
Wetlandscape Fractal Topography
Leonardo E. Bertassello1 , P. Suresh C. Rao1,2, James W. Jawitz3 , Gianluca Botter4 ,
Phong V. V. Le5,6 , Praveen Kumar5 , and Antoine F. Aubeneau1

1Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA, 2Agronomy Department, Purdue University,
West Lafayette, IN, USA, 3Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA, 4Department of
Civil, Architectural and Environmental Engineering, University of Padua, Padua, Italy, 5Department of Civil and
Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 6Faculty of HydrologyMeteorology
and Oceanography, Vietnam National University, Hanoi, Vietnam

Abstract Natural wetlands are ecological, biogeochemical, and hydrological hot spots yet continue to
disappear under human pressure. Their shapes and sizes control their hydroecological functions. We
propose that elevation data can be used to delineate potential wetlands and that the (statistical) distributions
of potential wetlands should be identical to the distributions of actual wetlands. We compare the shape and
size distributions of wetlands reported in the National Wetland Inventory with those of potential wetlands
identified using a topographic depression identification model. We estimated area and perimeter
distributions as well as shoreline fractal dimension in six contrasting locations in the United States. Pareto
distributions described the tails of these distributions, with similar slopes for both model and data. The shape
of shorelines was also similar, and their fractal dimension clustered around D = 4/3, a pervasive value in
nature. We also analyzed the entire wetland inventory data set for the conterminous United States (~20
million wetlands) for reference and found the statistics to be invariant across scales. Our results demonstrate
that a simple topographic model can identify most reported wetlands as well as potential wetlands missing
from the inventory. These findings could inform strategic surveys and the conservation of wetlandscapes.

Plain Language Summary Wetlands provide important hydrological and ecological services. Their
diverse sizes and shapes control the amount of water they can hold and the species they can harbor. Because
water accumulates at low elevation, we proposed that topography alone can reveal the location of
wetlands. We also hypothesized that the (statistical) distribution of the (potential) wetlands identified from
elevation data would be identical to the distribution of actual wetlands. We used a topographic depression
identification model to delineate potential wetlands in six 10 × 10 km landscapes across the United States
and compared the modeled wetlands to real wetlands cataloged in the National Wetland Inventory. The
distribution of shapes and sizes were similar for both potential and real wetlands, indicating that topography
data alone can be used to identify wetlands’ properties. Widely available elevation data may thus be used
to guide surveying and management when inventories are scarce. The scaling of area and perimeter
distributions was similar across the six contrasting locations we analyzed and across scales (10 × 10 km,
30 × 30 km, and conterminous United States). The apparent universality of the observed scaling could help
managers and stakeholders preserve the fundamental properties of wetlandscapes.

1. Introduction

Wetlands play an important role in watershed hydrology, affecting water storage, flow generation, ground-
water dynamics, and evapotranspiration (Bullock & Acreman, 2003; Rains et al., 2016). Wetlands are also
hot spots of nutrient retention and transformation, sediment storage, and biodiversity (Cheng & Basu,
2017; Cohen et al., 2016; Euliss et al., 2004; Reddy et al., 1999). The U.S. Clean Water Act defines wetlands
as “areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient
to support […] a prevalence of vegetation typically adapted for life in saturated soil conditions.”
Delineation of wetlands is thus challenging because their boundaries are dynamic in both space and time
(inundation, erosion, size of surrounding ecotone, etc.). Since the definition of wetlands requires inundation,
we propose that topographic information alone is sufficient to identify potential wetlands.

Wetland ecohydrological functions are closely tied to their morphological characteristics (Biggs et al., 1994;
Brooks & Hayashi, 2002; Cole & Brooks, 2000). The study of wetland shorelines is important from a
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hydrological perspective because the exchange of surface water and groundwater occurs mostly along these
edges and increases with the ratio of perimeter to area (Millar, 1971). The transitional habitats at the edges
are also hot spots of diversity, and wetland morphological attributes thus prescribe ecological services.
Moreover, wetlands embedded in the landscape serve as a mosaic of networked habitats. Maintaining the
diverse sizes and shapes of wetlands could sustain habitat connectivity and biodiversity (Gibbs, 2000;
Whigham, 1999), as well as hydrological and biogeochemical functions (Cohen et al., 2016; Rains et al.,
2016). Restoration efforts could focus on conserving these distributions in landscapes to maximize benefits
(Van Meter & Basu, 2015). We suggest that the statistical distributions of the sizes and shapes of actual wet-
lands can be obtained from those of potential wetlands.

