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In a recent paperfPhys. Rev. A68, 033803s2003dg experimental results on a double-slit configuration with
two entangled bosons are presented. The authors argue that their data contradicts the de Broglie–Bohm inter-
pretation of quantum mechanics. In this Comment we show that this conclusion is incorrect.
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I. INTRODUCTION

The de Broglie–BohmsdBBd formalism of quantum me-
chanicsf1–3g was initially proposed by Louis de Broglie in
1926, and finally formulated, in mathematical terms, by
David Bohm in 1952. Since then, all attempts to prove a
measurable difference with the Copenhagen interpretation,
named here standard quantum mechanicssSQMd, have been
unfruitful f1–3g. In a recent articlef4g, experimental data for
a two-bosons system impinging upon a double slit are com-
pared with dBB predictions obtained by two different theo-
retical groupsf5–9g. The authors conclude that their experi-
mental data reproduces the SQM predictions and contradicts
the dBB theory. In particular, they wrote: “Thus, if the the-
oretical prediction is confirmed, our result will represent the
first negative test of the de Broglie–Bohm theory.” The goal
of this Comment is to show that their experimental results do
not provide any negative test of the dBB theory, but only
verify a particular quantum-optical prediction. First, in Sec.
II, we explain that the well-knownparticle conservation law
of the dBB theory guarantees that Bohm trajectories exactly
reproduce SQM observable results. Then, in order to provide
an additional evidence, we show that Bohm trajectories re-
produce SQM predictions for the particular two-entangled
bosons system studied in Refs.f5–8g. Finally, in Sec. III, we
discuss the differences between the wave function used to
deduce the dBB predictions and the one used for obtaining
SQM results.

II. PARTICLE CONSERVATION LAW

In this section we will show that the conclusion drawn in
Ref. f4g: “The analysis of these data allows a test of standard
quantum mechanics against the de Broglie–Bohm theory,” is
in clear contradiction with a general and well-known prop-
erty of the dBB theory. Let us sketch the essential points of
this property known as theparticle conservation lawfor
Bohm trajectoriesf3g. We define a two-particle system in a
two-dimensional space by the wave function
Csx1,x2,y1,y2,td, wherexi and yi are the positions of par-
ticles i =h1,2j. The velocity vector of each particle can be
defined, according to the dBB theory, as

v jsx1,x2,y1,y2,td =
"

m
ImH ] Csx1,x2,y1,y2,td/] j

Csx1,x2,y1,y2,td
J , s1d

where the indexj represents each one of the four spatial
variables j =hx1,y1,x2 or y2j. We rewrite the many particle

wave function in the polar form: Csx1,x2,y1,y2,td
=Rsx1,x2,y1,y2,tdexphiSsx1,x2,y1,y2,td /"j and introduce it
into the Schrödinger equation. Then, aparticle conservation
law appears naturally within the dBB formalismf1–3g when
the imaginary part of the Schrödinger equation is considered:

] R2sx1,x2,y1,y2,td
] t

+ o
j

]

] j
fR2sx1,x2,y1,y2,tdv jsx1,x2,y1,y2,tdg = 0. s2d

This equation explicitly guarantees that the modulus of the
SQM wave function is always reproduced by counting Bohm
trajectories.

Let us point out the importance of Eq.s2d. According to
the dBB theory, the initial distribution of Bohm trajectories
at time t has to be proportional to the probability presence
R2sx1,x2,y1,y2,td at each configuration pointsfor a large
numberN→` of Bohm particlesd. Then, at timet+dt, Eq.
s2d guarantees that the number of particles at each configu-
ration point is also proportional toR2sx1,x2,y1,y2,t+dtd,
when each particle moves the infinitesimal distance
v jsx1,x2,y1,y2,tddt f3,10,11g. Therefore, once the distribu-
tion of particles is correctly selected at timet, Eq. s2d guar-
antees that these Bohm trajectories will also reproduce the
modulus of the wave function at any other time.

