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Abstract: The analysis of quantum beats in time-resolved spectroscopic signals is becoming
a task of primary importance because it is now clear that they bring crucial information about
chemical reactivity, transport, and relaxation processes. Here we describe how to exploit the
wide family of time-frequency transform methodologies to obtain information not only about the
frequency but also about the dynamics of the oscillating components contributing to the overall
beating signal. Several linear and bilinear transforms have been considered, and a general and
easy procedure to judge in a non-arbitrary way the performances of different transforms has been
outlined.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the last decades, spectroscopists have learned how to manipulate laser pulses with increasingly
shorter time durations and how to use them in advanced photonics applications to capture transient
physical phenomena with an increasing degree of subtleness and detail. A typical feature of
the spectroscopic response in the ultrafast regime is the presence of oscillations of the signal
amplitude as a function of delay times between exciting pulses. Such oscillations, typically
referred to as quantum beats, are associated with the time evolution of coherent superpositions
of states prepared by the ultrafast pulses, i.e. a wave-packet. The presence of quantum beats
in ultrafast signals is a well-known textbook phenomenon, typically associated with coherent
nuclear or electronic motions [1–3]. Quantum beats may appear in ultrafast spectroscopy when
two levels are excited coherently and emit to a final common level; in these conditions, the
detected spectrum oscillates with a frequency corresponding to the energy gap between the two
levels.
The analysis of the quantum beats in different time regimes has proved to be particularly

informative to extract information on various aspects of the energetics and the dynamics of
the systems. For example, quantum beats in nanosecond spectroscopy have been exploited for
the determination of molecular structure parameters, such as spin-orbital coupling constants,
interaction constants in the Zeeman effect, dipole moments in excited states, rotation and
anharmonic constants [4,5] and singlet fission mechanisms [6]. Moving to pico- and femtosecond
resolution allows monitoring the dynamics of chemical reactions, transition states, energy transfer
and vibrational dynamics in real time [7–9]. Making a further step towards the attosecond
domain, information about the rapid motion of electron density inside a molecule, sub-cycle
evolution of coherent electronic wavepacket and photoionization can be obtained [10–13].
Whatever the nature of the studied material or the particular technique and time resolution

used, the analysis of the frequency and time behavior of the beatings is a key ingredient to extract
information about the system dynamics. To this aim, methodologies based on linear and bilinear
time-frequency transforms (TFT) have been already proposed and applied to ultrafast 1D [14–19]
and 2D spectroscopy measurements [20–26]. The advantage of TFTs is that they analyze a
non-stationary oscillating signal providing both time and frequency resolution, spreading out the
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information content along the two dimensions of the time-frequency plane [27].
TFT methods are model-independent. Thus, while other parametric methods independently

developed to estimate wave-packet dynamics require a careful a priori definition of a suitable
fitting function and initial parameters [28–30], TFT methods can be directly applied without any
preliminary assumption. Therefore, they are ideal to achieve a quick and immediate visualization
of the frequency and time behavior of the relevant modes contributing to the beating pattern and,
for example, identifying families of long- or short-leaved components [31].
One should anyway take into account that TFTs, like Fourier transforms, are subjected to

the time-frequency uncertainty principle. This implies that the time and frequency resolution
are strongly correlated, and it is not possible to reach simultaneously ideal resolution along
both dimensions. In order to maintain the joint information across the time-frequency plane,
one has thus necessarily to compromise and, among the variety of strategies available in the
time-frequency analysis, select from time to time the TFT and the parameters most suitable for the
specific input signal to be analyzed and for the specific expected output. In other words, the TFT
approach is necessarily application-dependent. In addition, these methods can be particularly
prone to artifacts, both along time and frequency dimensions. In this context, in [32] we recently
overviewed the most known TFT methods and qualitatively compared their performances when
applied to typical signals obtained by coherent femtosecond spectroscopy. The comparison
is particularly challenging because of the arbitrary choice of TFTs parameters, which greatly
influence the outcome of the transforms. To make this approach more general and ease the
exploitation of this powerful methodology, also in different time regimes, we developed an easy
and general procedure to quantitatively optimize and evaluate the performances of various TFTs
when applied to wave-packet signals. The procedure is exemplified for the analysis of typical
femtosecond coherent responses.

