
PHYSICAL REVIEW A 84, 042314 (2011)

Quantum-state storage and processing for polarization qubits in an inhomogeneously
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We address the propagation of a single-photon pulse with two polarization components, i.e., a polarization qubit,
in an inhomogeneously broadened “phaseonium” �-type three-level medium. We combine some of the nontrivial
propagation effects characteristic for this kind of coherently prepared systems and the controlled reversible
inhomogeneous broadening technique to propose several quantum information-processing applications, such as
a protocol for polarization qubit filtering and sieving as well as a tunable polarization beam splitter. Moreover,
we show that by imposing a spatial variation of the atomic coherence phase, an efficient quantum memory for
the incident polarization qubit can be also implemented in �-type three-level systems.
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I. INTRODUCTION

The propagation of electromagnetic pulses in multilevel
media has been widely investigated in the last decades.
Three-level atomic media interacting with two optical fields in
a �-type configuration have been among the most considered
systems, leading to the discovery of a large variety of
phenomena, such as coherent population trapping, electro-
magnetically induced transparency (EIT), and slow light [1].
More recently, the development of quantum technologies
for quantum information applications has triggered renewed
attention on the subject. In particular, the propagation of
weak (quantum) pulses in a � medium in the presence of
strong (classical) driving fields has been considered in detail,
giving rise to proposals and implementations for quantum-state
storage and processing [2].

The nonabsorbing propagation of a pair of pulses in co-
herently prepared �-type media has been deeply investigated
in relation to pulse matching [3–6], the dark-area theorem [7],
simultons [8], and adiabatons [9,10]. In all these investigations
the initial quantum state of the atomic population plays an
essential role. The term “phaseonium” was introduced by
Scully [11] to describe a coherent pure-state superposition
between the ground levels of a � medium and methods to
prepare a phaseonium state have been put forward for ladder
[12] and � [13] type systems. An interesting effect that takes
place in these systems is the loss-free propagation of light
pulses in otherwise optically thick media. In particular, it has
been shown that matched pulses, i.e., pulse pairs with identical
envelopes, can propagate without distortion if the atoms are
prepared in a suitable phaseonium state [3].

Particularly relevant for the purposes of the present study
is the propagation of two weak optical pulses through an
inhomogeneously broadened phaseonium medium. For this
system, it was shown in Ref. [5] that under the two-photon
resonance condition, a certain superposition of the fields—the
antisymmetric normal mode [3,10]—does not couple to the
coherent atomic state, whereas the orthogonal superposition—
symmetric normal mode—does interact with the atoms and is
completely absorbed. Both the antisymmetric and symmetric
modes are determined by the phaseonium state and can
therefore be tuned according to the phase of the atomic
coherences.

In this paper we consider the combination of the above-
mentioned propagation effects occurring in a �-type three-
level medium interacting with two weak pulses together with
the controlled reversible inhomogeneous broadening (CRIB)
[14] technique, first introduced by Moiseev and Kröll [15]
for quantum-state storage. In the original CRIB proposal
[15], a Doppler broadened atomic vapor was considered
for storage and retrieval of a single photon, exploiting the
time-reversal symmetry of the optical Bloch equations. Later
this seminal idea was extended to solid-state systems with
a twofold advantage: long-living metastable states allow for
longer storage times and the inhomogeneous broadening
can be artificially controlled [16–19]. CRIB techniques have
been originally developed for systems composed of two-level
atoms with the aim of storing quantum information encoded
in time domain—so called time-bin qubits. However, many
quantum information processes and sources of photon states
are based on the polarization degree of freedom, showing
a high degree of interferometric stability and experimental
compactness. Most proposals addressing the storage and
retrieval of polarization qubits have considered the possibility
of spatially splitting the original qubit and storing each
polarization component separately [20]. Only recently has the
implementation of polarization quantum memories that do not
rely on the spatial splitting of each polarization component of
single photons been discussed [21–23].

