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Laser cooling of trapped atoms to the ground state: A dark state in position space

G. Morigi, J. I. Cirac, K. Ellinger, and P. Zoller
Institut für Theoretische Physik, Universita¨t Innsbruck, A-6020 Innsbruck, Austria

~Received 14 October 1997!

We propose a scheme that allows us to laser cool trapped atoms to the ground state of a one-dimensional
confining potential. The scheme is based on the creation of a dark state by designing the laser profile, so that
the hottest atoms are coherently pumped to another internal level, and then repumped back. The scheme works
beyond the Lamb-Dicke limit. We present results of a full quantum treatment for a one-dimensional model.
@S1050-2947~98!10104-X#

PACS number~s!: 32.80.Pj, 42.50.Vk
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I. INTRODUCTION

The ultimate goal of laser cooling neutral atoms stored
a trapping potential is the cooling to the vibrational grou
state. This is of interest in the context of observing effe
related to quantum-statistical properties of atoms@1#, and is
the object of present experimental investigations@2,3#. The
hope is that these efforts might ultimately open a sec
route to Bose-Einstein condensation of dilute gases@4,5#.

Laser cooling to the ground state of a trap has b
achieved experimentally for single-trapped ions, using si
band cooling techniques@6# in the Lamb-Dicke limit@7,8#.
Sideband cooling is based on the selective laser excitatio
the low-frequency sideband in a harmonic trap, leading
optical pumping into the vibrational ground state. The
quirements are that the motional sidebands are spectros
cally resolved~which is achieved in the strong confineme
limit !, and that the spatial dimension of the ground statea0 is
much smaller than the wavelength of the cooling laserl ~in
order to avoid the heating produced by spontaneous e
sion!. This latter condition is represented by the relati
h!1, whereh is the Lamb-Dicke parameterh52pa0 /l. In
one of our recent publications@9#, we discussed extension
of sideband cooling beyond the Lamb-Dicke regime. O
the last few years, other laser cooling techniques have b
developed, which achieve ground-state cooling in the tr
ping potential, and which were originally developed for fr
atoms@2,3#. In particular, for free atoms they have allowe
one to achieve temperatures below the recoil limitE,ER ,
corresponding to an atomic de Broglie wavelength lar
than the wavelength of the lightl. This has been obtaine
experimentally, by optical pumping into a velocity-selecti
dark state@10#, or by cooling with a sequence of shape
Raman pulses, where the frequency spectrum of the ligh
tailored so that atoms with near zero velocity are no lon
excited@11#. These subrecoil cooling techniques, as well
sideband cooling, are all versions of ‘‘dark state cooling
The fundamental idea is the decoupling of a quantum s
from radiation, and the accumulation of atoms in this state
spontaneous emission. The dark state condition can be
ated with various mechanisms; in sideband cooling, the
ground state is dark because it is off-resonant from any o
state, since the laser is tuned to the red motional sideb
The free-particle subrecoil cooling schemes, instead,
dark states in momentum space.
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In the present paper we will discuss a cooling sche
which is based on the creation of adark state in position
spacewith the help of an appropriate spatial profile of th
cooling laser, so that this state~typically the ground state o
the trap! is not excited or only weakly excited by the las
@12#. This condition can be realized, for example, using t
laser in a doughnut mode@13#, with the axis aligned with one
of the trap axes. In particular, this cooling mechanism wo
for Lamb-Dicke parametersh>1, and outside of the strong
confinement regime~i.e., when the sidebands are not spe
troscopically resolved!. We will show that the cooling
scheme is quite efficient, allowing us to cool a significa
fraction of atoms to the ground state of a trapping potent
The model we will consider is one dimensional, but t
scheme is readily extended to two- and three-dimensio
situations.

The paper is organized as follows. In Sec. II A, we d
scribe the cooling scheme qualitatively. In Sec. II B we d
velop the master equation describing the system dynam
and in Sec. II C we discuss the existence of a station
solution. In Sec. III we present the numerical results, o
tained by taking a laser intensity profile corresponding to
doughnut mode with~i! atoms trapped by an harmonic osc
lator, and~ii ! atoms trapped by another confining potenti
In this last case, the efficiency of the cooling mechanism
improved.