2. Generalities about time-frequency transforms

In general, the time-domain representation s(t) and the frequency-domain representation S(ν) of
a signal are related through the Fourier transform (FT) and inverse Fourier transform (IFT):

S(ν) = FT [s(t)] =
∫ +∞

−∞

dt s(t)e−i2πνt

s(t) = IFT [S(ν)] =
∫ +∞

−∞

dν S(ν)ei2πνt .
(1)

In standard Fourier analysis, the square of the signal in time (|s(t)|2) and in frequency domain
(|S(ν)|2), are called instantaneous energy and power spectrum, respectively. The power spectrum
can also be expressed as the FT of the signal correlation function R(t) [33]:

|S(ν)|2 =
∫ +∞

−∞

dt R(t)e−i2πνt

R(t) =
∫ +∞

−∞

dτ s(t)s∗(t − τ) =
∫ +∞

−∞

dτ s
(
t +

τ

2

)
s∗

(
t −

τ

2

) (2)

where τ is the time lag between the signal and its complex conjugate. The critical point in a
conventional FT analysis is that in s(t) and S(ν) the time and frequency variables are treated as
mutually exclusive: one can interpret the frequency representation as averaged over the entire
time domain and vice versa. The representations in terms of time-frequency distributions (TFTs)
overcome this limitation since they are joint functions of time and frequency, able to represent
the energy or intensity per unit time per unit frequency. Table 1 summarizes the TFTs considered
in this work.
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To understand the basic properties of a TFT, it is useful to consider the best-known example of
this class, the short-time Fourier transform (STFT) [34]. It examines the frequency content of the
signal as a window h(t) is moved in time, providing the Fourier transform only of the portion of
the signal contained in the window. This operation differs from the conventional FT only by the
presence of the window, typically described as a Gaussian function centered at the time t. The
addition of a window function allows retaining the time information performing a localization of
the FT. A similar approach is adopted in the continuous wavelet transform (CWT) [35, 36]. Here,
instead than a fixed window h(t), a short time oscillating function φ(ν, t) called wavelet is used.
The wavelet φ has a central frequency ν0 and it is stretched and translated along time, leading to
a variable frequency resolution. Often the squared modulus of STFT and CWT are employed.
They are called spectrogram (SP=|STFT|2) and scalogram (SCA=|CWT|2), respectively. SP
and SCA are used, rather than their linear analogs, to be compared with bilinear transforms, to
maintain the quadratic dependence on the signal. The Margenau-Hill spectrogram (MHS) can be
built similarly, starting from a product of two STFTs with independently defined windows.

Most bilinear TFTs belong to a more general class of transforms, the so-called Cohen’s class,
and they can be specified as [37]:

TFT(t, ν; F) =
∫ +∞

−∞

dτ
∫ +∞

−∞

dt ′ F(t ′, τ) s
(
t + t ′ +

τ

2

)
s∗

(
t + t ′ −

τ

2

)
e−i2πντ . (3)

This general form is reminiscent of Eq. (2) with the addition of a kernel function F(t ′, τ), whose
definition characterizes different transforms, as summarized in Table 1. These bilinear TFTs
are generally able to distribute in a more sophisticated way the energy of the signal over the
time-frequency plane, than linear TFTs. The definition of the kernel function is the crucial point
in the interpretation of TFT operations and performances, as more deeply discussed in Section
4. When F(t ′, τ) = 1, the Wigner-Ville transform (WV) is retrieved. WV is the basic function
acting as a precursor for all the other functions of the Cohen’s class family. WV achieves the
best performances in terms of uncertainty principle and has the highest resolution among all the
time-frequency distributions of the class. However, it presents strong cross-term interference as a
result of the structure of Eq. (3) that basically compares the signal with a translated replica. For
this reason it is very rarely employed for practical purposes.
The issue of interference terms attenuation is a central topic in bilinear TFTs and results

