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Abstract

The current large-scale computing era is characterised by parallel applications running

on many thousands of cores. However, the performance obtained when executing these

applications is not always what it is expected. Dynamic tuning is a powerful technique

which can be used to reduce the gap between real and expected performance of parallel

applications. Currently, the majority of the approaches that offer dynamic tuning follow

a centralised scheme, where a single analysis module, responsible for controlling the

entire parallel application, can become a bottleneck in large-scale contexts.

The main contribution of this thesis is a novel model that enables decentralised

dynamic tuning of large-scale parallel applications. Application decomposition and an

abstraction mechanism are the two key concepts which support this model. The de-

composition allows a parallel application to be divided into disjoint subsets of tasks

which are analysed and tuned separately. Meanwhile, the abstraction mechanism per-

mits these subsets to be viewed as a single virtual application so that global performance

improvements can be achieved.

A hierarchical tuning network of distributed analysis modules fits the design of this

model. The topology of this tuning network can be configured to accommodate the size

of the parallel application and the complexity of the tuning strategy being employed.

It is from this adaptability that the model’s scalability arises. To fully exploit this

adaptable topology, in this work a method is proposed which calculates tuning network

topologies composed of the minimum number of analysis modules required to provide

effective dynamic tuning.

The proposed model has been implemented in the form of ELASTIC, an environ-

ment for large-scale dynamic tuning. ELASTIC presents a plugin architecture, which

allows different performance analysis and tuning strategies to be applied. Using ELAS-

TIC, experimental evaluation has been carried out on a synthetic and a real parallel

application. The results show that the proposed model, embodied in ELASTIC, is able

to not only scale to meet the demands of dynamic tuning over thousands of processes,

but is also able to effectively improve the performance of these applications.

Keywords: performance analysis; dynamic tuning; scalability; performance tools;

tuning network.
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Resumen

La era actual de computación a gran escala se caracteriza por el uso de aplicaciones

paralelas ejecutadas en miles de cores. Sin embargo, el rendimiento obtenido al eje-

cutar estas aplicaciones no siempre es el esperado. La sintonización dinámica es una

potente técnica que puede ser usada para reducir la diferencia entre el rendimiento real

y el esperado en aplicaciones paralelas. Actualmente, la mayoŕıa de las aproximaciones

que ofrecen sintonización dinámica siguen una estructura centralizada, donde un único

módulo de análisis, responsable de controlar toda la aplicación paralela, puede conver-

tirse en un cuello de botella en entornos a gran escala.

La principal contribución de esta tesis es la creación de un modelo novedoso que per-

mite la sintonización dinámica descentralizada de aplicaciones paralelas a gran escala.

Dicho modelo se apoya en dos conceptos principales: la descomposición de la aplicación

y un mecanismo de abstracción. Mediante la descomposición, la aplicación paralela es

dividida en subconjuntos disjuntos de tareas, los cuales son analizados y sintonizados

separadamente. Mientras que el mecanismo de abstracción permite que estos subconjun-

tos sean vistos como una única aplicación virtual y, de esta manera, se puedan conseguir

mejoras de rendimiento globales.

Este modelo se diseña como una red jerárquica de sintonización formada por módulos

de análisis distribuidos. La topoloǵıa de la red de sintonización se puede configurar para

acomodarse al tamaño de la aplicación paralela y la complejidad de la estrategia de

sintonización empleada. De esta adaptabilidad surge la escalabilidad del modelo. Para

aprovechar la adaptabilidad de la topoloǵıa, en este trabajo se propone un método

que calcula topoloǵıas de redes de sintonización compuestas por el mı́nimo número de

módulos de análisis necesarios para proporcionar sintonización dinámica de forma efec-

tiva.

El modelo propuesto ha sido implementado como una herramienta para sintonización

dinámica a gran escala llamada ELASTIC. Esta herramienta presenta una arquitectura

basada en plugins y permite aplicar distintas técnicas de análisis y sintonización. Emple-

ando ELASTIC, se ha llevado a cabo una evaluación experimental sobre una aplicación

sintética y una aplicación real. Los resultados muestran que el modelo propuesto, imple-

mentado en ELASTIC, es capaz de escalar para cumplir los requerimientos de sintonizar

dinámicamente miles de procesos y, además, mejorar el rendimiento de esas aplicaciones.

Palabras clave: análisis de rendimiento; sintonización dinámica; escalabilidad;

herramientas de rendimiento; red de sintonización.
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Resum

L’era actual de la computació a gran escala es caracteritza per l’ús d’aplicacions paral-

leles executades en milers de cores. No obstant aix, el rendiment obtingut en executar

aquestes aplicacions no sempre és l’esperat. La sintonització dinàmica és una potent

tècnica que pot ser usada per reduir la diferència entre el rendiment real i l’esperat en

aplicacions paralleles. Actualment, la majoria de les aproximacions que ofereixen sin-

tonització dinàmica segueix una estructura centralitzada, on un únic mòdul d’anàlisi,

responsable de controlar tota la aplicació parallela, pot esdevenir un coll d’ampolla en

entorns a gran escala.

La principal contribució d’aquesta tesi és la creació d’un model nou que permet

la sintonització dinàmica descentralitzada d’aplicacions paralleles a gran escala. Aquest

model es basa en dos conceptes principals: la descomposició de laplicació i un mecanisme

d’abstracció. Mitjanant la descomposició, l’aplicació parallela es divideix en subconjunts

disjunts de tasques, les quals són analitzades i sintonitzades separadament. Mentre que

el mecanisme d’abstracció permet que aquests subconjunts siguin vistos com una única

aplicació virtual i, d’aquesta manera, es poden aconseguir millores globals de rendiment.

Aquest model es dissenya com una xarxa jeràrquica de sintonització formada per

mòduls d’anàlisi distribüıts. La topologia de la xarxa de sintonització es pot configurar

per ajustar-se a la mida de l’aplicació parallela i a la complexitat de l’estratègia de

sintonització utilitzada. D’aquesta adaptabilitat sorgeix l’escalabilitat del model. Per

aprofitar l’adaptabilitat de la topologia, en aquest treball es proposa un mètode que

calcula topologies de xarxes de sintonització compostes pel mı́nim nombre de mòduls

d’anàlisi necessaris per proporcionar la sintonització dinàmica d’una forma eficient.

El model proposat ha estat implementat com un entorn per a la sintonització dinàmica

a gran escala, anomenat ELASTIC. Aquesta eina presenta una arquitectura basada en

plugins i permet aplicar diferents tècniques d’anàlisi i de sintonització. Emprant ELAS-

TIC, s’ha dut a terme una avaluació experimental sobre una aplicació sintètica i una

aplicació real. Els resultats mostren que el model proposat, implementat en ELASTIC,

és capaç d’escalar per acomplir els requeriments de sintonitzar dinàmicament milers de

processos i, a més, millorar el rendiment d’aquestes aplicacions.

Paraules clau: anàlisi de rendiment; sintonització dinàmica; escalabilitat; eines de

rendiment; xarxa de sintonització.
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1
Introduction

“Begin at the beginning,” the King said, gravely, “and go on till you come to

an end; then stop.”

– Lewis Carroll, Alice in Wonderland

In this chapter, we present a general overview of high performance computing. In

particular, our work is focused on dynamic performance tuning for large-scale parallel

applications. This chapter introduces the motivations inspiring this work, and details

what its goals and contributions are. Finally, we present the organisation of this thesis.
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CHAPTER 1. INTRODUCTION

1.1 High Performance Scientific Computing

Scientific computing is the interdisciplinary field located at the intersection of modelling

scientific problems, and the use of computational resources to produce quantitative re-

sults from this models. In the current large-scale era, scientific computing has become

high performance scientific computing, characterised by the use of supercomputer sys-

tems as computational resource.

Supercomputers are extremely powerful computers that offer massive parallelism

and high capacity of processing, due to the combined power of hundred of thousands

of individual processing units. This is combined with a large storage capacity and a

fast and reliable interconnection network. Nowadays, supercomputers also exploit the

development in computer technology integrating the use of accelerator blades, FPGAs

(field-programmable gate array) or GPUs (graphics processing units) providing the high

speed calculations important for scientific computation. Therefore, supercomputers are

designed to work at high speed, handling huge amounts of data and performing multiple

complex operations at the same time.

Supported by high performance systems, large-scale parallel applications can pro-

vide knowledge about many problems in intense research areas of science, engineering,

industry and commerce. Some well-known examples of these applications are the deter-

mination of the human genome [47], climate study [54], simulation of molecular dynamics

[18] or web search engines [3].

Unfortunately, it is difficult to develop parallel applications that can consistently

exploit the capabilities of modern supercomputers. A great part of this is due to the

complexity of the underlying hardware in these kinds of systems in terms of number

of cores, various levels of communications paths, or even the presence of heterogeneous

components. Moreover, a parallel application specifically designed to take advantage of

the resources of one machine may present poor performance on another machine.

In this context, the ever widening gap between the theoretical and practical perfor-

mance of parallel applications running on supercomputers makes tools that effectively

identify, understand and fix performance problems more valuable than ever. These tools

alleviate some of the burden of determining what is required to improve the performance

of an application.

However, when working with truly large-scale applications, performance analysis

tools can manifest scalability issues of their own. To avoid becoming a bottleneck and

remain effective, these tools must follow a scalable and modular design that enables the

control and analysis of an extremely large number of tasks.
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This thesis is focused on providing an approach for scalable and dynamic

performance tuning of parallel applications running on tens of thousands of

processors.

In order to provide a holistic vision of the scope of the thesis in this chapter, the

following subsections present a short introduction about performance analysis and tuning

of parallel applications and scalability in analysis tools, the pillars of this work.

