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Discrete changes of conductance of the order of G0¼ 2e2/h reported during the unipolar reset

transitions of Pt/HfO2/Pt structures are interpreted as the signature of atomic-size variations of

the conducting filament (CF) nanostructure. Our results suggest that the reset occurs in two

phases: a progressive narrowing of the CF to the limit of a quantum wire (QW) followed by the

opening of a spatial gap that exponentially reduces the CF transmission. First principles

calculations show that oxygen vacancy paths in HfO2 with single- to few-atom diameters behave

as QWs and are capable of carrying current with G0 conductance. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4802265]

Simple metal-insulator-metal (MIM) devices show mem-

ory properties related to reversible chemical and structural

changes that translate into a non-volatile modification of the

electrical resistance.1 An important feature of these resistive

switching (RS) phenomena is the combined implication of

ions and electrons.2 Electrons are responsible for the conduc-

tion, and ions modify the internal state of the device, thus

introducing the memory effects. In the case of interest to this

Letter, RS is related to the formation and partial destruction

of a nanoscale conducting filament (CF). The nature of the

CF is different in different material systems,3,4 and so are the

conduction and switching properties.1,5–7 However, all these

systems share some important features, involving the motion

of ions and redox reactions, which form and destroy the

CF during the set and reset transitions, respectively.

Understanding the physics of the RS phenomena is of great

importance to control the performance, variability, and reli-

ability of these devices and to foster their real application as

non-volatile memories.

In this Letter, we focus on the reset transition in Pt/HfO2/

Pt devices operated under unipolar switching conditions, i.e.,

the same voltage polarity is used for set and reset. The consid-

ered structures are 2.5 lm2 MIM capacitors fabricated in a

mesa structure on top of a tungsten plug. The insulator is a

10-nm-thick HfO2 layer deposited by atomic layer deposition

(ALD) at 350 �C on top of the Pt bottom electrode (BE), fol-

lowed by Pt top electrode (TE) deposition and patterning. BE

and TE were deposited by physical vapor deposition (PVD).

Samples with other metal electrodes including Ti and TiN

were also considered in the measurements of the temperature

dependence of the CF resistance. These RS devices require a

preliminary electrical stress usually known as electroforming
to activate the switching. In the case of CF-based RS, electro-

forming is very similar to a soft dielectric breakdown event

and consists in the generation of at least one CF. After

electroforming, long lasting repetitive set/reset cycling

experiments (1250 consecutive cycles) were performed using

a voltage ramp both for set and reset. During the set transi-

tion, a compliance current with 1 mA was applied to avoid

the hard breakdown of the HfO2 layer. In the High-

Resistance-State (HRS), the resistance distribution is quite

wide (spanning from �104 X to more than 107 X); while in

the Low-Resistance-State (LRS), the resistance is around

102 X, with much smaller variation. Fig. 1 reports some

examples of the current-voltage characteristics measured dur-

ing typical reset cycles. All these curves show a rather abrupt

current drop (particularly when the LRS conductance is high)

followed by a progressive current reduction. These curves

finally show abrupt jumps between discrete current levels

with conductance of the order of few times the quantum of

conductance, G0¼ 2e2/h. These results are very similar to

those obtained for atomic-sized conductors using different

techniques, such as mechanically controllable break junctions

or different experiments based on scanning tunneling

microscopy.8,9

These similarities suggest that the current levels shown

in Fig. 1 are related to conductance quantization or to struc-

tural variations of the CF constriction involving the motion

of one or very few atoms. On the other hand, all the reset

traces show a final drop to zero in the linear current scale of

Fig. 1(b), which appears as a change of orders of magnitude

in the log scale of Fig. 1(a). Before the final current drop, the

CF behaves as a quantum wire (QW) with at least one

conducting channel that contributes with �G0 to the CF con-

ductance. After the final reset event, the conduction is non-

linear because a spatial gap has been opened in the CF and it

might be related to thermally assisted tunneling or hopping.

