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Amodel for Raman lasers including several longitudinal modes is analyzed. Depending on the choice of the
parameters the system can exhibit single-mode emission, wide bistability domains, and self-pulsing. The latter
is often characterized by two frequencies, which are clearly related to single-mode and multimode instabilities,
in agreement with the interpretation of earlier experimental results.

PACS number~s!: 42.55.Ye, 42.65.Pc

The Raman laser is an optically pumped three-level laser
in which both the pump and the laser field~frequenciesvP
andvL , respectively! are far off resonance~see Fig. 1!. This
system is commonly used to produce high gain steady-state
lasing emissions in the mid- to far infrared spectral region
@1#. In addition, this system can show a very rich dynamical
behavior@2#, including single-mode pulsations and routes to
chaos characterized by period doubling and intermittency
@3#. The single-mode plane-wave model of the Raman laser
has been already studied in great detail, and experimentally
accessible parameters for which laser emission can be peri-
odic or chaotic have been found@4–6#.

Yet an important experimental evidence, namely, multi-
mode emission, has not been taken into account in previous
theoretical analyses. The single-mode model predicts that un-
stable behavior is associated with large cavity detuning. But
as the cavity detuning becomes comparable with the free
spectral range of the cavity, another longitudinal mode is
likely to be excited. Therefore, the effects of single-mode
and multimode instability should be visible under the same
parametric conditions. The observation of two dynamical fre-
quencies reported in@7,8# confirms this picture.

We start from the standard set of equations for the single-
mode Raman laser@6# written in a notation such that all
variables and parameters are dimensionless:
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We have introduced some changes of variables with respect
to @6# in order to make our equations more similar to the
Maxwell-Bloch equations commonly used to describe a two-
level laser: the variablesD, W, andP used in@6# are in our
notation2D, 2D, and2gdP/~4b!, respectively. The dimen-

sionless time variable in Eqs.~1! is scaled tog' , the relax-
ation rate ofP, and therefore all frequencies are given in
units ofg' .

With our notationsb and F are equal to half the Rabi
frequencies associated with the pumping and lasing transi-
tions, respectively.P andD denote as usual atomic coher-
ence and difference of population, respectively, of the effec-
tive two-level system formed by the levels 2 and 1.

The three-level scheme is shown in Fig. 1:v02 andv01 are
the frequencies of the transitions 2↔0 and 1↔0 andd is the
detuning between the frequencyvP of the pump beam and
the atomic resonancev02. We define the Raman frequency
vR5v011d. The actual laser frequencyvL coincides withvR
only when it is resonant with some cavity frequencyvC . In
general, one hasvL5vR1dR . It is useful to write
dR5dV2dRC , where dV5vL2vC and dRC5vR2vC .
The reason for splitting the detuningdR in the two termsdV
and dRC is that, whiledRC is one of the parameters of the
system,dV is a function of all the parameters of the system,
including dRC . Finally, k is the cavity linewidth,g is the
decay rate of the difference of populationD, and 2C is a
cooperativity parameter proportional to the density of atoms.

As already discussed in Ref.@6#, Eqs.~1! are a good ap-
proximation to the system of equations that describe an op-

FIG. 1. Scheme of the Raman system considered in this paper.
vP is the frequency of the pump beam.vL is the frequency of the
generated laser beam.dR is the detuning between the Raman fre-
quencyvR5v011d and the laser frequencyvL .
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tically pumped three-level laser@9# in the Raman limit,
namely,d@1, dV2dRC!d and uFu2, b2!d2. The first two
inequalities establish the condition that the pump and laser
beams are far off resonance from the 2↔0 and 0↔1 atomic
transitions, respectively, and that, at the same time, a two-
photon transition involving the absorption of one photon
from the pump beam and the simultaneous emission of one
photon to the generated laser beam is nearly resonant with
the 2↔1 atomic transition. The third inequality ensures that
far-off-resonant conditions persist in the presence of broad-
ening arising from Rabi splitting of the pump and lasing
transitions. Under these conditions, the optical coherences
between levels 0 and 2 and between levels 0 and 1 can be
adiabatically eliminated and the population of the upper level
0 is practically unaffected by the pumping and laser fields
and may be set to zero. As a consequence, the three-level
system is described by only two variables: the two-photon
atomic coherenceP and the population differenceD be-
tween levels 2 and 1. The pump laser amplitudeb is assumed
to be a space- and time-independent control parameter; the
remaining evolution equation~1a! gives the amplitudeF of
the generated laser.