1.1.1 Performance Analysis and Tuning

The development of efficient parallel applications is a challenging task that requires a

high degree of expertise. Usually, when running a parallel application, performance

problems appear that limit its efficiency, especially as the number of tasks involved

increases. In large-scale parallel applications, there are several causes for performance

degradation such as non-scalability, communication imbalance, load imbalance, cache

misses, late sender and synchronisation overhead.

To reduce the effect of performance problems during the application execution, it

is often necessary that, after the development of the application, the programmer or

user carries out a performance improvement process. The performance improvement

process includes three successive phases [24]. Firstly, behavioural information about the

parallel application is gathered (monitoring phase). Then, through the analysis of

the collected information, performance bottlenecks are detected and possible actions to

overcome them are determined (analysis phase). Finally, the chosen changes are ap-

plied to the application code with the objective of resolving the problems and improving

performance (tuning phase).

In recent decades, different approaches and tools have been developed with the

aim of helping the programmer during the performance improvement process. These

tools have been designed following different perspectives of performance analysis and

improvements.

Some of these tools help users to find performance problems through the graphic

visualisation of the behaviour of the parallel application using the performance data

previously collected (classical/static performance analysis approach) [26]. Once the par-

allel application has finished its execution, other tools are able to automatically detect

performance problems and provide the programmer with suggestions (on how) to im-

prove performance (automatic performance analysis approach) [38][52]. Finally, there

are tools that offer the capacity to dynamically find performance bottlenecks [4][37]

and/or improve the performance of the parallel application [39][56] while it is running,

without involving the programmer in this process (dynamic performance analysis and/or

tuning approach).
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This thesis is specifically centred on automatic and dynamic performance

analysis and tuning. In this approach the three phases of the performance improve-

ment process (monitoring, analysis and tuning) are performed automatically and con-

tinuously while the parallel application is running. The analysis phase uses performance

measurements directly provided by the dynamic monitoring phase. Depending on the

evaluation of the performance, the tuning actions are automatically and dynamically

inserted into the application.

Therefore, dynamic tuning of a parallel application should provide the following as-

pects: 1) dynamic monitoring of its execution, 2) automatic performance evaluation,

and 3) automatic tuning of the application while it is running. These three aspects

permit dynamic tuning that exempts programmers and users from modifying the execu-

tion of the application manually, because the whole performance improvement process

is carried out automatically.

Dynamic tuning permits the evaluation and adaptation of the parallel application

according to the current execution’s conditions. For this reason, this approach is the

most suitable for improving the performance of parallel applications whose performance

behaviour depends on input data, may change during each execution, or when the ap-

plication is being executed in heterogeneous or time-sharing systems.

1.1.2 Scalability of Performance Analysis Tools

Supercomputers are a widely used resource in many areas of modern research. However

they are a costly resource, and access is often limited to an allocation of execution

hours. For this reason, the available processing time in these machines should be used

as efficiently as possible.

Normally, parallel applications running on supercomputers do not make efficient use

of resources. This translates into a longer than expected running time, which “wastes”

computation hours and reduces the available allocated time for further executions. By

improving performance, and thus reducing execution time of parallel applications, perfor-

mance analysis tools can help to reduce the amount of time required on such large-scale

systems.

Traditionally, performance analysis tools operate using a single centralised module

where the analysis process and global tool control is performed. The collection of per-

formance data and task control occur in the tool’s daemons which usually are running

on the nodes of the parallel system. The centralised module is responsible for com-

municating with all these tool’s daemons to collect performance information from the

application.
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1.2. MOTIVATION

When working with large-scale parallel applications, a scalability barrier arises from

this centralised operation, which becomes a bottleneck due to the large number of com-

munication connections to be controlled and the increasing complexity of conducting a

holistic performance analysis.

To apply performance analysis to parallel applications executed on supercomputers,

it is paramount that the analysis tools have been specifically designed to operate in such

environments. This design must focus on resolving scalability problems that can reduce

the effectiveness of performance analysis tools. There are three primary scalability issues

which must be overcome:

• How to manage the large volume of performance data generated when a large

number of tasks are monitored.

• How to efficiently handle the communication channels with a large number of the

tool’s distributed daemons.

• How to conduct an effective performance analysis of thousands of parallel ap-

plication tasks, avoiding that the complexity of the performance evaluation may

increase the tool’s time response.

Currently, there are several analysis tools which conduct an automatic performance

analysis and are able to operate on large-scale systems. Well known examples are Para-

dyn [50], Scalasca [38], TAU [52], and Periscope [4]. All of them implement some sort

of decentralised design, many of them hierarchical and in some cases using frameworks

that enable an efficient management of data and communication. However, none of these

tools, except for latest efforts in Periscope, consider application tuning.

Taking into consideration the scalability issues mentioned and insight gained from

studying these performance analysis tools, in this thesis we concentrate on the design of

an approach that allows performance analysis tools to provide scalable dynamic tuning

to overcome performance problems in large-scale applications. In this manner, we strive

to address the lack of large-scale dynamic tuning in the current performance analysis

area.

1.2 Motivation

The current trend in supercomputers is to provide machines with more and more proces-

sors, with the aim of increasing computing power while maintaining energy consumption

at minimal levels. It is now common to see supercomputers with tens or hundreds of
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thousands of processors, which can perform multiple Petaflops (quadrillions of calcula-

tions per second). These kinds of machines have proven to be a fundamental resource

in modern science.

Parallel applications running on supercomputers are able to calculate the results of

extremely complex scientific models in a relatively short amount of time. Unfortunately,

it is common that the performance expected of these large-scale parallel applications is

not easily achieved in high performance machines. Several performance analysis tools

are able to assist developers in analysing and improving the performance of these parallel

application in large-scale contexts. Nevertheless, most of these analysis tools are less

useful when applications have exceptionally long running times or behavioural patterns

that change depending on the input data set or according to data evolution.

In this context, performance analysis tools based on the concept of automatic and

dynamic tuning are necessary. These tools are able to perform automatic monitoring and

analysis of the application, and then dynamically resolve performance issues during the

same execution, without recompiling or restarting. As a counterpoint, developing such

tools which can effectively operate over large-scale parallel applications is a challenging

task.

If dynamic tuning is to continue to be a valid solution, then the scalabil-

ity of dynamic tuning tools must keep up with the ever-increasing scale of

modern supercomputers.

1.3 Objectives

The ultimate goal of this thesis is to design, implement and evaluate an approach that

provides dynamic performance tuning for large-scale parallel applications.

We aim to address this problem by replacing the centralised analysis and tuning con-

cept with a distributed one. This distributed approach should be capable of providing

a coherent tuning environment which is able to scale to perform runtime analysis and

tuning of parallel applications composed of tens of thousands of processes. Considering

a parallel application running on a large-scale system, the tuning environment should

improve its performance, detect existing bottlenecks and modify the application to re-

solve them without recompiling or restarting the application. The specific objectives of

this work are as follows:

• Conduct a study of how current performance analysis tools are able to scale to

work with large-scale parallel applications.
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• Design a model that enables the distribution of the dynamic performance improve-

ment process.

• Validate the scalability of the model for distributed dynamic tuning.

• Implement the first version of a tool that offers scalable dynamic tuning following

the proposed model.

• Evaluate the viability of the distributed dynamic tuning model by means of exper-

imental evaluation of the implemented tool to tune synthetic and real applications.

1.4 Contribution

The contributions in this work are focused on achieving the ultimate goal presented in

the previous section. To this end, we have designed and implemented an approach for

dynamic performance tuning of large-scale parallel applications. This thesis presents the

following specific contributions:

• A model for scalable dynamic tuning. The model follows a decentralised scheme,

that allows hierarchical performance analysis and tuning, based on application de-

composition and an abstraction mechanism. Through the decomposition, parallel

applications which are too large to be analysed and tuned in a centralised manner

are decomposed into disjoint subsets of tasks, which can be managed separately.

Meanwhile, the abstraction mechanism permits these subsets to be represented

as a single virtual application such that global performance improvements can be

obtained [31][32].

To perform dynamic tuning, the model employs a collaborative approach where

user knowledge is required in the form of an analytical performance model. Addi-

tionally, an abstraction model is necessary to guide the abstraction mechanism.

The design of the model can be translated into a hierarchical tuning network of

distributed analysis modules. The main characteristic of this network is that it

presents a topology which is adaptable to the size of the parallel application being

analysed and the complexity of the tuning strategy being employed.

• An explicit method for calculating an efficient topology for the proposed hierar-

chical tuning network. The method provides the minimum number of analysis

modules needed to carry out a dynamic and automatic analysis and tuning pro-

cess, considering specific parameters that characterise the behaviour of the tuning

network and the application being analysed [33].

• ELASTIC, a tool that provides scalable dynamic tuning. This tool implements our

model for scalable dynamic tuning. ELASTIC makes use of the framework MRNet

[51] to establish the hierarchical communication in the tuning network and DynInst
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[10] to perform dynamic instrumentation required for monitoring and tuning the

parallel application at runtime.

• ELASTIC Packages definition. The knowledge required to carry out the perfor-

mance analysis and tuning process, is codified in ELASTIC Packages. This allows

for a generalised use of ELASTIC to resolve different performance issues by simply

exchanging the ELASTIC Package, offering a pluggable design. To demonstrate

this capability, we have developed two different packages which resolve performance

problems in a synthetic application and a real agent-based application.

1.5 Thesis Organisation

The work presented in this thesis is divided into the following chapters.

Chapter 2: Related Work. This chapter introduces the main concepts that serve

as the pillars of this work, dynamic performance tuning and scalability in performance

analysis. An exhaustive review of performance tools in both areas is presented.