II. MODEL

A. Laser-cooling scheme

We consider laser cooling in a three-levelL system, as
illustrated in Fig. 1. We denote byug& andue& atomic ground
~or metastable! states which are connected to the excit
stateur & by dipole transitions. The atoms are confined in
one-dimensional harmonic potential with oscillation fr
quencyn. The quantized trap levels will be denoted byun&.

The laser-cooling scheme consists of the repetition o
sequence of three pulses. In afirst step, atoms in ug& are
transferred to the stateue& by an off-resonant Raman puls
@Fig. 1~a!#. The purpose of this pulse is to excite atom
which are not in the ground state of the trapping potent
This is achieved by assuming a spatial distribution of
laser, which has essentially zero intensity in the region wh
the ground-state wave functionug,0& takes on appreciable
values. On the other hand, the spatial distribution of atom
2909 © 1998 The American Physical Society
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2910 57G. MORIGI, J. I. CIRAC, K. ELLINGER, AND P. ZOLLER
excited trap states overlaps with the laser light, so that th
atoms will be transferred to the stateue&. The second step
consists of laser cooling atoms in stateue&, thermalizing the
atomic center of the mass distribution to a few recoil en
giesER @Fig. 1~b!#. This is achieved by couplingue& to other
internal atomic levels employing one of the standard las
cooling schemes~e.g., polarization gradient cooling! @14#.
This is used to provide a mechanism for confinement of
oms in a finite range of trapping levels. In athird step, atoms
are optically pumped intoug& using a laser tuned on reso
nance to the transitionue&→ur & followed by spontaneous
transition toug& @Fig. 1~c!#. We assume that the branchin
ratio between the decay channelsur &→ug& and ur &→ue& is
large, so that we can safely neglect the latter decay chan
Atoms decaying fromur & to the ground stateug& will be
distributed over a range of trap levels of the order of a rec
energy, including the ground stateug,0&. Repetition of this
cooling cycle will accumulate atoms in the spatial dark st
ug,0&.

B. Master equation

Here we give the master equation describing the evolu
of the system during the sequence of pulses. Letr be the
density matrix describing the system of atoms interact
with the laser field. The master equation can be written in
form @15#

d

dt
r~ t !5Lr~ t !, ~1!

whereL is a linear superoperator whose form depends on
particular cooling step. The formal solution
r(t)5eL(t2t0)r(t0). The scheme consists of three steps, a
the density matrix at the end of a sequence of pulses wil

r~ t3!5eL3~ t32t2!eL2~ t22t1!eL1~ t12t0!r~ t0!, ~2!

whereLi is the linear superoperator corresponding to thei th
pulse of the sequence, andr(t0) is the density matrix at the
beginning of the sequence of pulses. We now derive
explicit form of the evolution operators.

First step:We assume that the evolution is coherent, a
that the lasers are in Raman resonance. These two ass

FIG. 1. Internal configuration of the atom, and scheme of
sequence of pulses. Internal configuration:ug&, ue& stable or meta-
stable states,ur & excited state, withug&→ur &, ue&→ur & dipole tran-
sitions. Scheme of the sequence:~a! coherent Raman pulse, whic
corresponds to a doughnut mode onug&→ur &; ~b! cooling to the
recoil on the levelue&, obtained couplingue& to a fourth internal
level; ~c! optical pumping intoug&, obtained tuning a laser on reso
nance onue&→ur &. We assume that the branching ratio betwe
ur &→ug& and ur &→ue& is very large, so that the decay alongur &
→ue& can be safely neglected.
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tions are not strictly necessary, but they make the analyt
derivation of the master equation simpler. We eliminate
excited stateur & in perturbation theory, and reduce the d
namics to an effective two-level systemug&, ue&. Working in
the frame rotating at the laser frequency, we write

r~ t1!5e2 iH ~ t12t0!r~ t0!eiH ~ t12t0!, ~3!

whereH is the Hamiltonian describing the evolution durin
the pulse,

H5H01H I , ~4!

with

H05\nâ†â ~5!

and

H I5
\V~ x̂!