A way to further reveal preferred atomic-scale configu-

rations and/or quantization of the conductance is to study the

statistics of conductance readings. Fig. 1(c) shows the histo-

gram of the CF conductance at the point of the final transi-

tion to the HRS. At this point, the conductance range is

limited to few times Go (two orders of magnitude smaller
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than in the initial LRS), a clear peak is found at G�G0 and

the probability of higher values of CF conductance decreases

exponentially. This emphasizes that G0 is a natural physics-

based boundary between the LRS and the HRS, and supports

the idea that there is an intermediate reset state in which the

CF is a nanoscale filament with properties similar to a QW.

However, the existence of preferred CF atomic-scale config-

urations or of conductance quantization is not revealed by

any clear peak structure in Fig. 1(c). Assuming that this

might be due to averaging effects related to the drift of the

CF shape along the cycling experiment, we have considered

a subset of only 100 successive reset cycles. Both the direct

observation of the conductance-voltage traces and the con-

ductance histogram (see inset of Fig. 1(c)) clearly reveal the

existence of well-defined atomic-size configurations of the

CF. The peaks at roughly integer multiples of G0 can either

be due to the CF behaving as a QW or to a nanoscale CF

cross section corresponding to few atomic-size conducting

defects.

The change of transport regime when the CF conduct-

ance is of the order of G0 is confirmed by the temperature

dependence of the CF conduction as a function of its con-

ductance. Assuming an Arrhenius model for the temperature

dependence, I¼ Io exp(�EACT/KBT), the activation energy

EACT measured at low-voltage is reported in Fig. 2(a) to

show that the CF conduction is essentially temperature inde-

pendent when its conductance is above G0 (slightly negative

values of EACT account for the metallic-like behavior)

while EACT becomes positive for G<G0, a signature of

temperature-assisted barrier-limited transport.

The idea that the CF behaves as a QW with two different

transport regimes was previously assumed in the quantum

point contact model of CF conduction,10,11 an extension of a

model initially proposed for the post-breakdown conduction

through thin gate oxides.12 This model was shown to repro-

duce the experimental current-voltage characteristics in dif-

ferent materials and both in the LRS and the HRS, nicely

tracking the change from linear to non-linear transport.

However, direct evidence of quantum conductance effects

has not been reported until very recently and only in systems

in which active metal cations form a CF through a solid

electrolyte.13–15 The results presented in this Letter suggest

that these quantum-size effects also appear in systems in

which oxygen vacancies are considered to form the CFs.

The existence of two well-defined transport regimes is

also evidenced by constant-voltage stress (CVS) reset experi-

ments. Fig. 2(b) shows that after some time under CVS con-

ditions, a reset transition occurs from the LRS to a lower

conductance state. At the end of the stress experiment, the

CF conductance is either above (red lines) or orders of mag-

nitude below (blue lines) the quantum of conductance. This

indicates that either a narrow CF remains and supports one

or few quantum modes or there is spatial gap in the CF that

strongly suppresses the conduction. In other words, these RS

structures show three well defined states: (1) the LRS, corre-

sponding to a wide CF with classical metallic properties; (2)

a partial reset state in which the CF behaves as a QW and

which can be as narrow as a single-defect conducting path;

and (3) the HRS, in which a physical gap has been opened in

the CF, so that the conduction is non-linear and strongly tem-

perature dependent. The transition from the LRS to the inter-

mediate QW state can be controlled by applying successive

voltage ramps with increasing maximum voltage,16 as shown

in Fig. 2(c). In this particular experiment, the CF conduct-

ance is reduced from the initial value of �125G0 to a con-

ductance of �8G0 with six successive voltage sweeps. The

seventh sweep caused a disconnection of the CF (a spatial

gap was opened), and the CF conductance was reduced by

orders of magnitude, as shown in Fig. 2(d). Although this

technique allows a certain control of the reduction of the CF

FIG. 1. (a) Current-voltage traces measured during the application of reset

voltage ramps. The dashed line corresponds to a linear I(V) with conduct-

ance equal to G0¼ 2e2/h. (b) Detail of the current-voltage evolution during

the last phase of the reset transients. (c) Histogram of conductance at the

final reset point; the inset shows the histogram of conductance readings

during 100 successive conductance-time traces.