Chapter 3: Scalable Dynamic Tuning. This chapter explains in detail the

proposed model for scalable dynamic performance tuning and its design. It also includes

a method for calculating the minimum number of resources required by the hierarchical

tuning network. Finally, the chapter concludes with an approximation of the time

required to achieve global performance improvements considering the specifications of

the proposed model.

Chapter 4: Model Scalability Validation. In this chapter, a validation of the

scalability of the proposed model for dynamic tuning is given. The simulation environ-

ment developed to perform this evaluation is described. As a prior step required for the

scalability validation, a study that verifies the correctness of the topology calculation

method, presented in the previous chapter, is also detailed.

Chapter 5: ELASTIC. In this chapter, ELASTIC, the tool that implements the

model presented in Chapter 3 is introduced. Details of its design and implementation are

revealed. We describes all its modules and the APIs used for communication between

them.

Chapter 6: Experimental Evaluation. This chapter details the experimental

evaluation carried out on ELASTIC with two test cases, a synthetic SPMD application

and a real agent-based application. It goes on to describe the process involved in the

creation of the ELASTIC Packages used to tune each of these applications, and the

experimental results that verify the scalability and effectiveness of the proposed model

for scalable dynamic tuning implemented in ELASTIC.
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Chapter 7: Conclusions. Finally, with this chapter we review the major details

of the presented work and conclude this thesis. This is followed by an outline of open

problems and a discussion of possible directions for future work.
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2
Related Work

“Every new beginning comes from some other beginning’s end.”

– Seneca

This chapter presents a description of work related to the two pillars of this thesis:

dynamic tuning and scalability in performance analysis tools. The characteristics of

dynamic tuning are detailed, as well as a description of the current tools which implement

this approach. We also describe how existing performance analysis tools are able to work

in large-scale systems and analyse parallel application running on many thousands of

cores.
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2.1 Introduction

In the current era of large-scale computing, there are two principal challenges which

must be solved simultaneously in order to make the current generation of performance

analysis and tuning tools effective.

The first of these challenges consists of being able to develop tools that dynamically

discover and tune performance problems for applications with heterogeneous behaviour,

for which post-mortem analysis and tuning is not effective.

The second problem to consider is the scalability of the analysis tools. When working

with truly large-scale applications, these tools can begin to present scalability issues of

their own. Effective performance analysis tools must be designed in such a way that

they do not become a bottleneck themselves.

The objective of this research is to provide an approach for scalable dynamic tuning

of parallel applications. Our approach combines the potential of dynamic tuning with

strategies to overcome the scalability barriers that analysis tools present nowadays.

In this chapter, we present the background concepts of this thesis related to dynamic

tuning and scalability in performance analysis. As such, this chapter is divided into two

sections. In Section 2.2, the concept of dynamic tuning is described. We also discuss

a number of tools that implement different strategies in order to perform analysis and

tuning of parallel applications at runtime. In Section 2.3 we survey existing analysis tools

that address the scalability barriers presented in a large-scale context. We especially

focus on the mechanisms that they employ in order to manage the various aspects that

arise when analysing parallel applications running on many thousands of processors.

2.2 Dynamic Tuning

The performance improvement process of a parallel application, also called the tuning

process, is the process followed in order to fix performance problems in the application,

improving its behaviour through the modification of its critical parameters.

The tuning process involves several phases. First, during the monitoring phase,

information about the behaviour of the application is collected. In the next phase, the

analysis of the gathered information is conducted. The analysis phase finds performance

bottlenecks, determines their causes and decides which actions have to be taken to

eliminate such bottlenecks. Finally, in the tuning phase, appropriate changes are applied

to the application code to overcome problems and improve the performance.

12
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The model of dynamic tuning proposes that all the phases implicated in the perfor-

mance improvement process are conducted continuously during the application execution

(the closed tuning loop), as shown in Figure 2.1. Each of the phases requires particular

adaptations:

• In the monitoring phase, the data containing information about the behaviour

of the application has to be collected during runtime and passed directly to the

analysis phase. This reduces the cost implied by storing the monitoring data

generated throughout the entire application execution. To collect this information,

the application must be instrumented, which consists of inserting code into the

application at all the points that need to be monitored. This can be performed

by the user manually or by linking with a monitoring library prior to application

execution. An alternative technique allows instrumentation to be deferred until

the application is running. An advantage of dynamic instrumentation technique

is that it can be altered or removed during the application execution.

• The analysis phase has to be performed automatically during the application exe-

cution. To conduct an effective analysis it would be beneficial to integrate specific

knowledge into the analysis process about the application and how to detect and

overcome its bottlenecks.

• Once a solution has been provided by the analysis phase, the tuning phase is re-

sponsible for modifying the application to improve its performance. To perform the

application modifications during its runtime, a dynamic instrumentation technique

is required. This involves changing specific parameters that affect the performance

of the application.

Monitoring Performance 
analysis

Performance 
tuning

Suggestions 
for user

Application

User

Tool

Execution time

Figure 2.1: General model of the dynamic tuning approach.
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Dynamic tuning is not only useful, but necessary, when applications present be-

haviour that varies greatly according to the input data or during runtime. This varying

behaviour can be due to the application itself, or because it is being executed in heteroge-

neous or time-sharing systems. In these cases, the results obtained from a post-mortem

analysis are not necessarily useful to improve the performance of subsequent executions.

Consequently, this type of performance analysis relieves the programmer to modify

the execution of the application manually, because the whole process is carried out

automatically by the analysis tool.

Currently, a number of performance tools exist that implement this approach in

an automatic manner such as MATE [39], Active Harmony [56], Autopilot [48], PerCo

[34] and the CPO Paradigm [12]. These tools can help developers and users of parallel

applications by reducing or removing the difficult tasks involved in manual performance

tuning.

Due to the influence that MATE had in the development of this work, we dedicate the

next section to describing its design philosophies and implementation. In the section

that follows, we detail the important aspects of the primary tools that implement a

dynamic tuning approach.

2.2.1 MATE

MATE (Monitoring, Analysis and Tuning Environment) is a tool that performs dynamic

and automatic tuning of MPI parallel applications. Its objective is to improve the per-

formance of a parallel application at run-time, by adapting it to the variable conditions

of the system. First, at run-time MATE instruments the application to gather informa-

tion about its behaviour. During the analysis phase, MATE receives this information

in the form of events, searches for bottlenecks and specifies solutions for solving the

performance problems encountered. Finally, the application is dynamically modified by

applying the given solutions. MATE uses dynamic instrumentation [10] to modify the

application at run-time, so it does not need to be recompiled or restarted.

MATE is composed of the following modules which cooperate to control and improve

the application’s performance [41]:

• The Application Controller (AC) is a daemon that controls the execution and

the dynamic instrumentation of each individual MPI task.

• The Analyzer is a centralised process that carries out the application performance

analysis, and decides on monitoring and tuning. It automatically detects existing

performance problems on the fly and requests appropriate changes to improve the

application’s performance.
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• The Dynamic Monitoring Library (DMLib) is a shared library that is dynam-

ically loaded by the AC in the application tasks to facilitate collecting data and

delivering it to the Analyzer.

The knowledge required to perform analysis and tuning is encapsulated in MATE

in a piece of software called a tunlet. Each tunlet implements the logic to overcome a

particular performance problem by encapsulating knowledge about it in several terms

that define the information required for the monitoring, analysis and tuning phases.

These terms are:

• Measurement points, which indicate what is needed to detect the performance

problem. Specifically, they are the places in the application code where the instru-

mentation must be inserted to gather information about the application’s perfor-

mance.

• Performance model, a set of expressions that model the application’s behaviour and

determine how to evaluate the collected information in order to detect bottlenecks.

• Tuning actions, which indicate what, where and when to change in the application

execution in order to fix the detected bottleneck.

MATE has been demonstrated to be an effective and feasible tool to improve perfor-

mance of real-world applications running on small size clusters [40]. However, scalability

issues appear when running MATE on hundreds of processors. In this context, the cen-

tralised analysis becomes a scalability bottleneck because of the following factors:

• The volume of events to be processed by the Analyzer, and the number of con-

nections and AC daemons that have to be managed, increase the tool’s response

time.

• The centralised performance analysis uses performance models for analysis and

tuning. Although the models are quite simple, usually the complexity of the per-

formance model’s evaluation depends on the number of processes involved in the

analysis phase. This fact limits the scalability properties of the centralised Ana-

lyzer.

An initial approach presented in [13] attempted to alleviate the identified scalability

barriers of MATE. This approach is based on the distributed collection of events which

reduces the workload of the original centralised manner in which such collection was

carried out, and in the preprocessing of cumulative or comparative operations if possi-

ble. The experiments presented in this work were only conducted over 32 processors.

The scalability properties of this approach are somewhat limited, as the entire analysis

process must still be carried out in a centralised manner.
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The scalability barriers found in MATE were the primary motivation that led to

the development of the scalable dynamic tuning approach, presented in this thesis. For

this reason, the proposed approach shares some characteristics with MATE. The pro-

posed scalable dynamic tuning employs the same terms as MATE (measurement points,

performance expressions, and tuning points and actions) to define the required knowl-

edge to dynamically guide the analysis and tuning process. Moreover, the analysis and

tuning modules of the hierarchical tuning network follow the same operation pattern

as MATE’s Analyzer, based on the three continuous phases of the closed tuning loop:

monitoring, performance analysis and modifications.

The approach for scalable dynamic tuning presented in this thesis employs a more

aggressive distribution in the performance analysis and tuning process than the initial

approach that attempts to overcome the scalability barriers of MATE. We allow for the

distribution, not only of the collection of performance information about the application,

but also the analysis and tuning phases. Such a distribution leads to the ability to

conduct dynamic tuning over larger-scale parallel applications than merely distributing

the data collection process.