In this work we show that the CRIB technique offers
also the possibility to store and retrieve quantum states of
polarization qubits in a coherently prepared �-type system
with ideally perfect efficiency and fidelity. We notice here that
the application of the CRIB technique to this kind of system is
not straightforward since, as already mentioned, part of both
polarization components of the single photon will propagate
as matched pulses and, therefore, it will not be absorbed.
Hence the photon quantum information cannot be, in general,
perfectly stored in a �-type medium. Taking advantage of this
fact, we show that tunable polarization filters and sieves can
be devised, as well as generic tunable polarization splitters.
Moreover, we show that by forcing the field components to
propagate without the possibility of adjusting their amplitudes
as matched solitons, an efficient quantum memory can also be
implemented in three-level � media.
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FIG. 1. (Color online) (a) Physical system under investigation: a
single pulse with central frequency ω0 and two circular polarization
components enters a medium with transverse inhomogeneous broad-
ening. (b) Scheme of the �-type interaction between the single-pulse
polarization components and the three-level atoms of the phaseonium
medium. �13 and �23 are the Rabi frequencies of the corresponding
interaction and � is the two-photon detuning.

The paper is organized as follows. In Sec. II we describe the
physical system and write down the optical Bloch equations
that govern its evolution. We obtain the solutions for the
incident field components in Sec. III and show that by applying
the CRIB technique, the system can be used to implement a
tunable polarization qubit splitter. Next, in Sec. IV we consider
the case for which the phase of the coherent preparation of
the medium is position dependent. For this particular case
we demonstrate that for a large enough optical depth, both
field components can be efficiently absorbed and retrieved,
preserving the amplitude and relative phase between them. The
validity of the assumptions made for the analytical calculations
are verified in Sec. V by numerically integrating the full optical
Bloch equations. Finally, we summarize the results of this work
and present the main conclusions in Sec. VI.

II. THE MODEL

We consider the physical system sketched in Fig. 1. A
single pulse, with central frequency ω0 and two orthogonal
polarization components (we assume left and right circular
polarizations), propagates in the z direction. The pulse in-
teracts with a medium in which an artificial inhomogeneous
broadening, much wider than the spectral width of the pulse,
has been created. This can be achieved, for instance, via Stark
shift of the atom levels by an externally applied electric field.
Left and right circular components of the field interact with
the |1〉 − |3〉 and |2〉 − |3〉 transitions, respectively, defining
a �-type interaction. The atoms of the medium have been
initially prepared in a coherent superposition of the two ground
levels |1〉 and |2〉. We assume that the two-photon resonance
condition is fulfilled for all atoms within the inhomogeneously
broadened profile.

The evolution of a single atom of the medium can be
described, in the rotating wave and electric dipole approxi-
mations, by the following equations:

∂

∂t
σ11(z,t) = iσ13(z,t)�∗

13(z,t) + c.c., (1a)

∂

∂t
σ22(z,t) = iσ23(z,t)�∗

23(z,t) + c.c., (1b)

∂

∂t
σ12(z,t) = iσ13(z,t,ω31)�∗

23(z,t) − iσ32(z,t)�13(z,t),

(1c)

∂

∂t
σ13(z,t) = iσ12(z,t)�23(z,t) − iω31σ13(z,t)

−i [σ33(z,t) − σ11(z,t)] �13(z,t), (1d)
∂

∂t
σ23(z,t) = iσ21(z,t)�13(z,t) − iω32σ23(z,t)

−i [σ33(z,t) − σ22(z,t)] �23(z,t), (1e)

where σii is the population of level |i〉, σij is the atomic
coherence between levels |i〉 and |j 〉, �ij = ( �dij

�Eij )/h̄ is the
Rabi frequency, with �Eij being the slowly varying electric
field amplitude of the light component coupled with transition
|i〉 ↔ |j 〉, �dij is the dipole moment of the corresponding
transition, h̄ is the reduced Planck constant, and ωji = ωj − ωi

is the transition frequency between levels |i〉 and |j 〉. Note that
we consider a closed atomic system satisfying σ11 + σ22 +
σ33 = 1. Moreover, for simplicity we have not included any
incoherent decay term into Eqs. (1), since we assume that the
lifetimes of the excited level and of the ground-state coherence
are much larger than the whole duration of the interaction
process.

In three-level media it is common to define a new basis of
the system in terms of the bright |B〉 and dark |D〉 states [24,25]
which, under the two-photon resonance condition, are given
by

|B〉 ≡ 1

�T

(�13|1〉 + �23|2〉) and (2a)

|D〉 ≡ 1

�T

(�∗
23|1〉 − �∗

13|2〉), (2b)

where �T = √
|�13|2+|�23|2 is the total Rabi frequency. For

continuous-wave light fields, it has been shown that the
dynamics is restricted to the transition |B〉 ↔ |3〉. In this case,
once the system enters the dark state due to, e.g., spontaneous
emission from the excited level, it becomes trapped. However,
for light pulses the dynamics is different. Indeed, Kozlov and
Eberly [6,7] showed that the dark state completely controls
the system evolution at large propagation distances when the
medium is in a phaseonium preparation [11].