We now abandon the single-mode approximation and as-
sume that the electric field depends on the longitudinal coor-
dinatez. When one takes into account the boundary condi-
tions imposed by the mirrors of the resonator that contains
the active medium@10#, one finds that the slowly varying
envelopeF(z,t) of the laser field obeys the equation
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whereL is the cavity round-trip andL is the length of the
active medium. The time variable is now defined in such a
way that it includes the delay occurring in that part of the
cavity not occupied by the active medium@10#. Therefore the
boundary conditions for the electric field are isochronous

F~0,t !5F~L,t ! ~4!

andF can be expanded in Fourier components, or longitudi-
nal modes, labeled by the indexn, n50 being the reference
mode
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We call vn the frequency of thenth mode. The frequency
separation between two consecutive modes is the normalized
free spectral rangea52pc/Lg' . We take as reference cav-
ity frequency the frequency of mode 0:vC5v0.

By projecting Eq.~3! onto each mode, we obtain an infi-
nite set of dynamical equations for each mode amplitudef n
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where we have introduced the dimensionless angular vari-
ableu5k1z. Integration overu by 2p is equivalent to inte-
gration overz along all the atomic medium of lengthL.

Since we limit the mode expansion to the electric field,
Eqs.~1b! and~1c! remain unchanged, apart from the fact that
now F, P, andD are functions of time and ofu. Equations
~6!, ~1b!, and ~1c! admit an infinite number of single-mode
stationary solutionsFst5 f n

steinu corresponding to each
moden.

The single-mode stationary solutionn can be destabilized
through two different mechanisms:~a! amplification of any
fluctuation of moden itself ~single-mode instability! and~b!
amplification of any fluctuation of the couple of modesm
and 2n2m, with mÞn ~multimode instability!.

We assume that the Raman resonancevR always lies be-
tweenv0 and v1. Therefore, the stationary solutions with
lowest threshold are either 0 or 1 and we limited our study to
them. However, in the linear stability analysis other modes
come into play: for instance, mode 0 is destabilized at the
same time by modes 1 and21 and mode 1 by modes 0 and
2. In our numerical simulations we always considered seven
modes, from23 to 3, always checking that the intensities of
modes63 were some orders of magnitude smaller than the
others. Sometimes we have also run the program including
other modes, up to 15, and we have verified that their inten-
sity is always very small. We can then conclude that, with
our choice of parameters, the laser behaves essentially as a
two-mode laser, in the sense that modes different from 0 or 1
are never selected by the laser as stationary solutions and
their intensities in all dynamical regimes are always very
small. That is the reason why in the figures we show only the
intensities of modes 0 and 1.

The choice of the right parameters is a delicate problem in
the study of the Raman laser because of their large number
and because some of them can hardly be estimated with suf-
ficient accuracy in the experiments. Thus we decided to
adopt exactly the same parameters used in@4#, namely,k53,
2C560, g50.83, andd514. In addition, we took the value
a58 for the free spectral range, on the basis of the data
reported in@3#. The free parameters are the pump amplitude
b and the cavity detuningdRC .

In Fig. 2 we plotted the lasing thresholds and instability
boundaries, calculated using a standard linear stability analy-
sis, for the two single-mode solutions. The value of the de-
tuningdRC varies from 0~perfect resonance with mode 0! to
8 ~dRC5a, perfect resonance with mode 1!. This means that
the atomic line is always between the two modes. In this
picture the labelNaM denotes the instability boundary of
modeN against modeM and mode 2N-M . Mode 0 is un-
stable to the right of line 0a0 due to a single-mode instability
and above line 0a1 due to a multimode instability caused by
modes 1 and21. Mode 1 is unstable below line 1a0 due to a
multimode instability caused by modes 0 and 2 and below
line 1a21 due to a multimode instability caused by modes
21 and 3.

