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We give a quantum benchmark for teleportation and quantum storage experiments suited for pure and mixed
test states. The benchmark is based on the average fidelity over a family of phase-covariant states and certifies
that an experiment cannot be emulated by a classical setup, i.e., by a measure-and-prepare scheme. We give an
analytical solution for qubits, which shows important differences with standard state estimation approach, and
compute the value of the benchmark for coherent and squeezed states, both pure and mixed.
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I. INTRODUCTION

A central question in quantum information theory is
whether a particular quantum protocol can be realized with
the same efficiency by classical means; ultimately, quantum
information stands on the advantage of quantum over classi-
cal systems in performing certain tasks. This question is rel-
evant in experimental implementations of such protocols as
they become imperfect in real unavoidably noisy experi-
ments. It is then essential to assess whether the same experi-
mental result could have been obtained by using only classi-
cal �less costly� resources. So, for example, in a particular
teleportation experiment—which involves generating en-
tanglement, performing complicated Bell measurements,
fighting decoherence, etc.—one may ask whether the same
goal, i.e., mapping the state of a system onto a second system
at a different space-time location, could have been achieved
by measuring the quantum state of the first system, transmit-
ting the collected information, and preparing the state of the
second accordingly. In this Rapid Communication, we pro-
pose and calculate quantum benchmarks that certify that a
certain implementation of teleportation cannot be realized
classically or more precisely by a measure-and-prepare strat-
egy. Of course, these benchmarks also apply to any protocol
that can be understood as a realization of the identity chan-
nel, e.g., quantum storage. Our benchmarks are based on
phase-covariant families of states, and thus they are compu-
tationally manageable and experimentally feasible �shifting
phases is straightforward in, e.g., optical experiments�. Last
but not least, our benchmarks apply when test states are
mixed, which is the standard situation in experiments. Previ-
ously proposed quantum benchmarks �1–3� were either re-
stricted to pure states or were not strict bounds since they
were based on suboptimal classical strategies �see footnote
15 in �3��. We give rigorous quantum benchmarks for both
pure and mixed Gaussian states that can be immediately ap-
plied to current experiments on continuous-variable �CV�
systems, such as optical fields and atomic ensembles �4,5�.
We note here that there are types of criteria to establish the
success of CV teleportation that are not based on a single
parameter, most notably �6,7�, here however we focus on
fidelity based benchmarks �8�.

II. BACKGROUND AND METHODS

The literature on quantum benchmarks originated in the
context of CV teleportation experiments, the first of which

was performed in 1998 by Furusawa et al. �4�. In this experi-
ment, optical coherent states were teleported using squeezed-
state entanglement. As benchmark, they used the average
fidelity, F, that can be attained without entanglement �with
the EPR beams replaced by the vacuum�. Braunstein et al.
�8� proposed a more rigorous benchmark for CV teleporta-
tion. They considered the fidelity between an input state ��in�
and the corresponding state, �out, outputted from a measure-
and-prepare channel, i.e., �out=��p�� ��in���, where �� is the
reconstructed or guessed state based on outcome � of the
measurement and p�� ��in� is the conditional probability of
obtaining � given that the signal state is ��in�. Their bench-
mark is given by the maximum fidelity averaged over a con-
veniently chosen set � of input states. It should be stressed
that the choice of � plays a significant role. It should contain
necessarily more than one state �otherwise a trivial classical
strategy achieves fidelity 1�. The maximum fidelity tends to
decrease with the size of the test family. When the input
states are drawn from a whole d-dimensional Hilbert space,
the optimal fidelity is known to be F=2 / �d+1� �9�. In the
case of CV systems, d→�, this would mean that any non-
zero fidelity would certify that quantum resources are being
used. However, it is utterly unrealistic to assume that one can
test the channel with such a large family of input states. In
order to have realistic and practical thresholds, Braunstein et
al. �8� chose � to be the set of coherent states with normally
distributed amplitude around ���=0 and a fixed given vari-
ance and gave a classical strategy that was recently proved to
be optimal by Hammerer et al. �1�.

Adesso and Chiribella �3� very recently proposed a quan-
tum benchmark suited for pure single-mode squeezed states
and derived upper and lower bounds for squeezed thermal
states. Their quantum benchmark is taken to be the maxi-
mum averaged fidelity over all the outcomes � of an optimal
measurement and over an ensemble � of input states �in�r�
whose squeezing parameter r is distributed with a given prior
probability �in �2� a benchmark for pure squeezed states
drawn from a microcanonical ensemble was considered�. In
this approach, �i� the output of the measure-and-prepare
channel is compared to the input for each particular measure-
ment outcome � and then averaged and �ii� the output state is
assumed to belong to the input family, i.e., is of the form
��r��. As we will see this choice of output state is typically
suboptimal and, hence, the corresponding fidelity might not
be a strict quantum benchmark, as the authors noticed.