particularly critical in the context of ultrafast spectroscopy beating analysis. The cross-term
interference is manifested as oscillating features arising in the time-frequency plane halfway
between each pair of components [32]. One of the possible approaches to efficiently attenuate
interference is to define a suitable kernel function F(t ′, τ). For example, in the smoothed-pseudo-
Wigner-Ville distribution (SPWV), two time windows g and h are introduced and translated
along the time dimension, introducing time and frequency smoothing, respectively. As a
result, interference contributions are strongly mitigated. These two windows can be arbitrarily
and independently tuned in order to obtain the best performances for each particular type of
signal [32]. Another of the best-known transforms of the Cohen’s class is the Choi-Williams
(CW) distribution [38]. To suppress cross-term interferences, CW adopts an exponential kernel
where the width parameter α (Table 1) tunes the amount of interference filtering. This strategy is
very effective for signals where the different components are well separated in time and frequency,
but strong interference cross-terms cannot be avoided for synchronized and frequency overlapping
oscillations. For the sake of completeness, in addition to the most famous transforms previously
mentioned, two other widely used time-frequency representations have been considered: the
Butterworth distribution (BUD) [39] which has an exponential kernel similar to CW, and the
Zhao-Athlas-Marks distribution (ZAM) that has a cone-shaped kernel [40]. In analogy with the
definition of the SPWV, two additional window functions h and g have been included in the
definition of CW, BUD and ZAM in Table 1. This is a standard procedure to mitigate the known
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limitations of exponential and cone-shaped kernels. All the considered transforms, summarized
in Table 1, have been chosen based on their spread and frequency of utilization and on the
availability of the associated algorithm in the most used data analysis software platforms. Our
calculations are performed using MATLAB and the Time-Frequency Toolbox [41].

Table 1. Linear and bilinear transforms considered in this work.
Name Acronym Definition

Continuous Wavelet CWT
1
√

a

∫ +∞

−∞

dt ′ s (t ′) φ∗
(
(t ′ − t)

a

)
where a =

ν

ν0linear
Short-time Fourier Transform STFT

∫ +∞

−∞

dt ′ s (t ′) h (t ′ − t) e−i2πνt
′

Scalogram SCA |CWT|2

Spectrogram SP |STFT|2

Margenau-Hill Spectrogram MHS <{STFTh (t, ν)STFTg (t, ν)}

Wigner-Ville WV
∫ +∞

−∞

dτ s
(
t +

τ

2

)
s∗

(
t −

τ

2

)
e−i2πντ

smoothed-pseudo Wigner-Ville SPWV
∫ +∞

−∞

dτ
∫ +∞

−∞

dt ′ h(τ)g(t ′ − t) s
(
t ′ +

τ

2

)
s∗

(
t ′ −

τ

2

)
e−i2πντ

Choi-Williams CW
∫ +∞

−∞

dτ
∫ +∞

−∞

dt ′ h(τ)g(t ′)
√
α

√
4π |τ |

e
− t′2α
(4τ2) s

(
t + t ′ +

τ

2

)
s∗

(
t + t ′ −

τ

2

)
e−i2πντ

Butterworth BUD
∫ +∞

−∞

dτ
∫ +∞

−∞

dt ′ h(τ)g(t ′)
√
α

2|τ |
e−
|t′ |
√
α

|τ | s
(
t + t ′ +

τ

2

)
s∗

(
t + t ′ −

τ

2

)
e−i2πντ

bilinear

Zhao-Atlas-Marks ZAM
∫ +∞

−∞

dτ
∫ t+ |τ |/2

t−|τ |/2
dt ′ h(τ)g(t ′ − t) s

(
t ′ +

τ

2

)
s∗

(
t ′ −

τ

2

)
e−i2πντ

3. Optimization and selection procedure

A proper time-frequency signal processing procedure requires (i) the selection of the best TFT
and (ii) the optimization of its parameters, based on the properties of the particular experimental
signal to analyze. Given the differences in the definitions and in the parameters on which they
depend, a meaningful comparison of different TFTs requires a preliminary step of optimization
of the associated parameters. A different choice of parameters and windows (or wavelets) leads
indeed to significantly different results, hindering the comparison of the outcomes. To select
the best TFT in a non-arbitrary way the following procedure has been set up: (i) generation
of a synthetic signal with known frequency and time properties. Working with a signal with
known information content will help in the evaluation of the performances of different transforms
as well as in the identification of possible artifacts arising during the analysis; (ii) definition
of a theoretical TFT based on the synthetic signal and complying with basic properties of
time-frequency distributions; (iii) optimization of the TFTs based on the best matching with
the theoretical transform; (iv) application of the TFTs with optimized windows parameters and
comparison of their results. For simplicity, following the standard procedure in the literature,
Gaussian windows are considered in all the transforms and their width σ is the parameter to be
optimized. Similarly, for |CWT|2 a complex Morlet wavelet is used, defined as a product of a
complex exponential and a Gaussian window [36]. The choice of a Gaussian shape is motivated
by its peculiar properties. Indeed, it guarantees the optimal joint time-frequency resolution
from the uncertainty point of view. Moreover, the balance between the time and the frequency
resolution can be controlled by the width parameter σ. The performances of other window
functions were already explored in a previous publication [32]. In any case, the optimization
procedure described here can be easily generalized to other window functions.
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Fig. 1. (a) Real part of the signal defined by Eq. (4) and parameters in Table 2. (b) Power
spectrum of the signal as defined in Eq. (2). Wiggles next to peaks are a consequence of the
non-complete decay of coherent beatings in the considered time window, a feature typically
encountered in experimental signals.