FIG. 2. (a) Activation energy of the low-voltage CF current as a function of

the CF conductance. The vertical line emphasizes the change of transport re-

gime for CF conductance of the order of G0. (b) Evolution of the CF current

during a constant-voltage reset experiment. (c) Control of the transition

from the LRS to the intermediate reset state by successive voltage ramps

with increasing maximum voltage. From an initial conductance of 125G0,

the first six sweeps reduce the CF conductance to 95G0, 70G0, 40G0, 22G0,

13G0, and 8G0, respectively. The seventh sweep disrupts the CF and opens a

gap, thus decreasing its conductance by several orders of magnitude, as

shown in (d), which depicts the same results in a logarithmic current scale

together with a reference line (I¼G0V).
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diameter when G > G0, the resistance of the final HRS is

difficult to control because the CF conductance depends

exponentially on the gap length.

A qualitative explanation of the previous results is given

in the schematic diagram of Fig. 3. In the LRS, a large num-

ber of conducting defects (likely oxygen vacancies) form a

wide CF with metallic conducting properties. During the

application of the reset voltage ramp, a critical temperature

is reached and induces the first abrupt reset event (RESET

1), which in most of the cases causes a significant narrowing

of the CF. After this abrupt event, the CF conductance pro-

gressively evolves until the CF is only composed by one or

few single defect paths. Then, the final transition to the HRS

occurs when a gap is opened in the CF (RESET 2). In this

figure, we have arbitrarily assumed that the CF becomes nar-

rower in the center of the insulator film. However, asymmet-

ric CF shapes are also possible and this should not

significantly alter the results provided that the CF has an

atomic-scale size at its most constrictive section.

Oxygen vacancies have been suggested to play a signifi-

cant role in the RS phenomenon in transition metal oxides

with non-active metal electrodes. The results of this Letter

suggest that, before the transition to the HRS, the CF behaves

as a nanoscale filament with one or few defects in its most

constrictive section (or as a bundle of single-defect wide fila-

ments). Therefore, our next step was exploring whether oxy-

gen vacancy paths can explain this type of behavior. To

address this, we have carried out first-principles calculations

in order to obtain the electronic structure of oxygen vacancy

filaments in a crystalline HfO2 host. These calculations are

made within the density-functional theory (DFT), as imple-

mented in the SIESTA package.17,18 In order to minimize the

coupling between the filament instances, which we take to be

along the c axis for the crystalline material (see Ref. 19 for

the definition of the axes), we use a 3� 3 supercell of the

monoclinic unit cell—the stable phase up to 1720 �C—in the

ab directions, sampling them in the Brillouin zone with a grid

of 2� 2 of k-points within the Monkhorst-Pack algorithm.20

All the structures discussed have been relaxed until all the

forces on the atoms were lower than 0.04 eV/Å. The ballistic

conductance is calculated from first-principles within

Landauer theory.21 Open boundary conditions are accounted

for through the left (right) self-energy. The zero-bias trans-

mission T(E) is calculated using non-equilibrium Green’s

functions, and the conductance is then calculated through the

Landauer formula as G¼T(E)G0.

The removal of a single O atom in a monoclinic-HfO2

(m-HfO2) matrix introduces a filled impurity state in the gap,

similarly to TiO2,22 but farther from the band edges [see Fig.

