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Abstract. We develop a robust framework for pricing and hedging of derivative securities
in discrete-time financial markets. We consider markets with both dynamically and
statically traded assets and make minimal measurability assumptions. We obtain abstract
(pointwise) fundamental theorem of asset pricing and pricing–hedging duality. Our results
are general and, in particular, cover both the so-called model independent case as well as
the classical probabilistic case of Dalang–Morton–Willinger. Our analysis is scenario-based:
a model specification is equivalent to a choice of scenarios to be considered. The choice can
vary between all scenarios and the set of scenarios charged by a given probability measure.
In this way, our framework interpolates between a model with universally acceptable broad
assumptions and a model based on a specific probabilistic view of future asset dynamics.
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Finance. J. Obłój gratefully acknowledges funding received from the European Research Council
under the European Union’s Seventh Framework Programme [FP7/2007-2013/ERC grant agree-
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1. Introduction
The state preference model or asset pricing model underpins most mathematical descriptions of financial markets.
It postulates that the price of d financial assets is known at a certain initial time t0 � 0 (today), and the price at
future times t>0 is unknown and is given by a certain random outcome. To formalize such a model, we only
need to fix a quadruple (X,^,F, S), where X is the set of scenarios, ^ a σ-algebra, and F :� {^t}t∈I ⊆ ^ a fil-
tration such that the d-dimensional process S :� (St)t∈I is adapted. At this stage, no probability measure is
required to specify the financial market model (X,^,F, S).

One of the fundamental reasons for producing such models is to assign rational prices to contracts that are not
liquid enough to have a market-determined price. Rationality here is understood via the economic principle of
absence of arbitrage opportunities, stating that it should not be possible to trade in the market in a way to obtain
a positive gain without taking any risk. Starting from this premise, the theory of pricing by no arbitrage has been
successfully developed over the last 50 years. Its cornerstone result, known as the fundamental theorem of asset
pricing (FTAP), establishes equivalence between absence of arbitrage and existence of risk-neutral pricing rules.
The intuition for this equivalence can be accredited to de Finetti for his work on coherence and previsions (see
de Finetti [19, 20]). The first systematic attempt to understand the absence of arbitrage opportunities in
models of financial assets can be found in the works of Ross [44, 45] on capital pricing; see also Huberman
[33]. The intuition underpinning the arbitrage theory for derivative pricing was developed by Samuelson
[46], Black and Scholes [7], and Merton [38]. The rigorous theory was then formalized by Harrison and
Kreps [26] and extended in Harrison and Pliska [27]; see also Kreps [36]. Their version of FTAP, in the case of
a finite set of scenarios X, can be formulated as follows. Consider X � {ω1, . . . , ωn}, and let s � (s1, . . . , sd) be

1
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the initial prices of d assets with random outcome S(ω) � (S1(ω), . . . , Sd(ω)) for any ω ∈ X. Then we have the
following equivalence:

∄H ∈ Rd such that H · s ≤ 0
and H · S(ω) ≥ 0 with > for some ω ∈ X

⇐⇒ ∃Q ∈ 3 such that Q(ωj)> 0 and
EQ[Si] � si,∀ 1 ≤ j ≤ n, 1 ≤ i ≤ d,

(1)

where 3 is the class of probability measures on X. In particular, no reference probability measure is needed,
and impossible events are automatically excluded from the construction of the state space X. On the other
hand, linear pricing rules consistent with the observed prices s1, . . . , sd and the no-arbitrage condition turn out
to be (risk-neutral) probabilities with full support; that is, they assign positive measure to any state of the
world. By introducing a reference probability measure P with full support and defining an arbitrage as a portfolio
with H · s ≤ 0, P(H · S(ω) ≥ 0) � 1, and P(H · S(ω)> 0)>0, the thesis in Equation (1) can be restated as

There is No Arbitrage⇐⇒∃Q ∼ P such that EQ[Si] � si ∀i � 1, . . . , d. (2)

The identification suggested by Equation (2) allows nontrivial extensions of the FTAP to the case of a general
space X with a fixed reference probability measure and was proven in the celebrated work Dalang et al. [16]
by use of measurable selection arguments. It was then extended to continuous-time models by Delbaen and
Schachermayer [21, 22].

The idea of introducing a reference probability measure to select scenarios proved very fruitful in the case of
a general X and was instrumental for the rapid growth of the modern financial industry. It was pioneered by
Samuelson [46] and Black and Scholes [7], who used it to formulate a continuous-time financial asset model
with unique rational prices for all contingent claims. Such models with strong assumptions implying a unique
derivative pricing rule are in stark contrast to a setting with little assumptions, for example, where the asset
can follow any nonnegative continuous trajectory, which are consistent with many rational pricing rules. This
dichotomy was described and studied in the seminal paper of Merton [38, p. 142], who referred to the latter as
“assumptions sufficiently weak to gain universal support”1 and pointed out that it typically generates outputs
that are not specific enough to be of practical use. For that reason, it was the former approach with the
reference probability measure interpreted as a probabilistic description of future asset dynamics that became
the predominant paradigm in the field of quantitative finance. The original simple models were extended,
driven by the need to capture additional features observed in the increasingly complex market reality, in-
cluding, for example, local or stochastic volatility. Such extensions can be seen as enlarging the set of scenarios
considered in the model and usually led to plurality of rational prices.

More recently and, in particular, in the wake of the financial crisis, the critique of using a single reference
probability measure came from considerations of the so-called Knightian uncertainty, going back to Knight [35], and
describing the model risk as contrasted with financial risks captured within a given model. The resulting stream
of research aims at extending the probabilistic framework of Dalang et al. [16] to a framework that allows for
a set of possible priors 5 ⊆ 3. The class 5 represents a collection of plausible (probabilistic) models for the
market. In continuous-time models, this led naturally to the theory of quasi-sure stochastic analysis as in Denis
and Martini [23], Peng [40], and Soner et al. [47, 48] and many further contributions; see, for example,
Dolinsky and Soner [25]. In discrete time, a general approach was developed by Bouchard and Nutz [8]. Under
some technical conditions on the state space and the set 5, they provide a version of the FTAP as well as the
superhedging duality. Their framework includes the two extreme cases: the classical case in which 5 � {P} is
a singleton and, on the other extreme, the case of full ambiguity when 5 coincides with the whole set of
probability measures and the description of the model becomes pathwise. Their setup has been used to study
a series of related problems; see, for example, Bayraktar and Zhang [2] and Bayraktar and Zhou [3].

Describing models by specifying a family of probability measures 5 appears natural when starting from the
dominant paradigm in which a reference measure P is fixed. However, it is not the only way and possibly not
the simplest one to specify a model. Indeed, in this paper, we develop a different approach inspired by the
original finite state-space model used in Harrison and Pliska [27] as well as the notion of prediction set in
Mykland [39]; see also Hou and Obłój [32]. Our analysis is scenario based. More specifically, agent’s beliefs or
a model are equivalent to selecting a set of admissible scenarios that we denote by Ω ⊆ X. The selection may be
formulated, for example, in terms of behaviour of some market-observable quantities and may reflect both the
information the agent has as well as the modelling assumptions the agent is prepared to make. Our approach
clearly includes the “universally acceptable” case of considering all scenarios Ω � X, but we also show that it
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subsumes the probabilistic framework of Dalang et al. [16]. Importantly, as we work under a minimal
measurability requirement on Ω, our models offer a flexible way to interpolate between the two settings. The
scenario-based specification of a model requires less sophistication than selection of a family of probability
measures and appears particularly natural when considering (super)-hedging, which is a pathwise property.

Our first main result, Theorem 1, establishes a fundamental theorem of asset pricing for an arbitrary
specification of a model Ω and gives equivalence between existence of a rational pricing rule (i.e., a calibrated
martingale measure) and absence of suitably defined arbitrage opportunities. Interestingly the equivalence in
Equation (1) does not simply extend to a general setting: specification of Ω that is inconsistent with any
rational pricing rule does not imply existence of one arbitrage strategy. Ex post, this is intuitive: although all
agents may agree that rational pricing is impossible, they may well disagree on why this is so. This discrepancy was
first observed and illustrated with an example by Davis and Hobson [18]. The equivalence is only recovered
under strong assumptions as shown by Riedel [41] in a topological one-period setup and by Acciaio et al. [1] in
a general discrete time setup. A rigorous analysis of this phenomenon in the case Ω � X was subsequently
given by Burzoni et al. [10], who also showed that several notions of arbitrage can be studied within the same
framework. Here, we extend their result to an arbitrary Ω ⊆ X and to the setting with both dynamically and
statically traded assets. We show that also in such cases agents’ different views on arbitrage opportunities may
be aggregated in a canonical way into a pointwise arbitrage strategy in an enlarged filtration. As special cases
of our general FTAP, we recover results in Acciaio et al. [1] and Burzoni et al. [10] as well as the classical
Dalang–Morton–Willinger theorem of Dalang et al. [16]. For the latter, we show that choosing a probability
measure P on X is equivalent to fixing a suitable set of scenarios ΩP, and our results then lead to probabilistic
notions of arbitrage as well as the probabilistic version of the fundamental theorem of asset pricing.

Our second main result, Theorem 2, characterises the range of rational prices for a contingent claim. Our setting is
comprehensive: we make no regularity assumptions on the model specification Ω, on the payoffs of traded assets
both dynamic and static, or the derivative that we want to price. We establish a pricing–hedging duality result
asserting that the infimum of prices of superhedging strategies is equal to the supremum of rational prices. As
already observed in Burzoni et al. [11] and also in Beiglböck et al. [5] in the context of martingale optimal
transport, it may be necessary to consider superhedging on a smaller set of scenarios than Ω to avoid a duality
gap between rational prices and superhedging prices. In this paper, this feature is achieved through the set of
efficient trajectories Ω

∗
Φ that only depend on Ω and the market. The set Ω

∗
Φ recollects all scenarios that are

supported by some rational pricing rule. Its intrinsic and constructive characterisation is given in the FTAP,
Theorem 1. Our duality generalizes the results of Burzoni et al. [11] to the setting of abstract model specification Ω

as well as a generic finite set of statically traded assets. The flexibility of model choice is of particular im-
portance as stressed previously. The universally acceptable setting Ω � X will typically produce a wide range
of rational prices that may not be of practical relevance as already discussed by Merton [38]. However, as we
shrink Ω from X to a set ΩP, the range of rational prices shrinks accordingly, and in case Ω

P corresponds to
a complete market model, the interval reduces to a single point. This may be seen as a quantification of the
impact of modelling assumptions on rational prices and gives a powerful description of model risk.

We note that pricing–hedging duality results have a long history in the field of robust pricing and hedging. First
contributions focused on obtaining explicit results, working in a setting with one dynamically traded risky asset and
a strip of statically traded comaturing call options with all strikes. In his pioneering work, Hobson [29] devised
a methodology based on Skorkohod embedding techniques and treated the case of lookback options. His
approach was then used in a series of works focusing on different classes of exotic options; see Brown et al. [9],
Cox and Obłój [13, 14], Cox and Wang [15], Henry-Labordère et al. [28], Hobson and Klimmek [30], and
Hobson and Neuberger [31]. More recently, it has been recast as an optimal transportation problem along
martingale dynamics and the focus shifted to establishing abstract pricing–hedging duality; see Beiglböck et
al. [4], Davis et al. [17], Dolinsky and Soner [24], and Hou and Obłój [32].

The remainder of the paper is organised as follows. First, in Section 2, we present all the main results. We give the
necessary definitions and, in Section 2.1, state our two main theorems: the fundamental theorem of asset pricing,
Theorem 1, and the pricing–hedging duality, Theorem 2, which we also refer to as the superhedging duality.
In Section 2.2, we generalize the results of Acciaio et al. [1] for a multidimensional noncanonical stock process.
Here, suitable continuity assumptions and presence of a statically traded option ϕ0 with a convex payoff with
superlinear growth allow “lifting” superhedging from Ω

∗
Φ to the whole Ω. Finally, in Section 2.3, we recover

the classical probabilistic results of Dalang et al. [16]. The rest of the paper then discusses the methodology
and the proofs. Section 3 is devoted to the construction of strategy and filtration that aggregate arbitrage
opportunities seen by different agents. We first treat the case without statically traded options when the so-
called arbitrage aggregator is obtained through a conditional backward induction. Then, when statically
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traded options are present, we devise a path-space partition scheme, which iteratively identifies the class of
polar sets with respect to the calibrated martingale measure. Section 4 contains the proofs with some technical
remarks relegated to the appendix.

2. Main Results
We work on a Polish space X and denote @X as its Borel sigma-algebra and 3 the set of all probability
measures on (X,@X). If & ⊆ @X is a sigma algebra and P ∈ 3, we denote with 1P(&) :� {N ⊆ A ∈ & | P(A) � 0}
the class of P-null sets from &. We denote with ^! the sigma-algebra generated by the analytic sets of (X,@X)
and with ^pr the sigma-algebra generated by the class Λ of projective sets of (X,@X). The latter is required for
some of our technical arguments, and we recall its properties in the appendix. In particular, under a suitable
choice of set theoretical axioms, it is included in the universal completion of @X; see Remark A.2. As discussed
in the introduction, we consider pointwise arguments and think of a model as a choice of universe of scenarios
Ω ⊆ X. Throughout, we assume that Ω is an analytic set.

Given a family of measures 5 ⊆ 3, we say that a set is polar (with respect to 5) if it belongs to
N ⊆ A ∈ @X | Q(A) � 0 ∀Q ∈ 5{ }, and a property is said to hold quasi-surely (5-q.s.) if it holds outside a polar
set. For those random variables g whose positive and negative part is not Q-integrable (Q ∈ 3), we adopt the
convention ∞ −∞ � −∞ when we write EQ[ g] � EQ[ g+] − EQ[ g−]. Finally for any sigma-algebra &, we denote
by +(X,&;Rd) the space of &-measurable d-dimensional random vectors. For a given set A ⊆ X and
f , g ∈ +(X,&;R), we often refer to f ≤ g on A whenever f (ω) ≤ g(ω) for every ω ∈ A (similarly for � and < ).