MATE assumes that the performance analysis, based on the global application view,

is taking into consideration all the processes and their interactions. Such an approach

is only feasible for environments with a relatively small number of nodes.

As well as offering a centralised analysis when the size of the application permits, our

approach is able to resolve performance problems at much larger scales by distributing

the analysis process throughout the tuning network. As a consequence of the decen-

tralised process, the global view of the application is also distributed. This, in turn,

implies that the problem being resolved can either be decomposed into smaller problems

which can be resolved independently or hierarchically, or that the information required

for global analysis can be abstracted effectively. The process of decomposition and ab-

straction is made possible by the abstraction mechanism presented in this thesis as part

of the proposed hierarchical tuning model.

2.2.2 Other Dynamic Tuning Tools

Active Harmony

Active Harmony is an automated performance tuning infrastructure based on the closed

loop of dynamic tuning. Specifically, this project is focused on the dynamic accommo-

dation of the parallel application to the network and resource capacities of the execution
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environment. This is achieved by automatic switching of algorithms and tuning of ap-

plication libraries and parameters. The application must be Harmony-aware, that is, it

must use the API provided by the system.

Active Harmony’s architecture is based on a client-server model. The client is the

“harmonised” parallel application, which sends performance information to the server.

Using the collected information, the Harmony server carries out the tuning of the parallel

application. The major components of the Active Harmony System are the Library

Specification Layer and the Adaptation Controller.

The Library Specification Layer provides a uniform API, which integrates different

libraries with the same or similar functionality. Using this API, the user develops an

application and hence the application contains a set of libraries with different algorithms

and tunable parameters to be changed. The goal of the Library Specification Layer is

to help the application select the most appropriate underlying algorithm. During the

execution of the parallel application, the Library Specification Layer collects information

about performance metrics of the underlying libraries’ execution.

The Library Specification Layer will send these measurements to the Adaptation

Controller. Based on the observed performance, the Adaptation Controller selects the

most appropriate library and changes tunable parameters to improve the application

performance. Active Harmony automatically determines appropriate values for tunable

parameters by searching the parameter value space using heuristic optimisation algo-

rithms. In the last works with Active Harmony, the optimisation algorithm is based on

the Parallel Rank Order algorithm proposed by Tabatabaee et al. [58].

The latest efforts of the Active Harmony project are focused in the field of online

tuning of automatically generated code [57]. In these works, the Harmony system substi-

tutes its normal collection of underlying libraries for different code variants. These vari-

ants are generated and compiled into a shared library by a standalone code-generation

utility called CHiLL [15]. This new code is loaded and executed by the application be-

ing tuned. Following the initial philosophy of Active Harmony, the performance values

obtained from these executions are utilised by the Adaptation Controller in order to

discover the best configuration of tuning parameters and improve the performance of

the application.

Active Harmony differs from the approach for dynamic tuning presented in this

thesis in that the tuning of the parallel application is restricted to the functionality

which it uses from the Library Specification Layer API. Therefore, the application must

be implemented using this API. In our approach, dynamic instrumentation is used to

monitor and tune the application, so any part of the application can be dynamically

monitored or tuned. Related to the way in which the performance analysis is conducted,
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as was mentioned, Active Harmony employs heuristic techniques, whereas our approach

is based on analytical performance models in the form of a set of rules or algorithms.

Autopilot

Autopilot is an online tuning toolkit which bases its action on a closed loop control that

allows for the adaptive control of applications and resource management policies on both

parallel and wide area distributed systems.

The Autopilot infrastructure includes distributed sensors for performance data ac-

quisition, distributed actuators for implementing performance optimisation decisions,

and a decision-making mechanism for assimilation of sensor inputs and control of actu-

ator outputs.

Sensors are responsible for gathering performance data from the parallel application.

During the monitoring phase sensors can gather data using two methods: non-threaded

and threaded. Using the non-thread mode, a sensor records data in response to procedure

calls that have been inserted into the application manually by the programmer. In the

thread mode, a separate thread periodically awakes, reads application variables and

returns to sleep. To allow the reduction of data, sensors support attached functions.

These functions are invoked each time a sensor receives data, acting as a data filter,

transforming the original data to an alternate reduced version.

Actuators are remotely controlled functions that can change local variable values and

invoke local functions. Using actuators, a remote process can change the behaviour of

an instrumented application. Such actuators can change, for example, parameter values

or resource management policies (e.g. file caching policy).

The Autopilot decision infrastructure is based on a fuzzy logic engine that exploits

real-time sensor inputs to dynamically select resource management policies. The fuzzy

engine employs fuzzy sets to represent the semantic properties of each input (sensor)

and output (actuator). Then a set of IF-THEN rules are used to map the input values

to the output space. Depending of the result, specific actuators are activated to adapt

the performance of the parallel application.

Moreover, Autopilot also provides mechanisms to manage local and remote tasks.

The toolkit contains a sensor / actuator manager and set of remote clients. The manager

serves as a network distributed name server and supports registration by remote sensors

and actuators. A client controls both sensors and actuators in associated tasks, receiving

data from sensors, and invoking actuators.

In Autopilot, the developer must prepare the application inserting sensors and ac-

tuators manually into the source code prior to the execution of the parallel application.
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This technique is different to the monitoring process proposed in our approach, where

dynamic instrumentation is used and no prior preparation is necessary. Rather than em-

ploying an analytical process to guide performance analysis, Autopilot uses fuzzy logic

to automate the decision-making process.

PerCo

The PerCo system is a framework for controlling the performance of distributed appli-

cations in heterogeneous environments, such as computational Grids. It is capable of

monitoring the progress of the application’s execution and redeploying it to optimise

performance. To allow for the redeployment, the controlled application could be in-

terrupted in one platform and restarted in another from the point of the interruption,

using, for example, check-pointing files.

This framework is oriented to two HPC application domains: coupled models for sci-

entific simulation [1] and distributed search for statistical disclosure control [35]. Func-

tionally, these types of applications are composed of simulation components which run

individually, sharing state information at regular intervals.

The structure of the PerCo system comprises three main modules: PerCo load-

ers, distributed Control Performance Steerers (CPS) and the Application Performance

Steerer (APS).

There is a PerCo loader for each component of the application, and it is responsible

for launching and migrating the components. During component migration, the com-

munication between loaders is required to transfer input data and check-point files. So,

the set of loaders constitute the redeployment architecture.

Each component presents an interface to communicate with a CPS. Using this in-

terface a CPS controls its associate component, gathering performance information and

applying performance commands.

The entity which takes control over the complete application, i.e. over all the com-

ponents, is the APS. The APS receives data from the CPSs and maintains a historical

database of performance data. Using this information, the APS is capable of determin-

ing improved component configurations, which will be applied in the components by the

specific CPSs. To make redeployment decisions the APS policy is based on performance

prediction. The performance prediction used in PerCo [23] combines both time-series

and regression analysis.

In [16], Chen et al. present a model for a framework based on the PerCo system. This

model focuses on dynamically adapting the execution environment to changes in resource

availability. It distributes the functionality of the centralised APS in a hierarchical
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structure, dividing decision making into local and global policies. The model is oriented

towards providing fault tolerance and multi-level load balancing. This model has been

simulated at a high level. Changes in the simulated resources are represented by random

modifications of their simulated characteristics at run-time. A functional tool based on

this model does not appear to have been developed.

Instead of being a general dynamic tuning system, as is the case of the approach in

this thesis, PerCo is designed to operate over a specific type of application. In these

applications the tuning performed by PerCo is restricted to the movement of processes

between available resources, rather than using dynamic instrumentation to modify user

defined points in the application employed by the proposed approach. The performance

analysis conducted by PerCo differs from analytical performance models, in that it uses

historical data combined with techniques based on time series.

Continuous Program Optimization Paradigm

In [12], Cascaval et al. present the conceptual model and the initial implemented proto-

type of a paradigm for Continuous Program Optimisation (CPO). This paradigm focuses

on assisting in and automating the performance tuning of applications in current hard-

ware and software environments. The CPO paradigm is based on two recurring phases,

monitoring and optimisation.

Monitoring involves collecting and analysing performance data from the different

layers of the system (from the hardware to the application). In the implementation of

the CPO paradigm, the framework PEM [60] allows for vertically integrated performance

monitoring information to be gathered from the hardware to the application levels.

Optimisation involves using the collected information to adapt the application to its

current execution environment and adapt the execution environment to enhance applica-

tion performance. Optimisations are implemented through agents that are instances of

PEM clients. These CPO agents model the application behaviour based on performance

data coming through PEM, and store this model in a database. Using this information,

CPO agents negotiate resources that may either directly enhance performance or do

so indirectly, by enabling further code adaptations. To complete the feedback pattern,

the execution is continuously monitored to validate the previous problem diagnosis and

verify that the applied modifications are having the expected effects.

In [11], Cascaval et al. presents a use case of the CPO paradigm where an offline

agent and an online agent cooperate to optimise a large page usage. The offline agent

performs a page size benefit analysis, storing the results. The action of the offline agent is

used as a training phase, and in subsequent runs of the application the online agent uses
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those stored results to determine which data categories should request the underlying

system to map large pages to.

In this paradigm, historical data is the primary basis for conducting performance

analysis and tuning. The model proposed in this thesis, does not uses prior execu-

tion data, as it is oriented towards tuning applications with highly variable runtime

behaviour, a situation where data from previous execution is often not helpful.

2.2.3 Scalability of Dynamic Tuning Tools

The performance tools presented in the last section have aspects in their design that limit

their operation over large-scale parallel applications. Such aspects are mainly related to

a centralise component.