It must be kept in mind that in a single-mode Raman laser
the first bifurcation~threshold bifurcation! may be either
super- or subcritical, depending on the values of the param-
eters. The first bifurcation is subcritical whendRC is larger
than a certain critical valuedRC

c given by
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If the argument of the square root is negative, the expression
of dRC

c is useless and the first bifurcation is supercritical for
all values ofdRC . If the argument of the square root is posi-
tive, dRC

c is positive sinceg is always smaller than 1. The
previous discussion can be summarized easily in the follow-
ing way: the first bifurcation is supercritical if the atomic line
is on the left of the cavity line~dRC negative! and it becomes
subcritical when the atomic line is sufficiently displaced to
the right of the cavity line. Therefore, in our case the bifur-
cation is always supercritical for mode 1 and can be subcriti-
cal for mode 0. That is why in Fig. 2 we drew just one
threshold line~1th! for mode 1 and two lines for mode 0: 0th
is the lasing threshold and 0min is the minimum value ofb
for which the stationary solution exists; it is smaller than
threshold when the first bifurcation is subcritical.

Two regions in Fig. 2 are of particular interest: regionA,
in which both solutions are stable, and the region to the right
of line 0a0, where solution 0 is always unstable. Let us con-
sider first regionA. Two kinds of bistable behaviors are pos-
sible: either varying the detuningdRC or varying the pump
amplitudeb. In order to show the first kind of bistability, we
kept the pump amplitude fixed atb54 and we let the detun-
ing dRC vary from 4.8 to 7~more than one-fourth of the free
spectral range! and back. This can be accomplished in a real
experiment by means of a piezoelectric translator~PZT!. A
large hysteresis cycle between modes 0 and 1 is visible in

Fig. 3. In the forward sweep the laser switches to mode 1 at
dRC.6.78; the reverse switch occurs in the backward sweep
at dRC.4.98. It must be noted that the upper and lower
branches in the bistable domain differ not only for the output
intensity ~as in standard optical bistability! but also for the
frequency. The heterodyne power spectra obtained by mak-
ing the laser output in the upper and lower branches at
dRC56 interfere with a probe beam whose frequency coin-
cides with the empty cavity frequency of mode 0 gives the
following results: the beat frequency is 6.09 for mode 0 and
7.87 for mode 1, resulting in a frequency difference of 1.78
between the two single-mode solutions, not far from the
mode-pulled free spectral rangea/~11k!52.

Bistability between the nonlasing and lasing states has
been already reported for a single-mode Raman laser@4#, but
in a two-mode laser the bistability domain can be much more
extended. Bistability between longitudinal modes was found
also in two-level lasers@10#, but in Raman lasers it is greatly
enhanced by the asymmetric shape of the gain curve@4#.
Moreover, in Raman lasers bistability with pump amplitude
as control parameter is possible too.

To show this we fixeddRC55 and letb vary from 2 to 4.2
and back. The hysteresis cycle is shown in Fig. 4, where we
have superimposed on the results of dynamical simulations
~solid lines! the two steady-state curves for modes 0 and 1
~dashed lines!. It is evident that in this case bistability stems
from the different kind of lasing bifurcation for the two
modes. For mode 1 the bifurcation is supercritical and the
threshold value ofb is smaller than for mode 0, which, on
the contrary, bifurcates subcritically. Thus, by increasingb,
the laser first follows the steady-state curve of mode 1, until
it becomes unstable atb.3.96, and then jumps discontinu-
ously to mode 0, whose intensity is larger. By decreasingb,
the laser always remains on mode 0 up to the turning point of
the steady-state curve, where it precipitates again on mode 1.