Landscape features are fractal, and their (fractal) dimension encapsulates their (irregular) geometry
(Mandelbrot, 1983; Sugihara & May, 1990; Turcotte, 1997). Fractal dimensions could thus describe the dis-
tinct patterns of isolated (Cohen et al., 2016) or networked (Larsen & Harvey, 2010) wetlands in wetlands-
capes (landscapes characterized by an abundance of wetlands). Ensembles of natural objects are also often
fractal, exhibiting scaling properties reflected in their statistical distributions. In this study, we use fractal
analyses to compare wetlands from a model (topography depression identification (TDI) Le & Kumar,
2014) and a database (the U.S. National Wetland Inventory [NWI]). We estimated the fractal dimension
(D) and probability distributions of area (A) and perimeter (P) of modeled and real wetlands. We chose
six disparate wetlandscapes in the United States and compared the TDI model output with data provided
by the NWI. We also include the analysis of the entire NWI database (excluding riverine and coastal wet-
lands because they track lines) by comparing local (~100 km2) and continental scales (conterminous
United States). Discrepancies between model estimates and data reveal the influence of other important
factors not integrated in TDI. For example, the TDI model could identify depressions as potential wetlands
in arid climates that cannot sustain hydrophytes. Conversely, potential wetlands may indicate actual
wetlands not listed in the inventory, for example, wetlands that are too small to be identified or former
wetlands drained after land use change. Nevertheless, the comparison between the TDI model and NWI
data is important to assess whether widely available digital elevation models (DEMs) may be used to guide
wetland surveys and management.

2. Methods
2.1. Geospatial Data and Six Case Study Wetlandscapes

We selected six 10 × 10 km landscapes in the conterminous United States (Figure 1) that have an abun-
dance of wetlands to represent a wide range of environments with diverse wetland types, such as vernal
pools (California and Maine), cypress domes (Florida), prairie potholes (North Dakota), basin wetlands
(Minnesota), and playa lakes (Texas). The landscapes located in Florida, North Dakota, and Texas are mainly
characterized by a flat topography and a larger presence of geographically isolated wetlands, while the
landscapes located in California, Maine, and Minnesota exhibit a larger variation in the elevation profile,
and some of the wetlands are affected by the presence of river networks. Hydroclimatic differences in
these regions are described by the aridity index (AI; supporting information Table S2), defined as the ratio
of the mean annual actual evapotranspiration (AET) to mean annual rainfall (P; Sanford & Selnick, 2013).
Texas and North Dakota represent the driest regions (high AI), while Maine and Minnesota are wet (low
AI). Dominant land cover is also heterogeneous in the six regions: natural vegetation such as grassland,
scrublands, and woodlands in California and Florida, croplands, forests, and woodlands in Maine and
Minnesota, croplands in North Dakota, and croplands with patches of scrublands and grasslands in
Texas (Homer et al., 2015).

The DEM data from the Unites States Geological Survey (USGS) National Map Viewer (https://viewer.natio-
nalmap.gov) were used in our analysis. The DEM data are of 1/3 arc-second resolution (~10 × 10 m).
Actual wetland data were obtained from the NWI (https://www.fws.gov/wetlands/) for the six landscapes,
and we considered all wetlands larger than 100 m2 for consistency with the DEM resolution. We also
extended our analyses to 30 × 30 km grids to assess whether the results would change with scale (support-
ing information—Text S3). Finally, we examined the perimeter and area distributions, as well as shoreline
fractal dimension of all wetlands (excluding riverine and estuarine) listed in the NWI database (~20 million)
to compare with the six test areas.
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2.2. Wetland Identification Using DEM

Wetland identification is challenging because their morphological properties (area and shape) change with
flooding, vegetation, and soil conditions (Tiner, 2016). In our analysis, we applied a DEM-based approach
to delineate potential wetlands as landscape units defined by elevation. To identify such wetlands, we fol-
lowed the recent framework developed by Chu et al. (2010), Shaw et al. (2012), and Chu et al. (2013) and
improved by Le and Kumar (2014). The TDI model considers the centers of potential wetlands as the local
minima across the landscape determined by applying the D8 algorithm proposed by O’Callaghan and
Mark (1984). Starting from these low elevations, a local-search algorithm identifies the neighboring cells
pertaining to a depression (Chu et al., 2010) and ends once a threshold is identified. This threshold repre-
sents the highest elevation for water ponding, beyond which water spills. At the threshold level, a wetland
reaches its maximum stage, area, and storage volume. The elevation of the wetland threshold (local max-
ima in the landscape) controls the shift from wetland-filling to wetland-spilling and/or merging (Chu
et al., 2013).