As it was mentioned in Section 2.2.1, MATE presents scalability barriers in its ar-

chitecture due to the centralised module that guide the dynamic tuning process. Its

centralised scheme becomes a bottleneck when the volume of communication and data

to be managed increases due to the number of tasks of the parallel application. In [13]

a first attempt to improve MATE’s scalability was presented. A distributed collection

of events is proposed and the experiments were conducted over a parallel application up

to 32 tasks.

The client-server architecture of Active Harmony relegates the responsibility of car-

rying out performance analysis over the entire parallel application to the Adaptation

Controller. This centralised component can take a long time to adjust the tuning param-

eters when the search space grows, due to having many parameters or having parameters

with many possible values.

In [17], different techniques are presented in order to scale the analysis process in

Active Harmony. These techniques are focused around selectively reducing the number of

tuning parameters or values by prioritising certain parameters or looking for relationships

between them. A separate technique is to group independent tuning parameters and

assign each group to a separate Active Harmony Server. However, this is only possible

when the parameters are completely independent and can be individually measured.

The experiments presented in this work have been executed at a scale of around 400

cores. Also, the scalability barriers derived from the tuning of a single parameter across

many thousands of cores is not considered.

Similarly to Active Harmony, Autopilot and PerCo make use of centralised modules

to perform the analysis and tuning phases. In the case of Autopilot, no evidence of

attempts to scale this tool have been found in the literature. For the PerCo tool a
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conceptual model that distributes the Application Performance Steerer exists. However,

it does not appear to have been implemented.

Continuous Program Optimisation presents a distributed analysis model through the

CPO agents. However, the monitoring infrastructure PEM, is centralised and processes

must contend for access to write to the centralised event log. In a large-scale context

the PEM infrastructure would become a bottleneck.

2.3 Scalability of Performance Analysis tools

Currently, different performance analysis tools exist which are able to work with parallel

applications involving hundreds or thousands of processes, such as Scalasca [38], Paradyn

[37], Periscope [4] and the TAU performance system [52].

To achieve the objective of this work, which is to provide an approach for scalable

dynamic tuning of large-scale applications, the techniques and schemes that such tools

make use of in order to be scalable have been studied.

These techniques try to avoid saturated centralised points of processing. For in-

stance, Scalasca exploits the parallelism offered by the environment where the parallel

application is running. In the cases of Paradyn and TAU, a distributed communication

framework is used to offload some of the processing tasks. Meanwhile, Periscope presents

a hierarchical architecture designed specifically to be scalable.

In the following sections, the major scalable performance analysis tools along with

their scalability properties are discussed.

2.3.1 Scalasca

Scalasca is a post-mortem performance analysis tool. It has been specially designed

to analyse parallel application execution behaviour on large-scale systems such as Blue

Gene and Cray XT, but is also well-suited for small and medium scale HPC platforms.

The current version of Scalasca can be applied to simulation codes from science and

engineering, based on the parallel programming interfaces MPI and/or OpenMP written

in C/C++ and Fortran.

Scalasca offers an incremental performance analysis procedure that integrates run-

time profiling and post mortem analysis of event traces, adopting a strategy of succes-

sively refined measurement configurations. Distinctive features are its ability to identify

wait states in applications with very large number of processors [5] and to combine these

with efficiently summarised local measurements.

22



2.3. SCALABILITY OF PERFORMANCE ANALYSIS TOOLS

To collect performance data, Scalasca offers a mix of manual and automatic in-

strumentation mechanisms to be applied to the target application. When running the

instrumented code on the parallel machine, if profiling is chosen by the user, the Scalasca

profiler emits only a single report file at the end of the application execution, which is

collated in parallel using MPI collective operations.

When tracing is enabled, each process generates a trace file containing records for

its process-local events. To developed a scalable pattern of analysis and wait states

search, after program termination, Scalasca loads the trace files into main memory and

analyses them in parallel by replaying the original communication on as many CPUs as

have been used to execute the target application itself. The result consists of a report

similar in structure to the summary report but containing higher-level communication

and synchronisation inefficiency metrics.

To interactively examine the XML summary and pattern reports files generated,

Scalasca also provides an analysis report explorer. These XML files can also be visualised

using third-party profile browsers such as TAU’s ParaProf [28].

The latest efforts in improving the Scalasca tool scalability [19] are mostly oriented

towards a hierarchical reimplementation of the unification algorithm. This algorithm is

used in order that the event data measured during the measurement acquisition phase

is consistent across all processes of the parallel application.

The scalable design of Scalasca, exploiting its profiling pattern and parallel event

tracing scheme, has facilitated performance analysis and tuning of a range of applications

on Cray XT and XE systems [61]. It has managed unprecedented numbers of processes,

such as 294,912 on IBM Blue Gene/P and 196,608 on Cray XT5 [62].

2.3.2 Paradyn

Paradyn is an on-line performance analysis tool for parallel and distributed applications.

Paradyn supports monitoring MPI applications on IBM AIX, Solaris, and Linux plat-

forms, providing program instrumentation and automatic performance analysis during

the execution of the parallel application. Such functionality is achieved through the use

of the dynamic instrumentation technique. Therefore, Paradyn is capable of inserting

and modifying instrumentation during run-time, collecting only data that it needs for

monitoring and automatic performance analysis.

The automatic search of performance bottlenecks in Paradyn is carried out by the

Performance Consultant module. The Performance Consultant is a centralised process

and its search is based on the W3 search model (why, where and when) [21]. This model

is based on answering three separate questions: why is the application performing poorly,
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where is the bottleneck and when does the problem occur. Such an approach allows quick

and precise isolation of a performance problem, guiding Paradyn’s instrumentation in

search of it.

To eliminate the centralised nature of the Performance Consultant and extend the

scalability of Paradyn, later works [50], [49] present and evaluate a distributed approach

for the Performance Consultant. The performance bottleneck search strategy defined

in this new approach deals with local and global application behaviour. For local be-

haviour, the search examines a specific process behaviour, delegating control to a search

agent running on that process host. To examine global application behaviour, the strat-

egy uses MRNet [51] for efficient aggregation of performance data collected from all

application processes, as well as for overall tool control during the search. In this work

experimental results show how they applied the proposed distributed search on 1024

application processes.

2.3.3 Periscope

Periscope is an on-line distributed performance analysis tool. It allows analysing of

performance issues of parallel MPI applications as well as evaluating single node per-

formance. The performance problem detection conducted by Periscope is automatic

and occurs while the application is running. Such detection is based on summarised

information, and in this phase the structure of the application is known and exploited.

To be scalable, the architecture of Periscope is composed of a analysis agent network.

This network consists of three different types of agents: the master agent, communication

agents and analysis agents.

The analysis agents are the leaves of network and search autonomously for prede-

fined performance problems in a subset of the application’s processes. The application

processes are linked with a monitoring interface that allows the analysis agents to config-

ure the measurements, collect performance data and control when the application starts,

halts and resumes.

The performance problem detection is carried out in one or more experiments, which

are represented by an iterative phase of the application. The detection strategy is based

on a set of hypotheses, that define an initial set of problems or behavioural patterns that

are to be checked in the first experiment, as well as a refinement process that permits

the creation of new hypotheses from the problems already found. Therefore, the analysis

agents start from the initial hypotheses, execute the specific phase of the application in

order to gather the performance data and finally evaluate which hypotheses hold. When

necessary, the hypotheses can be refined and a new detection cycle is performed.
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At the end of the local search, the detected performance problems are communicated

through the network of communication agents to the master agent which interacts with

the user. Communication agents combine similar performance problems found in their

child agents and forward only the combined properties.

Periscope also offers a user-interface that displays the results of the performance

problem detected on runtime behaviour of the parallel application.

Two years ago, as an extension of Periscope, the Periscope Tuning Framework (PTF)

arose under the AutoTune project [36]. Such an extension aims to help developers in

the process of tuning a parallel application. PTF identifies tuning alternatives based

on codified expert knowledge and evaluates the alternatives within the same run of the

application (online). At the end of the application execution, PTF produces a report on

how to improve the code, which can be manually or automatically applied. Currently,

PTF includes plugins for tuning the performance and the energy consumption.

2.3.4 TAU Performance System

The TAU performance system is an integrated toolkit for performance instrumentation,

measurement, offline analysis, and visualisation of parallel applications. TAU can be

executed in the majority of the current HPC platforms and supports applications written

in C, C++, and Fortran languages, as well as the use of standard message passing (e.g.,

MPI) and multi-threading (e.g., Pthreads) libraries.

TAU implements a flexible instrumentation model that is applied at different stages

of program compilation and execution. Different instrumentation techniques are sup-

ported, including dynamic instrumentation using the DynInst API [10].

The TAU measurement library supports scalable performance profiling and tracing

techniques. When tracing is enabled, every node/context/thread will generate a trace

for instrumented events. TAU writes performance traces for post-mortem analysis, but

also supports an interface for online trace access. This includes mechanisms for online

and hierarchical trace merging [8], [9].

As in tracing, profiles are collected and stored on a per-thread basis. TAU profil-

ing system support two types of profiling: flat profiling and event path profiling. Flat

profiling is able to give information about a specific event, but not within the context

of other events. On the other hand, event path profiling allows more specific context

information about the relationships between events.

TAU parallel profile analysis environment consists of a framework for managing the

profile data, PerfDMF [22], and a profile tool, ParaProf [28]. After the measurement,

the profile data can be loaded in the profile experiment database of PerfDMF. The
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use of this database not only allows a wide range of analyses of the collected profile

data but also comparisons between experiments. ParaProf provides the user with a

graphical visualisation of the parallel profile data. The visualisation is based on scalable

histogram and three-dimensional displays for large profiles. The input to ParaProf can

come directly from the PerfDMF database.