The phenomena of bistability typical of regionA is re-
lated essentially to multimode instability: one mode is re-

FIG. 2. Stability domains of the two single-mode solutions 0
and 1. Mode 0 is unstable to the right of line 0a0 due to a single-
mode instability and above line 0a1 due to a multimode instability.
Mode 1 is unstable below lines 1a0 and 1a21 due to multimode
instabilities. 0th and 1th are the threshold lines for modes 0 and 1,
respectively. Since the threshold bifurcation of mode 0 is subcritical
for some values ofdRC , the single-mode solution 0 also exists
below threshold inside the region delimited by lines 0th and 0min.
In regionA both single-mode solutions 0 and 1 are stable.

FIG. 3. Adiabatic sweep~forward and backward! of the detun-
ing dRC for b54. A large hysteresis cycle is visible.
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placed by the other when it becomes unstable with respect to
it. There is no self-pulsing associated with this kind of insta-
bility.

On the contrary, in the region to the right of line 0a0 mode
0 is always unstable because of single-mode instability,
which leads to self-pulsing, and this instability can coexist
with a multimode instability, giving rise to interesting dy-
namical phenomena. To investigate them we performed a
dynamical sweep ofdRC from 5.5 to 7, withb55.4. The
evolution of mode intensities is shown in Fig. 5, where four
distinct regions are visible. In region 1 we are below line 0a0
of Fig. 2 and the laser emits stably mode 0. Crossing line 0a0
we enter region 2, where undamped oscillations of mode 0

appear; since oscillations are due to single-mode instability,
mode 1 is still off. Region 3 begins at aboutdRC56.16, when
mode 1 enters to play. In this region the two modes coexist
but the intensity of mode 1 is very small. The two modes
beat one with the other and in addition their intensities are
modulated because of the single-mode instability of mode 0.
At aboutdRC56.58 the laser switches to mode 1 and oscil-
lations disappear. We stress that this occurs before crossing
line 0a1, which is placed atdRC56.60. This is not strange
because line 0a1 refers to the stability of the stationary solu-
tion 0 against mode 1 and it tells nothing about the stability
of the dynamical solutions formed by the two modes 0 and 1.

The power spectra for two values ofdRC belonging to
regions 2 and 3 are shown in Fig. 6. AtdRC56 ~region 2! the
frequencyv1.2.36 due to single-mode instability is visible
together with many harmonics. The power spectrum at
dRC56.4 ~region 3! is much more complex because, besides
the frequencyv152.26 and its harmonics, the beat frequency
v253.98 and its multiples due to beating among different
modes are present~beating between modesN andM gives a
peak atuN2M uv2!. Moreover, the combinations of these two
sets of frequencies are also visible. For instance, the first
peak is the beat note 2v12v2; the peaks to the left and to the
right of v1 are, respectively,v22v1 and 3v12v2; the peak
to the left ofv2 is 2v222v1. The beat frequencyv2 is al-
ways much larger than the one predicted by the mode pulling
formula a/~11k!52, which means that the two-mode solu-
tion is characterized by a strong nonlinear mode pushing.

In conclusion, we have demonstrated that under general
conditions the dynamics of a Raman laser is dominated by
the two modes that are closer to the Raman resonance. The
parameter space displays large domains of bistability as well
as domains characterized by the simultaneous presence of
two dynamical frequencies, as observed in the experiments
by Harrison and Biswas@7#. In the future we plan to improve

FIG. 4. Adiabatic sweep~forward and backward! of the pump
amplitudeb for dRC55. The solid lines show the dynamical results
and the dashed lines the steady-state curves for mode 0 and mode 1.

FIG. 5. Adiabatic sweep of the detuningdRC from 5.5 to 7
~forward! for b55.4. The meaning of the four regions is explained
in the text.

FIG. 6. Power spectra of the laser output for two different values
of dRC belonging to regions 2~a! and 3~b! of Fig. 5.
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our model by taking into account the Gaussian profile of
pump and laser fields. The nonuniformity of the fields in the
transverse plane is particularly important in a Raman laser
because the atomic detuning depends on field intensity. Thus
atoms placed at different points of the transverse plane ex-
perience different atomic detunings.
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