3.1. Generation of a synthetic signal

First of all, in order to emulate the typical oscillating features appearing in time-resolved data, a
discrete wave-packet signal has been considered:

y(t) =
N∑
n=1

yn(t)

=

N∑
n=1

Ane−
t
τn ei2πνn t,

(4)

where the n−th component yn(t) of the wave-packet is characterized by the scalar amplitude An,
the damping time τn and the oscillation frequency νn. The signal is assumed to exist only for
positive times and the associated FT is denoted with the capital letter, i.e. Y (ν) and Yn(ν). The
choice of modeling the signal as a collection of exponentially damped oscillatory components is
general and fully justified by the typical dephasing dynamics of the wave-packets observed in any
time-resolved experiment [1, 2, 7]. The specific values of frequencies and time parameters can
then be selected based on the particular frequency and time regime of the experimental signal we
want to reproduce. As an example, here we have chosen a set of parameters (Table 2) and an
investigated time window and sampling (from 0 to 1000 fs with a step of 5 fs, as in Fig. 1), that
mimic the typical conditions encountered in a femtosecond experiment.

Table 2. Parameters used in the definition of the synthetic signal considered in this work.

n νn / cm−1 τn / fs

1 200 300

2 500 1000

3 800 500

4 1100 150

The amplitudes in Eq. (4) are defined as An = 1/√τn in order to guarantee that the total energy
of each component is the same, i.e., each component has a peak with the same area in the power
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spectrum. Indeed, it is possible to analytically demonstrate that for each component yn(t):∫ +∞

−∞

dν |Yn(ν)|2 =
∫ +∞

−∞

dt |yn(t)|2 = A2
n

τn
2
, (5)

where

|Yn(ν)|2 =A2
n

1
4π2(ν − νn)2 + τ

−2
n

|yn(t)|2 =A2
ne−2 t

τn .

(6)

This definition of amplitudes does not diminish the generality of the approach, but it represents
an elegant choice to guarantee that in the ensuing optimization procedure all the wave-packet
components have similar weight.

3.2. Definition of a theoretical transform

A theoretical bilinear time-frequency representation THEO (ν, t) is introduced. This function is
specifically tailored for exponentially damped signals. The most important property imposed in
the definition of this distribution is the fulfillment of the marginal conditions [27]:

|s(t)|2 =
∫ +∞

−∞

dν THEO(t, ν)

|S(ν)|2 =
∫ +∞

−∞

dt THEO(t, ν).
(7)

If marginals are fulfilled, then, we are in the ideal condition that (i) the sum of the energy
distribution for all frequencies at a particular time gives the instantaneous energy, and (ii) the
sum over all times at a particular frequency would give the energy density spectrum; with energy
distribution and energy density spectrum defined as in Section 2.
The function THEO is defined as:

THEO(t, ν) =
N∑
n=1

|Yn(ν)|2 |yn(t)|2

A2
n
τn
2

=

N∑
n=1

A2
n

2
τn

1
4π2(ν − νn)2 + τ

−2
n

e−2 t
τn ,

(8)

note that this equation incorporates the analytical expressions reported in Eq. (6). The marginal
properties are rigorously respected for a signal with N = 1, and they are still satisfactorily valid
if the components of the signal do not strongly overlap in the time-frequency plane, as in our
case. For the n−th component, it is possible to demonstrate that∫ +∞

−∞

dt THEO(t, ν) = |Yn(ν)|2∫ +∞

−∞

dν THEO(t, ν) = |yn(t)|2∫ +∞

−∞

dt
∫ +∞

−∞

dν THEO(t, ν) =A2
n

τn
2
,

(9)

which implies that the total energy of the signal is conserved when distributed on the time-
frequency plane through the function THEO. The idea behind the definition of this theoretical
time-frequency distribution is straightforward; a Lorentzian shape is used to describe the
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frequency profile of the features and an exponential decay is used for the time profile. A factor
(A2

nτn/2)−1 is introduced to guarantee the conservation of the energy. This theoretical TFT thus
represents the hypothetical limit for any time-frequency transform: it is characterized by the
highest possible frequency resolution of the Fourier transform and the exact time evolution of the
originating signal, without the presence of any cross-term interference. Being defined as the
hypothetical limit of a TFT, THEO perfectly incorporates all the characteristics of the synthetic
signal without any artifact, but it clearly violates the time-frequency indetermination principle.