The TDI model considers all depressions in which water can accumulate as wetlands and simulates the fill-
ing of the landscape with water. The DEM is edited by raising the depression cell to the threshold level (l).
The algorithm is then implemented again to derive the maximum values for stage, surface area, perimeter,
and storage volume of the wetlands for the next level of filling (ln + 1). Following Chu et al. (2010) and Le
and Kumar (2014), geometric attributes of wetlands were estimated from the output of the TDI model. The

surface area, A lð Þ
k [L2], of the kth depression at level l is the sum of the areas of all individual cells within

that depression, while the wetland perimeter is the sum of the distance between each adjoining pair of
pixels around the border of the region. Therefore, when the threshold level, l, is low, the landscape is
mainly composed of small and shallow wetlands, while for higher l, the degree of wetness of the
landscape increases because wetlands are getting bigger and they can spill over large areas and merge
(Supporting Information Text S1).

a b c

d e f

Figure 1. Representation of the digital elevation model (grayscale background) of six 10 × 10 km landscapes and actual wetlands (red lines) from the National
Wetland Inventory database: California vernal pools (a), North Dakota prairie potholes (b), Minnesota basin wetlands (c), Maine vernal pools (d), Florida cypress
domes (e), and Texas playa lakes (f). The blue polygons represent the potential wetlands identified by the topographic depression identification model.
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2.3. Evaluation of Fractal Dimensions

The complexity in the geometry of wetland boundaries is evaluated using shoreline fractal dimension, D,
determined based on the relationship between wetland perimeter, P, and area, A (Krummel et al., 1987;
Mandelbrot, 1975; Sugihara & May, 1990):

P ¼ kA
D
2 (1)

where k is a proportionality factor. For circles, P ∝
ffiffiffi

A
p

and D = 1. For more complex shapes, the perimeter
becomes increasingly dissected (plane filling) or elongated (e.g., riverine wetlands), resulting in the limit in
linear shapes where P~A and D = 2. Natural wetlands span the spectrum of shapes between lines and circles.

The wetland shoreline fractal dimension was determined here from D = 2r, where r is the slope of the
regression line of the log-transformed equation (1). We compared the results obtained from the regres-
sion between the log(P) and log(A) of the potential wetlands (TDI) and the NWI wetlands (supporting
information—Text S2). For the TDI model, wetland shorelines are constrained by the elevation profile
at the prescribed threshold level, l. For the NWI, wetland shorelines are determined by on-screen inter-
pretation of digital imagery (Tiner, 2016). The procedures used to produce the NWI data also consider
the presence of vegetation at the interface between wetland-upland area and soil moisture (Dahl, 1990).

3. Results
3.1. Wetland Area Distributions

We first compared the complementary cumulative distribution functions (ccdfs) of the TDI results and
the NWI data. Plots of wetland area ccdfs, scaled by the mean area in each wetlandscape, are shown in
Figures 2a and 2b both for the TDI model and the NWI data. Because the abundance of small wetlands
is uncertain (Lehner & Döll, 2004; Seekell & Pace, 2011), we fitted a Pareto distribution (P(X > x) ∝ x�α)
to the ccdf tails starting at a value xmin representing the lower bound of the power law behavior
(Clauset et al., 2009). Both α and xmin were estimated via maximum likelihood. We also report the goodness
of fit of the power law as a Kolmogorov-Smirnov statistic. The results (Tables 1 and S2) show that the esti-
mates from both TDI model and NWI data are consistent. Indeed, the 95% confidence interval for the α
scaling exponent overlap in each distribution. The p values reported in Table 1 refer to the probability that
an artificial Pareto distribution is different from the observed sample data distribution. Larger p values thus
suggest that the two distributions are not statistically different, or that the tails of the distributions are