We fix a time horizon T ∈ N and let T :� 0, 1, . . . ,T{ }. We assume the market includes both liquid assets,
which can be traded dynamically through time, and less liquid assets, which are only available for trading at
time t � 0. The prices of assets are represented by an Rd-valued stochastic process S � (St)t∈T on (X,@X). In
addition, we may also consider the presence of a vector of nontraded assets represented by an Rd̃-valued
stochastic process Y � (Yt)t∈T on (X,@X) with Y0 a constant, which may also be interpreted as market factors,
or additional information available to the agent. The prices are given in units of some fixed numeraire asset S0,
which itself is, thus, normalized: S0t � 1 for all t ∈ T. In the presence of the additional factors Y, we let
FS,Y :� (^S,Y

t )t∈T be the natural filtration generated by S and Y (when Y ≡ 0, we have FS,0 � FS, the natural
filtration generated by S). For technical reasons, we also make use of the filtration Fpr :� (^pr

t )t∈T, where ^
pr
t is

the sigma-algebra generated by the projective sets of (X,^S,Y
t ), namely ^

pr
t :�σ((Su,Yu)−1(L) | L ∈ Λ, u ≤ t) (see

the appendix for further details). Clearly, FS,Y ⊆ Fpr and ^
pr
t is “nonanticipative” in the sense that the atoms of

^
pr
t and ^S,Y

t are the same. Finally, we let Φ denote the vector of payoffs of the statically traded assets. We
consider the setting in which Φ � {ϕ1, . . . , ϕk} is finite and each ϕ ∈ Φ is ^!-measurable. When there are no
statically traded assets, we set Φ � 0, which makes our notation consistent.

For any filtration F, *(F) is the class of F-predictable stochastic processes with values in Rd, which rep-
resent admissible trading strategies. Gains from investing in S, adopting a strategy H, are given by
(H ◦S)T :� ∑T

t�1 · ∑d
j�1 H

j
t(Sjt − Sjt−1) � ∑T

t�1 Ht · ΔSt. In contrast, ϕj can only be bought or sold at time t � 0 (without
loss of generality with zero initial cost) and held until the maturity T so that trading strategies are given by
α ∈ Rk and generate payoff αΦ :�∑k

j�1 αjϕj at time T. We let !Φ(F) denote the set of such F-admissible trading
strategies (α,H).

Given a filtration F, universe of scenarios Ω, and set of statically traded assets Φ, we let

}Ω,Φ(F) :� Q ∈ 3 | S is an F-martingale under Q, Q(Ω) � 1 and EQ[ϕ] � 0 ∀ϕ ∈ Φ
{ }

.

The support of a probability measure Q is given by supp(Q) :�⋂{
C ∈ @X | C closed, Q(C) � 1

}
. We often

consider measures with finite support and denote it with a superscript f ; that is, for a given set 5 of
probability measures, we put 5 f :� {Q ∈ 5 | supp(Q) is finite}. To wit, }

f
Ω,Φ(F) denotes finitely supported

martingale measures on Ω that are calibrated to options in Φ. Define

FM :� (^M
t )t∈T, where ^M

t :� ⋂
P∈}Ω,Φ(FS,Y)

^S,Y
t ∨1P(^S,Y

T ), (3)

and we convene ^M
t is the power set of Ω whenever }Ω,Φ(FS,Y) � ∅.

Remark 1. In the results of this paper, we only consider filtrations F that satisfy FS,Y ⊆ F ⊆ FM. All such filtrations
generate the same set of martingale measures in the sense that any Q ∈ }Ω,Φ(F) uniquely extends to a measure
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Q̂ ∈ }Ω,Φ(FM), and reciprocally, for any Q̂ ∈ }Ω,Φ(FM), the restriction Q̂|F belongs to }Ω,Φ(F). Accordingly, with
a slight abuse of notation, we write }Ω,Φ(F) � }Ω,Φ(FM) � }Ω,Φ.

In the subsequent analysis, the set of scenarios charged by martingale measures is crucial:

Ω
∗
Φ :� {

ω ∈ Ω | ∃Q ∈ }
f
Ω,Φ such that Q(ω)> 0

} � ⋃
Q∈} f

Ω,Φ

supp(Q). (4)

We have by definition that for every Q ∈ }
f
Ω,Φ its support satisfies supp(Q) ⊆ Ω

∗
Φ. Notice that the key elements

introduced so far, namely }Ω,Φ, }
f
Ω,Φ, F

M, and Ω
∗
Φ, only depend on the four basic ingredients of the market:

Ω, S, Y, and Φ. Finally, in all of these notations, we omit the subscript Ω when Ω � X, and we omit the subscript
Φ when Φ � 0; for example, } f denotes all finitely supported martingale measures on X.

2.1. Fundamental Theorem of Asset Pricing and Superhedging Duality
We now introduce different notions of arbitrage opportunities that play a key role in the statement of the
pointwise fundamental theorem of asset pricing.

Definition 1. Fix a filtration F, Ω ⊆ X, and a set of statically traded options Φ.

• A one-point arbitrage (1p-arbitrage) is a strategy (α,H) ∈ !Φ(F) such that α · Φ + (H ◦ S)T ≥ 0 on Ωwith a strict
inequality for some ω ∈ Ω.

• A strong arbitrage is a strategy (α,H) ∈ !Φ(F) such that α · Φ + (H ◦ S)T > 0 on Ω.
• A uniformly strong arbitrage is a strategy (α,H) ∈ !Φ(F) such that α · Φ + (H ◦ S)T > ε on Ω for some ε> 0.

Clearly, these notions are relative to the inputs, and we often stress this and refer to an arbitrage in !Φ(F)
and on Ω. We are now ready to state the pathwise version of the fundamental theorem of asset pricing. It
generalizes theorem 1.3 in Burzoni et al. [10] in two directions: we include an analytic selection of scenarios Ω,
and we include static trading in options as well as dynamic trading in S.

Theorem 1 (Pointwise FTAP onΩ ⊆ X). FixΩ analytic and Φ a finite set of ^!-measurable, statically traded options. Then
there exists a filtration F̃ that aggregates arbitrage views in that

No Strong Arbitrage in !Φ(F̃) on Ω ⇐⇒ }Ω,Φ(FS,Y) �� ∅ ⇐⇒ Ω
∗
Φ �� ∅

and FS,Y ⊆ F̃ ⊆ FM. Further, Ω∗
Φ is analytic, and there exists a trading strategy (α∗,H∗) ∈ !Φ(F̃) that is an arbitrage

aggregator in that α∗ · Φ + (H∗
◦S)T ≥ 0 on Ω and

Ω
∗
Φ � ω ∈ Ω | α∗ · Φ(ω) + (H∗

◦S)T(ω) � 0{ }. (5)

Moreover, one may take F̃ and (α∗,H∗) as constructed in Equations (21) and (20), respectively.

All the proofs of the results of Sections 2.1 and 2.2 are given in Section 4.

Remark 2. Several examples in which Theorem 1 may fail replacing F̃with FS,Y can be found in Burzoni et al. [10].
We stress that }Ω,Φ � ∅ does not imply existence of a strong arbitrage in !Φ(FS,Y)—this is true only under ad-
ditional strong assumptions; see Theorem 3 and Example 1. In general, the former corresponds to a situation in
which all agents agree that rational option pricing is not possible, but they may disagree on why this is so. Our
result shows that any such arbitrage views can be aggregated into one strategy (α∗,H∗) in a filtration F̃ that does not
perturb the calibrated martingale measures; see Remark 1. The proof of Theorem 1 relies on an explicit—up to
a measurable selection—construction of the enlarged filtration F̃ and the arbitrage aggregator strategy (α∗,H∗). It
also puts in evidence that these objects may require the use of projective sets, which is also explained in Remark 7.

We turn now to our second main result. For a given set of scenarios A ⊆ X, define the superhedging price
on A:

πA,Φ(g) :� inf{x ∈ R | ∃(α,H) ∈ !Φ(Fpr) such that x + α · Φ + (H ◦S)T ≥ g on A}. (6)

Following the intuition in Burzoni et al. [11], we expect to obtain pricing–hedging duality only when con-
sidering superhedging on the set of scenarios visited by martingales; that is, we consider πΩ

∗
Φ
,Φ(g). In Theorem 2,

there is no need for the construction of a larger filtration F̃ as explained. Indeed, in Theorem 1, such a filtration
is used for aggregating arbitrage opportunities that, in particular, yield a positive gain on the set (Ω∗

Φ)C. On the
contrary, the aim of Theorem 2 is to show a pricing–hedging duality in which both the primal and dual
elements depend only on the set of efficient paths Ω

∗
Φ.
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Theorem 2. Fix Ω analytic and Φ a finite set of ^!-measurable, statically traded options. Then, for any ^!-measurable g,

πΩ
∗
Φ
,Φ(g) � sup

Q∈} f
Ω,Φ

EQ[g] � sup
Q∈}Ω,Φ

EQ[g] (7)

and, if finite, the left-hand side is attained by some strategy (α,H) ∈ !Φ(Fpr).
For the case with no options, it was claimed in Burzoni et al. [11] that the superhedging strategy is

universally measurable. This is true under the set-theoretic axioms that guarantee that projective sets are
universally measurable (see Remark A.2), but in general, Theorem 2 offers a correction and only asserts
measurability with respect to Fpr. To prove our main results, we first deal with the case in which Φ � 0 and
then extend iterating on the number k of statically traded options. The proofs are intertwined, and we explain
their logic at the beginning of Section 4. Further, for technical reasons, in Section 4 we need to show that some
results stated here for Ω analytic, such as Proposition 1, also extend to Ω ∈ Λ; see Remark 15.

The following proposition is important as it shows that there are no one-point arbitrages on Ω if and only if
each ω ∈ Ω is weighted by some martingale measure Q ∈ }

f
Ω,Φ.

Proposition 1. Fix Ω analytic. Then there are no one-point arbitrages on Ω with respect to Fpr if and only if Ω � Ω
∗
Φ.

Under a mild assumption, this situation has further equivalent characterisations:

Remark 3. Under the additional assumption that Φ is not perfectly replicable onΩ, the following are easily shown
to be equivalent:

1. No one-point arbitrage on Ω with respect to Fpr.
2. For any x ∈ Rk, when εx >0 is small enough, } f

Ω,Φ+εxx �� ∅.
3. When ε> 0 is small enough, for any x ∈ Rk such that |x|< ε, } f

Ω,Φ+x �� ∅, where Φ + x � {ϕ1 + x1, . . . , ϕn + xn}.
In particular, small uniform modifications of the statically traded options do not affect the existence of calibrated
martingale measures.

Remark 4. In Bouchard andNutz [8] the notion of no-arbitrage (NA(3)) depends on a reference class of probability
measures3. If we choose as3 the set of all the probability measures onΩ, then NA(3) corresponds to the notion of
no one-point arbitrage in this paper, and in this case, Proposition 1 is a reformulation of the first fundamental
theorem showed therein. Notice that such theorem in Bouchard and Nutz [8] was proven under the assumption
that Ω is equal to the T-fold product of a Polish space Ω1 (where T is the time horizon). Proposition 1 extends this
result to Ω equal to an analytic subset of a general Polish space.

Arbitrage de la Classe 6. In Burzoni et al. [10], a large variety of different notions of arbitrage were studied
with respect to a given class of relevant measurable sets. To cover the present setting of statically traded
options, we adapt the definition of arbitrage de la classe 6 in Burzoni et al. [10].

Definition 2. Let6 ⊆ @X be a class ofmeasurable subsets ofΩ such that ∅ /∈ 6. Fix a filtration F and a set of statically
traded options Φ. An arbitrage de la classe 6 on Ω is a strategy (α,H) ∈ !Φ(F) such that α · Φ + (H ◦ S)T ≥ 0 on Ω

and {ω ∈ Ω | α · Φ + (H ◦S)T > 0} contains a set in 6.

Notice that (1) when 6 � Ω{ }, then the arbitrage de la classe 6 coincides with the notion of strong arbitrage;
(2) when the class 6 consists of all nonempty subsets of Ω, the arbitrage de la classe 6 coincides with the
notion of 1p-arbitrage.

We now apply our Theorem 1 to characterize no arbitrage de la classe 6 in terms of the structure of the set of
martingale measures. In this way, we generalize Burzoni et al. [10] to the case of semistatic trading. Define
1M :� {A ⊆ Ω | Q(A) � 0 ∀Q ∈ }

f
Ω,Φ}.

Corollary 1 (FTAP for the Class 6). Fix Ω analytic and Φ a finite set of ^!-measurable, statically traded options. Then,
there exists a filtration F̃ such that

No Arbitrage de la classe 6 in !Φ(F̃) on Ω ⇐⇒ }Ω,Φ �� ∅ and 1M ∩ 6 � ∅
and FS,Y ⊆ F̃ ⊆ FM.

2.2. Pointwise FTAP for Arbitrary Many Options in the Spirit of Acciaio et al. [1]
In this section, we want to recover and extend the main results in Acciaio et al. [1]. A similar result can be also
found in Cheridito et al. [12] under slightly different assumptions. We work in the same setup as previously

Burzoni et al.: Pointwise Arbitrage Pricing Theory in Discrete Time
6 Mathematics of Operations Research, Articles in Advance, pp. 1–24, © 2019 The Author(s)



described except that we can allow for a larger, possibly uncountable, set of statically traded options
Φ � {ϕi : i ∈ I}. Trading strategies (α,H) ∈ !Φ(Fpr) correspond to dynamic trading in S using H ∈ *(Fpr)
combined with a static position in a finite number of options in Φ.