In order to solve analytically the evolution equations of
the system, we follow the treatment given in Refs. [17] and
[23], where the transition operators and the field amplitudes
associated to each dipole transition are split into the forward
and backward modes (denoted by the superscripts f and b,
respectively):

σμρ(z,t) = σ f
μρ(z,t)e−i(ω0t−k0z) + σ b

μρ(z,t)e−i(ω0t+k0z),

(3a)

�μρ(z,t) = �f
μρ(z,t)e−i(ω0t−k0z) + �b

μρ(z,t)e−i(ω0t+k0z),

(3b)

where ω0 is the central frequency of the pulse and k0 the
corresponding wave number. From now on we set ρ = 3,
μ,ν = 1,2, and μ �= ν. We assume that the initial population
is distributed only between levels |1〉 and |2〉, with the excited
level |3〉 being unpopulated. Since the interaction involves
weak pulses, one can neglect [14] the temporal variations in the
level populations as well as in the coherence σ12. The validity
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of these approximations is checked and confirmed in Sec. V
via numerical analysis of the full set of the Maxwell-Bloch
Eqs. (1) and (5).

Using the forward-backward mode decomposition [(3a) and
(3b)] and the weak-field approximation (outlined just above),
Eqs. (1) are simplified as follows:

∂

∂t
σ b,f

μρ (z,t,�) = i�σ b,f
μρ (z,t,�) + iσμμ�b,f

μρ(z,t)

+iσμν(φμν)�b,f
νρ (z,t), (4)

where � = ω0 − ω31 = ω0 − ω32. Notice that we have in-
cluded an explicit dependence on the phase φμν = φμ − φν

between the two ground levels through the coherence σμν .
This allows us to take into account the general case in
which the system is initially prepared in an arbitrary coherent
superposition of the ground levels. Note that from Eq. (4)
it is clear that for atoms prepared initially in an incoherent
mixture of the ground states, |σμν | = 0, the equations for
each transition of the lambda system become decoupled.
This decoupling also occurs for a polarization qubit memory
using V -type three-level atoms, as it was recently reported in
Ref. [23].

The propagation of the forward and backward modes of
the light, in a reference frame moving with the pulses, can be
described by the following equations:

∂

∂z
�b,f

μρ(z,t) = ∓iημρ

∫ ∞

−∞
d�

[
Gρμ (�) σ b,f

μρ (z,t,�)
]
, (5)

where + (−) refers to backward (forward) modes, Gρμ(�)
is the inhomogeneous frequency distribution of atoms of
the corresponding transition, ημρ = g2Nd2

μρ/h̄c with g2 =
ω0/2ε0V being the coupling constant, ε0 is the vacuum electric
permittivity, N is the number of atoms in the quantization
volume V , and c is the speed of light in vacuum. It is
worth noting that although the treatment is performed in the
semiclassical formalism, the linearity of the equations ensures
the validity of this model also at the single-photon level. Thus
in what follows both the atomic coherences and the fields
could be interpreted as classical amplitudes as well as quantum
operators.

From Eqs. (4) and (5) we note that the time-reversed
(t → −t) equations for the forward-propagating modes are
equal to the backward ones under a sign change in the
detunings and in the field amplitudes. This symmetry in the
optical-Bloch equations is indeed the basis for the CRIB
method. Thus once the forward-propagating input light pulse
has been completely absorbed, in order to retrieve the pulse as
a time-reversed copy of itself, we need to reverse the detuning
(� → −�). This reversing operation can be achieved, for
instance, by changing the polarity of the device that creates
the inhomogeneous broadening. At the same time, one has to
apply a position-dependent phase-matching operation to trans-
form the forward components of the atomic excitations into
backward components so that the retrieved pulse propagates in
the backward direction. This phase change can be performed
by transferring the atomic coherences back and forth to an
auxiliary metastable [14,26] state, which also allows for longer
storage times [27].