2
~ ŝ†eikx̂1ŝe2 ikx̂!. ~6!

Hereâ andâ† are creation and annihilation operators for t
harmonic oscillator,n is the trap frequency,ŝ†5ue&^gu and
ŝ5ug&^eu are the dipole raising and lowering operators,
spectively,V( x̂) is the Rabi frequency, andk the wave vec-
tor of the two-photon transition along the~cooling! x axis.
Denoting byDt5t12t0 the time duration of this first pulse
we will assume thatnDt!1, so that we can safely neglec
H0 in Eq. ~3!:

r~ t1!'e2 iH IDtr~ t0!eiH IDt. ~7!

Second step:Laser cooling of atoms in stateue& via an
auxiliar level@see Fig. 1~b!# destroys the coherences betwe
ue& and ug&, while atoms left inug& evolve according to Eq.
~5!. We do not specify the cooling mechanism, assum
only that at the end of the pulse the atoms inue& are ther-
malized, and described by the density matrix

ue&^eu ^ r th5ue&^eu ^

(
n

e2n/Nun&^nu

(
n

e2n/N

, ~8!

where N is related to the average number of vibration
quanta after this laser-cooling process. Using the proper
of ŝ† and ŝ in Eq. ~6!, we have

r~ t2!5e2 iH 0Tsepug&^gucos@V~ x̂!Dt/2#r~ t0!

3cos@V~ x̂!Dt/2#ug&^gueiH 0Tsep1zue&r th^eu, ~9!

whereTsep5t22t1 is the duration of this step, andz is the
probability of occupation ofue&, i.e.,

z5trace$ue&^eur~ t1!%

512trace$ug&^gucos@V~ x̂!Dt/2#r~ t0!

3cos@V~ x̂!Dt/2#%. ~10!

e
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57 2911LASER COOLING OF TRAPPED ATOMS TO THE . . .
Third step: the thermalized atoms inue& are optically
pumped intoug&. The linear superoperator describing t
master equation is

L3r52 i @H0 ,r#2
G

2
~rŝ†ŝ1ŝ†ŝr!

1GE
21

1

du N~u!ŝeikp~11u!x̂r the2 ikp~11u!x̂ŝ†,

~11!

with G the optical pumping rate,N(u) the angular distribu-
tion of the emitted photons, andkp the wave vector of the
pumping laser that propagates alongx, kp52p/l5h/a0 .
Assumingn21@t32t2 , we can neglect the free evolutio
during this pulse. Furthermore, fort32t2@G21 all the atoms
in ue& are pumped inug& during the pulse. Taking that into
account, we find

r~ t3!5e2 iH 0Tsepug&^gucos@V~ x̂!Dt/2#r~ t0!cos@V~ x̂!

3Dt/2#ug&K gUeiH 0Tsep1zE
21

1

du N~u!eikp~11u!x̂UgL
3r th^gue2 ikp~11u!x̂. ~12!

We can now project ontoug&, and definerg5^gurug&. De-
noting by F5*21

1 du N(u)eikp(11u) x̂r the2 ikp(11u) x̂ the ma-
trix describing the feeding contribution, we finally have

rg~ t3!5e2 iH 0Tsep cos@V~ x̂!Dt/2#rg~ t0!

3cos@V~ x̂!Dt/2#eiH 0Tsep1zF. ~13!

This gives a mapping between the density operator at
beginning and end of a given sequence of three pulses. F
the above expressions, we can deduce that for large t
~i.e., for large values of the Lamb-Dicke parameter! the cool-
ing will slow down and become less efficient. The reason
this is twofold: On the one hand, the kick provided by t
optical pumping process will distribute the atoms amon
wider range of states. On the other hand, since we have
sumed that the thermal distributionr th has a mean energy o
the order of the recoil, the mean occupation number will
larger (̂ n&'ER /\n5h2).

C. Stationary state

Ideally, we would like to use the cooling mechanism
cool all the atoms to the ground state~or any other pure
state!. Therefore, we have to analyze the shape ofV(x)
which gives rise to the optimal cooling. In this subsection
qualitatively analyze the conditions for the spatial profile
the laserV(x) to provide an efficient cooling.