Assumption 1. In this section, we assume that S takes values inRd×(T+1)
+ and all the optionsϕ ∈ Φ are continuous derivatives

on the underlying assets S; more precisely,

ϕi � gi ◦ S for some continuous gi : Rd×(T+1)
+ → R, ∀i ∈ I.

In addition, we assume 0 ∈ I and ϕ0 � g0(ST) for a strictly convex superlinear function g0 on Rd, such that other options
have a slower growth at infinity:

lim
|x|→∞

gi(x)
m(x) � 0, ∀ i ∈ I/{0}, where m(x0, . . . , xT) :�

∑T
t�0

g0(xt).

The option ϕ0 can be only bought at time t � 0. Therefore, admissible trading strategies !Φ(F) consider only positive
values for the static position in ϕ0.

The presence of ϕ0 has the effect of restricting nontrivial considerations to a compact set of values for S,
and then the continuity of gi allows aggregating different arbitrages without enlarging the filtration. This
results in the following special case of the pathwise fundamental theorem of asset pricing. Denote by }̃Ω,Φ :�
{Q ∈}Ω,Φ\{ϕ0} | EQ[ϕ0] ≤ 0}.
Theorem 3. ConsiderΩ analytic such thatΩ � Ω

∗, πΩ∗ (ϕ0)>0, and there exists ω∗ ∈ Ω such that S0(ω∗) � S1(ω∗) � . . . �
ST(ω∗). Under Assumption 1, the following are equivalent:

1. There is no uniformly strong arbitrage on Ω in !Φ(Fpr).
2. There is no strong arbitrage on Ω in !Φ(Fpr).
3. }̃Ω,Φ �� ∅.
Moreover, when any of these holds, for any upper semicontinuous g : Rd×(T+1)

+ → R that satisfies

lim
|x|→∞

g+(x)
m(x) � 0, (8)

the following pricing–hedging duality holds:

πΩ,Φ(g(S)) � sup
Q∈}̃Ω,Φ

EQ[g(S)]. (9)

Remark 5. We show in Remark 11 that the pricing–hedging duality may fail in general when super-replicating on
the whole set Ω as in Equation (9). This confirms the intuition that the existence of an option ϕ0 that satisfies the
hypothesis of Theorem 3 is crucial. However, as shown in Burzoni et al. [11, section 4], the presence of such ϕ0 is not
sufficient. In fact, the pricing–hedging duality (9) may fail if g is not upper semicontinuous.

2.3. Classical Model-Specific Setting and Its Selection of Scenarios
In this section, we are interested in the relation of our results with the classical Dalang, Morton, and Willinger
approach from Dalang et al. [16]. For simplicity and ease of comparison, throughout this section we restrict to
dynamic trading only: Φ � 0 and !(FP) � *(FP). For any filtration F, we let FP be the P-completion of F. Recall
that a (F,P)-arbitrage is a strategy H ∈ !(FP) such that (H ◦ S)T ≥ 0 P-a.s. and P((H ◦ S)T >0)> 0, which is the
classical notion of arbitrage.

Proposition 2. Consider a probability measure P ∈ 3 and let }�P :� {Q ∈ } | Q � P}. There exists a set of scenarios

Ω
P ∈ ^! and a filtration F̃ such that FS,Y ⊆ F̃ ⊆ FM and

No Strong Arbitrage in !(F̃) on Ω
P ⇐⇒ }�P �� ∅.

Further,

No (FS,Y,P)−arbitrage ⇐⇒ P (ΩP)∗( ) � 1 ⇐⇒ }∼P �� ∅,
where }∼P :� {Q ∈ } | Q ∼ P}.
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Proof. For 1 ≤ t ≤ T, we denote χt−1 the random set χ& from Equation (A.1) with ξ � ΔSt and & � ^S,Y
t−1 (see

Appendix A.1 for further details). Consider now the set

U :� ⋂T
t�1

{ω ∈ X | ΔSt(ω) ∈ χt−1(ω)}

and note that, by Lemma A.3 in the appendix, U ∈ @X and P(U) � 1. Consider now the set U∗ defined as in
Equation (4) (using U in the place of Ω and for Φ � 0) and define

Ω
P :�

{
U if P(U∗)> 0
U \U∗ if P(U∗) � 0

,

which satisfies Ω
P ∈ ^A and P(ΩP) � 1.

In the proofs of both sufficiency and necessity, the existence of the technical filtration is a consequence of
Theorem 1. To prove sufficiency, let Q ∈ }�P and observe that, because Q(ΩP) � 1, we have }ΩP �� ∅. Because
necessarily Q(U∗)>0, we have P(U∗)> 0, and hence, ΩP � U ∈ @X. From Theorem 1, we have no (ΩP, F̃) strong
arbitrage.

To prove necessity, observe first that (ΩP)∗ is either equal to U∗ if P(U∗)> 0 or to the empty set otherwise. In
the latter case, Theorem 1 with Ω � U would contradict no (ΩP, F̃) strong arbitrage. Thus, (ΩP)∗ �� ∅ and
P((ΩP)∗) � P(U∗)>0. Note now that, by considering P̃(·) :�P(· | (ΩP)∗), we have, by construction, 0 ∈ ri(χt−1) P̃ −
a.s. for every 1 ≤ t ≤ T, where ri(·) denotes the relative interior of a set. By Rokhlin [43], we conclude that P̃
admits an equivalent martingale measure and, hence, the thesis. The last statement then also follows. □

3. Construction of the Arbitrage Aggregator and Its Filtration
3.1. The Case Without Statically Traded Options
The following lemma is an empowered version of lemma 4.4 in Burzoni et al. [10], which relies on measurable
selection arguments instead of a pathwise explicit construction. In the following, we set ΔSt � St − St−1 and
Σω
t−1 the level set of the trajectory ω up to time t − 1 of both traded and nontraded assets; that is,

Σω
t−1 � {ω̃ ∈ X | S0:t−1(ω̃) � S0:t−1(ω) and Y0:t−1(ω̃) � Y0:t−1(ω)}, (10)

where S0:t−1 :� (S0, . . . ,St−1) and Y0:t−1 :� (Y0, . . . ,Yt−1). Moreover, by recalling that Λ � ∪n∈NΣ1
n (see the ap-

pendix), we define ^
pr,n
t :� σ((Su,Yu)−1(L) | L ∈ Σ1

n, u ≤ t).
Lemma 1. Fix any t ∈ {1, . . . ,T} and Γ ∈ Λ. There exist n ∈ N, an index β ∈ {0, . . . , d}, random vectors H1, . . . ,Hβ ∈
+(X,^pr,n

t−1 ;Rd),^pr,n
t -measurable sets E0, . . . ,Eβ such that the sets Bi :�Ei ∩ Γ, i � 0, . . . , β, form a partition of Γ satisfying:

1. If β> 0 and i � 1, . . . , β, then Bi �� ∅; Hi · ΔSt(ω)> 0 for all ω ∈ Bi and Hi · ΔSt(ω) ≥ 0 for all ω ∈ ∪β
j�iB j ∪ B0.

2. ∀H ∈ +(X,^pr, n
t−1 ;Rd) such that H · ΔSt ≥ 0 on B0 we have H · ΔSt � 0 on B0.

Remark 6. Clearly, if β � 0, then B0 � Γ (which includes the trivial case Γ � ∅). Notice also that for any Γ ∈ Λ and
t � {1, . . . ,T} we have that Hi � Hi,Γ

t ,Bi � Bi,Γ
t , β � βΓt depend explicitly on t and Γ.

Remark 7. To appreciate why the use of projective sets is necessary, consider a market with d ≥ 2 assets, T ≥ 2
trading periods, and a Borel selection of pathsΩ ∈ @X. For a given t>0 and a realized price St, an investor willing to
exploit an arbitrage opportunity (if it exists) needs to analyze all the possible evolutions of the price St+1 given the
realized value St. Mathematically, this conditional set is the projection of ΔSt+1 at time t, and it is provided by
Lemma 1. Such a projection does not preserve Borelmeasurability, and therefore, the arbitrage vectorH1 (if it exists)
is an analytically measurable strategy. Now, if B1 � {H1ΔSt+1 > 0} �� ∅, agents considering B1 significant will call
H1 an arbitrage opportunity. On the other hand, even on the restricted set A1 :�Ω \ B1 ∈ ^!, there might be
inefficiencies. Note that, in general, A1 is neither Borel nor analytic but only in^!. Its projection, obtained by a second
application of Lemma 1, does not need to be analytic measurability, and the potential arbitrage strategy H2 will be, in
general, projective. Agents considering B2 � {H2ΔSt+1 > 0} �� ∅ significant will call H2 an arbitrage strategy. As shown
by Lemma 1, the geometry of the finite dimensional spaceRd imposes that the procedure terminates in a finite number
of steps.

Proof of Lemma 1. Fix t ∈ {1, . . . ,T} and consider, for an arbitrary Γ ∈ Λ, the multifunction

ψt,Γ : ω ∈ X �→ ΔSt(ω̃)1Γ(ω̃) | ω̃ ∈ Σω
t−1

{ } ⊆ Rd, (11)
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where Σω
t−1 is defined in Equation (10). By definition of Λ, there exists � ∈ N such that Γ ∈ Σ1

� . We first show that
ψt,Γ is an ^

pr,�+1
t−1 -measurable multifunction. Note that for any open set O ⊆ Rd

{ω ∈ X | ψt,Γ(ω) ∩O �� ∅} � (S0:t−1,Y0:t−1)−1 (S0:t−1,Y0:t−1) B( )( ),
where B � (ΔSt1Γ)−1(O). First, ΔSt1Γ is an ^pr,�-measurable random vector, then B ∈ ^pr,�, the sigma-algebra
generated by the �-projective sets of X. Second, Su,Yu are Borel measurable functions for any 0 ≤ u ≤ t − 1 so
that, from Lemma A.2, we have that (S0:t−1,Y0:t−1)(B) belongs to the sigma-algebra generated by the (� + 1)-
projective sets of Mat((d + d̃) × t;R) (the space of (d + d̃) × t matrices with real entries) endowed with its Borel
sigma-algebra. Applying again Lemma A.2, we deduce that (S0:t−1,Y0:t−1)−1 (S0:t−1,Y0:t−1) B( )( ) ∈ ^

pr,�+1
t−1 , and hence,

the desired measurability for ψt,Γ.

Let Sd be the unit sphere in Rd; by preservation of measurability (see Rockafellar and Wets [42], chapter
14-B), the following multifunction is a closed valued and ^

pr,�+1
t−1 -measurable

ψ∗
t,Γ(ω) :� H ∈ Sd | H · y ≥ 0 ∀y ∈ ψt,Γ(ω){ }

.

It follows that it admits a Castaing representation (see theorem 14.5 in Rockafellar and Wets [42]); that is,
there exists a countable collection of measurable functions {ξnt,Γ}n∈N ⊆ +(X,^pr,�+1

t−1 ;Rd) such that ψ∗
t,Γ(ω) �

{ξnt,Γ(ω) | n ∈ N} for every ω such that ψ∗
t,Γ(ω) �� ∅ and ξnt,Γ(ω) � 0 for every ω such that ψ∗

t,Γ(ω) � ∅. Recall that
every ξnt,Γ is a measurable selector of ψ∗

t,Γ, and hence ξnt,Γ · ΔSt ≥ 0 on Γ. Note moreover that

∀ω ∈ X, ⋃
ξ∈ψ∗

t,Γ(ω)
y ∈ Rd | ξ · y> 0
{ } � ⋃

n∈N
y ∈ Rd | ξnt,Γ(ω) · y>0
{ }

. (12)

The inclusion (⊇) is clear for the converse, note that if y satisfies ξnt,Γ(ω) · y ≤ 0 for every n ∈ N, then, by
continuity, ξ · y ≤ 0 for every ξ ∈ ψ∗

t,Γ(ω).
We now define the the conditional standard separator as

ξt,Γ :�
∑∞
n�1

1
2n

ξnt,Γ , (13)

which is ^
pr,�+1
t−1 -measurable and, from Equation (12), satisfies the following maximality property: {ω ∈ X |

ξ(ω) · ΔSt(ω)> 0} ⊆ {ω ∈ X | ξt,Γ(ω) · ΔSt(ω)> 0} for any ξ measurable selector of ψ∗
t,Γ.

Step 0. We take A0 :�Γ and consider the multifunction ψ∗
t,A0 and the conditional standard separator ξt,A0 in

Equation (13). If ψ∗
t,A0(ω) is a linear subspace of Rd (i.e., H ∈ ψ∗

t,A0(ω) implies necessarily −H ∈ ψ∗
t,A0(ω)) for any

ω ∈ A0, then set β � 0 and A0 � B0 (in this case, obviously E0 � X).
Step 1. If there exists an ω ∈ A0 such that ψ∗

t,A0(ω) is not a linear subspace of Rd, then we set H1 � ξt,A0 ,
E1 � {ω ∈ X | H1ΔSt > 0}, B1 � {ω ∈ A0 |H1ΔSt >0} � E1 ∩ Γ, and A1 � A0 \B1 � {ω ∈ A0 |H1ΔSt � 0}. If now ψ∗

t,A1(ω)
is a linear subspace of Rd for any ω ∈ A1, then we set β � 1 and A1 � B0. If this is not the case, we proceed iterating
this scheme.

Step 2. Notice that for everyω ∈ A1 we have ΔSt(ω) ∈ R1(ω) :� {y ∈ Rd | H1(ω) · y � 0}, which can be embedded in
a subspace of Rd whose dimension is d − 1. We consider the case in which there exists one ω ∈ A1 such that ψ∗

t,A1(ω)
is not a linear subspace of R1(ω): we setH2 � ξt,A1 , E2 � {ω ∈ X | H2ΔSt > 0}, B2 � {ω ∈ A0 |H2ΔSt > 0} � E2 ∩ Γ, and
A2 � A1 \ B2 � {ω ∈ A1 | H2ΔSt � 0}. If now ψ∗

t,A2(ω) is a linear subspace of R1(ω) for any ω ∈ A2, then we set β � 2
and A2 � B0. If this is not the case, we proceed iterating this scheme.

