
Cavity QED quantum phase gates for a single longitudinal mode of the intracavity field

R. García-Maraver,1 R. Corbalán,1 K. Eckert,2 S. Rebić,3 M. Artoni,4,5 and J. Mompart1,*
1Departament de Física, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain

2Institut of Theoretical Physics, University of Hannover, Appelstrasse 2, D-30167, Hannover, Germany
3INFM and Department of Physics, Università di Camerino, 62032 Camerino, Italy

4Department of Chemistry and Physics of Materials, Via Valotti 9, 25133 Brescia, Italy
5European Laboratory for Non-Linear Spectroscopy, Via N. Carrara 1, 50019 Sesto Fiorentino, Italy

(Received 29 July 2004; published 30 December 2004)

A single three-level atom driven by a longitudinal mode of a high-Q cavity is used to implement two-qubit
quantum phase gates for the intracavity field. The two qubits are associated with the zero- and one-photon Fock
states of each of the two opposite circular polarization states of the field. The three-level atom mediates the
conditional phase gate provided the two polarization states and the atom interact in a V-type configuration and
the two-photon resonance condition is satisfied. Microwave and optical implementations are discussed with
gate fidelities being evaluated against several decoherence mechanisms such as atomic velocity fluctuations or
the presence of a weak magnetic field. The use of coherent states for both polarization states is investigated to
assess the entanglement capability of the proposed quantum gates.
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I. INTRODUCTION

Throughout the last decade, cavity quantum electrody-
namics(CQED) [1–10] in both the microwave and optical
regimes has been used to test the most striking quantum
features of single atoms interacting with zero-, one-, or few-
photon states. Some relevant examples are the observation of
photon trapping states and sub-Poissonian statistics in the
micromaser[1], the generation of photon number states on
demand[2], the single-atom microlaser[3], nonlinear optics
with single atoms and photons[4], and nonclassical statistics
in wave-particle quantum correlations[5]. In particular, a
series of seminal papers by Haroche and co-workers[6–10]
have shown that CQED with long-lived atomic Rydberg
states provides one of the simplest systems to unambigu-
ously test the nonlocal nature of quantum mechanics. In all
these experiments, the Rabi oscillations between a(vacuum)
quantum field and an effectivetwo-level atomwere used to
entangle the cavity field with the atom. Moreover, the pas-
sage of subsequent atoms through the microwave cavity with
well controlled velocities was used to entangle them via ei-
ther real[6] or virtual photons[10] allowing, therefore, the
creation of massive Einstein-Podolsky-Rosen pairs.

CQED devices hold great promise as basic tools for quan-
tum networks[11] since they provide an interface between
computation and communication, i.e., between atoms and
photons. In this context, it is a very important task to look for
techniques to quantum engineer the state of the intracavity
field. Very recently the use of athree-level atomin a cascade
configuration[12] has been suggested to entangle two differ-
ent longitudinal modes of the radiation field in one single
step. In particular, single- and two-bit quantum gates were
discussed with the number of photons(n=0 or 1) of each
mode being the quantum bit of information. Although this

proposal is very interesting its eventual implementation pre-
sents two main drawbacks:(i) it requires a high-Q cavity that
sustains two different longitudinal radiation modes; and(ii )
both modes must be adjusted to very particular frequencies:
one mode must be on resonance with one of the bare atomic
transition frequencies while the second one must be tuned to
one of the dressed states built up by the first longitudinal
mode. We note here that three- and multilevel atoms have
been extensively investigated in the past as a successful tool
for many quantum optics applications[13] and, in particular,
for quantum information[4,14–17].

In this paper, we propose a scheme that, while also using
a three-level atom, overcomes the disadvantages of the pre-
viously discussed proposal[12]. We make use of a single
longitudinal mode of the cavity to implement a quantum
phase gate(QPG) between the two qubits associated with the
zero- and single-photon states of the two opposite circular
polarization states of this mode. A precise control of the in-
teraction time between the three-level atom and the mode
will yield the conditional evolution needed to implement the
QPG, provided that the atom and the two polarization states
interact in the so-called V-type configuration and that the
two-photon resonance condition is satisfied.