At this point let us discuss the origin of the misleading
predictions provided by Refs.f5–8g. Let us notice that any
arbitrary limitations for the selection of the initial positions
of Bohm trajectories that is incompatible with the initial dis-
tribution of Bohm particles mentioned beforefdetermined by
R2sx1,x2,y1,y2,td= uCsx1,x2,y1,y2,tdu2g is totally inconsis-
tent with the basics of the dBB theoryf3g. If such “arbitrary”
constrictions are imposed “by hand” on the initial positions,
then only a subset of the possible trajectories is considered,
and hence the predictions are not consistent with the dBB
theory itself. This is exactly the mistake of Refs.f5–8g. For
example, when the authors of Ref.f5g mention, just below
their Eq. s18d, that “if a t=0 the center of mass of the two
particles is exactly on thex axis…,” they are really assuming
that the wave function that describes the two-particle sys-
tems is not described by their wave packetfEq. s4d in Ref.
f5gg, but by a different wave function defined as an “eigen-
state” of the center of masssi.e., whose probability presence
is only different from zero at two equidistant configurations
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pointsd. This obvious explanation that invalidates the main
conclusion of Refs.f5–8g sand also the conclusions of Ref.
f4gd has already been pointed out by several different authors
before f3,12,13g. However, recently the author of Ref.f8g
has refuted this argument. He argues that at timet+dt not all
particles can be taken into account to try to reproduce
R2sx1,x2,y1,y2,t+dtd, but only the pairs of particles that ac-
complishes an additional constriction imposed on the posi-
tions of the entangled bosonsfintroduced asd(y1std+y2std) in
Eq. s15d in Ref. f8gg. However, any restriction on Bohm tra-
jectories can only come as a direct consequence of the wave
function and, then, all trajectories will satisfy it by construc-
tion. In this case, there is no need to consider such constric-
tion two times. On the contrary, if the additional constriction
is not compatible with the dBB initial distribution of par-
ticles and with Eq.s1d, then the constriction itself is incom-
patible with the dBB formulation and cannot be assumed.

In summary, the hypothetical discrepancies between the
SQM and dBB theories presented in Refs.f5–8g are not plau-
sible because they contradict the well-knownparticle con-
servation lawof the dBB theory. As a consequence, the con-
clusion of Ref.f4g against the dBB theory is also incorrect.

A. On the possibility of detecting two Bohm particles
at the same semiplane

Now, we will show, in detail, that the dBB theory applied
to the particular system described in Refs.f5–8g exactly re-
produce the SQM results. In fact, we are only providing a
particular example of the previous generalparticle conserva-
tion law consubstantial to the dBB theory. The experimental
setup presented in Ref.f4g consists on two undistinguishable
photons send simultaneously upon a double-slit scenariossee
Fig. 1d. After passing through the double slit, the two en-
tangled photons are detected simultaneously at the screensat
yD andyD8d. In Fig. 1, we define two symmetric semiplanes
snamed semiplane A and semiplane Bd separated by a line
perpendicular to the screen and located at the middle be-
tween the slits. The authors of Ref.f4g sbased on the theo-
retical work presented by two groupsf5–9gd said that the
dBB theory predicts the impossibility of detecting the two
entangled bosons, simultaneously, at the same semiplane:
“the coincidence signalsnumber of times that the particles
are detected atyD andyD8d is predictedsby the dBB theoryd
to be strictly zero when the two detectors are in the same
semiplane with respect to the double-slit symmetry axis.” On
the contrary, their experimental data and the SQM results
effectively provide the coincidence of two bosons at the
same semiplane. Here, we show that the “strictly zero” as-
sumption of Ref.f4g is false because the dBB theory can
effectively predict the coincidence of two bosons at the same
semiplane, in perfect agreement with the SQM results.

First, let us get into those seminal works of the theoretical
groupsf5–8g used by the authors of Ref.f4g to deduce their
conclusion. According to those authors, a two-boson wave
function can be written as

Csx1,x2,y1,y2,td =
1
Î2

hCAsx1,y1,tdCBsx2,y2,td

+ CAsx2,y2,tdCBsx1,y1,tdj s3d

that assures its symmetrical behavior when the particle posi-

tions are interchangedslet us notice that other definitions of
the symmetrical many-particle wave function are possibled.
Here,CA/Bsx,y,td is the wave function of a single-particle in
a two-dimensionalsx,yd spacesthe labels A and B describes
the wave packet propertiesd. Let us discuss the Gaussian
wave packet configuration described inf5,6g. According to
Eqs. s2d–s8d in Ref. f6g, a single particle in a two-
dimensional space with energyE can be defined, at any time,
by the product of a plane wave in thex direction: Jsx,td
=1/Î2p expsikxx−Et/"d and a time-dependent Gaussian
wave packet in they direction:

FA/Bsy,td = S2a2

p
D1/4 eiw

Sa4 +
4"2t2

m2 D1/4ei„kA/Bsy−yA/Bd…

3exp1−
Fy − yA/B −

"kA/B

m
tG2

a2 +
2i"t

m
2 , s4d

wherea is the spatial dispersion of the wave packet,m the
particle mass,kx is the wave vector in thex direction,kA/B its
wave vector in they direction, andw=−u−"kA

2t / s2md with
tans2ud=2"t / sma2d f14g. Each wave packet is centered at
one of the slits. ThusyA/B are the symmetrical central posi-
tion of the initial wave packetsssee Fig. 1d.

Now, let us provide a simple argumentation to show that
Bohm trajectories can be detected at the same semiplane.
According to the dBB formalismf3g, the modulus of the
wave function at the initial time uCsx1=0,x2

FIG. 1. Schematic representation of thex-y coordinate system
used in this Comment. The location of the screen, the double slit,
and the nonlinear crystal is depicted. The origin of the spatial co-
ordinatessx=0, y=0d is located in the middle, between slits. The
particle detectors are located at pointsyD andyD8 at the screen. The
anglesui are defined in thescreen regionand ui

B in the crystal
region.
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=0,y1s0d ,y2s0d ,t=0du2, determines the initial positions of all
pairs of bosons,y1s0d andy2s0d. The probability of selecting
two boson at semiplane B is not zero even if we choose a
large distance between the central positions of the wave
packets,d;yA−yB→`, or initial positions of the particles
very far from the center of the double slit,y1s0d=y2s0d→
−`. Therefore, we can always select two initial positions at
semiplane B far enough from the origin,y=0, so that the
particle positions,y1std and y2std remain in the same semi-
plane B when they arrive at the screen. We admit that the
probability of this selection can be, in general, very small,
but notstrictly zero. This small probability is enough to pro-
vide an irrefutable counterexample against theimpossibility
of detecting the two Bohm trajectories at the same semi-
plane. This argument can be generalized to any type of wave
function whose modulus tends asymptotically to zero.

At this point, in order to provide an additional numerical
evidence, we will use a quantum Monte Carlo methodf15g.
Here, we have adapted our approachf15g to the particular
two-boson system described by Eqs.s3d ands4d. For conve-
nience, we have used the wave packet parameters typical of
nanometric semiconductors with the effective mass equal to
0.067 times the free electron mass,a=17 nm, kA=0.296
3109 m−1, kB=−0.2963109 m−1 and kX=0.2893109 m−1.
The boson trajectories starts at the configuration point
(x1s0d=0,y1s0d) and (x2s0d=0,y2s0d) at t=0 fs. The bosons
positionsy1s0d andy2s0d are selected according to the initial
probability presence uC(x1s0d=0,x2s0d=0,y1s0d ,y2s0d ,t
=0)u2. The trajectories are computed by numerically integrat-
ing Bohm velocitiesfEq. s1dg for the many-particle wave
function until they reach, simultaneously, the screen at(x1
=14 nm,y1std) and (x2=14 nm,y2std) for the time t=28 fs
f16g. In Fig. 2, we show the number of times that the two
particles are detected at the screensnamedcoincidencesin
Ref. f4gd; one particle within the intervalfyD ,yD+Dyg and
the other withinfyD8 ,yD8+Dyg, whereDy=2 nm. As in Ref.
f4g, we have plotted the number of coincidences for different
configurations: one detector is located atyD8=−4 nm and the
position of the other,yD, varies along the screen. The number
of simulated pairs of bosons increases from 10 000 in Fig.
2sad to 100 000 in Fig. 2sbd, and finally to 1 000 000 pairs in
Fig. 2scd. We clearly show in Fig. 2scd that the probability of
detecting two particles simultaneously at semiplane B is dif-
ferent from zero, in contradiction with the hypothesis of Ref.
f4g. The agreement between the dBB and SQM results in Fig.
2 is excellent, when the number of simulated Bohm trajecto-
ries tends to infinityssee solid line in Fig. 2d.