Here we propose a benchmark based on a general phase-
covariant family �pure or mixed�:
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F =� d�

2�
F���,�av

� � , �1�

where F��1 ,�2�= �tr		�1�2
	�1�2= �tr�	�1

	�2��2 is the fidelity,
�� is the input test state defined as ��=U����0U���†, with
U���=�nei�n�n�
n� ��n� are Fock states�, and �av���
=��p�� ������ is the state outputted by the measure-and-
prepare channel. In contrast to �ii� above �2,3�, guessed states
�� are not constrained to belong to the input-state family. In
addition, since the fidelity is a convex function, a classical
�measure and prepare� strategy that outputs a single state �av
provides always a higher average fidelity than any classical
strategy that outputs different states �� depending on the out-
come of the measurement. Therefore the fidelity in �i� �3� is
arguably not a proper quantum benchmark. A benchmark
based on phase-covariant states is appealing from an experi-
mental point of view since phases are easy to vary without
affecting other relevant parameters �in contrast, e.g., in the
presence of losses, varying the degree of squeezing leads to a
change in temperature of the test states�.

Given a strategy characterized by positive operator-valued
measure �POVM� elements �O�= �	��
	��� �they can be taken
to be of rank one without loss of generality and �	�� are not
normalized� and corresponding guesses ����, one defines a
covariant strategy by �O�,
=1 / �2��U
O�U


†� and ���,

=U
��U


†�. One can show that the optimal strategy can al-
ways be chosen to be covariant �10� and

F = �tr�	�0
	�av��2, �av =� d
�

�

p��,
��0���,
. �2�

Note that aside from the group parameter 
, one needs to
specify also the “seed” for both POVM �O�� and guess states
����. For single-seed strategies, the completeness relation
fixes the POVM, which turns out to correspond to the phase
measurement �11�: �	�=�n�n� �up to some arbitrary phases�.

The classical fidelity �Eq. �2�� can be conveniently written
as

F = max
K

�trB
	trA

	�0 � 	�0K	�0 � 	�0�2, �3�

where trA �similarly trB� stands for the obvious partial trace
and K=
d
��O�,
 � ��,
. Optimizing the classical strategy
amounts to maximizing the trace squared in Eq. �3� over the
set of positive operators acting on H � H that are separable,
invariant under bilateral transformations U
 � U
, and that
fulfill trBK=1A. For pure states, Eq. �3� can be simplified to
give F= 
�0�
�0�K��0���0�, with �0= ��0�
�0�. This leads to
the pure-state estimation approach introduced in �12�. For a
given POVM with seeds ��	��� the optimal fidelity can also
be written as

F = �
�

sup
��


���A����� = �
�

�A���, �4�

where A�=
d� / �2���
	� �����2����
���. Thus, if the POVM
is fixed, the maximum fidelity is given by the largest eigen-
value of the operator A� and the optimal guess seed, ����, by
the corresponding normalized eigenvector �1�.

If one restricts the guess-states to be in � �as done in
�2,3��, things simplify considerably, especially for pure states
where no optimization is required since the optimal POVM
is known to be the phase measurement �11�. In our case, no
assumption about the optimal POVM nor about the guess is
made, and we have to resort to more powerful techniques.

Semidefinite programming �SDP� �13� is an area of con-
vex optimization that was developed in the last decade and
that has recently found several applications in the field of
quantum information �12,14,15�. Its aim is to minimize a
linear objective function subject to semidefiniteness con-
straints involving symmetric matrices that are affine in the
variables:

min
x

cTx subject to F�x� = F0 + �
i

xiFi � 0, �5�

where Fi are Hermitian matrices of arbitrary dimension and
the inequality means that F�x� is positive semidefinite. There
are a number of freely available software packages to solve
SDP problems. In this work we have used the YALMIP MAT-

LAB toolbox �16� together with the SDPT3 solver �17�.
For pure input states, the maximization in Eq. �3� can be

immediately cast into a SDP problem by writing the matrices
K and �0 in a basis of the Hermitian matrices. Whereas the
positivity and bilateral invariance constrains are already in
the desired form, the separability condition need be imposed
through a hierarchy of constrains based on the positivity of
the partial transpose �PPT� of all symmetric extensions �14�.
In this work we will stick to the lowest level of this hierarchy
imposing only PPT, i.e., K��0. Since positive partial trans-
position provides a necessary but in general not sufficient
condition for separability, the resulting optimal value, F�,
gives an upper bound to F and hence still provides a valid
quantum benchmark.