The paper is organized as follows. In Sec. II we briefly
review the interaction of a single three-level atom with a
few-photon field, discuss the basic ideas of the QPG imple-
mentation, and determine the explicit conditions for its real-
ization. In Sec. III we address some practical considerations
for the physical implementation of QPGs in both microwave
and optical regimes. The application of the QPG to the int-
racavity field with both circular polarizations in a coherent
state is discussed in Sec. IV as a method to entangle the
intracavity field. Finally, we summarize the proposal and
present the main conclusions in Sec. V.

II. MODEL

The model we use in this paper is sketched in Fig. 1(a)
and consists of a high-Q cavity with a single longitudinal*Electronic address: jordi.mompart@uab.es
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mode at angular frequencyvc and a three-level atom with its
two allowed transition frequencies denoted byvac and vbc.
These two atomic transitions couple to the longitudinal cav-
ity mode via the two opposite circular polarizationss± with
coupling ratesg± and detuningsD+=vc−vac and D−=vc
−vbc. For simplicity, in what follows we consider the com-
pletely symmetric case given byg+=g−;g andD+=D−;D.
Later on, in Sec. III, we address the case whereD+ÞD− due
to the Zeeman effect caused by a stray magnetic field.

A. Setting up the idea

It is very well known[18] that under the two-photon reso-
nance condition the V-type system under investigation can be
appropriately described in the bright-dark states basis where
the ground stateucl couples only to a particular combination
of the atomic bare statesual and ubl, namely, the bright state
uBl, while remaining uncoupled to the orthogonal superposi-
tion, i.e., the dark stateuDl. In this case, the three-level atom
in interaction with the two polarization modes becomes ef-
fectively a two-level system, i.e., the atom exhibits Rabi os-
cillations between the atomic ground stateucl and the bright
stateuBl. Thus, a single complete Rabi oscillation takes the
system back to the initial state with a global phase that de-
pends on the detuning. On resonance ap phase is attained.
These features of the V-type three-level system will be used
later on to quantum engineer the intracavity field.

In what follows we define a qubit by the vacuum and
single-photon Fock states. Thus, a single longitudinal cavity
mode can hold two qubits, one for the right-handss+d and
one for the left-handss−d circular polarization. To drive the
conditional evolution between these two qubits, a single
three-level atom is initially prepared in the internal ground
state ucl and then the interaction is switched on for a con-
trolled period of time. The particular mechanism to switch on
and off the interaction will depend on the physical imple-
mentation and, accordingly, is discussed in the next section.
Using the notationuil ^ u jl ^ ukl;ui , j ,kl where, respectively,
i denotes the atomic state whilej andk denote the number of
s+- and s−-polarized photons, the final state of the system

after the interaction can be written, in general, as[see Fig.
1(b)]

Input state Output state

uc,0,0l → uc,0,0l,

uc,1,0l → c10uc,1,0l + a00ua,0,0l,

uc,0,1l → c01uc,0,1l + b00ub,0,0l,

uc,1,1l → c11uc,1,1l + B01uB01l, s1d

where thecij , a00, b00, and B01 are probability amplitudes
whose explicit value depends on the detuning and the inter-
action time. For the symmetric case considered herec01
=c10 and a00=b00. uB01l;s1/Î2dsua,0 ,1l+ ub,1 ,0ld fuD01l
;s1/Î2dsua,0 ,1l− ub,1 ,0ldg is the bright(dark) state com-
bination of ua,0 ,1l and ub,1 ,0l. For interaction times such
that complete Rabi oscillations occur, i.e., times for which
the atom is brought back to the internal stateucl, only those
phases are left whose explicit value depends on the number
of oscillations and the cavity detuning. Therefore, looking
for interaction times that yield complete Rabi oscillations
both when the initial state isuc,1 ,0l (and, therefore, also for
uc,0 ,1l) and when it isuc,1 ,1l, two different QPGs can be
implemented:

Û1 = eipd j1dk1uc, j ,klkc, j ,ku, s2d

Û2 = − eipd j0dk0uc, j ,klkc, j ,ku. s3d

Notice thatÛ1 introduces only one phase, equal top, when

the input state isuc,1 ,1l. Û2 on the contrary leavesuc,0 ,0l
unchanged, but introduces a phasep to the other three basis
states. Each of these two QPGs together with arbitrary single
qubit gates[12] for both circular polarization states yields a
universal set of quantum gates and, therefore, these two
QPGs can be used to entangle the two polarization states.