TAU leverages third-party software packages, such as Vampir [44] for sophisticated

trace analysis and visualisation.

Recent works [45] [46] [27] show the extension of the TAU performance system in

order to conduct scalable, low-overhead online performance monitoring and analysis of

parallel applications. The first approximation was shown in [45] using the scalable mon-

itoring system Supermon as a transport runtime system for monitoring data. Supermon

[55] presents a hierarchical structure of servers that gather, concentrate and transport

monitoring data to the root of the hierarchy, which provides the data to the clients

(Performance database, online visualiser or application steerer).

In [46] an extension of the latest work based on MRNet was presented. In this case

MRNet is also used as a transport runtime system but the capabilities of the filters in

the internal nodes of the network are used to provide distributed runtime performance

analysis while the data flows upstream in the network.

In [27] extending the last two works, it is shown how online analysis operations can

also be supported directly and scalably using the parallel infrastructure provided by an

MPI application instrumented with TAU. In this work successful experiments with 131K

cores show the scalability of this tool.

2.4 Conclusions

In this chapter, a range of dynamic performance tuning tools - MATE, Active Harmony,

Autopilot, PerCo and CPO - have been outlined. Each of these tools employs different

techniques to gather and analyse performance data, and use these data to make decisions

in order to improve the performance of a parallel application. However, they all share a

common trait, which is the existence of a centralised analysis component in their design.

It is due to this fundamentally centralised scheme that none of these tools are able to

scale to operate on large-scale parallel applications.

The existence of performance analysis tools, such as Scalasca, Periscope, Paradyn

and TAU, that are capable of analysing parallel applications executed on thousands of

processes has also been detailed. This scalability is achieved in different ways, however

in all cases it is based on distributing the analysis process amongst multiple components.
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These tools offer different kinds of analysis, offline and online. However, until now, these

tools do not offer dynamic tuning.

It is at this intersection, where dynamic tuning meets scalability, that the contribu-

tion presented in this work provides an advance in the state of the art of performance

analysis and tuning.
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3
Scalable Dynamic Tuning

“The major achievement of modern science is to demonstrate the links be-

tween phenomena at different levels of abstraction and generality, from quarks,

particles, atoms and molecules right through to stars, galaxies, and (more con-

jecturally) the entire universe. On a less grand scale, the computer scientist

has to establish such links in every implementation of higher level concepts in

terms of lower. Such links are also formalised as equations or more general

predicates, describing the relationships between observations made at different

levels of abstraction.”

– Charles Antony Richard Hoare, Mathematical Models for Computing Science

This chapter introduces a model that enables dynamic tuning for large-scale parallel

applications. This model is designed as a hierarchical tuning network of modules which

independently perform analysis and tuning in a distributed manner. The challenge of

estimating the additional resources required for dynamic tuning is also addressed in

this chapter, through the calculation of efficient tuning network topologies. To finalise,

an approximation of the time required to achieve a global performance improvement

utilising the proposed tuning network is presented.
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3.1 Introduction

Typically dynamic tuning tools are organised following a centralised architecture, as we

discussed in Section 2.2.3. Such tools are composed of a single tool component, which

can be called the analysis and tuning module, that controls and interacts with a large

number of tool daemons, the back-ends, which are responsible for data collection and

application control. Generally, the execution of the tool back-ends is distributed because

they can run in the same node where the application task is executing. The analysis

and tuning module acts as a coordinator allowing the daemons to work together. It

is normally also in charge of managing the collected performance data and conducting

performance analysis and tuning over the entire parallel application.

When working with parallel applications involving hundreds or thousands of tasks,

the centralised analysis and tuning module becomes a bottleneck due to centralised

computation and communication with all back-ends daemons, and no longer provides

effective analysis and tuning. Therefore, providing effective dynamic tuning in large-

scale contexts requires:

• The elimination of a single centralised point responsible for analysing and tuning

the application.

• The distribution of the analysis and tuning process in such a way that it remains

effective.

The capacity of a centralised tool will always be limited in terms of the size of the

parallel application that it can support. Even the most efficient centralised tool will

become a bottleneck given a sufficiently large number of tasks to analyse. So, in order

for an analysis and tuning tool to be truly scalable, it must present a design that is able

to be adapted to the size of the parallel application that it is operating over.

On the other hand, the performance problems being resolved are often highly com-

plex and require global knowledge about the state of the parallel application. In this

case the analysis and tuning process must be designed to use mechanisms that permit

the resolution of performance problems without resorting to a single point of absolute

control.

In this chapter, we propose a new approach to perform dynamic tuning for large-scale

parallel applications, overcoming the limitations that exist in a centralised design.

We start by discussing the different schemes to support scalability for dynamic per-

formance analysis and tuning in Section 3.2. Then, in Section 3.3 we present our pro-

posal, a model that enables decentralised dynamic tuning of large-scale parallel appli-

cations. The decentralised scheme takes the form of hierarchical performance analysis
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and tuning, based on the decomposition of the parallel application and the abstraction

of its behaviour. The requirements of the proposed model are satisfied by a hierarchical

tuning network of analysis and tuning modules whose design is detailed in Section 3.4.

The topology of a hierarchical tuning network can be adapted to the size of the

parallel application being analysed and tuned. In Section 3.5 we address the challenge

of selecting this topology according to the characteristics of the performance analysis

and tuning process and the parallel application being analysed.

We finalise the chapter in Section 3.6 where we discuss the time required to achieve

global performance improvements following the specification of the model proposed in

this chapter.

3.2 Distributed Approaches to Support Scalability

In order to develop a scalable dynamic analysis and tuning design, it is necessary to

avoid a single centralised analysis and tuning module. We investigated two possible

alternatives that allow us to achieve the decentralisation of this component.

The two possible options considered for the decentralisation are a fully distributed

approach or a hierarchically distributed approach. In this section, the advantages and

drawbacks of each option are evaluated in the context of performance analysis and

tuning.

A fully distributed analysis is characterised by not presenting any centralised compo-

nent. This type of analysis would be conducted by a set of analysis and tuning modules

that would be expanded on one level over the parallel application tasks. Each analy-

sis and tuning module monitors, analyses and tunes a subset of application tasks. To

achieve global improvements of the application’s performance, it is necessary to estab-

lish a communication pattern between analysis and tuning modules for transferring and

exchanging performance data about the application. Using its own information and the

information from its neighbours, each analysis and tuning module can infer a global

performance improvement and tunes its set of application tasks.

The hierarchical alternative consists of analysis and tuning modules structured as

a hierarchical tree. Performance information about the parallel application would flow

from the tasks of the application to the analysis and tuning modules located at the base

of the hierarchy, and from them to the analysis and tuning modules at the remaining

levels. In this way, the higher an analysis and tuning module is in hierarchy, the larger

the segment of the application which it has knowledge about. However, analysis and

tuning modules located at higher levels of the hierarchy will most likely have a coarser

view of the application than those modules which reside at lower levels.
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In a hierarchical distribution, problems which require a global view of the application

can be resolved by the analysis and tuning module which resides at the root of the

hierarchy. The lower levels can be responsible for resolving the same problem over the

subset of the application which they control, with a restricted but more detailed view.

Alternatively, each level in the hierarchy can resolve a distinct performance problem

depending on the view of the application that it has.

The fully distributed analysis approach is inherently scalable, but it tends to generate

poor global performance improvements. Due to the absence of a centralised component,

this design takes longer to spread information about the global state of the application

to all analysis and tuning modules. For this reason, it takes longer to achieve quality

improvements that consider the overall state of the application when it has a large

number of tasks.

As with the fully distributed design, the hierarchical option provides effective local

performance improvements. However, the hierarchical approach has features that make

it somewhat less scalable because a centralised analysis point exists. This is offset by the

fact that the hierarchical structure makes it possible to achieve better global performance

improvements, and achieve them faster than the fully distributed option. This is possible

because the centralised analysis and tuning module has a holistic vision of the state of

the parallel application.

Considering the advantages and disadvantages of each approach discussed, we need

to choose the best option to scale the analysis and tuning process, maintaining its quality

while avoiding the introduction of unnecessary complexity.

The hierarchical structure has been chosen because it offers the best compromise

between scalability and the effectiveness of the analysis and tuning process. While it is

true that the ultimately centralised nature of a hierarchical structure makes it somewhat

less scalable than a fully distributed configuration, the trade-off is considered worthwhile

given that the hierarchical approach will achieve quality global improvements faster on

applications with a large number of tasks.

3.3 Model for Hierarchical Dynamic Tuning

To address the challenge of tuning large-scale parallel applications at runtime, we propose

a model that follows a decentralised scheme for dynamic tuning. This model is based on

the hierarchical distribution of the analysis and tuning process, and uses an abstraction

mechanism that offers a reduced representation of the application state, enabling global

performance improvements to be achieved.
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The model involves decomposing the parallel application, which is too large to anal-

yse and tune in a centralised manner, into a number of disjoint subsets of tasks which can

be dealt with separately. Analysing and tuning each of these separated subsets, called

domains, will lead to local performance improvements in the parallel application.

However, in order to achieve global performance improvements, the application must

be viewed as a whole. To achieve this, in this model we propose that each separate

domain has to be abstracted so that it can also be treated as a single parallel application

task. When taken together, the tasks representing all the domains form a new virtual

parallel application composed of fewer tasks than the original.

While the number of tasks of the virtual parallel application is still too great to be

analysed in a centralised manner, the decomposition and abstraction process is repeated

and an additional virtual parallel application is formed.