The scheme can be iterated and ends at most within d steps so that there exists n ≤ � + 2d yielding the
desired measurability. □

Define, for Ω ∈ Λ,

ΩT :�Ω

Ωt−1 :�Ωt \⋃
βt

i�1
Bi
t, t ∈ {1, . . . ,T},

(14)

where Bi
t :�Bi,Γ

t , βt :� βΓt are the sets and index constructed in Lemma 1 with Γ � Ωt for 1 ≤ t ≤ T. Note that we
can iteratively apply Lemma 1 at time t − 1 because Γ � Ωt ∈ Λ.
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Corollary 2. For any t ∈ {1, . . . ,T},Ω analytic, and Q ∈ }Ω we have, ∪βt
i�1Bi

t is a subset of a Q-null set. In particular, ∪βt
i�1Bi

t
is an }Ω polar set.

Proof. Let Γ � Ω. First, observe that the map ψT,Γ in Equation (11) is ^!
T−1-measurable. Indeed, the set B �

(ΔSt1Γ)−1(O) is analytic because it is equal to ΔS−1t (O) ∩ Γ if 0 /∈O or ΔS−1t (O) ∪ Γ if 0∈O. The measurability of
ψT,Γ follows from Lemma A.1. As a consequence, H1 and B1 from Lemma 1 satisfy H1∈+(X,^!

T−1;Rd) and
B1 � {H1 · ΔST > 0} ∈ ^!. Suppose Q(B1)> 0. The strategy Hu :�H11T−1(u) satisfies that

• H is FQ-predictable, where FQ � {^S
t ∨1Q(@X)}t∈{0,...,T};

• (H · S)T ≥ 0 Q-a.s. and (H · S)T >0 on B1, which has positive probability.
Thus, H is an arbitrage in the classical probabilistic sense, which leads to a contradiction. Because B1 is a

Q-null set, there exists B̃1 ∈ @X such that B1 ⊆ B̃1 and Q(B̃1) � 0. Consider now the Borel-measurable version of
ST given by S̃T � ST1X\B̃1 + ST−11B̃1 . We iterate the previous procedure, replacing S with S̃ at each step up to
time t. As in Lemma 1, the procedure ends in a finite number of steps yielding a collection {B̃i

t}β̃ti�1 such that
∪βt
i�1Bi

t ⊆ ∪β̃t
i�1B̃i

t with Q(∪βt
i�1B̃i

t) � 0. □

Corollary 3. Let B0
t be the set provided by Lemma 1 for Γ � Ωt. For every ω ∈ B0

t , there exists Q ∈ 3f with Q({ω})> 0 such
that EQ[St | ^S

t−1](ω) � St−1(ω).
Proof. Fix ω ∈ B0

t and let Σω
t−1 be given as in Equation (10). We consider D :�ΔSt(Σω

t−1 ∩ B0
t ) ⊆ Rd and C :� {λv | v ∈

conv(D), λ ∈ R+}, where conv(D) denotes the convex hull of D. Denote by ri(C) the relative interior of C. From
Lemma 1, item 2, we have H · ΔSt(ω̃) ≥ 0 for all ω̃ ∈ Σω

t−1 ∩ B0
t implies H · ΔSt(ω̃) � 0 for all ω̃ ∈ Σω

t−1 ∩ B0
t , which is

equivalent to 0 ∈ ri(C). From remark 4.8 in Burzoni et al. [10], we have that for every x ∈ D there exists a finite
collection {xj}mj�1 ⊆ D and {λj}m+1

j�1 with 0 <λj ≤ 1,
∑m+1

j�1 λj � 1, such that

0 � ∑m
j�1

λjxj + λm+1x. (15)

Choose now x :�ΔSt(ω) and note that for every j � 1, . . .m there exists ωj ∈ Σω
t−1 ∩ B0

t such that ΔSt(ωj) � xj.
Choose now Q ∈ 3f with conditional probability Q(· | ^S

t−1)(ω) :� ∑m
j�1 λjδωj + λm+1δω, where δω̃ denotes the

Dirac measure with mass point in ω̃. From Equation (15), we have the thesis. □

Lemma 2. For Ω ∈ Λ, the set Ω∗ defined in Equation (4) with Φ � 0 coincides with Ω0 defined in Equation (14), and
therefore, Ω∗ ∈ Λ. Moreover, if Ω is analytic, then Ω

∗ is analytic, and we have the following:

Ω
∗ �� ∅ ⇐⇒ }Ω �� ∅ ⇐⇒ }

f
Ω
�� ∅.

Proof. The proof is analogous to that of proposition 4.18 in Burzoni et al. [10], but we give here a self-contained
argument. Notice thatΩ∗ ⊆ Ω0 follows from the definitions and Corollary 2. For the reverse inclusion, it suffices to
show that for ω∗ ∈ Ω0 there exists a Q ∈ }

f
Ω

such that Q({ω∗})> 0; that is, ω∗ ∈ Ω
∗. From Corollary 3, for any

1 ≤ t ≤ T, there exists a finite number of elements of Σω
t−1 ∩ B0

t named Ct(ω) :� {ω,ω1, . . . , ωm}, such that

St−1(ω) � λt(ω)St(ω) +
∑m
j�1

λt(ωj)St(ωj), (16)

where λt(ω)> 0 and λt(ω) +∑m
j�1 λt(ωj) � 1.

Fix now ω∗ ∈ Ω0. We iteratively build a set Ω
T
f that is suitable for being the finite support of a discrete

martingale measure (and contains ω∗).
Start with Ω

1
f � C1(ω∗), which satisfies Equation (16) for t � 1. For any t> 1, given Ω

t−1
f , define Ω

t
f :�{

Ct(ω) | ω ∈ Ω
t−1
f

}
. Once Ω

T
f is settled, it is easy to construct a martingale measure via Equation (16):

Q({ω}) � ∏
T

t�1
λt(ω) ∀ω ∈ Ω

T
f .

Because, by construction, λt(ω∗)> 0 for any 1 ≤ t ≤ T, we have Q({ω∗})>0 and Q ∈ }
f
Ω
.

For the last assertion, suppose Ω is analytic. From remark 5.6 in Burzoni et al. [11], Ω∗ is also analytic. In
particular, if }Ω �� ∅ then, from Corollary 2, Q(Ω∗) � 1 for any Q ∈ }Ω. This implies Ω

∗ �� ∅. The converse
implication is trivial. □

Lemma 3. Suppose Φ � 0. Then, no one-point arbitrage ⇔ Ω
∗ � Ω.
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Proof. We first show the ⇐ implication. If (H ◦S)T ≥ 0 on Ω, then (H ◦S)T � 0 Q-a.s. for every Q ∈ }
f
Ω
. From the

hypothesis, we have

∪{supp(Q) | Q ∈ }
f
Ω
} � Ω

from which the thesis follows. For the converse implication, let 1 ≤ t ≤ T and Γ � Ωt. Note that if βt from
Lemma 1 is strictly positive, then H1 is a one-point arbitrage. We, thus, have βt � 0 for any 1 ≤ t ≤ T, and
hence, Ω0 � Ω. From Lemma 2, we have Ω

∗ � Ω. □

Definition 3. We call arbitrage aggregator the process

H∗
t (ω) :�

∑βt
i�1

Hi,Ωt
t (ω)1Bi,Ωt

t
(ω) (17)

for t ∈ 1, . . . ,T{ }, where Hi,Ωt
t ,Bi,Ωt

t , βt are provided by Lemma 1 with Γ � Ωt.

Remark 8. Observe that from Lemma 1, item 1, (H∗
◦ S)T(ω) ≥ 0 for all ω ∈ Ω, and from Lemma 2, (H∗

◦S)T(ω)>0
for all ω ∈ Ω \Ω∗.

Remark 9. By construction, we have that H∗
t is ^

pr,n-measurable for every t ∈ {1, . . . ,T} for some n ∈ N. Moreover,
any Bi,Ωt

t is the intersection of an ^
pr,n
t -measurable set withΩt. As a consequence, we have that (H∗

t )|Ωt
: Ωt → Rd is

(^pr,n
t )|Ωt

-measurable.

Remark 10. In case there are no options to be statically traded, Φ � 0, the enlarged filtration F̃ required in Theorem
1 is given by

˜̂
t :� ^S,Y

t ∨ σ(H∗
1, . . . ,H

∗
t+1), t ∈ 0, . . . ,T − 1{ }, (18)˜̂

T :� ^S,Y
T ∨ σ(H∗

1, . . . ,H
∗
T), (19)

so that the arbitrage aggregator from Equation (17) is predictable with respect to F̃ � {˜̂t}t∈T.

3.2. The Case with a Finite Number of Statically Traded Options
Throughout this section, we consider the case of a finite set of options Φ. As in the previous section, we
consider ^

pr,n
t :� σ((Su,Yu)−1(L) | L ∈ Σ1

n, u ≤ t), and Fpr,n :� (^pr,n
t )t∈T.

Definition 4. A path-space partition scheme5(α�,H�) ofΩ is a collection of trading strategiesH1, . . . ,Hβ ∈ *(Fpr,n)
for some n ∈ N, α1, . . . , αβ ∈ Rk, and arbitrage aggregators H̃0, . . . , H̃β for some 1 ≤ β ≤ k, such that

1. αi, 1 ≤ i ≤ β, are linearly independent.
2. For any i ≤ β,

(Hi
◦S)T + αi · Φ ≥ 0 on A∗

i−1,

where A0 � Ω, Ai :� {(Hi
◦S)T + αi · Φ � 0} ∩ A∗

i−1, and A∗
i is the set Ω∗ in Equation (4) with Ω � Ai and Φ � 0

for 1 ≤ i ≤ β.
3. For any i � 0, . . . , β, H̃i is the arbitrage aggregator as defined in Equation (17), substituting Ω with Ai.
4. If β< k, then either A∗

β � ∅, or for any α ∈ Rk linearly independent from α1, . . . , αβ, there does not exist H such
that

(H ◦ S)T + α · Φ ≥ 0 on A∗
β.

We note that as defined in (2), each Ai ∈ Λ so that A∗
i ∈ Λ by Lemma 2. The purpose of a path-space partition

scheme is to iteratively split the path-spaceΩ into subsets on which a strong arbitrage strategy can be identified.
For the existence of a calibrated martingale measure, it will be crucial to see whether this procedure exhausts
the path space or not. Note that on Ai we can perfectly replicate i linearly independent combinations of options
αj · Φ, 1 ≤ j ≤ i. In consequence, we make at most k such iterations, β ≤ k, and if β � k, then all statically traded
options are perfectly replicated on A∗

β, which reduces here to the setting without statically traded options.

Definition 5. A path-space partition scheme 5(α�,H�) is successful if A∗
β �� ∅.

We illustrate now the construction of a successful path-space partition scheme.
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Example 1. Let X � R2. Consider a financial market with one dynamically traded asset S and two options available
for static trading Φ :� (ϕ1, ϕ2). Let S be the canonical process; that is, St(x) � xt for t � 1, 2 with initial price S0 � 2.
Moreover, let ϕi :� gi(S1,S2) − c for i � 1, 2 with c> 0, gi :� (x2 − Ki)+1[0,b](x1) + c1(b,∞)(x1), and K1 >K2. Namely, ϕi is
a knock-in call option on S with maturity T � 2, strike price Ki, knock-in value b ≥ 0, and cost c> 0, but the cost is
recovered if the option is not knocked in. Consider the path-space selection Ω � [0, 4] × [0, 4].

Start with A0 :�Ω and suppose 0 <K2 < b< 2.
1. The process (H̃0

1 , H̃
0
2) :� (0, 1{0}(S1) − 1{4}(S1)) is an arbitrage aggregator: when S1 hits the values {0, 4}, the

price process does not decrease or increase, respectively. It is easily seen that there are no more arbitrages on
A0 from dynamic trading only. Thus, A∗

0 � {(0, 4) × [0, 4]} ∪ {{0} × {0}} ∪ {{4} × {4}}.
2. Suppose now we have a semistatic strategy (H1, α1) such that

(H1
◦S)T + α1 · Φ ≥ 0 on A∗

0,

where α1 � (−α, α) ∈ R2 for some α> 0 (because K1 >K2 and ϕ1, ϕ2 have the same cost). Moreover, because
Φ � 0 if S1 /∈ [0, b], we can choose (H1

1 ,H
1
2) � (0, 0). A positive gain is obtained on B1 :� [0, b] × (K2, 4] (see Figure

1(a)). Thus, A1 :�A∗
0 \ B1.

3. (H̃1
1 , H̃

1
2) :� (0,−1[K2,b](S1)) is an arbitrage aggregator on A1: the price process does not increase, and (H̃1

1 , H̃
1
2)

yields a positive gain on B2 :� {K2 ≤ S1 ≤ b} \ {{K2} × {K2}} (see Figure 1(b)). Thus, A∗
1 � A1 \ B2.

4. The null process H2 and the vector α2 :� (−1, 0) ∈ R2 satisfy

(H2
◦S)T + α2 · Φ ≥ 0 on A∗

1.

A positive gain is obtained on [0, b] × [0,K2]. Thus, A2 :� (b, 4) × [0, 4] ∪ {{4} × {4}}.
Obviously, there are no more semistatic 1p-arbitrage opportunities, and A2 � A∗

2, β � 2. We set H̃2 ≡ 0, and
the partition scheme is successful with arbitrage aggregators H̃0, H̃1, H̃2 and semistatic strategies (Hj, αj) for
j � 1, 2 as before.