We want to note that both V- andL-type three-level
atomic configurations are suitable for the proposal here dis-
cussed. The additional advantage of using a V-type scheme is
that the common stateucl has lower energy than the other
two atomic states and can be radiatively stable if it is the
ground state.

B. Conditions for the gate operation

To look for the conditions needed to implement(2) and
(3) we start by writing down the Hamiltonian of the system.
In the rotating-wave approximation and the interaction pic-
ture, the truncated Hamiltonian of the system restricted to the
computational basis readss"=1d

H = gua,0,0lkc,1,0ue−iDt + gub,0,0lkc,0,1ue−iDt + gua,0,1l

3kc,1,1ue−iDt + gub,1,0lkc,1,1ue−iDt + H . c .

= ge−iDtua,0,0lkc,1,0u + ge−iDtub,0,0lkc,0,1u

+ Î2g e−iDtuB01lkc,1,1u + H.c., s4d

FIG. 1. (a) V-type three-level configuration under investigation.
Hereg+sg−d is the vaccuum Rabi frequency of the coupling between
the atom and the right-(left-)hand circularly polarized field, and
D+sD−d is the corresponding cavity-transition detuning.(b) Dressed-
state picture of(a) for g+=g−s;gd , vac=vbcs;v0d, and D+=D−
s;Dd. uB01lsuD01ld is the bright sdarkd state combination of
ua,0 ,1l and ub,1 ,0l ssee textd.
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whereg is the vacuum Rabi frequency. It will be shown in
Sec. III that for a suitably chosen set of parameters the cavity
decay and the spontaneous emission in modes other than the
cavity mode can be neglected, based on time-scale argu-
ments. Accordingly, we now solve the Schrödinger equation
for this Hamiltonian which, in our case, will provide the
same information as the density matrix of the corresponding
master equation.

It is clear from Eq.(4) that we deal with three uncoupled
two-level systems and a simple analytical solution can be
obtained by integrating the corresponding Schrödinger equa-
tion. In each of these three cases, the probability amplitude
of stateuc, j ,kl evolves in time according to

cjkstd ; kc, j ,kucstdl =
eiDt/2

2
FS1 −

D

V jk
DeiV jkt/2

+ S1 +
D

V jk
De−iV jkt/2G , s5d

with V01=V10=Î4g2+D2 andV11=Î8g2+D2, and where we
have assumedcjkst=0d=1 for j ,k=0, 1. Note from Eq.(4)
thatc00;kc,0 ,0ucstdl does not evolve in time. Therefore, to
implement the first gate transformation(2) one needs

Dt

2
= 2pm,

V01t

2
= 2pn,

V11t

2
= s2p + 1dp, s6d

where the integersm, n, andp should satisfy the inequality
2p+1.2n.2mù0. Using the definition ofV01 andV11 it
follows from Eq.(6) that

s2p + 1d2 = 8n2 − 4m2, s7d

which is a Diophantine-type equation, whereby for a fixedn
the value ofm is determined through the detuningD accord-
ing to the relationD /g=2m/În2−m2. The problem then re-
duces to finding thep closest to an integer value that satisfies
Eq. (7). Similarly, the implementation of the second quantum
phase gate(3) requires

Dt

2
= 2pm,

V01t

2
= s2n + 1dp,

V11t

2
= s2p + 1dp, s8d

leading to the equation

s2p + 1d2 = 2s2n + 1d2 − 4m2. s9d

The corresponding inequality reads 2p+1.2n+1.2mù0,
while the relation betweenm, n, and the detuning isD /g
=2m/Îs2n+1d2−m2. We report in Table I the best numerical
solutions of Eqs.(7) and (9) that, in addition, minimize the
interaction timegt. Note that the values for the detuning and
the interaction time given in Table I are made dimensionless
through the vacuum Rabi frequencyg, which means that
these results are general in the sense that they do not rely on
any specific physical implementation.

In order to check the validity of our proposal, we have
numerically integrated the Schrödinger equation for the four
different input states in(1) and checked for both QPGs how
much the output states deviate in amplitude and phase from
the exact phase gate transformation. We have characterized
the deviation by the following fidelity:

F = KU o
j ,k=0,1

ucjk
outu2eidf jkU2L , s10d

wherecjk
out;kc, j ,kuc jk

outl , df jk is the difference between the
phase acquired during the gate operation and the exact phase
of the gate defined in Eqs.(2) and (3), andk¯l denotes the
average over the four different input states. Figure 2 shows
the time evolution of the fidelity for two different values of
the cavity detuning:(a) D=0, and (b) D=2.35g. Fidelities
oscillate with peak values close toF=1 for the particular
interaction time values predicted in Table I.