Following this decomposition and abstraction process, we obtain a hierarchical tree

of virtual parallel applications, with the lowest level being the real parallel application

and the highest level having few enough tasks to be analysed and tuned in a centralised

manner, as shown in Figure 3.1 for an SPMD application. At each level in the hierarchy,

the virtual parallel application is composed of tasks which abstract the state of a domain

in the application at the level below. In this case, the virtual application follows the same

programming paradigm as the original application. At each higher level in the hierarchy

the virtual application presents a coarser representation of the original application state.

Virtual Parallel Application 
at level 0

Original Parallel Application

Virtual Parallel Application 
at level 1

Figure 3.1: Decomposition and abstraction of an SPMD application following the
model for hierarchical dynamic tuning.
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Analysis and tuning is performed separately on each subset in each virtual parallel

application. The results of this analysis are actually carried out, via the abstraction

mechanism, on the underlying segment of the original application which is represented

by this subset. This pattern leads to a hierarchical distribution of the analysis and

tuning process of the parallel application. As such, the analysis and tuning conducted

over the virtual parallel application at the highest level results in a global performance

improvement over the real parallel application.

The model can also be applied to less homogeneous applications. As an exam-

ple, Figure 3.2 presents a master-worker of pipelines application and its corresponding

decomposition and abstraction. In this case, only the pipelines are decomposed and

abstracted between levels, the master task in each virtual application merely represents

its real counterpart. The decomposition allows the original application to be analysed

locally for each piece of the pipeline. The abstraction allows the highest level virtual

application to be analysed in terms of its behaviour under a master-worker paradigm.

Original Parallel Application

Virtual Parallel Application 
at level 0

Virtual Parallel Application 
at level 1

Figure 3.2: Decomposition and abstraction of a master-worker of pipelines application
following the model for hierarchical dynamic tuning.

Dynamic tuning of large-scale parallel applications arises from the two main pro-

cesses of the proposed model. The decomposition permits the analysis and tuning over

manageable sized portions of the application; and the abstraction mechanism joins these

separate application domains to carry out global performance improvements.
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3.3.1 Knowledge Required for Collaborative Hierarchical Tuning

Dynamic performance analysis and tuning are conducted during the execution of the

parallel application. This fact implies that analysis and modification must be as simple

as possible. The resulting decisions from the performance analysis phase have to be

taken in a short period of time in order to effectively tackle the detected bottlenecks.

Additionally, an important aspect to consider is that the intrusion generated by the

monitoring and tuning process must be minimised, because it can affect the applica-

tion behaviour and could even generate previously non-existent performance problems.

For this reason, the monitoring and tuning process must not present a high degree of

complexity and must be carried out carefully.

All of these restrictions are very complex to meet if there is no previous knowledge

about the structure and behaviour of the application. Approaches based on blind dy-

namic tuning show poor results and the effectiveness of dynamic modifications might be

significantly reduced. With the aim of avoiding such limitations it would be beneficial to

ask for user collaboration in order to provide specific information about the application

and how to detect and fix its performance problems. In this work, such a cooperative

approach is followed.

Historically, our research group has proposed a collaborative approach [40] [14] [43]

for tackling these issues. This approach consists on the one hand, a framework tool

for driving the analysis and tuning process and, on the other hand, on integration of

knowledge provided by the user about the application behaviour.

Following this collaborative approach, users will have to provide knowledge for the

proposed hierarchical tuning model about how to conduct performance analysis and

tuning (the performance model), as well as how to carry out the decomposition and

abstraction process (the abstraction model).

Performance Model

The analysis and tuning process aims to evaluate the application behaviour by collect-

ing performance data, detecting bottlenecks and giving solutions to overcome them.

Different possibilities exist to evaluate the application behaviour, such as analytical per-

formance models, heuristic techniques, historical performance information, fuzzy logic,

regression analysis or time-series techniques.

The approach used in the proposed model is based on analytical performance models

and rules. Analytical performance models are a set of formulae, expressions or algorithms

that determine the optimal performance conditions as well as predict the performance
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of an application. These models are usually parameterised by application and system

characteristics. This approach can be application-specific or based on simple models.

To represent a performance model for dynamic tuning, we have adopted the termi-

nology used by MATE. A performance model defined for dynamic tuning must consist

of:

• A set of measurement points, which determines the parameters of the application

to be monitored and the points where they have to be measured. The values of

the data gathered from the measurement points are the inputs to the performance

model.

• A set of evaluation strategies and/or expressions used for finding performance prob-

lems and giving solutions to them. Such strategies and expressions are evaluated

on the previously mentioned inputs of the performance model.

• A set of tuning points and actions, and a synchronisation method. A tuning point

specifies what must be changed in the application, a tuning action is the change

to be performed on that point, and the synchronisation method determines the

conditions that must hold to perform the tuning action in a consistent manner.

As previously discussed, the model for hierarchical dynamic tuning proposed in this

work permits a distributed performance analysis. So, at each level of the hierarchy a

performance model is used. Depending on the performance problem to be overcome,

as well as the structure of the original parallel application being analysed, each level in

the hierarchy may be analysed using the same performance model, as in the case of an

SPMD application, or different models, as for a master-worker of pipelines application.

In this last case, returning to Figure 3.2, a master-worker performance model would be

used at the highest level in the hierarchy, while a pipeline performance model would be

employed at the remaining levels.

Abstraction Model

To conduct a distributed dynamic analysis and tuning process, our model also requires a

description about how to perform the abstraction between levels in the hierarchy. This

knowledge forms the Abstraction model and is composed of 4 parts:

• How to translate the monitoring points between different levels in the hierarchy,

in order to apply monitoring points from one level to its child level.

• How to summarise the information collected from monitoring points, so that a

subset of tasks from one level in the hierarchy can be represented as a single

virtual parallel application task.
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• How to translate the set of tuning points, actions and synchronisation method

between different levels in the hierarchy, in order to apply tuning actions from one

level to its child level.

• How to decompose a real or virtual parallel application into subsets of tasks which

can be analysed and tuned following the performance model to be used at its level

in the hierarchy.

These four aspects must take various details into consideration, such as the structure

and the behaviour of the parallel application, specific characteristics of the performance

issue that is being resolved, and differences in the performance model being used at each

level of the hierarchy.

3.3.2 Decomposition and Abstraction of Performance Problems

The model proposed in Section 3.3 allows dynamic tuning over large-scale parallel ap-

plications by distributing the analysis and tuning process. This distribution influences

the possible strategies which can be followed to overcome performance problems in a

parallel application. Specifically, a performance model must have certain characteristics

if it is to be used effectively when operating over large-scale parallel applications.

First, the proposed model calls for the decomposition of the parallel application into

separate subset of tasks, each of which will be analysed and tuned separately. As such,

it is necessary that the performance model employed to conduct analysis and tuning can

be applied to these disjoint subsets.

Second, in order to achieve a global vision of the parallel application, subsets of

tasks are abstracted and represented as if they were a single parallel application task.

Consequently, it must be possible to apply the performance model over the resulting

virtual parallel application.

The complete functionality of the proposed hierarchical dynamic tuning model is

based on using performance models that meet both of these requirements, that is they

are decomposable and abstractable. However, under the proposed model it is possible to

resolve problems in a parallel application that require a performance model that only

fulfils one of these requirements.

As an example, optimising the memory usage of the application tasks only requires

local analysis. In this situation no abstraction occurs as the problem can be solved for

each task individually. On the extreme, other problems can only be solved at a global

level, supported by the abstraction mechanism. An example of such a situation is tuning

the MPI parameter MP EAGER LIMIT, which consists of setting the optimal maximum size

for sending messages without the handshaking protocol.
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However, many problems can be attacked in a hierarchically distributed way in order

to quickly solve performance issues, in this case analysis is performed at all levels in the

hierarchy. For example, load balancing can be performed both locally and globally in

such a way that local performance improvements can be achieved without worsening the

global performance of the application.

3.4 Hierarchical Tuning Network Design

The model for large-scale dynamic tuning presented in Section 3.3 is based on the de-

composition of the parallel application to be analysed and tuned, and an abstraction

mechanism which allows the representation of the application state with different gran-

ularity. Using this decomposition and abstraction, the proposed model takes the form

of a hierarchy of disjoint levels composed of virtual parallel applications. At each level

in the hierarchy, a distributed analysis and tuning process is performed, the result of

which is applied to the real parallel application.

The design of a tool based on the model must include mechanisms which drive

the inter-level communication and allow the coordinated operation of this analysis and

tuning process throughout the levels in the hierarchy, in order to improve the global

performance of a parallel application.

Based on the concepts and architecture of analysis tools, this design structures the

hierarchy as a set of analysis and tuning modules (ATMs) configured as a hierarchical

tree. These ATMs form the hierarchical tuning network.

In this section, we present the scheme of this hierarchical tuning network, which

arises from the decomposition and abstraction process defined by the hierarchical tuning

model. We also show how the required knowledge, specified in Section 3.3.1, is introduced

into the tuning network. Finally, the synchronisation methods to coordinate the holistic

operation of the network are depicted.

3.4.1 Hierarchical Tuning Network

In order to decentralise the analysis process, our model for hierarchical dynamic tuning

calls for a tuning network of distributed analysis and tuning modules (ATMs), structured

as a hierarchical tree over a parallel application.

These ATMs provide analysis and tuning as well as representing the tasks of the

virtual parallel applications described in Section 3.3. This structure is shown in Figure

3.3.
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ATM

ATM ATM

ATMATM

ATMATM

...

... ...

Parallel Application

... ... ... ...

Tuning Network

Root level

Base level

Analysis and 
tuning domain

Analysis and 
tuning domain

... ... ...

Figure 3.3: General hierarchical tuning network.