Remark 11. The preceding example also shows that πΩ∗
Φ
,Φ(g) � πΩ,Φ(g) is a rather exceptional case if we do not

assume the existence of an option with dominating payoff as in Theorem 3. Consider indeed themarket of Example
1 with b :� 4, 0 <K2 < 2, which has the same features as the example on page 5 in Davis and Hobson [18]. Take g ≡ 1
and note thatΩ is compact and S, Φ, and g are continuous functions onΩ. From this discussion, we see easily that
Ω

∗
Φ � ∅ and πΩ∗

Φ
,Φ � −∞. Nevertheless, by considering the path-space partition scheme, we see that although we

can devise an arbitrage strategy on B1 � [0, 4) × (K2, 4] its payoff is not bounded below by a positive constant, and
in fact, we see that πΩ,Φ(g) � 1.

Remark 12. Note that if a partition scheme is successful, then there are no one-point arbitrages on A∗
β. When β< k,

this follows from (iv) in Definition 4. In the case β � k, suppose there is a one-point arbitrage (α,H) ∈ !Φ(Fpr) so
that, in particular, (H ◦ S)T + α · Φ ≥ 0 on A∗

β. Because the vectors αi form a basis of Rk, we get, for some λi ∈ R,

(H ◦S)T + α · Φ � ∑k
i�1

λi (Hi
◦ S)T + αi · Φ[ ] + (Ĥ ◦S)T,

Figure 1. Some steps of the path-space partition scheme with b � 1.5, K2 � 1. (a) The strategy (H1, α1), defined on A∗
0, has

positive gain on B1. As a consequence, the path space reduces to A1 � A∗
0 \ B1. (b) For S1 ≥ K2, the arbitrage aggregator H̃1,

defined on A1, has positive gain on B2.
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where Ĥ :�H −∑k
i�1 λiHi. Because, by construction, (Hi

◦ S)T + αi · Φ � 0 on A∗
β for any i � 1, . . . , β, we obtain

that Ĥ is a one-point arbitrage with Φ � 0 on A∗
β. From Lemma 3, we have a contradiction.

Remark 13. As we see, Lemma 5 implies relative uniqueness of 5(α�,H�) in the sense that either every 5(α�,H�)
is not successful or all 5(α�,H�) are successful, and then A∗

β � Ω
∗
Φ.

Definition 6. Given a path-space partition scheme, we define the arbitrage aggregator as

(α�,H�) � ∑β
i�1

αi1A∗
i
,
∑β
i�1

Hi1A∗
i
+∑β

i�1
H̃i1Ai\A∗

i

( )
, (20)

with (α�,H�) � (0, H̃01Ω\Ω∗ ), if β � 0.

To make this arbitrage aggregator predictable, we need to enlarge the filtration. We therefore introduce the
arbitrage-aggregating filtration F̃ given by

˜̂
t � F

S,Y
t ∨ {A0,A∗

0, . . . ,Aβ,A∗
β} ∨ σ(H̃0

1 , . . . , H̃
β
1 , . . . , H̃

0
t+1, . . . , H̃

β
t+1), t � 0, . . . ,T − 1,˜̂

T � F
S,Y
T ∨ {A0,A∗

0, . . . ,Aβ,A∗
β} ∨ σ(H̃0

1 , . . . , H̃
β
1 , . . . , H̃

0
T, . . . , H̃

β
T).

(21)

It will follow, as a consequence of Corollary 2, that ˜̂t ⊆ ^M
T for any t � 0, . . . ,T, and in particular, as observed

before, any Q ∈ }Ω,Φ(FS) extends uniquely to a measure in }Ω,Φ(F̃).

4. Proofs
We first describe the logical flow of our proofs, and we point out that we need to show some of the results for
Ω ∈ Λ (and not only analytic). In particular, we show that Ω

∗
Φ ∈ Λ is involved. First, Theorem 1 and then

Theorem 2 are established when Φ � 0. Then we show Theorem 2 under the further assumption that Ω∗
Φi
∈ Λ for

all 1 ≤ i ≤ k, where Φi � {ϕ1, . . . , ϕi}. Note that in the case with no statically traded options (Φ � 0) and for
Ω ∈ Λ, the property Ω

∗
Φ � Ω

∗ ∈ Λ follows from the construction and is shown in Lemma 2. This allows us to
prove Proposition 1 for which we use Theorem 2 only when Ω

∗
Φi

� Ω, which belongs to Λ by assumption.
Proposition 1, in turn, allows us to establish Lemma 5, which implies that in all cases Ω

∗
Φi
∈ Λ. This then

completes the proofs of Theorems 1 and 2 in the general setting.

4.1. Proof of the FTAP and Pricing–Hedging Duality When No Options Are Statically Traded
Proof of Theorem 1 (When No Options Are Statically Traded). In this case, we consider Ω ∈ Λ, the technical filtration
as described in Remark 10, and the arbitrage aggregator H∗ defined by Equation (17). We prove that

∃ Strong Arbitrage on Ω in *(F̃) ⇔ }
f
Ω
� ∅.

Notice that if H ∈ *(F̃) satisfies (H ◦ S)T(ω)> 0 ∀ω ∈ Ω, then if there exists Q ∈ }
f
Ω
, we would get 0 <

EQ[(H ◦S)T] � 0, which is a contradiction. For the opposite implication, let H∗ be the arbitrage aggregator
from Equation (17), and note that (H∗

◦ S)T(ω) ≥ 0 ∀ω ∈ Ω and {ω | (H∗
◦ S)T(ω)> 0} � (Ω∗)c. If }

f
Ω
� ∅, then

by Lemma 2, (Ω∗)c � Ω, and H∗ is therefore a strong arbitrage on Ω in *(F̃). The last assertion, namely
Ω

∗ � {ω ∈ Ω | (H∗
◦ S)T(ω) � 0}, follows straightforwardly from the definition of H∗. □

Proposition 3 (Superhedging on Ω ⊆ X Without Options). Let Ω ∈ Λ. We have that for any g ∈ +(X,^!;R)
πΩ∗ (g) � sup

Q∈} f
Ω

EQ[g], (22)

with πΩ∗ (g) � inf {x ∈ R | ∃H ∈ *(Fpr) such that x + (H ◦ S)T ≥ g on Ω
∗}. In particular, the left-hand side of Equation

(22) is attained by some strategy H ∈ *(Fpr).
Proof. Note that by its definition in Equation (4), Ω∗ � ∅ if and only if } f

Ω
� ∅, and in this case, both sides in

Equation (22) are equal to −∞. We assume now that Ω∗ �� ∅ and recall from Lemma 2 that we have Ω
∗ ∈Λ. By

definition, there exists n ∈ N such that Ω∗ ∈ Σ1
n. The second part of the statement follows with the same procedure

proposed in the Burzoni et al. [11] proof of theorem 1.1. The reason can be easily understood recalling the
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following construction, which appears in step 1 of the proof. For any � ∈ N,D ∈ ^pr,�, 1 ≤ t ≤ T, G ∈ +(X,^pr,�),we
define the multifunction

ψt,G,D : ω �→ ΔSt(ω̃); 1;G(ω̃)[ ]1D(ω̃) | ω̃ ∈ Σω
t−1

{ } ⊆ Rd+2,

where ΔSt; 1;G[ ]1D � ΔS1t 1D, . . . ,ΔS
d
t 1D, 1D,G1D

[ ]
and Σω

t is given as in Equation (10). We show that ψt,G,D is an
^

pr,�+1
t−1 -measurable multifunction. Let O ⊆ Rd × R2 be an open set and observe that

{ω ∈ X | ψt,G,D(ω) ∩O �� ∅} � (S0:t−1,Y0:t−1)−1 (S0:t−1,Y0:t−1) B( )( ),
where B � ( ΔSt; 1;G[ ]1D)−1(O). First, ΔSt, 1,G[ ]1D is an ^pr,�-measurable random vector; then B ∈ ^pr,�, the sigma-
algebra generated by the �-projective sets of X. Second, (Su,Yu) is a Borel-measurable function for any 0 ≤ u ≤ t − 1
so that we have, as a consequence of Lemma A.2, that (S0:t−1,Y0:t−1)(B) belongs to the sigma-algebra generated
by the (� + 1)-projective sets in Mat((d + d̃) × t;R) (the space of (d + d̃) × t matrices with real entries) endowed
with its Borel sigma-algebra. Applying again Lemma A.2, we deduce that (S0:t−1,Y0:t−1)−1 (S0:t−1,Y0:t−1) B( )( ) ∈
^

pr,�+1
t−1 and, hence, the desired measurability for ψt,G,D.

The remaining steps 1–5 follow, replicating the argument in Burzoni et al. [11]. □

4.2. Proof of the FTAP and Pricing–Hedging Duality with Statically Traded Options
We first extend the results from Lemma 2 to the present case of nontrivial Φ.

Lemma 4. Let Ω be analytic. For any Q ∈ }Ω,Φ, we have Q(Ω∗
Φ) � 1. In particular, }Ω,Φ �� ∅ if and only if } f

Ω,Φ �� ∅.
Proof. Recall that Ω analytic implies that Ω∗

Φ is analytic from remark 5.6 in Burzoni et al. [11]. Let Q̃ ∈ }Ω,Φ and
consider the extended market (S, S̃) with S̃ j

t equal to a Borel-measurable version of EQ̃[ϕj | ^S
t ] for any j � 1, . . . , k

and t ∈ T (see lemma 7.27 in Bertsekas and Shreve [6]). In particular, Q̃ ∈ }̃Ω, the set of martingale measures for
(S, S̃), which are concentrated onΩ. Denote by Ω̃

∗ the set of scenarios charged by martingale measures for (S, S̃) as
defined in Equation (4). FromCorollary 2 and Lemma 2, we deduce thatQ̃(Ω̃∗) � 1. Because, obviously, }̃ f

Ω
⊆ }

f
Ω,Φ,

we also have Ω̃
∗ ⊆ Ω

∗
Φ. Because the former has full probability, the claim follows. □

As highlighted, we start with the proof of Theorem 2 under the further assumption that Ω
∗
Φn
∈ Λ for all

1 ≤ n ≤ k, where Φn � {ϕ1, . . . , ϕn}. This assumption is then shown to hold at the end of this subsection.

Proof of Theorem 2 (Under the Assumption Ω
∗
Φn

∈ Λ for All n ≤ k). Similarly to the proof of Proposition 3, we note
that the statement is clear when }

f
Ω,Φ � ∅, so we may assume the contrary. For any ^!-measurable g, standard

arguments imply

sup
Q∈} f

Ω,Φ

EQ[g] ≤ πΩ
∗
Φ
,Φ( g),

so that it remains to show the converse inequality. We prove the statement by induction on the number of
static options used for superhedging. For this, we consider the superhedging problem with additional options
Φn on Ω

∗
Φ and denote its superhedging cost by πΩ∗

Φ
,Φn(g), which is defined as in Equation (6) but with Φn

replacing Φ.
Assume that Ω∗

Φn
∈ Λ for all n ≤ k. The case n � 0 corresponds to the superhedging problem on Ω

∗ when only
dynamic trading is possible. Because, by assumption Ω

∗
Φ ∈ Λ, the pricing–hedging duality and the attainment

of the infimum follow from Proposition 3. Now assume that for some n< k, for any ^!-measurable g, we have
the following pricing–hedging duality:

πΩ
∗
Φ
,Φn( g) � sup

Q∈} f
Ω∗
Φ
,Φn

EQ[g]. (23)

We show that the same statement holds for n + 1. Note that the attainment property is always satisfied. Indeed,
using the notation of Bouchard and Nutz [8], we have NA(} f

Ω∗
Φ
,Φn

). As a consequence of theorem 2.3 in Bouchard
and Nutz [8], which holds also in the setup of this paper, the infimum is attained whenever it is finite.

The proof proceeds in three steps.
Step 1. First observe that if ϕn+1 is replicable on Ω

∗
Φ by semistatic portfolios with the static hedging part

restricted to Φn, that is, x + h · Φn(ω) + (H ◦S)T(ω) � ϕn+1(ω) for any ω ∈ Ω
∗
Φ, then necessarily x � 0 (otherwise,

}
f
Ω,Φ � ∅). Moreover, because any such portfolio has zero expectation under measures in }

f
Ω

∗
Φ
,Φn

, we have that
EQ[ϕn+1] � 0 ∀Q ∈ }

f
Ω

∗
Φ
,Φn

. In particular, } f
Ω

∗
Φ
,Φn

� }
f
Ω

∗
Φ
,Φn+1 , and Equation (23) holds for n + 1.
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Step 2. We now look at the more interesting case; that is, ϕn+1 is not replicable. In this case, we show that

sup
Q∈} f

Ω∗
Φ
,Φn

EQ[ϕn+1]> 0 and inf
Q∈} f

Ω
∗
Φ
,Φn

EQ[ϕn+1]< 0. (24)

Inequalities ≥ and ≤ are obvious from the assumption }
f
Ω

∗
Φ
,Φ �� ∅. From the inductive hypothesis, we only need

to show that πΩ
∗
Φ
,Φn (ϕn+1) is always strictly positive (the analogous argument applies to πΩ

∗
Φ
,Φn(−ϕn+1)).

Suppose, by contradiction, that πΩ∗
Φ
,Φn(ϕn+1) � 0. Because the infimum is attained, there exists some (α,H) ∈

Rn ×*(Fpr) such that
α · Φn(ω) + (H ◦S)T(ω) ≥ ϕn+1(ω) ∀ω ∈ Ω

∗
Φ.