3.3. Optimization of TFTs

In order to find the optimal performance conditions, an unconstrained minimization problem over
the set of parameters p = (p1, p2, ..., pM ) that characterize each investigated TFT can be solved:

min
p ∈ RM

| |THEO(t, ν) − TFT(t, ν; p)| |2 , (10)

where M is the number of parameters. Theminimum of the problem represents the TFT realization
that gives the smallest difference with respect to the theoretical transform and thus delivers
an optimal compromise between interference attenuation and time-frequency concentration of
features. Consequently, the solution of the minimization problem in Eq. (10) provides the best
parameters that optimize the different TFTs on the basis of a common performance criterion,
allowing a meaningful comparison. As an example, in the case of SPWV, the expression inserted
in the minimization problem in Eq. (10) is

TFT(t, ν; p) = p1SPWV(t, ν; p2, p3), (11)

where p1 is a scale factor to account for the different normalization conditions of the time-
frequency representations, and p2 = σh and p3 = σg are the width parameters of the Gaussian
window functions h(t) and g(t), respectively, as defined in Section 2 and Table 1. The procedure
has been repeated for all the bilinear TFTs reported in Table 1. The optimized parameters for the
various TFTs are summarized in Table 3. It is useful to clarify that these optimized parameters
strongly depend on the specific signal we considered, thus they should be refined according to
the experimental signals requirements. Moreover, it is important to stress that the minimization
procedure outputs the parameters that simultaneously optimize the auto-terms for the best match
with the theoretical representation, and optimally reduce interference fringes, accordingly to the
TFT capability. That is because THEO does not contain any interference by definition, thus every
interference contribution in the TFT increases the norm in the minimization problem.

4. Results

The output of the minimization problem for all the considered TFTs are reported in Fig. 2. The
histogram in Fig. 2(a) clearly shows that SPWV is the TFT that guarantees the best match with
the theoretical one. In the optimized SPWV the cross-term interference is mostly eliminated
maintaining at the same time a high resolution along both time and frequency axes.
This result can be rationalized giving a closer look to the optimized kernel functions F(t ′, τ)

introduced in Eq. (3). In particular, the mathematical operations behind the Cohen’s class
distributions and the effect of kernel filtering can be studied exploiting the narrow-band ambiguity
function (AM), which is directly connected to the base function of the Cohen’s class (WV):

AM(η, τ) =
∫ +∞

−∞

dt s
(
t +

τ

2

)
s∗

(
t −

τ

2

)
e−i2πηt

=

∫ +∞

−∞

dt
∫ +∞

−∞

dτ WV(t, ν) ei2π(ντ−ηt)
(12)
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Fig. 2. (a) Histogram of the norm of the residuals for all the TFTs, after the optimization
step. (b) Results of the optimized TFTs considered in the comparison. The color-scale
is tuned to highlight attenuated features close to zero to ease the recognition of residual
interference artifacts.
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Table 3. Optimized parameters obtained from the solution of the minimization problem in
Eq. (10) applied to the specific signal defined in Eq. (4) and Table 2.

TFT optimized parameters

SCA σφ = 149 fs at ν0 = 750 cm−1

SP σh = 185 fs

MHS σh = 43 fs; σg � 1 ps

SPWV σh = 182 fs; σg = 85 fs

CW σh = 241 fs; σg = 81 fs; α = 0.19

BUD σh = 267 fs; σg = 106 fs; α = 0.103

ZAM σh = 111 fs; σg � 1 ps

where η is the Doppler frequency shift, reciprocal of the time variable t, and τ is the time lag,
reciprocal of ν [27].
Figures 3(a)-3(d) show a simple test case of a wave-packet signal with only two components,

useful to rationalize how auto-terms and interference terms are mapped on the WV (t, ν) and
AM (η, τ) spaces for a discrete wave-packet signal. Figures 3(a) and 3(c) illustrate the WV and
the corresponding AM, respectively. In Figs. 3(b) and 3(d), instead, THEO and theoretical
AM, calculated substituting THEO in place of WV in Eq. (12), are shown for comparison.
The interference between the two components of the wave-packet (highlighted with orange
profiles in Fig. 3) appears in AM as replicas of the main vertically-elongated central feature.
These interference features are shifted on the Doppler axis by an amount equal to the frequency
difference among the two beating components (400 cm−1 in the example of Fig. 3).