In summary, the sentence argued by the authors of Ref.
f4g that “the coincidence signal is predictedsby the dBB
theoryd to be strictly zero when the two detectors are in the
same semiplane with respect to the double-slit symmetry
axis” is incorrect. As we have evidenced, the dBB theory
effectively predicts the possibility of detecting two bosons at
the same semiplane, in complete agreement with the SQM
theory. Let us notice that the authors of Refs.f5–8g in their
reply f7,8,17g to previously published argumentsf12,13g
against their predictionsssimilar to the ones presented hered,
admit the possibility of detecting two Bohm trajectories at
the same semiplanesat least for short distance between the

slits and wide spatial dispersion of the wave packetsd. Such
possibility is not mentioned or discussed by the authors of
Ref. f4g in their manuscript.

III. DIFFERENCES BETWEEN THE “MASSIVE BOSON
WAVE FUNCTION” AND THE “PHOTON WAVE

FUNCTION” USED IN REF. [4]

The previous section is devoted to showing that the con-
clusion of Ref. f4g is incorrect because it is built on the
wrong predictions of Refs.f5–8g. In this last section, we
emphasize that, indeed, the following assumption of the au-
thors of Ref.f4g: “our sexperimentald scheme realizes the
configuration recently suggested by two theoretical groups to
test the dBB theory against SQM” is also incorrect because
different wave functions are used for SQM and dBB predic-
tions. According to dBB theory, Bohm trajectories areinti-
mately connected to the wave function used to deduce its
wavelike nature. Therefore, in order to compare the SQM
and dBB predictions, the same wave function must be used
in both cases. This obvious condition has not been respected
in Ref. f4g. This inconsistency completely invalidates,a pri-
ori, any possible comparison between the SQM and dBB
results done in Ref.f4g.

We define the “photon wave function” as the expressions
used in Ref.f4g to compute the SQM results. Such “photon
wave function” is partially defined in the expressionss1d, s2d,
and s3d in Ref. f4g. Due to the complexity in the quantum-
optical parametric light conversion theory, only an analytical
expression for the coincidence pattern is provided in expres-
sion s4d of Ref. f4g. At this point, let us notice that the ex-

FIG. 2. In open squares, number of times that Bohm trajectories
of two entangled bosonssusing Gaussian wave packetsd are de-
tected simultaneously at the screen, as a function of the location of
one of the detectors,yD, when the other detector is fixed at semi-
plane B syD8=−4 nmd using a separation between slitsd;yA−yB

=20 nm. In the solid line, the SQM probability presence forx1

=x2=14 nm andt=28 fs. The total numberN of simulated pairs of
bosons isN=10 000 insad, N=100 000 insbd, andN=1 000 000 in
scd. There is an excellent agreement between SQM and dBB pre-
dictions for the coincident detection at the same semiplane.
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perimentssand also the SQM predictions from the “photon
wave function”d are obtained for massless photons, where
Maxwell equations obviously play an important role in de-
termining the interference patternf18g. However, the dBB
predictions of Refs.f5–8g are obtained for massive nonrela-
tivistic bosons where the interference pattern is described
only by the Schrödinger equationsand not by Maxwell equa-
tionsd. Therefore, not only different wave functions, but dif-
ferent theoretical frameworks have been used for the SQM
and dBB modeling of the experimental setup. In factssee
Chap. 12 in Ref.f3gd the attempt to extend the causal inter-
pretation of the quantum theory to cover photonsswith rela-
tivistic velocitiesd has not been extensively investigated yet.

We define the “massive boson wave function” as the ana-
lytical expression used by the authors of Refs.f5–8g to study
the entangled bosons systemsfrewritten in our Comment by
expressionss3d ands4dg. Even under the assumption that the
massive two-bosons framework can provide a reasonable ap-
proximation to the experimental setup described in Ref.f4g
sthat would obviously need some kind of justification by the
authors of Ref.f4gd, there is another important inconsistency
between the “photon” and the “massive boson” wave func-
tions. The “massive boson wave function” is independent of
the distance between the nonlinear crystal and the double
slit, because it is initially “defined” at the double slit, instead
of at the nonlinear crystalssee Fig. 1d. In principle, the “mas-
sive boson wave function” would have to be defined at the
nonlinear crystal where the entangled two-particle system is
created. Bosons would reflect back when impinging upon the
double slit, and interference effects would appear in the crys-
tal regionssee Fig. 1d. In fact, this is exactly the procedure
that leads to the “photon wave function” described by ex-
pressionss1d, s2d, and s3d in Ref. f4g. The “photon wave
function” is initially defined at the nonlinear crystal and pho-
tons are propagated by the “diffracted field”fexpressions2d
in Ref. f4gg through both slits until they reach the screen.
Thus the “photon wave function” used to obtain SQM does
not only depend on the diffraction angle observed by the
detectors from the double slitslabeled asui in the screen
region of Fig. 1 and in Ref.f4gd, but also on the incidence
angle related with the nonlinear crystal positionslabeled as
ui