When the input test states are mixed, the objective func-
tion in Eq. �3� becomes truly nonlinear and the optimization
problem does not immediately fall into the SDP category.
However, one can make use of Uhlmann’s theorem �18�
and recast F in Eq. �2� as F=max
av

�

0 �
av��2

=−min�av
�−

0��av�
0��, where �
0� and �av= �
av�

av�

are the purifications of �0 and �av, respectively. Without loss
of generality, the purity condition on �av can be lifted. With
this, the objective function becomes a linear function of the
optimization variables. Constraints are also of the SDP form
in Eq. �5�: �i� trB�av=�av= trA��0 � 1 K�; �ii� �av�0 and
tr �av=1; and �iii� the same conditions on K as above.

III. QUBIT STATES

It will become apparent as we proceed that analytical so-
lutions to the benchmark problem for general mixed states
are exceedingly hard to obtain. A remarkable exception are
qubit states, which we discuss next.

The input-state family is defined by ��=Uz,��0Uz,�
† ,

where Uz,� is a rotation of an angle � around the z axis
�similarly for Uy,
, etc.�, and the seed input state is �0
=Uy,
�p�↑ �
↑�+ �1− p��↓ �
↓��Uy,


† for fixed azimuthal angle 

and probability p��1+�� /2 �so that � is the modulus of the
Bloch vector�. To calculate the quantum benchmark for this
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family of qubit states, we use Eq. �3�. In the up/down basis
the most general K can be written as K=blockdiag�a ,B ,c�,
where B is a 2�2 positive semidefinite matrix and a and c
are the non-negative numbers. For C2 � C2 the partial trans-
position criteria provides a necessary and sufficient condition
for separability, i.e., K is separable ⇔K��0⇔ac− �B12�2
�0. Finally, the condition trBK=1A implies a+B11=c+B22
=1. A tedious but straightforward calculation leads to the
optimal K �that maximizes F�: a=cos2�� /2�, c=sin2�� /2�,
and B12=B21=	ac, where the �azimuthal� angle � is

� = arctan
�2 sin2 
 + 	�1 − �2��4 − �2 sin2 
�

2� cos 

. �6�

It is a simple exercise to check that these values of a, B, and
c correspond to the phase-covariant POVM
�1 /�Uz,�Uy, �

2
�↑ �
↑�U

y, �
2

†
Uz,�

† �, with the associated guess

���=Uz,�Uy,��↑ �. The resulting benchmark for qubit states
can be cast as

F =
1

2
�1 + �

cos 


cos �
� . �7�

Some remarks are in order: �i� for any outcome � the corre-
sponding guess is a pure state and, hence, �ii� it does not
belong to the original family; moreover, �iii� its Bloch vector
is not proportional to that of the signal state ���
, unless

=� /2�. In quantum state estimation it is usually assumed
that the guess after a measurement is one of the possible
input states. Our result shows that this assumption is not
always well founded. �iv� Recalling the definition of K right
after Eq. �3�, we see that only one value of � �a single seed�
is required for qubits. Property �iv� is specific of C2. For C4

one can already find examples where the phase measurement
is not optimal.

We now move to the benchmarks for CV Gaussian states.
We consider displaced and squeezed thermal states that are
obtained by the action of the displacement, D���
=exp���a†−a��, and the squeezing, S�r�=exp� r

2 �a2−a†2��,
operators over a thermal state ��= �1−e−��e−�a†a of purity
�=tanh � /2 �with ��0 and r�0�.

IV. CV PURE STATES

We start by computing the bound F� using the SDP ap-
proach for coherent states. For this purpose we use a trun-
cated Fock basis and approximate low amplitude coherent
states by ����e−�2/2�n=0

N �n /	n!�n�. Figure 1 �dots� shows
the results for coherent states with mean photon number be-
tween zero and �2=10 �the truncation error within this range
of � and N=23 is always lower than 10−4�. In addition we
can calculate the optimal fidelity when restricting to the
single-seed covariant POVM. With this choice of POVM the
problem reduces to calculating the maximum eigenvalue of
the matrix in Eq. �4�, A=e−2���2�n�2n /n ! ��n�
�n�, where
��n�=�l=0

n 	� n
l ��l�. The values for different input intensities

are shown in Fig. 1 �solid line� and agree with those obtained
from the SDP optimization. This indicates that the bench-
mark given by F� is attainable with the phase measurement

�at least within the precision of our numerical analysis�. We
note that the eigenvector of A with largest eigenvalue, which
is the optimal guess, resembles a coherent state but is strictly
different. The dashed line in Fig. 1 is the fidelity obtained
when the guess is forced to be a coherent state, and although
it has a similar behavior, it shows a clear gap with the opti-
mal bound. In this case no optimization is required and F
can be obtained by numerical integration of

F =� d�

2�
�
	��ei���2�
���ei���2. �8�

From the above equation it is possible to find the analytical
value of F in the limit �→�. In this regime, the outcome
probabilities can be approximated by �
	 ��ei���2
�	2�2 /� exp�−2�2�2�, where we have used the Gaussian
limiting expression of a Poisson distribution, �
� ��ei���2
�exp�−�2�2�, and extended the range of integration to
�−� ,�� to find F�→�=	2 /3.