III. TUNABLE POLARIZATION QUBIT SPLITTER

In the following we investigate how the three-level system
discussed in the previous section can act as a tunable beam
splitter for polarization qubits, a device of clear interest in
quantum information processing. In particular, it is shown that
the polarization basis that determines the beam splitter action
is defined by the phaseonium state.

A. Quantum filter

Let us first consider the propagation of the incident pulse in
the forward direction. For a medium of �-type atoms prepared
initially in a coherent superposition of the ground levels |1〉
and |2〉, i.e., a phaseonium state [11], Eqs. (4) and (5) can
be analytically solved following Ref. [17]. Thus we insert the
solution of Eq. (4) into Eq. (5) and Fourier transform the result:

∂

∂z
�̃in

μρ(z,ω) = −ημρσμμHρμ(ω)�̃in
μρ(z,ω)

−ημρσμν(φμν)Hρμ(ω)�̃in
νρ(z,ω), (6)

where we have used the initial conditions σμρ(z,t = −∞) = 0
and we have defined

Hρμ(ω) =
∫ ∞

−∞
Gρμ (�)

∫ ∞

0
eiωτ ei�τ dτd�. (7)

An analytical compact solution of Eq. (6) can be given
assuming symmetric transitions, i.e., equal electric dipole
moments (| �d13| = | �d23| = d) and equal inhomogeneous distri-
butions [G31(�) = G32(�) = G(�)], yielding η13 = η23 = η

and H32(ω) = H31(ω) = H (ω), which reads as follows:

�̃in
μρ(z,ω) = �̃in

μρ(0,ω)(e−α(ω)zσμμ + σνν)

+ �̃in
νρ(0,ω)|σμν |eiφμν (e−α(ω)z − 1), (8)

where α(ω) = ηH (ω) is the absorption coefficient. These
equations describe, for each frequency of the pulse, the prop-
agation of the two polarization components of the incoming
field along the medium. Each solution depends on both initial
polarization components of the weak pulse, �̃in

13(z = 0,ω) and
�̃in

23(z = 0,ω), which implies that, in general, the information
carried by each component is mixed as the pulse propagates
through the � medium due to the two-photon coherence σ12.

Moreover, it is easy to see from Eq. (8) that, in general,
the fields are not completely absorbed, even for large optical
depths α(ω)z. In particular, the two polarization components
of the pulse can only be completely absorbed at large optical
depths if the condition

�̃in
13(0,ω)

�̃in
23(0,ω)

= c1

c2
, (9)

where cμc∗
μ = σμμ, is fulfilled. However, for arbitrary input

pulses both components will change their amplitudes and
phases in such a way that the dark state becomes populated
as they propagate [6]. If the optical depth of the medium is
large enough, eventually the dark state will be fully populated,
so the field components will propagate as matched solitons,
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without any further absorption. Indeed, it can be seen from
Eq. (8) that the field amplitudes will evolve until the relation

�̃in
13(z,ω)

�̃in
23(z,ω)

= −c∗
2

c∗
1

(10)

is satisfied. Note that relations (9) and (10) determine the
symmetric and antisymmetric normal modes, respectively,
introduced in [5]. In fact, the time reversal symmetry of Eqs. (4)
and (5) is not sufficient alone to guarantee full recovery of the
original input state. Clearly, the unabsorbed component of
the input pulse cannot be recovered. Specifically, the field that
exits the medium ends up in a definite polarization state, which
depends only on the phaseonium preparation. Assuming a large
optical depth αL → ∞, the normalized intensity of each of the
polarization components at the output of the medium z = L,
from Eq. (8), reads

Ĩ in
μρ(L,ω) ≡

∣∣�̃in
μρ(L,ω)

∣∣2

�̃in
T (L,ω)2

= σνν, (11)

where �̃in
T (L,ω) is the total Rabi frequency of the output field,

as defined in (2). This result perfectly agrees with [28], where
it was shown that at the output of the phaseonium medium, the
amplitude of the field coupled with an optical transition de-
pends on the ground-state amplitude of the opposite transition.
Moreover, one realizes that in this situation the relative phase
between the output field components φμρ(L) − φνρ(L), using
the definition �̃in

