greatly
subcritical when the atomic line is sufficiently displaced to€nhanced by the asymmetric shape of the gain cl4ye
the right of the cavity line. Therefore, in our case the bifur-Moreover, in Raman lasers bistability with pump amplitude
cation is always supercritical for mode 1 and can be subcriti@S control parameter is possible too.
cal for mode 0. That is why in Fig. 2 we drew just one  To show this we fixedrc=5 and letg vary from 2 to 4.2
threshold ling(1th) for mode 1 and two lines for mode 0: Oth and back. The hysteresis cycle is shown in Fig. 4, where we
is the lasing threshold and Omin is the minimum valug3of have superimposed on the results of dynamical simulations
for which the stationary solution exists; it is smaller than(solid lineg the two steady-state curves for modes 0 and 1
threshold when the first bifurcation is subcritical. (dashed lines It is evident that in this case bistability stems
Two regions in Fig. 2 are of particular interest: regian  from the different kind of lasing bifurcation for the two
in which both solutions are stable, and the region to the rightnodes. For mode 1 the bifurcation is supercritical and the
of line 0a0, where solution 0 is always unstable. Let us conthreshold value of3 is smaller than for mode 0, which, on
sider first regiorA. Two kinds of bistable behaviors are pos- the contrary, bifurcates subcritically. Thus, by increastg
sible: either varying the detuningsc or varying the pump the laser first follows the steady-state curve of mode 1, until
amplitudeg. In order to show the first kind of bistability, we it becomes unstable @=3.96, and then jumps discontinu-
kept the pump amplitude fixed @=4 and we let the detun- ously to mode 0, whose intensity is larger. By decreagng
ing &g vary from 4.8 to 7(more than one-fourth of the free the laser always remains on mode 0 up to the turning point of
spectral rangeand back. This can be accomplished in a realthe steady-state curve, where it precipitates again on mode 1.
experiment by means of a piezoelectric transldRZT). A The phenomena of bistability typical of regigh is re-
large hysteresis cycle between modes 0 and 1 is visible itated essentially to multimode instability: one mode is re-



484 R. CORBALAN, J. CORTIT, AND F. PRATI 53
12.0 : l . ,
C ] 3
- 4 )
10.0 [ . o
0 L mode O ] g;“
2 sof[ & 3 B
[0}] L -
s F | ]
T o[ A
o C 7
4o ]
g B i 5.0 ————— : —
~ ~ 3 a \ (b ]
- — Q
2.0 _ 3 i 2 ]
B ‘ 2 L ]
N 7 Q
0.0 IR S i L -
2.0 2.5 3.0 3.5 4.0 0.0
8 _
0.0 5.0 10.0 g 15.0

FIG. 4. Adiabatic sweejfforward and backwandof the pump
amplitudep for gc=5. The solid lines show the dynamical results
and the dashed lines the steady-state curves for mode 0 and mode 1.

FIG. 6. Power spectra of the laser output for two different values
of 8grc belonging to regions 2a) and 3(b) of Fig. 5.
placed by the other when it becomes unstable with respect to
it. There is no self-pulsing associated with this kind of 'nSta'appear; since oscillations are due to single-mode instability,

bili'g/. h inth . he riaht of line 040 mod mode 1 is still off. Region 3 begins at abaig-=6.16, when
n the contrary, in the region to the right of line 0a0 mode ,4¢ 1 enters to play. In this region the two modes coexist

0 IS always unstable t_)ecause Of. syngle-m_ode 'nStab'l.'tybut the intensity of mode 1 is very small. The two modes
which leads to self-pulsing, and this instability can coexist : ; - i .
beat one with the other and in addition their intensities are

with a multimode instability, giving rise to interesting dy- ! . o
namical phenomena. To investigate them we performed odulated because of the smglg—mode instability of mode_O.
t about 63-=6.58 the laser switches to mode 1 and oscil-

dynamical sweep oz from 5.5 to 7, with=5.4. The . . . .
evolution of mode intensities is shown in Fig. 5, where fourlgtlons disappear. We stress that this occurs before crossing

distinct regions are visible. In region 1 we are below line 0adin® 0al, which is placed afzc=6.60. This is not strange
of Fig. 2 and the laser emits stably mode 0. Crossing line 0a§€cause line Oal refers to the stability of the stationary solu-
we enter region 2, where undamped oscillations of mode #on 0 against mode 1 and it tells nothing about the stability
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of the dynamical solutions formed by the two modes 0 and 1.

The power spectra for two values @k: belonging to
regions 2 and 3 are shown in Fig. 6. 84c=6 (region 2 the
frequencyw,=2.36 due to single-mode instability is visible
together with many harmonics. The power spectrum at
Src=6.4 (region 3 is much more complex because, besides
the frequencyw;=2.26 and its harmonics, the beat frequency
@,=3.98 and its multiples due to beating among different
modes are presefibeating between modés andM gives a
peak afN— M |w,). Moreover, the combinations of these two
sets of frequencies are also visible. For instance, the first
peak is the beat noteu?— w,; the peaks to the left and to the
right of w, are, respectivelyw,—w; and 3v;—w,; the peak
to the left of w, is 2w,—2w,. The beat frequencw, is al-
ways much larger than the one predicted by the mode pulling
formula o/(1+k)=2, which means that the two-mode solu-
tion is characterized by a strong nonlinear mode pushing.

In conclusion, we have demonstrated that under general
conditions the dynamics of a Raman laser is dominated by
the two modes that are closer to the Raman resonance. The
parameter space displays large domains of bistability as well

FIG. 5. Adiabatic sweep of the detuninfyc from 5.5 to 7 as domains characterized by the simultaneous presence of
(forward) for 8=5.4. The meaning of the four regions is explained two dynamical frequencies, as observed in the experiments
in the text. by Harrison and Biswa/]. In the future we plan to improve
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transverse plane is particularly important in a Raman lasegrant(Grant No. FI/91-186 F.P. acknowledges the CESCA
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