4(a)]. The spatial extent of the impurity wavefunction deter-

mines the state overlap between two neighboring vacancies

and thus relates to the transition from hopping to band trans-

port. Figures 4(a)–4(d) show the band structure of m-HfO2

with a chain of oxygen vacancies that are increasingly close

together. It can be seen that, as the overlap between the im-

purity wavefunctions increases, the impurity band width

increases as well. This can be well described with a single

band, second-neighbor one-dimensional (1D) tight-binding

Hamiltonian, which is well known to have the dispersion

relation

EðkxÞ ¼ E0 � 2t1 cos kx
ao

2

� �
� 2t2 cosðkxaoÞ; (1)

where E0 is the isolated impurity energy, t1 and t2 are the first

and second neighbor hopping parameters, closely related to

the amount of overlap between the wavefunctions of neigh-

boring impurities, and a0 is the length of the c-axis vector for

the m-HfO2 primitive cell (5.296 Å). Fig. 4(e) shows the

behavior of t1 as the vacancy-vacancy distance varies, show-

ing the expected exponential decay from which a localization

parameter v¼ 0.36a0 can be extracted. From the Mott crite-

rion for metal-to-insulator transitions,23 we can find that the

critical vacancy concentration is �1.5� 1021 cm�3, i.e., a

local composition HfO2�x with x¼ 0.05 will be enough to

enable the band transport mechanism.

FIG. 3. Schematic representation of the evolution of the CF structure during

the reset transient.

FIG. 4. Band structure for crystalline m-HfO2 with O vacancies separated

by (a) 4a0, (b) 2 a0, (c) a0 and (d) a0/2. (e) Hopping parameter as a function

of vacancy-vacancy separation. (f) Conductance as a function of energy cor-

responding to a HfO2 matrix where one, two, or three O atom rows are

removed. The rows subsequently removed are shown in the instate (marked

as “1,” “2,” and “3”), where red and white spheres correspond to O and Hf

atoms, respectively.
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Fig. 4(f) shows how atomic-sized changes in the CF di-

ameter bring out significant increases in the conductance.

Specifically, we show the intrinsic conductance (i.e., without

the effects of the metallic electrodes) for increasingly wider

CFs. We remove one to three oxygen columns (see inset),

observing that conductance increases stepwise for certain

energy ranges, with each transmitting channel contributing a

quantum of conductance G0. This supports our interpretation

that the observed quantization of the experimental data arises

from few/single atom changes in the atomic structure of the

CF. These results have to be taken qualitatively, as the model

considered is simplified for a number of reasons (no metal

contacts, zero bias conditions). However, we believe that

they are able to capture the essential physics, namely that

atomic size modifications of the structure of the CF will give

rise to changes in the quantized conductance that are qualita-

tively consistent with the experimental observations.

In conclusion, atomic size effects have been reported

during the reset of CFs in Pt/HfO2/Pt structures. The exis-

tence of a rather stable CF intermediate state between the

LRS and the HRS has been demonstrated. In this state, the

CF behaves as a QW with conductance of the order of the

quantum of conductance and the existence of preferred

atomic-scale configurations has been revealed by conduct-

ance histograms. Our results indicate that the reset begins

by a progressive narrowing of the CF towards the limit of

one single-atom chain with conductance of about G0. Then,

a spatial gap is opened and the CF switches to the HRS,

with its conductance dropping orders of magnitude. Thus,

the quantum of conductance is a natural boundary between

the LRS and HRS. The temperature dependence of the CF

transport properties also confirm that the transition from

metallic to temperature activated transport occurs for a CF

conductance of the order of Go. The study of the transport

properties of oxygen vacancy paths using ab-initio methods

shows that they are able to introduce band transport (as

opposed to hopping transport) and support multiple trans-

port channels with conductance Go related to increasing

path width. Furthermore, increasing the distance between

vacancies has been shown to exponentially decrease the

hopping parameter. This indicates that opening a gap in

these vacancy paths would decrease the CF conductance

exponentially, as it is observed in the experimental transi-

tion to the HRS.
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