μρ = |�̃in
μρ |eiφμρ , is simply the phase φμν of

the σμν coherence. Considering the input pulse to be a single
photon in the generic polarization state,

|ψin〉 = aL |L〉 + aR |R〉, (12)

entering a medium prepared in a coherent superposition

|ψat〉 = c1 |1〉 + c2 |2〉, (13)

we will find at the output the state∣∣ψ f
out

〉 = (c2 − c1)∗ (c2 |L〉 − c1 |R〉) (14)

with probability

P f
out ≡ ∣∣〈ψin

∣∣ψ f
out

〉∣∣2 = |(σ11 − σ12)|aR|2 + (σ22 − σ21)|aL|2|2.
(15)

Note that since part of the incident light pulse has been
absorbed by the medium, the state (14) is not normalized.
A convenient picture of the process is that the preparation
of the phaseonium medium fixes the basis for which the
incident field is filtered: after the dark state is filled, only the
so-called antisymmetric normal mode (14) propagates without
absorption. In turn, the latter depends only on the phaseonium
state, which ideally can be tuned at will. In other words, the
medium acts as a tunable quantum filter.

B. Quantum sieve

As the pulse components propagate through the phaseo-
nium medium, they adjust themselves to fulfill condition (10),
which allows absorption-free propagation. However, before
the dark state is completely populated, part of the field [the
symmetric normal mode, given by (9)] is absorbed by the
medium. This information stored in the optical coherences can

be retrieved by using the CRIB technique. In this subsection
we study the propagation of the retrieved light pulse in the
backward direction, which is caused by the sign change of
the detunings and the phase-matching operation, performed
at time t = 0, once the nonabsorbed part of the field has left
the medium [17]. In this situation the equations for the optical
coherences and the Rabi frequencies of the corresponding field
components are

∂

∂t
σ b

μρ(z,t, − �)

= iσμν(φμν)�b
νρ(z,t)+iσμμ�b

μρ(z,t)−i�σ b
μρ(z,t, − �),

(16a)
∂

∂z
�b

μρ(z,t)

= −iημρ

∫ ∞

−∞
d�

[
Gρμ(−�)σ b

μρ(z,t, − �)
]
, (16b)

again with ρ = 3, μ,ν = 1,2, and μ �= ν. The initial and
boundary conditions at the time of switch (t = 0) are

σ b
μρ(z,t = 0, − �) = i

∫ 0

−∞
e−i�s

[
σμμ�in

μρ(z,s)

+ σμν(φμν)�in
νρ(z,s)

]
ds, (17a)

�̃b
μρ(L,ω) = 0. (17b)

The first two initial conditions (17a) are obtained from the
solution of the atomic coherences (4) at time t = 0, whereas
the boundary condition (17b) derives from the assumption that
at the time when the detuning is reversed, the nonabsorbed field
has left the medium. The above equations can be solved, as for
the absorption stage, inserting the solution of (16a) into (16b),
and Fourier transforming the result. By introducing

Fρμ(ω) =
∫ +∞

−∞
Gρμ (−�)

∫ ∞

0
eiωτ e−i�τ dτd�, (18a)

Jρμ(ω) =
∫ +∞

−∞
Gρμ (−�)

∫ +∞

−∞
eiωτ e−i�τ dτd�, (18b)

the equations for the backward fields associated with the two
transitions are

∂

∂z
�̃b

μρ(z,ω)

= ημρFρμ(ω)
[
σμν(φμν)�̃b

νρ(z,ω) + σμμ�̃b
μρ(z,ω)

]
+ ημρJρμ(ω)

[
σμν(φμν)�̃in

νρ(z,−ω)+σμμ�̃in
μρ(z,−ω)

]
.

(19)

As for the case of absorption, an analytic solution for the
above equations can be found. In particular, a compact
expression can be derived assuming symmetric transitions and
inhomogeneous distributions, as done in the derivation of (8):

�̃b
μρ(z,ω)

= ηJ (ω)

η[F (ω) + H (−ω)]
(e−η(F (ω)+H (−ω))(L−z) − 1)

×[
�̃in

μρ(0, − ω)σμμ + �̃in
νρ(0, − ω)|σμν |eiφμν

]
. (20)

We note that similar to the solution for the forward-propagating
modes (8), the backward re-emitted components of the field are
also a combination of the initial amplitudes. From (20) it is easy
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to show that for a large enough optical depth the normalized
intensity at the output surface of the medium (z = 0) reads

Ĩ b
μρ(0,ω) ≡

∣∣�̃b
μρ(0,ω)