TABLE I. Best numerical solutions to Eqs.(7) and(9), sorted by
the required interaction time. DetuningD and interaction timet are
given in units ofg andg−1, respectively.

Gate m n p D /g gt

Û1
0 6 7.985 0 37.7

Û2
8 10 12.01 2.353 42.73

Û1
12 15 16.993 2.667 56.55

Û1
4 12 15.992 0.707 71.09

Û2
18 21 24.005 3.062 73.88

Û2
10 15 19.007 1.689 74.41

Û1
24 28 30.996 3.328 90.61

Û2
0 14 20.066 0 91.10

Û1
25 29 32.011 3.402 92.34

Û2
16 22 27.004 2.022 99.39

FIG. 2. Time evolution of the fidelityF for both quantum phase

gates(solid curve forÛ1 and dotted curve forÛ2). (a) D=0, and(b)
D=2.35g.
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III. PHYSICAL IMPLEMENTATIONS

Up to this point we have discussed the realization of the
QPGs for the intracavity field in general terms. Below we
give some practical considerations regarding the physical
implementation of the previous ideas in both microwave and
optical regimes.

A. Microwave regime

In the microwave regime, single three-level Rydberg at-
oms crossing the high-Q cavity could be used to implement
the QPGs for the intracavity field. The interaction time can
be controlled by an accurate selection of the velocity of the
incident atoms. Typically, Rydberg atoms used in CQED
yield vacuum-Rabi frequencies on the order ofg/2p
.50 kHz [6], which would imply gate times of a few tenths
of a millisecond for the QPGs discussed in this paper. This
time must be compared with the lifetime of a photon in a
high-Q microwave cavity, which can be as large as a few
milliseconds, and with the atomic lifetime in Rydberg states,
which can be tens of milliseconds[6].

We have investigated the robustness of the previously dis-
cussed QPGs against some of the experimental imperfections
existing in the microwave regime. Figure 3 shows the fidelity
for the implementation for the first gate in Table I as a func-
tion of both the atomic velocity through the cavity and the
intensity of a uniform stray magnetic field along the cavity
axis. The magnetic field plays in general a negative role as it
breaks the degeneracy between atomic statesual and ubl via
the Zeeman effect, i.e., it yieldsD+=−D−Þ0, such that the
closed two-level picture for theuc,1 ,1l↔ uB01l transition is
no longer valid. The relationship between the cavity detuning
and the strength of the magnetic field shown in Fig. 3 is
given by"D+=mBgJmJB wheregJ is the gyromagnetic factor

andmB is the Bohr magneton. To be specific, the valuesmJ
=1 andgJ=3/2 corresponding toJ=1, L=1, andS=1 have
been chosen.

Thus, gate realizations with fidelitiesF.0.99 demand an
accuracy of the atomic velocities on the order of a few tenths
of meters per second and magnetic fields smaller than a few
tenths of milligauss. Both requirements could be achieved in
present CQED experiments with Rydberg atoms[10]. Simi-
lar results are obtained for the rest of the QPGs shown in
Table I.