The analytical value of F in the large � limit can also be
obtained in the general case of unrestricted guess states. In
this case one has to calculate the maximum eigenvalue of A
defined in Eq. �4�, which can be done by calculating the limit
p→� of its p norm �A�p= �tr Ap�1/p. We have

��A�p�p = tr Ap =� �
j=1

p

d� jp���� j�
� j�� j+1� , �9�

where �p+1��1. Using the above approximation
on the outcome probabilities and 
�i �� j�
�exp�−�2�i��i−� j�+1 /2��i−� j�2��, we obtain

tr Ap � �2�2

�
�p/2� dp�e−�2/2�tCp� =

2p

	det Cp

, �10�

where Cp is a symmetric matrix with elements �Cp�ij
=6�ij −�i+1,j −�i,1� j,p for i� j. It is convenient to write Cp
=Mp+2a1p, with a=3. Then, det�Mp+2a1p�=Qp�a� is a
�characteristic� polynomial in a. It easy to check that Qp�a�
=2�Tp�a�−1�, where Tp�a�= ��a+	a2−1�p+ �a−	a2−1�p� /2
are the Chebyshev polynomials of the first kind. In the limit
p→� the second term in Tp�a� becomes negligible, hence
Qp�3���3+	8�p= �	2−1�2p, and

F F
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FIG. 1. �Color online� Plot of the fidelity for pure coherent
states �left� and pure squeezed states �right�. Dots: bound obtained
imposing K��0 �see main text�. Solid: phase measurement and
optimal guess. Dashed: phase measurement and guess from input
family. Dotted: extrapolation of dashed line to infinite squeezing,
�=1.
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F = lim
p→�

2�det Cp�1/2p = 2�	2 − 1� � 0.8284, �11�

which indicates that the difference between the fidelities cor-
responding to restricted �guess in �� and unrestricted �gen-
eral guess� strategies persists also in the asymptotic regime.

For pure squeezed states we proceed as before
by working in a truncated basis: ���
= �1−�2�1/4�n=0

N �−� /2�n	�2n�! /n ! �2n�. Figure 1 shows the
SDP results, together with the bound obtained from the phase
measurement with optimal guess �the maximum eigenvalue
of A� and from the phase measurement with �restricted�
squeezed guess. The latter is obtained by numerically inte-
grating

F =� d��1 − �2�2

	1 +
4�2

�1 − �2�2sin2 �

��
n

	�2n�!
n!

��e2i�

2
�n�2

.

�12�

The SDP bound and the phase-measurement fidelity agree
within numerical precision. As for coherent states, restricting
the guess states be in � lowers the bound substantially. The
latter bound can again be computed in the limit �→1 by
noticing that the dominant behavior of the sum in Eq. �12� is
dictated by the large n terms �19�. Using the Stirling’s ap-
proximation, the sum in Eq. �12� can be written as a poly-
logarithm function Li1/4��e2i�� /�1/4. Taking into account
that the dominant contribution to the integral comes from the
region ��0, we get F�0.58.

V. CV MIXED STATES

The case of mixed states is remarkably more complex,
and we have to entirely rely on numerical analysis. Figure 2
shows the SDP results obtained for displaced thermal states

and squeezed thermal states of different purity � �20�. The
truncation errors at the higher values of r and �2 are of the
order of a few percent, but the displayed values still provide
a good upper bound because truncation effects tend to lower
the curves. We observe that decreasing the purity has the
effect of increasing the fidelity. Thus our benchmark is espe-
cially suited for test states of moderate temperature. It is
worth mentioning here that if the guess is restricted to belong
to the input family �not shown in plot�, the effect is the
opposite: pure states provide higher fidelities than mixed
states.

Note added in proof: Recently, analytical results after the
completion of this work, as well as the SDP reduction, have
been shown �21� for a similar quantum benchmark, which is
however not based on fidelity.
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FIG. 2. �Color online� Benchmarks for displaced �left� and
squeezed �right� thermal states for different purities: �=1 �solid
line�, �=0.95 �dots�, �=0.8 �dash�, and �=0.7 �dash-dot�.
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