∣∣2

�̃b
T (0,ω)2

= σμμ, (21)

where �̃b
T (0,ω) is the total Rabi frequency for the backward

components at the output. In the last expression we have con-
sidered that the spectral bandwidth of the pulse is smaller than
the inhomogeneous broadening, F (ω) � H (−ω) � J (ω)/2 �
π/2, and that the absorption coefficient reduces to α � ηπ/2.
In this situation the relative phase between the field compo-
nents corresponds to the phase difference between the ground
levels, φμρ(0) − φνρ(0) = φμν . For the single-photon case, the
backward-retrieved components exit the medium in a state∣∣ψb

out

〉 = −(c1 + c2)(c∗
1|L〉 + c∗

2|R〉), (22)

which is orthogonal to (14) and corresponds to the so-called
symmetric normal mode, with probability

P b
out = 1 − P f

out, (23)

where P f
out is given in (15). Therefore the system acts as a tun-

able quantum sieve that can re-emit the sieved state on demand.
Note that since part of the field is absorbed by the medium,
the sum of the norms of states (14) and (22) must be one.

An example of the sieve protocol is shown in Fig. 2, where
the normalized intensity of each polarization component
|�13|2 (black lines) and |�23|2 (gray lines) is plotted as a
function of the optical distance αz. The solid lines correspond
to the propagation of the polarization components of the
incident field Eq. (8), whereas the dashed lines represent the
components of the backward-retrieved single photon Eq. (20).
In this particular case, a medium of optical length αL = 10
has been chosen with the atomic population prepared initially
in a coherent superposition fulfilling σ11 = 0.6, σ22 = 0.4, and

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

αz

μρ
in 2

μρ
b 2

FIG. 2. Normalized intensities of the single-pulse polarization
components (see text for definition) coupled with the |1〉 − |3〉
(black lines) and |2〉 − |3〉 (gray lines) optical transitions as a
function of the optical distance αz. The solid lines correspond to the
propagation of the incident field, while the dashed lines correspond
to the backward-retrieved components. The initial prepared state
of the phaseonium medium is σ11 = 0.6, σ22 = 0.4, φ12 = π/3,
whereas the field components are initially weighed as I in

13(0,tc) = 0.9
and I in

23(0,tc) = 0.1, with the relative phase between them being
φ13(0) − φ23(0) = 0.

φ12 = π/3. The two components of the input light pulse have
been assumed to have the relative phase of φ13(0) − φ23(0) = 0
and initial weights I in

13(0,tc) = 0.9 and I in
23(0,tc) = 0.1, where

tc denotes the temporal position of the pulse peak in the moving
frame. In Fig. 2 we observe how the incident components
change their amplitudes along propagation and that beyond
a certain optical length they propagate as matched solitons.
The total intensity at the output is given by Eq. (15), whereas
Eq. (11) determines which fraction of the total transmitted
intensity is in each mode. Since during the transient regime
part of the field has been absorbed, the CRIB technique allows
(dashed lines) this information stored in the optical coherences
to be recovered. Clearly, since part of the field has left the
medium, the retrieved intensity is smaller than the initial one.
In this case the total retrieved intensity is given by Eq. (23),
while the distribution of the atomic populations determines
which is the fraction of the output intensity associated to each
polarization component, as given by Eq. (21).

To summarize, by applying the CRIB technique the phaseo-
nium medium can act as a tunable polarization qubit splitter:
part of the field ends up in the antisymmetric (unabsorbed)
mode, which exits in the forward direction, while the rest
is absorbed. Moreover, the stored antisymmetric mode can
be recovered on-demand in the backward direction, with in
the ideal case, arbitrary time delay. This system acts as a
state filter or qubit preparator, since one could properly adjust
the phaseonium state to filter out the undesired polarization
components of a particular photon state. The same idea works
for the implementation of a quantum sieve, since only a
particular desired superposition of the two field components is
stored and the rest exits the medium.