We then look for stationary solutions to the mapping~13!
which corresponds to pure states. A necessary condition
that isz50. Then, we substitutez50 in Eq.~13! and impose
the stationary regime, i.e.,rg(t3)5rg(t0)5rg , with rg
5u f &^ f u. We obtain that these conditions are satisfied if
following equation allows for a solution

^xueiH 0Tsepu f &eif5cos@V~x!Dt/2#^xu f &, ~14!
e
m
ps

r

a
s-

e

e
f

or

e

with f arbitrary phase. Let us denote byR the region where
^xu f & is different from zero. It can be easily shown that E
~14! implies that in the region R the relation
ucos@V(x)Dt/2#u51 must be fulfilled. Physically, this mean
that if we want to have a dark stateu f & its wave function
must be completely distributed in the spatial regionR where
there is no laser excitation~that is, where the atoms perform
complete Rabi oscillations!. On the other hand, we want t
have only one dark state, and therefore other states m
have a finite excitation probability. This means that th
must be nonzero outsideR. Therefore, for achieving cooling
to the ground state, one should design the intensity profile
the laser in such a way that, only in the region where
ground state is localized, the laser accomplishes no exc
tion. This condition can be only approximately fulfilled in
harmonic trap, where the ratio among the spatial dimensi
of the ground state and the first excited state is 1/A2. In this
case, we expect to not be able to cool all the atoms into
ground state. Cooling into the ground state will be possi
in the case of atoms trapped by a confining potential, wh
better localizes the ground state with respect to the first
cited state.

The qualitative argument given above does not depend
the separation timeTsep in the second pulse. In reality, th
selection of this time can play an important role, especia
in the case of a harmonic potential. To see that, let us c
sider the particular casenTsep52lp, with l an integer. Then,
according to Eq.~13!, the positionsx in the regionR in
which ucos@V(x)Dt/2#uÞ1 will be emptied, whereas the a
oms will be accumulated in the regions whe
ucos@V(x)Dt/2#u51. In fact, from Eq.~14!, we see that the
state u f & is a stable solution if the condition
cos@V(x)Dt/2#u f &5exp(if1)uf& and if exp(2iH0Tsep)u f &
5exp(if2)uf& are fulfilled, withf11f25f. FornTsep52lp
this means that each wave packet completely distributed
side R at t0 is solution ~i.e., a dark state!, since inTsep it
undergoes a full oscillation and therefore recovers the or
nal form. In that case, laser cooling will not be possible sin
there will exist many wavepackets that will remain dark.
the casenTsep5(2l 11)p, one can consider two subspac
S15$u0&,u2&,u4&, . . . % andS25$u1&,u3&,u5&, . . . %, in which
the evolution during the second pulse is periodic. That is
we can form a wave packet as a linear combination of
states ofS1 or of S2 which is spatially distributed inR at t0 ,
this wave packet will be a dark state. Hence laser cool
will not be possible either. The argument can now be
peated for times fulfillingnTsep5np/m, and subspaces ca
be constructed so that wavepackets belonging to them wil
dark states, and therefore laser cooling will not be possi
We can overcome this problem very easily by choosingran-
dom separation times Tsep, so that the only wave packet tha
is a dark state is precisely the ground state.

III. RESULTS OF CALCULATIONS

In the following, we show results obtained assuming
doughnut mode as the spatial distribution of the Ram
pulse. The reason for this choice is that it provides a
profile in a finite region which, as we have shown above
required to obtain a suitable cooling. In particular, we d
cuss the parameter regime of the laser for which the coo
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2912 57G. MORIGI, J. I. CIRAC, K. ELLINGER, AND P. ZOLLER
efficiency is optimal. Finally, we explore the role ofTsep in
the cooling dynamics. We first analyze the case of a h
monic trapping potential and then another potential which
best suited for laser cooling using the present scheme.

As the spatial distribution for the Raman pulse laser,
take the following class of functions:

f ~x!5S x

a0
D 2n

expF2
1

2 S x/a0

a D 2G . ~15!