B in thecrystal regionin Fig. 1 and in Ref.f4gd. Therefore,
the distance between the nonlinear crystal and the double slit
plays a role in determining the SQM coincidence, but it has
no role in determining the dBB predictions. This is just more
clear evidence that the wave function used to deduce dBB is
different from the SQM one.

In summary, there are two fundamental differences be-
tween the “massive boson wave function” used to deduce the
dBB predictions and the “photon wave function” used to
obtain SQM results in Ref.f4g. First, the former is obtained
for massive bosons instead of relativistic massless photons.
Second, the “massive boson wave function” is arbitrarily de-
fined at the double slit, and not at the nonlinear crystal as the
“photon wave function.” In conclusion, the obvious condi-
tion of dealing with a unique wave function whenever SQM
and dBB predictions are compared is not respected in Ref.
f4g. This fact implies that the results of Ref.f4g do no more
than verify a particular quantum-optical prediction, with no
possible import for dBB theory.

IV. CONCLUSIONS

In this Comment, we analyze the conclusions presented in
Ref. f4g from a double-slit experiment with two entangled
bosons. We provided two different arguments to show that
the sentence affirmed by the authors, “The analysis of these
data allows a test of standard quantum mechanics against the
de Broglie–Bohm theory”f4g, is incorrect.

The first argument is focused in analyzing the verisimili-
tude of expecting different predictions from SQM or dBB
theories. To refute such possibility, in Sec. II, we have re-
minded that dBB results must be in complete agreement with
SQM onessas seen in Fig. 2d, as a consequence of aparticle
conservation lawconsubstantial to the dBB interpretation of
quantum mechanics. In particular, the authors of Ref.f4g
affirm that “the coincidence signalsnumber of times that
particles are detected atyD andyD8d is predictedsby the dBB
theoryd to be strictly zero when the two detectors are in the
same semiplane with respect to the double-slit symmetry
axis.” The authors based their “strictly zero” dBB prediction
on the work of two theoretical groupsf5–8g. The type of
prediction made byf5–8g is false because those authors im-
pose, by hand, an “arbitrary” constriction on the initial posi-
tions of Bohm trajectories, and they only consider a subset of
possible trajectories. Hence their predictions are not consis-
tent with the dBB theory itself and, as a consequence, the
hypothetical discrepancy between SQM and the dBB theo-
ries obtained in Ref.f4g is incorrect. We have explicitly
shown that the coincidence of simultaneous particles at the
same semiplane can be different from zero within the dBB
theory for the wave functions described inf5–8g, in complete
agreement with the SQM results.

Second, we show that the sentence of the authors of Ref.
f4g that “our sexperimentald scheme realizes the configura-
tion recently suggested by two theoretical groups to test the
dBB theory against SQM”f4g is, in fact, incorrect because
the “massive boson wave function” used in Refs.f5–8g does
only provide a rude approximation to the real experimental
system described in Ref.f4g. The “massive boson wave func-
tion” is arbitrarily defined at the double slit and avoids the
consideration of the possible interference patterns at the
“crystal region” ssee Fig. 1d. Moreover, what is even more
meaningful to emphasize the differences is that the dBB pre-
dictions are obtained for massive bosons rather than for the
massless relativistics photons used in the experiment and
also in the SQM predictions. Therefore, not only different
wave functions, but different theoretical frameworks have
been used for the SQM and dBB modeling of the experimen-
tal setup.

In conclusion, the mentioned article provides an interest-
ing experimental verification of a quantum-optical prediction
for photons, but it does not import any consequence to the
dBB theory. The conclusion affirmed by the authors of Ref.
f4g, “The analysis of these data allows a test of standard
quantum mechanics against the de Broglie–Bohm theory,” is
incorrect. The seminal theoretical works of Refs.f5–8g are
the main reason for their misleading conclusions.
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