IV. QUANTUM MEMORY IN A LONGITUDINAL
PHASEONIUM

The analysis performed in the previous section is referred
to a system with all the atoms prepared in the same coherent
superposition of their ground levels. We have seen that the
propagation of a pair of pulses through this spatially homoge-
neous phaseonium leads to an automatic adjusting of the pulse
components to fulfill condition (10). This prevents complete
absorption and, in turn, the straightforward implementation of
a quantum memory. In this section we see that the latter can
nevertheless be overcome by imposing that the preparation
of the � system depends on the position. In particular, we
consider that the phase of the two-photon coherence φ12 varies
with position along the light-propagation direction:

φ12(z) = θ
z

L
, (24)

with θ being the phase imposed in the medium at z = L. This
preparation could be implemented, for instance, by applying a
linear magnetic field gradient coupling the two ground levels
such that it produces an opposite Zeeman shift of their energies
that depends on the magnetic field strength. After a certain time
the magnetic field is switched off, yielding a spatial linear
phase between the two ground levels. If so, the equations
describing the evolution of the system are the same as Eqs. (4)
and (5), but now with the corresponding position dependence
of the two-photon coherence phase. Following the same
procedure as in the previous section, an analytical solution
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for the field components propagating in a position-dependent
phaseonium medium can be obtained:

�̃in
μρ(z,ω)

= e(−1)ν iθz
2L

− α(ω)z
2

{
�̃in

μρ(0,ω)

[
cosh

(
K+z

2L

)
− (−1)ν

iθ

K+

× sinh

(
K+z

2L

)]
− �̃in

νρ(0,ω)
α(ω)L

K+
sinh

(
K+z

2L

)}
,

(25)

where K+ ≡
√

[α(ω)L]2 − θ2, and for simplicity we have
taken the particular case σ11 = σ22 = 0.5. Analyzing expres-
sion (25) carefully, one realizes that, in general, the amplitude
of the field decays to zero for large enough optical depths
α(ω)L, and only for θ = 0 the field components will not
be absorbed. The physical reason for this result is that the
field components are not able to adjust their amplitudes and
phases to fulfill condition (10) as they propagate, since the
phase of the optical coherence between the two lower levels is
different at each position of the medium. Therefore, the dark
state is not populated and consequently, each component of
the field is absorbed. In particular, if the variation of the phase
along the medium is large compared with the optical depth,
i.e., θ  α(ω)L, an exponential decay of each component is
observed:

�̃in
μρ(z,ω) � e− α(ω)z

2 �̃in
μρ(0,ω). (26)

As in the standard CRIB approach, the stored information
can be retrieved in the backward direction by reversing the
sign of the detuning and applying a phase-matching operation.
This leads to a backward-propagating solution of the field
components of the form

�̃b
μρ(z,ω) = Cμμ�̃in

μρ(0, − ω) + Cμν�̃
in
νρ(0, − ω), (27)

where

Cμμ ≡ e(−1)ν i θz
2L ηJ (ω)

QK−η[F (ω) + H (−ω)]

{
e

zηF (ω)
2 e− Lη[F (ω)+H (−ω)]

2

×
[
K−[(−1)νiθ sinh (W ) + Q cosh (W )] cosh

(
K−
2

)
+{[θ2 + L2η2F (ω)H (−ω)] sinh (W )

− (−1)νiθQ cosh (W )} sinh

(
K−
2

)]
− e− zηH (−ω)

2

×Q

[
K− cosh

(
K−z

2L

)
− (−1)νiθ sinh

(
K−z

2L

)]}
,

(28a)

Cμν ≡ −e(−1)ν i θz
2L ηJ (ω)L

QK−η[F (ω) + H (−ω)]

{
e

zηF (ω)
2 e− Lη[F (ω)+H (−ω)]

2

×
[
K−ηF (ω) sinh (W ) cosh

(
K−
2

)
+ [QηH (−ω) cosh (W ) + (−1)νiθη[F (ω)

+H (−ω)] sinh (W )] sinh

(
K−
2

)]

− e− zηH (−ω)
2 QηH (−ω) sinh

(
K−z

2L

)}
, (28b)
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FIG. 3. Normalized intensities of the single-pulse polarization
components (see text for definition) |�13|2 (black line) and |�23|2
(gray line) as a function of the optical distance αz. The solid lines
correspond to the incident field while the dashed lines correspond
to the backward-retrieved components. Initially �-type three-level
atoms of phaseonium are prepared in state σ11 = σ22 = 0.5 with a
phase gradient given by θ = 3π . The field components are initially
weighed as I in

13(0,tc) = 0.9, I in
23(0,tc) = 0.1 and the relative phase

between them is φ13(0) − φ23(0) = 0, both for the forward input and
the backward output.