Herea determines the spatial width of the pulse in units
the harmonic-oscillator ground-state widtha0 , and the expo-
nentn is an integer number, which denotes the order of
doughnut mode and thus determines the flatness aro
x50. In the following, we explore the dependence of t
cooling efficiency on the parametersn and a, for atoms
whose center of mass is trapped by a harmonic potential
frequencyn. We take the Rabi frequencyV( x̂)} f ( x̂). Fur-
thermore, the projection along the cooling axis (x) of the
two-photon wave vector appearing in Eq.~6! is k52p/l,
wherel is the wavelength of the transitionur &→ue&, since
the doughnut mode photons propagate in a direction ortho
nal to thex axis.

In Figs. 2~a! and 2~b!, we show the population
Pg

05^g,0urgug,0& after 1500~curve withs! and 2500~curve
with 3! sequences of pulses as a function of the widtha and
of the exponent 2n, respectively. We have obtained the
results using Eq.~13!, with a Lamb-Dicke paramete
h52pa0 /l55, and with a thermalized distributionr th in
Eq. ~8! with N5h2525. From Fig. 2~a! the existence of an
optimal width a for a given exponent~in the present case
2n54! is evident. The optimala depends onn, since it must
fulfill the requirements of Eq.~14!. In Fig. 2~b! we plotPg

0 as
a function of 2n, where the values of the width have be
optimized. We see that forn>4, around 80% of the atom
are cooled to the ground state. Figure 3~a! shows the popu-
lation Pg

n5^nurgun& as a function of the vibrational numbe
n after 2500 sequences of pulses forn54 and a54, and
Fig. 3~b! showsPg

0 as a function of the number of pulses.
the inset of this figure the final spatial distribution is show
~solid line!, while the spatial distribution cos@V(x)Dt/2# is
plotted as a dashed line for comparison. In all the cases
final density matrix is not a pure state but a mixture, diago
in the number states basis. According to the discussion
Sec. II, we have chosen random separation times. We h

FIG. 2. Plots of the efficiency after 1500~curve with s! and
after 2500~curve with3! sequences of pulses, as a function of~a!
the dimensionless widtha, for 2n54; and ~b! the exponents
2n52,4,6,8 with optimized widths, respectively, wherea530, 4.2,
3, and 2.2. In all cases max@V(x)Dt/2#50.6p. nTsep is random,
taken from a flat distribution that varies in the interval@0.1, 1.1#.
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also checked that by fixing the separation timesTsep, the
cooling efficiency decreases significatively.

The efficiency of the cooling scheme in populating t
ground state depends on the difference between the reex
tion rate of the vibrational ground state and the ones of
first few excited states. To the extent that one can desig
confining potential so that the ground state is much m
localized in space than the other eigenstates, the cooling
ficiency will improve correspondingly. A confining potentia
satisfying the above requirement could be experimentally
alized, for example, by adding to an harmonic trap an ad
tional optical potential. In the following we will assume
potential

V~x!5
1

2
2mn2Fx21e

x2

11gx2G , ~16!

wheree andg characterize the shape of the potential near
center. An example of what potential~16! looks like is
shown in Fig. 4~a!. Figure 4~b! shows the spatial widths o
the first 12 eigenstates forg52000/a0

2 and e5193105

~curve withs!, compared with the corresponding widths
the harmonic-oscillator eigenstates with the samen ~curve
with 3!. For this choice of the parameterse andg, the eigen-
vectors of the potential tend to the number states of the
monic oscillator forn>1. In the present example, the groun
state has a spatial widtha0/5, and it is thus well localized
with respect to the other eigenstates. The laser-coo
scheme works very efficiently in populating the ground sta
as may be seen from Fig 5: here the population of the gro
state in the trapping potentialV(x) is plotted as a function of
the number of pulses~solid line! for a doughnut mode with
a58 and 2n52 @cf. Eq. ~15!#. The Lamb-Dicke paramete
for the eigenstatesn>1 and for the internal excited stateue&,
is h55, while the ground state has a spatial width cor
sponding to an effective Lamb-Dicke parameterh85h/551.
We can see that during the cooling almost all atoms
accumulated in the ground state ofV(x). The dashed line in
Fig. 5 shows, for reference, the evolution of the populat
of the ground state of a pure harmonic-oscillator poten
with h51. In this second case, we have used a dough