a b

Figure 2. Comparison between the normalized wetland size distributions, A*, obtained from the TDI model (a) and the NWI
database (b) for the six wetlandscapes. A represents wetlands’ area and 〈A〉 the mean wetland area in that landscape. In
both plots we reported the wetland size distribution for all the U.S. wetlands (black solid line) obtained from the entire NWI
database (except riverine and coastal). The tail of this distribution continues for four additional orders of magnitude of
probability (supporting information—Text S4). The comparison between the output of the TDI model and the NWI data for
the normalized perimeter is reported in Figure S17 in the supporting information. TDI = topographic depression identifi-
cation; NWI = National Wetland Inventory.
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power law distributed. We also fitted the combined data set of the six case studies into a single
distribution. The Pareto scaling exponents, α, for the TDI model (α = 1.32, xmin = 1.78) and NWI data
(α = 1.36, xmin = 1.91) were not statistically different (p > 0.05), suggesting that the TDI model is an
acceptable predictor of the larger wetland distribution. We also ran the TDI model and analyzed the NWI
data on 30 km × 30 km grids encompassing our original wetlandscapes, showing that the results are
independent of sample size (supporting information—Text S3). The scaling exponents of wetland areas
are the same in these larger landscapes.

Figures 2a and 2b also show the area distribution for all the wetlands listed in the NWI for conterminous
United States (black solid line), excluding the riverine and estuarine waterbodies. The normalized ccdf of
the areas of all the wetlands in the NWI data set lines up with that of the 100-km2 subsets we analyzed here.
The Pareto tail (α = 1.42, xmin = 2.05) was truncated for legibility but continues for several more orders of mag-
nitude to A/〈A〉~104 without obvious tempering before that point (Figures S11 and S12). The consistency
between the TDI model and NWI area distributions determined from the 100-km2 study sites and all the wet-
lands in the conterminous United States (excluding riverine and coastal) suggests that this scaling relation
can be extended to larger wetlandscapes.

3.2. Wetlandscape Fractal Dimension

In the six wetlandscapes (Figures 3a and 3b) D values for all wetlands are distributed within the possible
range [1, 2], from circle to lines. NWI data for the six wetlandscapes (Figure 3b) suggest several scaling
regimes for D, bounded by circular shapes (D = 1) and riverine shapes (lines, D = 2), showing that not all riv-
erine wetlands were censored during filtering. The shoreline fractal dimension is clustered around D = 1.33,
which is the value corresponding to the unscreened perimeter of percolating clusters (Cael et al., 2015;
Isichencko, 1992) as well as that of 2-D Brownian frontiers (Lawler et al., 2000; Mandelbrot, 1983). Larger water
bodies appear constrained by a higher fractal dimension (D = 1.5), closer to that of the landscape itself
(supporting information—Text S4).

Different wetland shapes are observed among and within wetlandscapes. For example, for wetlands in
California, Maine, and Minnesota, we find 1 ≤ D ≤ 2, while wetlands in Texas are mostly circular (D~1). TDI esti-
mates for the six wetlandscapes (Figure 3a) exhibit less variability in fractal dimension than the NWI data
(Figure 3b). Riparian wetlands that are described by a large fractal dimension (D~2) are not well identified
by the TDI model because their shape tracks the rivers they flank and these wetlands are thus not delineated
by elevation. The distributions of wetland shoreline fractal dimensions evaluated from the TDI and the NWI in
the 100-km2 test wetlandscapes are consistent with the shoreline fractal dimension evaluated for all the

Table 1
Estimation of the Exponent of the Power Law for the Wetland Size Distributions in the Six 10 × 10 km Wetlandscapes

TDI model NWI data

Wetlandscape locations α xmin p value α xmin p value AI

CA 1.69 ± 0.12 2.34 0.64 1.53 ± 0.02 2.89 0.48 0.5–0.59
FL 1.08 ± 0.11 0.67 0.41 1.38 ± 0.09 1.51 0.53 0.65–0.75
ME 1.21 ± 0.13 0.62 0.24 1.27 ± 0.03 1.86 0.25 0.4–0.49
MN 1.62 ± 0.03 2.49 0.84 1.71 ± 0.06 2.08 0.41 0.5–0.59
ND 1.57 ± 0.08 2.25 0.92 1.67 ± 0.12 2.44 0.69 0.8–0.89
TXa 3.11 ± 0.16 1.69 0.31 3.16 ± 0.12 1.59 0.91 0.95–1.05
COM 1.32 ± 0.03 1.78 0.58 1.36 ± 0.05 1.91 0.34