Incidentally, it can be noticed that in Figs. 3(b) and 3(d) there are no interference artifacts and
auto-terms are conserved, in agreement with the THEO definition (Eq. (8)).
The representation of the various transforms in the (η, τ) space allows reinterpreting how

the kernel function smooths the interference artifacts, as already quickly outlined in Section
2. In the (η, τ) space, indeed, the time and frequency smoothing operations can be performed
simply multiplying the AM by the kernel function. In this picture, the optimization problem in
Eq. (10) is acting by shaping the bidimensional kernel function, within the constraints of its
parametrization, in order to remove the interference contributions as much as possible. Some
examples of optimized kernel functions are reported in Fig. 3(e).
Both SP and SPVW use a simple Gaussian smoothing kernel. The difference is that in

SPVW the bidimensional Gaussian function has independent widths along τ and η, which leads
to a reliable and stable interference terms attenuation. In SP, instead, the widths along the
two dimensions are controlled by a single parameter and therefore they cannot be optimized
independently. Exponential kernels like in CW (and BUD) are in principle more efficient and
can guarantee a higher time-frequency concentration of the features. Nevertheless, they do not
attenuate interference terms efficiently in the specific case of wave-packet signals. In fact, the
kernel has a shape elongated along the τ = 0 line, where interference of signals superimposed in
time appears. Similar considerations can be done about the performance of cone-shaped kernels,
like in ZAM. We can conclude that the SPWV distribution, among all the considered TFTs, is the
most suited transform in the analysis of a sum of exponentially damped signals with frequency
and damping times typically encountered in femtosecond optical experiments. It is the most
stable and gives the most predictable interference attenuation, reducing the probability of feature
deformations and distortions in noisy experimental signals. [32]
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Fig. 3. (a-b) Normalized WV and THEO distributions for a two components test signal.
(c-d) Normalized absolute narrow-band ambiguity function for the distributions reported in
panels a and b. (e) Examples of optimized kernel functions superimposed to the ambiguity
function of panel c. Dashed and solid lines represent respectively the 10 and 50 % contours
of the kernel function.
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The qualitative prediction reported in [32] was thus confirmed and rationalized, also after
the numerical optimization step. Note that, while this specific result applies to femtosecond
spectroscopy responses, the proposed procedure is general and it can be used for wave-packet
oscillating signals in any time domain, from attoseconds to nanoseconds and beyond, simply
varying the expression and/or the parameters of the synthetic signal used for the definition of
the THEO transform. The approach can be easily furtherer generalized considering different
shapes for the window functions, and accounting for signals with different properties (for example
including components overlapped in time or frequency and characterized by various levels of
noise or chirp).

Whatever the properties of the beating signal to be analyzed, this procedure allows to identify
the best TFT and optimize its parameters to achieve the best analysis of frequency and time
behavior of the oscillating signal.

5. Conclusions

In the latest years, time-resolved experiments in different time-domains are producing a growing
amount of evidence, proving the crucial role of wave-packet dynamics in chemical reactivity,
transport and relaxation processes, manifested as multicomponent and non-stationary oscillating
signals. Owing to the complexity of such oscillations, it is often challenging to extract information
about their origin and the associated dynamics using only conventional spectral analysis. To
overcome this difficulty, we described here how to exploit analysis methods borrowed from the
signal-processing field, known as time-frequency transforms, to obtain information not only
about the frequency but also about the dynamics of the oscillating components contributing to the
overall beating signal. Several linear and bilinear transforms have been considered and a general
and easy procedure to judge in a non-arbitrary way the performances of different transforms
has been outlined. This numerical procedure relies on the definition of a synthetic signal with
properties able to reproduce the most important features of the experimental signal to be analyzed.
This synthetic signal is then used to define a theoretical transform retaining ideal resolution along
both time and frequency axes. The minimization of the difference between this ideal theoretical
transform and a generic TFT allows ascertaining the best TFT and optimizing its parameters to
obtain the best analysis. As an example, the application of this methodology to synthetic signals
mimicking the results of a typical femtosecond time-resolved experiment lead to the identification
of the bilinear smoothed-pseudo Wigner-Ville (SPWV) transform as particularly advantageous
for the analysis of signals in this time and frequency domain. The different performances of
the considered TFTs have been justified and interpreted in the framework of the narrow-band
ambiguity function, providing a clear picture of how different transforms, and the associated
kernel functions, operate to minimize interference artifacts. This is an important information for
the generalization of the proposed methodology to different time-resolved beating signals.
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