FIG. 3. ~a! Population as a function of the vibrational numb
state after 2500 sequences of pulses, for a harmonic oscillator
h55 and Raman laser corresponding to a doughnut mode
2n54, a54, and max@V(x)Dt/2#50.6p. Inlay: spatial distribution
of the sample after 2500 pulses~solid line! and cos@V(x)Dt/2#
~dashed line! plotted for comparison.~b! Ground state of the trap
population as a function of the number of pulses, under the s
condition as above. The initial distribution and the excited-st
distribution after the recoil cooling are described byr th, with
N525. nTsep is random, taken from a flat distribution that varies
the interval@0.1, 1.1#.
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57 2913LASER COOLING OF TRAPPED ATOMS TO THE . . .
mode with 2n52 and a510. Note that the sample with
h51 is colder at the beginning, since its initial distributio
is thermalized witĥ n&'4.

The result obtained here is rather general, and can
summarized as follows: through the creation of a more loc
ized ground state, obtained by a suitable perturbation of
monic potential of a givenh, the present cooling mechanis
allows us to cool all the atoms to the ground state, even
the Raman pulse intensity distribution in a low order doug
nut mode.

IV. CONCLUSIONS

In this paper we have studied laser cooling of trapp
atoms to a single quantum state, based on creating a
state in position space by reexciting the atoms with a coo
laser which has no spatial overlap with the trap ground st
In contrast to velocity selective coherent population trapp
@10#, our scheme has been designed for trapped atoms,
therefore it is not limited by the flat-bottom trap conditio
@16#. In contrast to Raman and sideband cooling, the s
bands do not need to be resolved. The scheme can be ap
in the limit of weak confinement (G.n) and outside the
Lamb-Dicke regime.

Assuming a doughnut mode as a model of the spa
profile of the laser, our numerical calculations have sho
that more than 80% of the atoms can be cooled to the gro
state of a harmonic-oscillator potential. Furthermore, t
number can be increased significantly for trapping potent
where the ground state is much better localized than the
few excited vibrational states. The randomization of t
separation time in the harmonic-oscillator case is fundam

FIG. 4. ~a! Plot of V(x) as a function ofx for arbitrary values of
e andg ~dashed line: harmonic potential!. ~b! ^Dx2&1/2 in units ofa0

as a function of the first 12 eigenstates ofV(x) ~curve withs! and
of the first 12 ones of the harmonic oscillator potential~curve with
3!, for e5193105 andg52000/a0

2. Heren labels the eigenstate
by increasing energy.
fo
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tal in order to achieve laser cooling to the ground state. T
model presented here is one dimensional, but it can be ea
extended to two dimensions. In that case, one could use
plane orthogonal to the doughnut mode axis, obtaining si
lar results as in the one-dimensional case. The reason for
is that the heating processes~due to photon scattering durin
repumping! we have considered in the one-dimensional c
will be similar to the two-dimensional one. Experimentall
the one- and two-dimensional schemes correspond to the
ployment of a single doughnut mode, whose axis coinci
with the one- and two-dimensional trap axes, respectiv
and whose dark region is shaped into the size of the one-
two-dimensional trap ground state respectively. The ext
sion to three dimensions could be achieved by crossing
doughnut modes, which propagate in directions that are
thogonal one to the other, and whose axes cross at the c
of a three-dimensional trap. In this way a three-dimensio
dark region would be created, that could be shaped into
size of the trap ground state. The scheme may be usefu
achieving Bose-Einstein condensation with laser cooli
and more in general in preparing with laser cooling a m
roscopic occupation of a state of motion.
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FIG. 5. Ground-state occupation probability vs the number
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h55 andh851, r th with N525, and a Raman laser correspondi
to a doughnut mode with 2n52 and a58. Dashed line: ground
state of a harmonic oscillator withh51, r th, with N54, and a
Raman laser corresponding to a doughnut mode with 2n52 and
a510. In both cases max@V(x)Dt/2#50.6p. nTsepis random, taken
from a flat distribution that varies in the interval@0.1, 1.1#.
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