and K− ≡
√

[ηH (−ω)L]2 − θ2, W ≡ Q(1 − z/L)/2, with
Q ≡

√
[ηF (ω)L]2 − θ2. These cumbersome expressions can

be written in a much simpler form using the assump-
tion F (ω) � H (−ω) � J (ω)/2 � π/2, which leads to K− �
K+ � Q. Moreover, one can realize that for the case of
optically thick medium (αL → ∞), i.e., when the incident
field is completely absorbed, solution (27) simplifies to

�̃b
μρ(z,ω) = −�̃in

μρ(z,ω). (29)

Thus each component of the field is perfectly retrieved with a
global phase change of π .

Figure 3 shows an example of the absorbed and retrieved
normalized intensity of each polarization component |�13|2
(black line) and |�23|2 (gray line) as a function of the
optical distance αz. This plot clearly shows that the incident
polarization components (solid lines), given by Eq. (25),
are completely absorbed at large optical distance αz. The
parameter values considered in Fig. 3 are σ11 = σ22 = 0.5,
θ = 3π , φ13(0) − φ23(0) = 0, I in

13(0,tc) = 0.9, and I in
23(0,tc) =

0.1. The dashed lines correspond to the components of the
backward-retrieved field Eq. (27), and we observe practically
no difference with the incident components. At z = 0 the
relative phase between the two polarization components, not
shown in the figure, is the same for the stored (forward input)
and retrieved (backward output) photons. Thus the system is
able to store and retrieve on-demand a single polarization qubit
with unit fidelity.

V. NUMERICAL ANALYSIS

The results reported in the previous sections are based on
the assumption that the atomic populations and the two-photon
coherence σ12 do not evolve in time, since we have considered
the weak-field approximation. In order to check the validity of
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FIG. 4. Normalized intensities of the single-pulse polarization
components coupled with the |1〉 − |3〉 (black symbols) and |2〉 − |3〉
(gray symbols) optical transitions as a function of the optical distance
αz after numerical integration of the full optical Bloch equations (1)
and (5). The crosses correspond to the propagation of the incident
field, while the circles correspond to the backward-retrieved compo-
nents. The parameters are the same as in Fig. 3.

the analytical approach, we have performed exact numerical
simulations by integrating the full optical Bloch equations (1)
and (5) with a finite-difference method, similar to the one
described in [23] and assuming Gaussian temporal profiles for
the pulse components.

An example of the numerical results corresponding to the
case of the longitudinal phaseonium medium is shown in
Fig. 4. In this figure the normalized peak intensity of both
field components is shown as a function of the optical length
with the same parameter values as in Fig. 3. Comparing
these two figures, we conclude that the analytical results
are in complete agreement with the numerical simulations.
Moreover, we have checked that, as expected, the relative phase
between the incident field and the backward re-emitted field is
preserved, and the populations and the two-photon coherence
do not exhibit relevant dynamics. This confirms the validity
of the weak-field approximations performed in the previous
sections.

VI. CONCLUSIONS

We have studied the propagation of a single-photon pulse
whose two polarization components are coupled with the
two transitions of a coherently prepared �-type three-level
medium presenting artificial inhomogeneous broadening. The
propagation effects that normally exhibit this kind of system
have been used in combination with the CRIB technique to
discuss potential quantum information applications. On the
one hand, we have proposed the use of the �-type system as a
quantum filter. This proposal is based on the fact that part of the
incident pulse, i.e., the antisymmetric normal mode uniquely
determined by the preparation of the atoms in the phaseonium
state, propagates without distortion. On the other hand, we
have shown that the orthogonal component associated with
the symmetric normal mode can be efficiently and completely
absorbed and retrieved in the backward direction using the
CRIB method. In this case the system can be used to implement
a quantum sieve or, considering both orthogonal modes, a
tunable polarization qubit splitter.

Furthermore, we have seen that by adding a position-
dependent phase coherence in the phaseonium medium, the
field components cannot populate the dark state, allowing
for a complete absorption of both field components. Then
by applying the CRIB technique, both components can be
recovered on-demand, thus implementing a quantum memory
for polarization qubits.

Finally, the validity of the analytical approach, which is
based on the weak-field approximation, has been checked by
numerically integrating the full optical Bloch equations. The
numerical results obtained are in very good agreement with
the analytical solutions.
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