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FIG. 1 (color online). Interaction energy vs distance of the
PTCDA layer from the surface. The inset shows the chemisorp-
tion distance as a function of the basis cutoff radii rC in Å.
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Bonding of a Large �-Conjugated Molecule on a Metal
Surface’’

In a recent Letter, Hauschild et al. [1] presented
density-functional theory (DFT) calculations to dem-
onstrate the chemisorption of 3,4,9,10-perylene-
tetracarboxylic-dianhydride (PTCDA) on Ag(111). This
result is in contrast with previous calculations [2] and is
an artifact of the basis superposition error effect [3] caused
by excessively confined basis orbitals.

The calculations discussed in Ref. [1] were done within
the linear combination of atomic orbitals approximation.
They use a basis set of numerical orbitals centered on the
atoms (numeric atomic orbitals, or NAO’s), confined inside
a cutoff radius. The chemisorption results are due to ex-
cessively confined basis functions, as we show here by
performing calculations with different values of the con-
finement radius rC for the NAO’s [4,6]. As in Ref. [1], our
calculations are done using the SIESTA code [5], with the
same generalized gradients approximation functional and
bases sets but exploring the effect of the orbital cutoffs.

We have considered the herringbone phase of PTCDA
on Ag(111) and performed a set of total energy calcula-
tions varying the distance of the PTCDA monolayer from
the surface without relaxing the atomic positions. Although
such calculations do not provide the optimal intramolecu-
lar structure as a function of molecule-surface separation,
they quite accurately describe the interaction energy curves
and the location of the minimum energy distance. Figure 1
shows the results for several values of the cutoff radius rC

of the NAO’s. We find that the equilibrium distance and
interaction energy depend strongly on rC for strongly con-
fined orbitals: For cutoff radii below 3.0 Å, the equilibrium
distance is in the range of 2.5–3.0 Å (which encloses the
value of 2.83 Å reported in Ref. [1]). However, for longer
radii (i.e., sufficiently extended basis functions) the mole-
cules and the surface interact very weakly: The distance is
increased and the interaction energy is dramatically re-
duced (indeed, Picozzi et al. [2] find that the interaction
is slightly repulsive).

An important feature of the results of Ref. [1] is that the
oxygen atoms bend toward the surface [see, for instance,
Fig. 3(a) in Ref. [1]]. This is once again an effect of the
basis superposition error. We have placed the PTCDA
monolayer at a distance of �3:0 �A, as in Ref. [1], but
now we allow the oxygen atoms to relax. We find that
the angle of the carboxyl C-O bond with the plane of the
molecule decreases significantly and monotonically with
the cutoff radius: We obtain 9.3�, 5.6�, and 4.6� for values
of the radii of 2.58, 2.92, and 3.57 Å, respectively. For
highly confined basis functions, the C-O bond bends to-
ward the surface: The oxygen orbitals are too short to
account properly for the interaction with the neighboring
hydrogens, i.e., intermolecular H bond, and the interaction
with the orbitals of the Ag surface attracts the oxygens
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atoms towards the surface. As the value of rC is increased,
a planar geometry is gradually recovered.

In conclusion, correctly converged calculations with
present DFT functionals do not permit one to explain the
experimental adsorption geometry of PTCDA on Ag(111).
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