B. Optical regime

By working in the optical regime, all the cryogenic re-
quirements necessary in the microwave case to reduce the
thermal photon noise can be avoided. In the optical regime, a
possible atomic candidate to drive the QPG in the intracavity
field is strontium [19]. Depending on the specific fine-
structure component and on its four natural isotopes[three of
which are bosonic,88Sr (relative abundance 82%), 86Sr
(10%), and 84Sr (0.5%)], a wide choice of transitions with
different g’s, linewidths, and wavelengths are possible. The
intercombination line 51S0–5 3P1 of 88Sr, in particular, spans
two transitions that couple the ground state with vanishing
nuclear spin with two fairly long-livedst=20 msd degenerate
J=1 states. They both fall in the visible rangesl=689 nmd,
and hence are easily accessible with common semiconductor
lasers; and both can acquire a large vacuum Rabi frequency
g/2p.25 MHz when high-finesse microcavitiessF.3
3106d are used[20]. The coherent atom-field interaction
needs to dominate over decoherence rates; hence the strong
coupling regime of CQED is required. For the cavity decay
rate k and spontaneous emission rateg, this means thatg
@ sk ,gd. As the vacuum Rabi frequencyg is not constant
throughout the cavity mode volume, optimal results will be
obtained for an atom trapped at the antinode of the cavity
field. This is experimentally viable, as shown, e.g., in Refs.
[21], where trapping times up to 1 s have been reported in
the strong-coupling regime. A possible mechanism to control
the interaction time could be to switch off and on a magnetic
field that breaks both the one- and two-photon resonance
conditions, and therefore inhibits the dynamical evolution of
the system. Results shown in Table I suggest that the gate
operation can be implemented over timestgate of the order of
1 µs. Due to the very high finesse of the microcavities[20],
lifetimes tcav of the order of a few microseconds can possi-
bly be achieved, implyingtgateøtcav, which is in turn appre-
ciably less than the atomic natural lifetimet. For the realiza-
tion of gate fidelitiesF.0.99, the conditiontgate!tcav needs
to be satisfied. This is feasible, given the rapid progress of
optical microcavities over recent years[20,21].

IV. ENTANGLING THE INTRACAVITY FIELD

Application of a two-qubit QPG to an intracavity field
with well defined photon number clearly produces only a
global phase. For quantum computation purposes one also
needs to produce single-qubit(local) operations for each po-
larization. Methods for the implementation of single-qubit

FIG. 3. Fidelity of the firstÛ1 gate in Table I in the parameter
plane atomic velocity versus the intensity of a stray uniform mag-
netic field along the cavity axis. The parameter settings areD
=0, g=2p350 kHz, and an effective cavity length ofL=4 cm.
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operations for the intracavity field have been considered in
[12]. To only demonstrate the entanglement capability, there
is a very simple and accessible approach to entangle the two
circular polarizations of the intracavity field. We will not
start with a well defined photon number in each mode, but
initially inject into the high-Q cavity a product state consist-
ing of a coherent state for both circular polarizations:

ua+,a−l ; e−ua+u2/2o
n=0

`
a+

n

În!
unl ^ e−ua−u2/2o

m=0

`
a−

m

Îm!
uml.

s11d

Here ua+u2 sua−u2d is the mean photon number of thes+ ss−d
polarization. This state is clearly separable. To quantify the
entanglement between the two polarization states we use the
concurrence [22] C;2uc00c11−c01c10u, where cjk

;kc, j ,kuÛsua+,a−l where s=1,2. In Fig. 4 we show the
concurrence after the interaction with the atom as a function
of the mean photon number of each polarization. Notice that
C takes into account only the Hilbert space of zero and one
photon in each polarization mode, while other correlations
are ignored. The maximum concurrenceC=0.73 is reached
when the mean photon number of both left and right polar-
izations is equal tokNl=0.5.

V. CONCLUSIONS

We have proposed a CQED technique to quantum engi-
neer the intracavity field. Single three-level atoms are used to
implement two different QPGs between the vacuum and
single-photon states of the two opposite circular polariza-
tions of a single longitudinal mode. QPG realizations with
fidelities above 0.99 and gate times of around 0.1 ms for the
microwave regime and a few microseconds for the optical
regime can be attained, which lie below achievable photon
lifetimes in high-Q cavities. However, to evaluate the fidelity
also in the case where the gate times are closer to the cavity
lifetime, the cavity decay should be included explicitly in our
calculations. Some practical considerations such as the role
of atomic velocity fluctuations or the presence of a uniform
stray magnetic field along the cavity axis have been ad-
dressed, showing that the QPGs here discussed can be imple-
mented with state of the art technology. We have applied a
QPG in the case where each circular polarization of the int-
racavity field is initially in a coherent state. This, as has been
demonstrated, constitutes a simple method to entangle the
two polarization states of the intracavity field. We want to
note that the ideas here discussed to quantum engineer the
intracavity field could be extended to other CQED physical
systems of current interest, e.g., solid state devices[23], such
as superconducting electrical circuits, and superconducting
quantum interference devices[24,25]. Finally, we would like
to note also that the use of three-level atoms in the optical
regime has been previously discussed in the CQED literature
[4,15]. For instance, single three-level atoms in aL-type
configuration have been used recently to deterministically
produce a single-photon source[15].
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