Because ϕn+1 is not replicable, this inequality is strict for some ω̃ ∈ Ω
∗
Φ. Then, by taking expectation under

Q̃ ∈ }
f
Ω

∗
Φ
,Φ such that Q̃({ω̃})>0, we obtain

0 � EQ̃[α · Φn + (H ◦ S)T]>EQ̃[ϕn+1] � 0, (25)

which is clearly a contradiction.
Step 3. Given Equation (24), we now show that Equation (23) holds for n + 1 also in the case that ϕn+1 is not

replicable. We first use a variational argument to deduce the following equalities:

πΩ∗
Φ
,Φn+1(g) � inf

l∈R
πΩ∗

Φ
,Φn(g − lϕn+1)

� inf
l∈R

sup
Q∈} f

Ω
∗
Φ
,Φn

EQ[g − lϕn+1]

� inf
N

inf
|l|≤N

sup
Q∈} f

Ω
∗
Φ
,Φn

EQ[g − lϕn+1]

� inf
N

sup
Q∈} f

Ω
∗
Φ
,Φn

inf
|l|≤N

EQ[g − lϕn+1]

� inf
N

sup
Q∈} f

Ω
∗
Φ
,Φn

EQ[g] −N|EQ[ϕn+1]|( )
.

(26)

The first equality follows by definition, the second from the inductive hypothesis, the fourth is obtained with
an application of min–max theorem (see corollary 2 in Terkelsen [49]), and the last one follows from an easy
calculation.

We also observe that there exist Qsup ∈ }
f
Ω∗

Φ
,Φn

and Qinf ∈ }
f
Ω∗

Φ
,Φn

such that

EQsup[ϕn+1] ≥ 1
2

πΩ∗
Φ
,Φn(ϕn+1) ∧ 1

( )
and EQinf [ϕn+1] ≤ − 1

2
πΩ∗

Φ
,Φn(−ϕn+1) ∧ 1

( )
.

From Equation (24) and the inductive hypothesis, EQinf [ϕn+1]< 0<EQsup[ϕn+1]. We later use Qinf and Qsup for
calibrating measures in }

f
Ω

∗
Φ
,Φn

to the additional option ϕn+1. Namely, for Q ∈ }
f
Ω

∗
Φ
,Φn

, we might set Q̃ � Qinf if
EQ[ϕn+1] ≥ 0 and Qsup otherwise to find λ ∈ [0, 1] such that

Q̂ � λQ + (1 − λ)Q̃ ∈ }
f
Ω

∗
Φ
,Φn+1 .

We can now distinguish two cases:
Case 1. Suppose first there exists a sequence {Qm} ⊆ }

f
Ω∗

Φ
,Φn

\} f
Ω∗

Φ
,Φn+1 such that

lim
m→∞

EQm[g]
|EQm[ϕn+1]| � +∞ and lim

m→∞EQm[g] � +∞. (27)

Given {Qm} such that Equation (27) is satisfied, we can construct a sequence of calibrated measures {Q̂m} ⊆
}

f
Ω∗

Φ
,Φn+1 , as described, so that

EQ̂m
[ϕn+1] � λmEQm[ϕn+1] + (1 − λm)EQ̃m

[ϕn+1] � 0,
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for some {λm} ⊆ [0, 1]. We stress that Q̃m can only be equal to Qinf or Qsup, which do not depend on m. A simple
calculation shows

λm�
EQ̃m

[ϕn+1]
EQ̃m

[ϕn+1] − EQm[ϕn+1] .

From

EQ̂m
[g] � λm(EQm[g] − EQ̃m

[g]) + EQ̃m
[g]

we have two cases: either λm → a> 0 and from EQm[g] → +∞ we deduce EQ̂m
[g] → +∞ or λm → 0, which

happens when |EQm[ϕn+1]| → ∞. Nevertheless, in such a case, from Equation (27) we obtain again EQ̂m
[g] → +∞

as m → ∞. Therefore, ∞ � supQ∈} f
Ω
∗
Φ
,Φn+1

EQ[g] ≤ πΩ
∗
Φ
,Φn+1(g) and, hence, the duality.

Case 2. We are only left with the case in which Equation (27) is not satisfied. For any N ∈ N, we define the
decreasing sequence sN :� supQ∈} f

Ω∗
Φ
,Φn

(EQ[g] −N|EQ[ϕn+1]|) and let {Qm
N}m∈N, a sequence realizing the supremum.

If there exists a subsequence sNj such that |EQm
Nj
[ϕn+1]| � 0 for m> m̄(Nj), then the duality follows directly from

Equation (26). Suppose this is not the case. We claim that we can find a sequence {QN} ⊆ }
f
Ω

∗
Φ
,Φn

such that

lim
N→∞(EQN [g] −N|EQN [ϕn+1]|) � lim

N→∞ sN and lim
N→∞ |EQN [ϕn+1]| � 0. (28)

Let indeed c(N) :� lim supm→∞ EQm
N
[g]/|EQm

N
[ϕn+1]|. If supN∈N c(N) � ∞, because Equation (27) is not satisfied,

there exists m � m(N) such that |EQm(N)
N

[ϕn+1]| converges to zero as N → ∞, from which the claim easily follows.
Suppose now supN∈N c(N)<∞. Then (by taking subsequences if needed),

sN � lim
m→∞(EQm

N
[g] −N|EQm

N
[ϕn+1]|) ≤ (c(N) −N) lim

m→∞ |EQm
N
[ϕn+1]|.

Note that aN :� limm→∞ |EQm
N
[ϕn+1]| satisfies limN→∞ NaN <∞; otherwise, from Equation (26), πΩ

∗
Φ
,Φn+1(g) � −∞,

which is not possible because, for any Q ∈ }
f
Ω

∗
Φ
,Φ, we have that πΩ

∗
Φ
,Φn+1(g) ≥ EQ[g] > −∞. In particular,

limN→∞ aN � 0, and the claim easily follows.
Given a sequence as in Equation (28), we now conclude the proof. It follows from Equation (26) that

πΩ
∗
Φ
,Φn+1( g) � inf

N
sup

Q∈} f
Ω∗
Φ
,Φn

inf
|l|≤N

EQ[g − lϕn+1]

� lim
N→∞EQN [g] −N|EQN [ϕn+1]|

≤ lim
N→∞EQN [g].

The calibrating procedure described yields λN ∈ [0, 1] such that Q̂N � λNQN + (1 − λN)Q̃N ∈ }
f
Ω∗

Φ
,Φn+1 . Moreover,

because |EQN [ϕn+1]| → 0 and Q̃N can only be either Qinf or Qsup, these λN satisfy λN → 1. This implies EQ̂N
[g] −

EQN [g] → 0 as N → ∞, from which it follows

πΩ∗
Φ
,Φn+1(g) ≤ lim

N→∞EQN [g] � lim
N→∞EQ̂N

[g] ≤ sup
Q∈} f

Ω
∗
Φ
,Φn+1

EQ[g].

The converse inequality follows from standard arguments, and hence, we obtain πΩ
∗
Φ
,Φn+1( g) � supQ∈} f

Ω∗
Φ
,Φn+1

EQ[g] as
required. □

We now prove Proposition 1 for the more general case of Ω ∈ Λ. We use Theorem 2 only when Ω
∗
Φ � Ω,

which belongs to Λ by assumption.

Proof of Proposition 1. The⇐ implication is clear because, if a strategy (α,H) ∈ !Φ(Fpr) satisfies α · Φ + (H ◦ S)T ≥
0 on Ω, then, by definition in Equation (4), for any ω ∈ Ω

∗
Φ � Ω, we can take a calibrated martingale measure that

assigns a positive probability to ω, which implies α · Φ + (H ◦ S)T � 0 on ω. Because ω is arbitrary, we obtain the
thesis. We prove ⇒ by iteration on the number of options used for static trading. No one-point arbitrage using
dynamic trading and Φ in particular means that there is no one-point arbitrage using only dynamic trading. From
Lemma 3, we have Ω

∗ � Ω, and hence, for any ω ∈ Ω, there exists Q ∈ }
f
Ω
such that Q({ω})> 0.
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Note that if, for some j ≤ k, ϕj is replicable on Ω
∗ by dynamic trading in S, then there exist n ∈ N

and (x,H) ∈ R ×*(Fpr,n) such that x + (H ◦S)T � ϕj on Ω
∗. No one-point arbitrage implies x � 0, and hence,

EQ[ϕj] � 0 for every Q ∈ }
f
Ω
. With no loss of generality, we assume that (ϕ1, . . . , ϕk1) is a vector of non-

replicable options on Ω
∗ with k1 ≤ k. We now apply Theorem 2 in the case with Φ � 0 to ϕ1 and argue that

m1 :� min{πΩ∗ (ϕ1), πΩ∗ (−ϕ1)}> 0.

Indeed, if m1 < 0, then we would have a strong arbitrage, and if m1 � 0, because the superhedging price is
attained, there exists H ∈ *(Fpr) such that, for example, ϕ1 ≤ (H ◦ S)T on Ω. To avoid one-point arbitrage, we
have to have ϕ1 � (H ◦ S)T on Ω, which is a contradiction because ϕ1 is not replicable. This shows that m1 > 0,
which, in turn, implies there exist Q1,Q2 ∈ }

f
Ω

such that EQ1[ϕ1]>0 and EQ2[ϕ1]< 0. Then, for any Q ∈ }
f
Ω
,

there exist α, β,γ∈ [0, 1], α + β + γ� 1, and EαQ1+βQ2+γQ[ϕ1] � 0. Thus, for any ω ∈ Ω
∗, there exists Q ∈ }

f
Ω,ϕ1

such
that Q({ω})> 0. In particular, Ω∗

ϕ1
� Ω, and we may apply Theorem 2 with Ω and Φ � {ϕ1} (indeed Ω ∈ Λ, and

we can therefore apply the version of Theorem 2 proved in this section). Define now

m1,j :� min{πΩ∗,ϕ1,(ϕj), πΩ∗,ϕ1(−ϕj)} ∀j � 2, . . . , k1.

By absence of strong arbitrage, we necessarily have m1,j ≥ 0 for every j � 2, . . . , k1. Let j ∈ I2 � { j � 2, . . . , k1 |
m1,j � 0}; by no one-point arbitrage, we have perfect replication of ϕj using semistatic strategies with ϕ1 on Ω,
and in consequence for any Q ∈ }

f
Ω,ϕ1

, we have EQ[ϕj] � 0 for all j ∈ I2. We may discard these options and, up
to renumbering, assume that (ϕ2, . . . , ϕk2) is a vector of the remaining options, nonreplicable on Ω with
semistatic trading in ϕ1 with k2 ≤ k1. If k2 ≥ 2, m1,2 > 0 by Theorem 2 and absence of one-point arbitrage using
arguments as earlier. Hence, there exist Q1,Q2 ∈ }

f
Ω,ϕ1

such that EQ1[ϕ2]> 0 and EQ2[ϕ2]< 0. As before, this
implies that Ω∗

{ϕ1,ϕ2} � Ω
∗
ϕ1

� Ω. We can iterate the previous arguments, and the procedure ends after at most k
steps showing Ω

∗
Φ � Ω as required. □

The following lemma shows that the outcome of a successful partition scheme is the set Ω∗
Φ.

Lemma 5. Recall the definition of Ω∗
Φ in Equation (4). For any 5(α�,H�), A∗

i � Ω
∗
{αj ·Φ : j≤i} for any i ≤ β. Moreover, if

5(α�,H�) is successful, then A∗
β � Ω

∗
Φ.

Proof. If Ω∗ � ∅, then the claim holds trivial. We now assume Ω∗ �� ∅, fix a partition scheme 5(α�,H�), and prove
the claim by induction on i. For simplicity of notation, letΩ∗

i :�Ω
∗
{αj ·Φ : j≤i} withΩ0 � Ω. By definition of A0, we have

A∗
0 � Ω

∗ � Ω
∗
0. Suppose now A∗

i−1 � Ω
∗
i−1 for some i ≤ β. Then, by definition of Ωi, we have Ω

∗
i ⊆ Ω

∗
i−1 � A∗

i−1.
Further, because (Hi ◦ S)T + αi · Φ ≥ 0 onA∗

i−1 with strict inequality onA∗
i−1 \ Ai, it follows thatΩ∗

i ⊆ Ai. Finally, from
}

f
Ω∗

i ,{αj ·Φ : j≤i} ⊆ }
f
Ai ,{αj ·Φ : j≤i} ⊆ }

f
Ai

� }
f
A∗

i
, we also have Ω

∗
i ⊆ A∗

i . For the reverse inclusion, consider ω ∈ A∗
i . By

definition of A∗
i and Lemma 2, there exists Q ∈ }

f
A∗

i
with Q({ω})> 0. Because on A∗

i all options α
j · Φ, 1 ≤ j ≤ i, are

perfectly replicated by the dynamic strategies −Hj, it follows that Q ∈ }
f
A∗

i ,{αj ·Φ : j≤i} so that ω ∈ Ω
∗
i .

Suppose now 5(α�,H�) is successful. In the case β � k, because αi forms a basis of Rk, we have
}

f
A∗

β,Φ
� }

f
A∗

β,{αj ·Φ : j≤β}, and hence, Ω
∗
Φ � A∗

β from earlier. Suppose β< k so that the earlier notation shows

Ω
∗
Φ ⊆ Ω

∗
β � A∗

β. Observe that because Aβ ∈ Λ from Lemma 2, we have A∗
β ∈ Λ; moreover, by Remark 12, there

are no one-point arbitrages on A∗
β. Thus, each ω ∈ A∗

β is weighted by some Q ∈ }
f
A∗

β,Φ
⊆ }

f
Ω,Φ by Proposition 1

applied to A∗
β. Therefore, A

∗
β ⊆ Ω

∗
Φ, which concludes the proof. □

Remark 14. It follows from Lemma 2 that A∗
i ≡ Ω

∗
{αj ·Φ : j≤i}, introduced in Lemma 5, belongs to Λ for any i ≤ β. In

particular, Ω∗
Φ in Equation (4) is in Λ (see also the discussion after Definition 4).

Remark 15. Observe that in the proof of Lemma 5, we apply Proposition 1 with Ω � A∗
β, which is only known to

belong to Λ. For this reason, we need Proposition 1 to hold for a generic set in Λ (and not only analytic).