Note. The scaling exponent, α, is estimated via the method of maximum likelihood. In addition, we perform a goodness-
of-fit test of the power law based on the Kolmogorov-Smirnov statistic (Clauset et al., 2009), showing the 95% confidence
interval for the scaling exponent. The p value is reported (high p value means that the observed distribution is not dif-
ferent from an artificial Pareto distribution with the same exponent). The xMIN value is the lower limit of the power law
behavior. AI refers to the aridity index that characterizes the studied region (Sanford & Selnick, 2013). The acronym COM
stands for the combined data set of the six case studies into a single distribution. A similar table for the scaling exponent
of the wetland perimeter distribution, α, is reported as Table S2 (supporting information). TDI = topography depression
identification; NWI = U.S. National Wetland Inventory; CA = California; FL = Florida; ME = Maine; MN = Minnesota; ND =
North Dakota; TX = Texas.
aTexas does not provide a robust estimate since it is composed of too few wetland data.
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wetlands in the conterminous United States provided by the NWI database. This suggests that the 100-km2

wetlandscapes are representative of the general patterns in the entire NWI database.

Fractal dimension links perimeter and area of a set of objects (equation (1)). Therefore, knowing the scaling
exponent, α, of the wetland area distribution and the shoreline fractal dimension, D, we can predict the wet-
land perimeter Pareto scaling exponent β = 2α/D (Figures S17a and S17b in the supporting information),
where D = 1.33. The estimated scaling exponents for the TDI (β = 1.97) and NWI data (β = 2.02) are consistent
with the values obtained from maximum likelihood (β = 1.95, xmin = 2.98 and β = 1.98, xmin = 2.09, respec-
tively). This procedure can also be extended to the entire NWI database (black lines in Figures S17a and
S17b). In this case, β = 1.89 is the same as the estimates of the maximum likelihood method in the 10 ×
10-km wetlandscapes.

4. Discussion

We compared wetlands identified with a DEM-based approach (TDI) with actual wetlands from the NWI.
High-resolution images and DEMs have long been used to extract geomorphic features from landscapes
(Chu, 2017; Passalacqua et al., 2012; Wu & Lane, 2017). Our new method reproduced the sizes and shapes
of actual wetlands, indicating that elevation models can be used to assess wetlands characteristics. The
observed similarity between TDI model and data indicates that the morphological properties of wetlands
are reflected in the elevation (DEM) data and identified by the TDI. Therefore, the abundance and possible
locations of wetlands can be predicted in any other location on Earth where DEM data are available. The reso-
lution of the DEM (10 × 10 m in our case) does not represent a limitation since it only affects the size of the
smallest wetland that can be identified by the TDI method. Hence, even coarser DEMsmay be suitable for this
type of analysis. On the other hand, finer-resolution DEMs will improve the identification of smaller waterbo-
dies as well as their contours.

The scaling of area and perimeter distributions was similar across the six contrasting locations we analyzed
and across scales (10 × 10 km, 30 × 30 km, and conterminous United States). Apparent universality of the
observed scaling could provide a useful tool to managers and stakeholders. By targeting the conservation
of wetlands distributions, agencies could maintain or improve the connectivity of distributed aquatic habitats
in the landscape and their associated ecological services. These metapopulation conservation techniques
have been used for centuries in game management in Europe and revived in the past decades following
seminal studies of island biogeography and metapopulations (Levins, 1969; MacArthur & Wilson, 1967).
Our analysis provides new evidence of their suitability for wetland conservation.

The TDI algorithm identifies small depressions (supporting information—Text S5) that are not included in the
NWI data set. The NWI has well-documented limitations (Tiner, 1997), with omission errors underrepresenting
small wetlands. Some of the wetlands may be completely dry or flooded depending on when the survey was
made, since the hydrologic regime of smaller wetlands is driven by the stochastic hydroclimatic forcing

a b

Figure 3. Shoreline fractal dimension D for the six wetlandscapes from the TDI model (a) and the NWI database (b). The
black dashed lines represent scaling regimes for circular (D = 1) and linear (D = 2) wetlands. The D = 1.33 fractal dimen-
sion is evaluated from equation (1). The gray dots represent data from all the wetlands in the US (except riverine and
coastal). TDI = topographic depression identification; NWI = National Wetland Inventory.
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(Aquino et al., 2017; Shook et al., 2013; Zhang et al., 2009). In addition, the NWI could merge some of the small
wetlands into larger complexes, since soil saturation and vegetation are criteria omitted in the TDI. We sug-
gest that the TDI model can be used to identify small wetlands that are missing from inventories. We note
however that not all the potential wetlands identified by the TDI model are necessarily actual wetlands in
the landscape. For example, the TDI could identify depressions as potential wetlands even in arid climates
that cannot support hydrophytes. In addition, closed depressions and flat areas on digital models of the land
surface are sometimes artifacts (Martz & Garbrecht, 1992; Tribe, 1992). These features could be identified as
potential wetlands by the TDI and increase the number of false positive (number of potential wetlands iden-
tified by the TDI model but not listed in the NWI database, Table S1). As such, for flat landscapes, the TDI is
useful as a basis to inform wetland surveying but not as a definitive identification tool.

The shoreline fractal dimension of the actual wetlands, and those identified by the TDI model, are clustered
around D~1.33. This is similar to the classic 4/3 scaling Mandelbrot conjectured for the frontiers of Brownian
islands (Mandelbrot, 1983) and since proven by Lawler et al. (2000). This same value is also found from the
perimeter-area relationship for lakes on Earth (Cael & Seekell, 2016) and Titan (Sharma & Byrne, 2010) and also
is the average value for coastlines around the world (Mandelbrot, 1975). The NWI wetlands also show a small
second peak around D = 1.5 not captured by the TDI (Figure S5). These more dissected contours may bemiss-
ing from the TDI model because of limited DEM resolution. Pixelation becomes important when the object
size is near the pixel size (Batista-Tomás et al., 2016), and thus the contour of small wetlands appears
smoother (lower D) in the TDI output. However, the deviation from the 4/3 dimension is more evident for lar-
ger wetlands (Figures 3a and 3b), which have more convoluted boundaries with fractal dimension closer to
D = 1.5. This could be related to the dimension of the surface intersected. Our analysis of the 3-D landscape
dimension shows typical values near 2.5 (supporting information—Text S4). An isoset (or zero set) intersect-
ing the surface would thus have a dimension near 1.5 (Russ, 1994). We speculate that the consistently lower
values observed in the shoreline fractal dimension for our six 100-km2 test landscapes translate the local ero-
sion at the wetland boundary with the diffusive, mass-wasting erosive processes leading to smoother than
expected contours. For the larger wetlands, however, the actual topography of the terrain may constrain
the shoreline, as reflected in their (higher) dimension.

Fractal dimension is useful to evaluate and interrogate the spatial heterogeneity associated with the genetic
processes that shaped the wetlandscapes. Wetlands formed by similar processes should have similar shapes
and thus the same fractal dimension. For example, wind carved the Texas playa, hollowing out depressions in
dry, noncohesive soils down to the local water table (Tiner, 2016), resulting in the typical rounded shapes we
observed. The postglaciation receding ice sheets shaped the glaciolacustrine plains of North Dakota
(Figure 1b) or Minnesota (Figure 1c; Kantrud et al., 1989). Limestone dissolution strongly affected the forma-
tion of the Florida cypress domes (Figure 1e). Still in Florida, the Everglades exhibit these peculiar parallel
ridge and slough patterns (Larsen & Harvey, 2010). Each particular process results in a particular shape
associated with a particular fractal dimension. We suggest that our results could support further analysis
and classification. For example, the size beyond which circular shapes do not exist and the scaling regime
appears to shift could reveal the local interaction of land and climate.

5. Conclusions

We presented a DEM-based approach for the identification of potential wetlands. The distributions of sizes
and shapes obtained from themodel were similar to those observed in nature. The TDI model identified small
wetlands not inventoried and could be used to inform wetland surveying. This approach is geographically
transferable and may be especially valuable in areas where synoptic data are sparse or not available. We also
showed that properties scale from small regions to the continent, and therefore our analysis could be per-
formed efficiently for diverse locations. Complex interactions of land and climate that prescribe wetlands
are embedded in their scaling properties, which in turn control their ecohydrological functions. Our results
could thus inform efforts to preserve or restore the fundamental properties of wetlandscapes.
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Erratum

In the originally published version of this article, there was an error in the acknowledgments. This error has
since been corrected, and the present version may be considered the authoritative version of record.
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