Proof of Theorem 1. We now prove the pointwise fundamental theorem of asset pricing when semistatic trading
strategies in a finite number of options are allowed. Let Ω be analytic, 5(α�,H�) be a path-space partition scheme,
and F̃ be given by Equation (21). We first show that the following are equivalent:

1. 5(α�,H�) is successful.
2. } f

Ω,Φ �� ∅.
3. }Ω,Φ �� ∅.
4. No strong arbitrage with respect to F̃.
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(1) ⇒ (2) follows from Remark 13 and the definition of Ω∗
Φ in (4) because A∗

β � Ω
∗
Φ. (2) ⇔ (3) follows from

Lemma 4. To show (2) ⇒ (4), observe that under Q ∈ }
f
Ω,Φ the expectation of any admissible semistatic trading

strategy is zero, which excludes the possibility of existence of a strong arbitrage. For the implication (4) ⇒ (1)
note that, for 1 ≤ i ≤ β, we have (H̃i−1

◦S)T > 0 on Ai−1 \ A∗
i−1 from the properties of the arbitrage aggregator (see

Remark 8) and (Hi
◦S)T + αi · Φ>0 on A∗

i−1 \ Ai by construction so that a positive gain is realized on Ai−1 \ Ai.
Finally, from Ω � A0 � (∪β

i�1Ai−1 \ Ai) ∪ Aβ and (H̃β
◦S)T > 0 on Aβ \ A∗

β, we get

∑β
i�1

(Hi
◦S)T + αi · Φ +∑β

i�0
(H̃i

◦ S)T >0 on (A∗
β)C , (29)

and equal to zero otherwise. The hypothesis (4) implies, therefore, that A∗
β is nonempty, and hence, the path-

space partition scheme is successful.
The existence of the technical filtration and arbitrage aggregator are provided explicitly by Equations (21)

and (20). Moreover, from Lemma 5, Ω∗
Φ � A∗

β. Finally, Equation (5) follows from Equation (29). □

Proof of Corollary 1. Let F̃ be given by Equation (21). We prove that

∃ an Arbitrage de la classe 6 in !Φ(F̃) ⇐⇒ }
f
Ω,Φ � ∅ or 1M contains sets of 6.

(⇒): Let (α,H) ∈ !Φ(F̃) be an arbitrage de la classe 6. By definition, α · Φ + (H ◦ S)T ≥ 0 onΩ, and there exists A ∈ 6

such that A ⊆ {ω ∈ Ω | α · Φ + (H ◦ S)T > 0}. Note now that for any Q ∈ }
f
Ω,Φ we have EQ[α · Φ + (H ◦S)T] � 0,

which implies Q({ω ∈ Ω | α · Φ + (H ◦ S)T > 0}) � 0. Thus, if {ω ∈ Ω | α · Φ + (H ◦S)T > 0} � Ω, then }
f
Ω,Φ � ∅;

otherwise, A ∈ 1M ∩ 6.
(⇐): Consider the arbitrage aggregator (α∗,H∗) as constructed in Equation (21), which is predictable with respect

to F̃ given by Equation (21). Let A ∈ 1M ∩ 6; then, from (5) in Theorem 1, A ⊆ {ω ∈ Ω | α∗ · Φ + (H∗
◦ S)T >0},

which implies the thesis. □

Proof of Theorem 2 (Justification of the Assumption PreviouslyMade). As a consequence of Lemma 5 (see also Remark 14)
we obtain Ω

∗
Φn

∈ Λ for all n ≤ k. Therefore, the assumption made in the proof of Theorem 2 at the beginning of
this subsection is always satisfied.Moreover, forΩ analytic, the equality between the suprema over}Ω,Φ and over} f

Ω,Φ

may be deduced following the same arguments as in the proof of theorem 1.1, step 2, in Burzoni et al. [11]. The proof
is complete.

4.3. Proof of Theorem 3
We recall that the option ϕ0 can be only bought at time t � 0, and the notations are as follows: !̃ϕ0(Fpr) :� {(α,H) ∈
R+ ×*(Fpr)} and }̃Ω,ϕ0 :� {Q ∈ }Ω | EQ[ϕ0] ≤ 0}.

We first extend the results of Theorem 2 to the case in which only ϕ0 is available for static trading.

Lemma 6. Suppose }̃ f
Ω,ϕ0

�� ∅, πΩ∗ (ϕ0)> 0, and Ω
∗
ϕ0

∈ ^!. Then, for any ^!-measurable g,

πΩ∗
ϕ0
,ϕ0( g) � sup

Q∈}̃ f
Ω,ϕ0

EQ[g] � sup
Q∈M f

Ω,ϕ0

EQ[g].

Proof. The assumptionπΩ∗ (ϕ0)>0 automatically implies supQ∈} f
Ω

EQ[ϕ0]>0.Moreover, by assumption, }̃ f
Ω,ϕ0

�� ∅,
from which infQ∈} f

Ω

EQ[ϕ0] ≤ 0.

The idea of the proof is the same as that of Theorem 2. Suppose first that

inf
Q∈} f

Ω

EQ[ϕ0]< 0 . (30)

Then it is easy to see that Ω∗
ϕ0

� Ω
∗. We use a variational argument to deduce the following equality:

πΩ∗
ϕ0
,ϕ0( g) � πΩ∗,ϕ0(g) � inf

N
sup
Q∈} f

Ω

EQ[g] −N|EQ[ϕ0]|( )
obtained with an application of min–max theorem (see corollary 2 in Terkelsen [49]). The last step of the
proof of Theorem 2 is only based on this variational equality and is analogous of Equation (30) joined
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with supQ∈} f
Ω

EQ[ϕ0]>0. By repeating the same argument, we obtain πΩ∗
ϕ0
,ϕ0(g) � supQ∈} f

Ω,ϕ0

EQ[g]. Because
obviously

πΩ∗
ϕ0
,ϕ0( g) � sup

Q∈} f
Ω,ϕ0

EQ[g] ≤ sup
Q∈}̃ f

Ω,ϕ0

EQ[g] ≤ πΩ∗
ϕ0
,ϕ0(g) (31)

we have the thesis.
Suppose now that infQ∈} f

Ω

EQ[ϕ0] � 0. From Proposition 3, πΩ∗ (−ϕ0) � 0, and there exists a strategy H̄ ∈
*(Fpr) such that (H̄ ◦ S)T ≥ −ϕ0 on Ω

∗. We claim that the inequality is actually an equality on Ω
∗
ϕ0

(which is
nonempty by assumption). If indeed for some ω ∈ Ω

∗
ϕ0

the inequality is strict, then any Q ∈ }
f
Ω

such that
Q({ω})> 0 satisfies EQ[ϕ0]> 0, which contradicts ω ∈ Ω

∗
ϕ0
. This implies that ϕ0 is replicable on Ω

∗
ϕ0
, and thus,

}̃
f
Ω,ϕ0

� }
f
Ω,ϕ0

� }
f
Ω

∗
ϕ0
. In such a case,

πΩ
∗
ϕ0
,ϕ0(g) ≤ πΩ

∗
ϕ0
(g) � sup

Q∈} f
Ω∗
ϕ0

EQ[g] � sup
Q∈} f

Ω,ϕ0

EQ[g],

where the first equality follows from Proposition 3 because Ω
∗
ϕ0
∈ ^! ⊆ Λ by assumption. The thesis now

follows from standard arguments as before. □

Proposition 4. Assume that Ω satisfies that there exists an ω∗ such that S0(ω∗) � S1(ω∗) � . . . � ST(ω∗), Ω � Ω
∗, and

πΩ∗ (ϕ0)> 0. Then the following are equivalent:
1. There is no uniformly strong arbitrage on Ω in !̃ϕ0(Fpr).
2. There is no strong arbitrage on Ω in !̃ϕ0

(Fpr).
3. }̃Ω,ϕ0 �� ∅.
4. }̃ f

Ω,ϕ0
�� ∅.

Moreover, when any of these holds, for any upper semicontinuous g : Rd×(T+1)
+ → R such that

lim
|x|→∞

g+(x)
m(x) � 0, (32)

where m(x0, . . . , xT) :� ∑T
t�0 g0(xt), we have the following pricing–hedging duality:

πΩ∗,ϕ0(g(S)) � sup
Q∈}̃Ω,ϕ0

EQ[g(S)] � sup
Q∈}Ω,ϕ0

EQ[g(S)]. (33)

Remark 16. We observe that the assumption πΩ∗ (ϕ0)> 0 is not binding and can be removed. In fact, if πΩ∗ (ϕ0) ≤ 0,
(1) ⇒ (3) is obviously satisfied because }̃Ω,ϕ0 � }Ω �� ∅. The difference is that the pricing–hedging duality (33) is
(trivially) satisfied only in the first equation.

Proof of Proposition 4. (3) ⇒ (2) and (2) ⇒ (1) are obvious. (4) ⇔ (3) is an easy consequence of Theorem 1. To
show (1) ⇒ (4), we suppose there is no uniformly strong arbitrage on Ω in !̃ϕ0(Fpr).

We first show that the interesting case is πΩ∗ (ϕ0)> 0 and πΩ∗ (−ϕ0) � 0. The other cases follow trivially from
Proposition 3 and Lemma 6:

• If πΩ∗ (−ϕ0)< 0, because the superhedging price is attained and Ω � Ω
∗, there exist H ∈ Fpr and x< 0 such

that

ϕ0(ω) + (H ◦S)T(ω) ≥ −x>0, ∀ω ∈ Ω,

which is clearly a uniform strong arbitrage on Ω.
• If πΩ∗ (−ϕ0)> 0 and πΩ∗ (ϕ0)> 0, we have that zero is in the interior of the price interval formed by

infQ∈} f
Ω

EQ[ϕ0] and supQ∈} f
Ω

EQ[ϕ0]. Thus, }̃ f
Ω,ϕ0

⊇ }
f
Ω,ϕ0

�� ∅, and it is straightforward to see that Ω∗
ϕ0

� Ω
∗.

Note that in all these cases Ω
∗
ϕ0
� Ω

∗ � Ω ∈ ^!, and hence Equation (33) follows from Lemma 6.
The remaining case is πΩ∗ (ϕ0)> 0 and πΩ∗ (−ϕ0) � 0. In this case, by considering the ω∗ such that

s0 � S0(ω∗) � S1(ω∗) � . . . � ST(ω∗), we observe that the superreplication of −ϕ0 necessarily requires an initial
capital of, at least, −g0(s0). From πΩ∗ (−ϕ0) � 0, we can rule out the possibility that g0(s0)< 0. Note now that by
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the convexity of g0, for any l ∈ 0, . . . ,T − 1, g0(ST(ω)) −∑T
i�l+1 g

′
0(Si−1(ω))

(
Si(ω) − Si−1(ω)

)
≥ g0(Sl(ω)) for any

ω ∈ Ω. In particular, when l � 0,

g0(ST(ω)) −
∑T
i�1

g′0(Si−1(ω))
(
Si(ω) − Si−1(ω)

)
≥ g0(s0) ∀ω ∈ Ω. (34)

Denote by H̄ the dynamic strategy in Equation (34). If g0(s0)>0, (1, H̄) is a uniformly strong arbitrage on Ω and,
hence, a contradiction to our assumption. Thus, g0(s0) � 0. In this case, it is obvious that the Dirac measure
δω∗ ∈ }

f
Ω,ϕ0

⊆ }̃
f
Ω,ϕ0

, which is therefore nonempty.
Moreover, because δω∗ ∈ }

f
Ω,ϕ0

,

sup
Q∈}̃ f

Ω,ϕ0

EQ[g(S)] ≥ sup
Q ∈ }

f
Ω,ϕ0

EQ[g(S)] ≥ g(s0, . . . , s0).

Case 1. Suppose g is bounded from above. We show that it is possible to superreplicate g with any initial
capital larger than g(s0, . . . , s0). To see this, recall that, from the strict convexity of g0, the inequality in Equation
(34) is strict for any s ∈ R

d×(T+1)
+ such that s is not a constant path; that is, si �� s0 for some i ∈ {0, . . . ,T}. In fact, it

is bounded away from zero outside any small ball of (s0, . . . , s0). Hence, because of the upper semicontinuity
and boundedness of g, for any ε> 0, there exists a sufficiently large K such that

g(s0, . . . , s0) + ε + K
{
g0(ST(ω)) −

∑T
i�1

g′0(Si−1(ω))
(
Si(ω) − Si−1(ω))} ≥ g(S(ω)) ∀ω ∈ Ω

∗.

Therefore, πΩ∗,ϕ0(g) ≤ g(s0, . . . , s0) ≤ supQ∈} f
Ω,ϕ0

EQ[g(S)] ≤ supQ∈}̃ f
Ω,ϕ0

EQ[g(S)]. The converse inequality is easy,

and hence, we obtain πΩ∗,ϕ0(g) � supQ∈} f
Ω,ϕ0

EQ[g(S)] � supQ∈}̃ f
Ω,ϕ0

EQ[g] as required.

Case 2. It remains to argue that the duality still holds true for any g that is upper semicontinuous and satisfies
Equation (32). We first argue that any upper semicontinuous g : Rd×(T+1)

+ → R, satisfying Equation (32), can be
superreplicated on Ω

∗ by a strategy involving dynamic trading in S, static hedging in g0, and cash. Define
a synthetic option with payoff m̃ : Rd×(T+1)

+ → R by

m̃(x0, . . . , xT) �
∑T
l�0

{
g0(xT) −

∑T
i�l+1

g′0(xi−1)(xi − xi−1)
}
. (35)

By convexity of g0, we know that

m̃(x0, . . . , xT) �
∑T
l�0

{
g0(xT) −

∑T
i�l+1

g′0(xi−1)(xi − xi−1)
}
≥ ∑T

l�0
g0(xl) � m(x0, . . . , xT).

Because we assume there is no uniform strong arbitrage, it is clear that πΩ∗,ϕ0(m̃(S)) � 0.
From Equation (32) it follows that g(S) − m̃(S) is bounded from above. By sublinearity of πΩ∗,ϕ0(·), we have

πΩ∗,ϕ0(g) ≤ πΩ∗,ϕ0(g(S) − m̃(S)) + πΩ∗,ϕ0(m̃(S))
� sup

Q∈} f
Ω,ϕ0

EQ[g(S) − m̃(S)] + 0

� sup
Q∈} f

Ω,ϕ0

EQ[g(S)] ≤ sup
Q∈}̃ f

Ω,ϕ0

EQ[g(S)],

where the first equality follows from the pricing–hedging duality for claims bounded from above, which we
established in Case 1, and the fact that πΩ∗,ϕ0(m̃(S)) � 0. Moreover, for Q ∈ }Ω,ϕ0 , EQ[m̃(S)] � 0, from which the
second equality follows.

The converse inequality follows from standard arguments, and hence, we have obtained πΩ∗,ϕ0(g) �
supQ∈} f

Ω,ϕ0

EQ[g] � supQ∈}̃ f
Ω,ϕ0

EQ[g]. The equality with the supremum over }Ω,ϕ0 and }̃Ω,ϕ0 follows from the
same argument for the proof of theorem 1.1, step 2, in Burzoni et al. [11]. □
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Proof of Theorem 3. (3) ⇒ (2) and (2) ⇒ (1) are obvious.
Step 1. To show that (1) implies (3), suppose there is no uniformly strong arbitrage on Ω in !Φ(F̃). We first

know from Proposition 4 that }Ω,ϕ0 �� ∅. We can use a variational argument to deduce the following equalities:
fix an arbitrary K > 0 and let m̃ : Rd×(T+1)

+ → R defined as in Equation (35):

πΩ∗,Φ(g(S)) � inf
X∈Lin(Φ/{ϕ0})

πΩ∗,ϕ0(g(S) − X)
� inf

X∈Lin(Φ/{ϕ0})
sup

Q∈}Ω,ϕ0

EQ[g(S) − X] (36)

� inf
X∈Lin(Φ/{ϕ0})

sup
Q∈}Ω,ϕ0

EQ[g(S) − X − Km̃(S)], (37)

where the second equality follows from Proposition 4. Denote by 4 (respectively, 4̃) the set of law of S under
the measures Q ∈ }Ω,ϕ0 (respectively, Q ∈ }̃Ω,ϕ0 ) and write Lin({gi}i∈I/{0}) for the set of finite linear combinations
of elements in {gi}i∈I/{0}. Observe that from step 1 of the proof of theorem 1.3 in Acciaio et al. [1] 4̃ is weakly
compact, and hence, the same is true for 4 (the weak closure of 4).

By a change of variable, we have

inf
X∈Lin(Φ/{ϕ0})

sup
Q∈}Ω,ϕ0

EQ[g(S) − X − Km̃(S)] � inf
G∈Lin({gi}i∈I/{0})

sup
Q∈4

EQ[ g̃(S)],

where S :� (St)Tt�0 is the canonical process on R
d×(T+1)
+ and g̃ � g − G − Km̃. We aim at applying min–max theorem

(see corollary 2 in Terkelsen [49]) to the compact convex set 4, the convex set Lin({gi}i∈I/{0}), and the function

f (Q,G) �
∫
R

d × (T+1)
+

(
g(s0, . . . , sT) − G(s0, . . . , sT) − Km̃(s0, . . . , sT)

)
dQ(s0, . . . , sn).

Clearly, f is affine in each of the variables. Furthermore, we show that f (·,G) is upper semicontinuous on 4. To
see this, fix G ∈ Lin({gi}i∈I/{0}). By definition of f , we have that

f (Q,G) � EQ[ g̃(S)]. (38)

It follows from Assumption 1 and Equation (8) that g̃ is bounded from above. Hence, for every sequence of
{Qn}n ∈ 4 with Qn → Q as n → ∞ for some Q weakly, we have

lim
n→∞EQn

[ g̃+(S)] ≤ EQ[ g̃+(S)]
by Portmanteau theorem and

lim inf
n→∞ EQn

[ g̃−(S)] ≥ EQ[̃g−(S)]

by Fatou’s lemma, where g̃ :� g̃+ − g̃− with g̃+ :� max{ g̃, 0}, g̃− :� (−g̃)+. Then
lim sup

n→∞
f (Qn,G) � lim sup

n→∞
EQn[ g̃(S)] ≤ EQ[ g̃(S)] � f (Q,G).

Therefore, the assumptions of corollary 2 in Terkelsen [49] are satisfied, and we have, by recalling 4 ⊆ 4
and Equation (37),

πΩ∗,Φ(g(S)) � inf
X∈Lin(Φ{ϕ0})

sup
Q∈}Ω,ϕ0

EQ[g(S) − X − Km̃(S)]

� inf
G∈Lin({gi}i∈I/{0})

sup
Q∈4

EQ[g(S) − G(S) − Km̃(S)]
≤ inf

G∈Lin({gi}i∈I/{0})
sup
Q∈4

EQ[g(S) − G(S) − Km̃(S)]
� sup

Q∈4
inf

G∈Lin({gi}i∈I/{0})
EQ[g(S) − G(S) − Km̃(S)]

≤ sup
Q∈4̃

inf
G∈Lin({gi}i∈I/{0})

EQ[g(S) − G(S) − Km̃(S)]
� sup

Q∈}̃Ω,ϕ0

inf
X∈Lin(Φ/{ϕ0})

EQ[g(S) − X − Km̃(S)]. (39)
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Take g � 0. If }̃Ω,Φ � ∅, then
sup

Q∈}̃Ω,ϕ0

inf
X∈Lin(Φ/{ϕ0})

EQ[−X − Km̃(S)] � −∞,

and hence, πΩ∗,Φ(0) � −∞, which contradicts the no-arbitrage assumption. Therefore, we have (1) implies (3).
Step 2. To show the pricing–hedging duality, suppose now }̃Ω,Φ �� ∅. If Q /∈ }̃Ω,Φ, then

inf
X∈Lin(Φ/{ϕ0})

EQ[g(S) − X − Km̃(S)] � −∞.

Therefore, in Equation (39), it suffices to look at measures in }̃Ω,Φ �� ∅ only, and hence, we obtain

πΩ∗,Φ(g(S)) ≤ sup
Q∈}̃Ω,Φ

EQ[g(S) − Km̃(S)]

≤ sup
Q∈}̃Ω,Φ

EQ[g(S)] + K sup
Q∈}̃Ω,Φ

EQ[−m̃(S)]
� sup

Q∈}̃Ω,Φ

EQ[g(S)] + K(T + 1) sup
Q∈}̃Ω,Φ

EQ[−g0(S)].

Because −g0 is bounded from above, the quantity supQ∈}̃Ω,Φ
EQ[−g0(S)] is finite, and by recalling that K > 0 is

arbitrary, we get the thesis for K ↓ 0. □

Appendix
Let X be a Polish space. The so-called projective hierarchy (see Kechris [34, chapter V]) is constructed as follows. The first
level is composed of the analytic sets Σ1

1 (projections of closed subsets of X × NN), the coanalytic sets Π1
1 (complementary of

analytic sets), and the Borel sets Δ1
1 � Σ1

1 ∩Π1
1. The subsequent levels are defined iteratively through the operations of

projection and complementation, namely

Σ1
n+1 � projections of Π1

n subsets of X × NN,

Π1
n+1 � complementary of sets in Σ1

n+1,
Δ1
n+1 � Σ1

n+1 ∩Π1
n+1.

From the definition it is clear that Σ1
n ⊆ Σ1

n+1 for any n ∈ N, and analogous inclusions hold for Π1
n and Δ1

n. Sets in the union of
the projective classes (also called Lusin classes) are called projective sets, which we denote by Λ :�⋃∞

n�1Δ1
n � ⋃∞

n�1Σ1
n �

⋃∞
n�1Π1

n.

Remark A.1. We observe that Σ1
1 ∪Π1

1 is a sigma-algebra that actually coincides with ^!. Moreover, Σ1
1 ∪Π1

1 � ^! ⊆ Δ1
2.

We first recall the following result from Kechris [34] (see exercise 37.3).

Lemma A.1. Let f : X �→ Rk be Borel measurable. For any n ∈ N,

1. f −1(Σ1
n) ⊆ Σ1

n.
2. f (Σ1

n) ⊆ Σ1
n.

The following is a consequence of the previous lemma.

Lemma A.2. Let f : X �→ Rk be Borel measurable. For any n ∈ N,
1. f −1(σ(Σ1

n)) ⊆ σ(Σ1
n).

2. f (σ(Σ1
n)) ⊆ Σ1

n+1.

Proof. From Lemma A.1, the first claim holds for Σ1
n, which generates the sigma-algebra. In particular, Σ1

n is contained in

A ∈ σ(Σ1
n) | f −1(A) ∈ σ(Σ1

n)
{ } ⊆ σ(Σ1

n).
Because this set is a sigma-algebra, it also contains σ(Σ1

n), from which the claim follows. For the second assertion, we recall
that Δ1

n is a sigma-algebra for any n ∈ N (see proposition 37.1 in Kechris [34]). In particular,

σ(Σ1
n) ⊆ σ(Σ1

n ∪Π1
n) ⊆ Δ1

n+1 ⊆ Σ1
n+1.

Because, from Lemma A.1, f (Σ1
n+1) ⊆ Σ1

n+1, the thesis follows. □
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Remark A.2. We recall that under the axiom of projective determinacy the class Λ and, hence, also ^pr is included in the
universal completion of @X (see theorem 38.17 in Kechris [34]). This axiom has been thoroughly studied in set theory, and it is
implied, for example, by the existence of infinitely many Woodin cardinals (see, e.g., Martin and Steel [37]).

A.1. Remark on Conditional Supports
Let & ⊆ @X be a countably generated sub σ-algebra of @X. Then there exists a proper regular conditional probability, that

is, a function P&(·, ·) : (X,@X) �→ [0, 1] such that
1. For all ω ∈ Ω, P&(ω, ·) is a probability measure on @X.
2. For each (fixed) B ∈ @X, the function P&(·,B) is &-measurable and a version of EP[1B | &](·) (here the null set on which they

differ depends on B).
3. There exists N ∈ & with P(N) � 0 such that P&(ω,B) � 1B(ω) for ω ∈ X\N and B ∈ & (here the null set on which they

differ does not depend on B); moreover, for all ω ∈ X \N, we have P&(ω,Aω) � 1, where Aω � ⋂{A : ω ∈ A, A ∈ &} ∈ &.
4. For every A ∈ & and B ∈ @X, we have P(A ∩ B) � ∫

A P&(ω,B)P(dω).
We now consider a measurable ξ : X → Rd and Pξ : X ×@Rd → [0, 1] defined by

Pξ(ω,B) :�P&(ω, {ω̃ ∈ Aω | ξ(ω̃) ∈ B}),
and observe that from (1) and with N as in (3), for any ω ∈ X \N, Pξ(ω, ·) is a probability measure on (Rd,@Rd ). Finally, we
let Bε(x) denote the ball of radius ε with center in x, and we introduce the closed valued random set

ω → χ&(ω) :� {x ∈ Rd | Pξ(ω,Bε(x))> 0 ∀ ε> 0}, (A.1)

for ω ∈ X \N and Rd otherwise. Then χ& is &-measurable because, for any open set O ⊆ Rd, we have

{ω ∈ X | χ&(ω) ∩O �� ∅} � N ∪ {ω ∈ X \N | Pξ(ω,O)> 0} � N ∪ {ω ∈X \N | P&(ω, ξ−1(O) ∩ Aω)> 0},
with the latter belonging to & from (2) and (3). By definition, χ&(ω) is the support of Pξ(ω, ·), and therefore, for every ω ∈ X,
Pξ(ω, χ&(ω)) � 1. Notice that because the map χ& is &-measurable, then for ω ∈ X we have χ&(ω) � χ&(ω̃) for all ω̃ ∈ Aω.

Lemma A.3. Under the previous assumption, we have {ω ∈ X | ξ(ω) ∈ χ&(ω)} ∈ @X and P({ω ∈ X | ξ(ω) ∈ χ&(ω)}) � 1.

Proof. Set B :� {ω ∈ X | ξ(ω) ∈ χ&(ω)}. B ∈ @X follows from the measurability of ξ and χ&. From the properties of regular
conditional probability, we have

P(B) � P(B ∩ X) �
∫
X
P&(ω,B)P(dω).

Consider the atom Aω � ∩{A : ω ∈ A, A ∈ &}. From property (3), we have P&(ω,Aω) � 1 for any ω ∈ X \N. Therefore, for
every ω ∈ X \N, we deduce

P&(ω,B) � P&(ω,B ∩ Aω) � P&(ω, {ω̃ ∈ Aω | ξ(ω̃) ∈ χ&(ω̃)})
� P&(ω, {ω̃ ∈ Aω | ξ(ω̃) ∈ χ&(ω)}) � Pξ(ω, χ&(ω)) � 1.

Therefore,

P(B) �
∫
X
P&(ω,B)P(dω) �

∫
X
1X\N(ω)P(dω) � 1. □

Endnote
1This setting has been often described as “model independent,” but we see it as a modelling choice with very weak assumptions.
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[28] Henry-Labordère P, Obłój J, Spoida P, Touzi N (2016) The maximum maximum of a martingale with given n marginals. Ann. Appl. Prob.

26(1):1–44.
[29] Hobson D (1998) Robust hedging of the lookback option. Finance Stochastics 2(4):329–347.
[30] Hobson D, Klimmek M (2013) Maximising functionals of the maximum in the Skorokhod embedding problem and an application to

variance swaps. Ann. Appl. Probab. 23(5):2020–2052.
[31] Hobson D, Neuberger A (2012) Robust bounds for forward start options. Math. Finance 22(1):31–56.
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