To form the base of the tuning network, it is first necessary to decompose the parallel

application into disjoint subsets of tasks, according to the decomposition process of the

proposed model. Each subset of application tasks then makes up the analysis and tuning

domain of an ATM at the base level of the tuning network.

These base level ATMs are directly responsible for improving the performance of the

application tasks in their domain. Following the dynamic tuning process presented in

Section 2.2, these ATMs operate in three continuous phases: monitoring, performance

analysis, and modification. First, the ATMs instrument the parallel application, using

instrumentation orders for monitoring. These orders indicate the parameters of the

applications that have to be measured and the points where they can be found to gather

information about the behaviour of the application. In the analysis phase, ATMs receive

this information in the form of events, search for bottlenecks, and give solutions for

overcoming them. Events are messages originated in the parallel application tasks which

contain performance information previously requested by a monitoring order. Finally,

instrumentation orders for tuning are sent by the ATMs to apply the given solution.

The tuning orders specify the points to be dynamically changed in the application to

improve its performance.

In order to obtain a homogeneous behaviour in all the ATMs in the tuning network,

the analysis scheme of the ATMs at the hierarchy’s base is replicated in the higher levels

of the hierarchy. These higher level ATMs also operate over their child ATMs following

the three phases previously mentioned: monitoring, analysis and tuning. From the point

of view of these ATMs, their child ATMs form a parallel application.

To do this, the abstraction mechanism previously introduced is used. In the tuning

network, this mechanism consists of representing each ATM as a parallel application

task to its parent ATM. Therefore, the ATMs of one level behave as the analysis and
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tuning domain of their parent ATM. A detailed description of how this mechanism fits

into the tuning network is presented in Section 3.4.2.

We use the SPMD application shown in Figure 3.4 to illustrate these concepts. This

application consists of 16 tasks connected in a 4×4 grid. According to the decomposition

process of the proposed model, the 4×4 grid is split into subgrids of size 2×2. These

subsets of tasks can be analysed and tuned separately under the SPMD paradigm. So,

each 2×2 subgrid is the analysis and tuning domain of an ATM located at the base

level of the tuning network. Therefore, this level of the network is composed of 4 ATMs

(A1.1, A1.2, A1.3 and A1.4) which, following the abstraction mechanism, form a virtual

application from the point of view of the parent level in the hierarchy. This virtual

application also follows an SPMD paradigm, so these 4 ATMs should act as parallel

application tasks abstracting the behaviour of the real tasks within their domain. These

ATMs will become the analysis and tuning domain of the root ATM A1.

T4T3T2T1

T8T7T6T5

T12T11T10T9

T16T15T14T13

A1.1 A1.2

A1.3 A1.4

A1

Figure 3.4: Hierarchical tuning network over an SPMD application.

As it was mentioned in Section 3.3, our approach also works with other programming

paradigms such as hierarchical master-worker or master-worker of pipelines. The struc-

tured nature of these kinds of applications allows an analysis and tuning process using

different tuning techniques throughout the analysis hierarchy. Considering the second

case, a master-worker of pipelines where each worker is a pipeline, we can decompose

the application so that parts of the analysis can be performed independently for each

pipeline, and globally for the whole master-worker setup [20]. Figure 3.5 presents an ex-

ample of a master-worker of pipelines composition and the associated hierarchy of ATMs

that would be defined according to our proposal. Each ATM that controls a pipeline

has to abstract the behaviour of its domain and act as a virtual worker task from the

point of view of the root ATM. In this case, the virtual application is composed of three
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virtual workers (A1.1, A1.2 and A1.3) and a virtual master (A1) which represents the

task T1.

T4

T3

T2

T1

T8

T7

T6

T5

T10

T9A1.1 A1.2 A1.3

A1

Figure 3.5: Hierarchical tuning network over a master-worker of pipelines application.

3.4.2 Abstraction Mechanism

The abstraction mechanism between levels in the hierarchy is the key principle for both,

a) conducting a scalable and decentralised analysis, and b) efficiently managing the

volume of data necessary to perform analysis and tuning.

The functionality required to carry out the abstraction mechanism is provided by a

component called the Abstractor, associated to each ATM. This Abstractor is responsible

for representing its associated ATM as a parallel application task to its parent ATM.

The Abstractor abstracts the performance information which is received in the form

of events from the analysis and tuning domain of its associated ATM, and sends this

abstracted information to its parent ATM in the form of a new event. When an Abstrac-

tor receives an instrumentation order for monitoring or tuning from its parent ATM,

it must translate the order to be applied to the analysis and tuning domain of its as-

sociated ATM. These two processes allow performance analysis over the entire parallel

application.

The operation of the proposed hierarchical tuning network is based on the action

of the Abstractor-ATM pair as a single entity. As it can be seen in Figure 3.6, the

Abstractor makes the connection with the parent ATM, and the ATM associated to this

Abstractor connects with its analysis and tuning domain, i.e. its immediate children.

The functional design of the Abstractor -ATM pair and its communication paths are

shown in Figure 3.7.
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A1.1

A1
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Instrumentation orders

Abstractor

T1

T2

T3

T4

Figure 3.6: Detail of Figure 3.5 showing the tuning network using the Abstractor
module.
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Figure 3.7: Abstraction mechanism: Abstractor -ATM design.

The Abstractor is composed of two main modules:

• Instrumentation Order Translator. Once an instrumentation order for moni-

toring or tuning is received by the Abstractor, the Instrumentation Order Trans-

lator transforms it into one or more new instrumentation orders which will be sent

to the children.

• Event Creator. This module creates events using the data contained in events

received from its associated ATM. Created events encapsulate the information

requested by monitoring orders previously received by the Abstractor from its

parent ATM.

The Abstractor communicates with its associated ATM via an internal API. Every

ATM is composed of three main modules:
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• Performance Evaluator. This module contains the information necessary to

conduct the monitoring, analysis and tuning of the parallel application.

• Event Manager. This module is responsible for receiving and managing events

generated by the parallel application tasks or other descendant ATMs. An event

received by this module may be created as a result of the monitoring instrumenta-

tion orders generated by its Performance Evaluator or the Performance Evaluator

of an ancestor ATM. In the first case, the Event Manager will transfer this event

to its Performance Evaluator, and in the second case it will transfer it to the Event

Creator module of its associated Abstractor. In this way the events required by

the ancestor ATMs may flow through the hierarchy. The knowledge required to

route incoming events is based on whether the monitoring order which provoked

the generation of this event originated in the ATM or the Abstractor at this level.

• Instrumentation Order Sender. This module has to send the instrumentation

orders received from its Performance Evaluator, or from its associated Abstractor,

to its analysis and tuning domain.

3.4.3 Knowledge in the Hierarchical Tuning Network

To conduct dynamic performance analysis and tuning according to the proposed model,

the integration of the knowledge detailed in Section 3.3.1 into the tuning network is

required. This knowledge is made up of a performance model, that guides the perfor-

mance analysis and tuning of the parallel application, and the abstraction model which

allows the definition of virtual applications at each level of the tuning network.

The performance model drives the behaviour of the ATMs. It defines what should be

measured in the parallel application, how to analyse its behaviour and what changes must

be applied to improve its performance. Specifically, this knowledge must be integrated

in the Performance Evaluator component of the ATMs.

The abstraction model is primarily based on components of the Abstractor module.

The translation of monitoring orders, which encapsulate monitoring points, should be

located in the Instrumentation Order Translator. This translation mechanism takes the

form of a function that maps a single instrumentation order for monitoring into others,

one for each child in the analysis and tuning domain. The new monitoring orders must

generate information to fulfil the information requested in the original order.

The Abstractor receives information about the state of the children in the analysis

and tuning domain of its associated ATM in the form of events. This information has

to be summarised using a reduction function that will result in a new event representing

the state of the analysis and tuning domain of the associated ATM as if it were a single
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application task. The Event Creator component contains the knowledge for summarising

this information.

The translation of tuning orders (tuning points, actions and synchronisation) is

hosted by the Instrumentation Order Translator. This translation process implies that

when a tuning order is received by the Abstractor from the parent level, this order must

be translated into orders for one or more of the children in the analysis and tuning

domain of its associated ATM. The translation of these orders has to be performed

in such a way that the resulting instrumentation produces the desired change in the

application.

The knowledge required for the decomposition of the real or virtual application into

domains is not hosted in any component of the Abstractor module. It is used before

starting the analysis and tuning process when the configuration of the tuning network

is established.

3.4.4 Synchronisation Policies

The behaviour of the hierarchical tuning network proposed in this work is based on the

actions of the ATMs in various levels. The question that arises is how to combine the

operation of all ATMs in order to provide an effective dynamic tuning.

Various synchronisation policies can be employed in order to ensure that the decisions

made by each ATM are applied in such a way that their combined effect produces an

improvement in the parallel application’s performance.

In this section, three different classes of synchronisation policies are explored. These

three policies have been called Synchronised Analysis, Synchronised Tuning, and Asyn-

chronous.

Synchronised Analysis. Using this policy, the actions of the ATMs of the tuning

network are synchronised by level. At a given time, only the ATMs in a single level are

actively performing analysis and tuning. The tuning process begins at either the top or

the bottom of the hierarchy. Assuming that it is the top, the root ATM acts until it is

satisfied with the performance of its analysis and tuning domain. The root ATM then

signals its children ATMs, and they become active and begin their own analysis and

tuning process. Once an ATM has finished improving the performance of its analysis

and tuning domain it notifies the root ATM. Once the root ATM has received this signal

from all the ATMs at that level, it triggers the activation of the next level of ATMs.

This pattern is repeated for each level in the hierarchy until the ATMs at the base level

have finished, and the cycle begins again.
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During the synchronised analysis cycle, the ATMs in inactive levels will not be

functioning, however their associated Abstractors will still be operational, creating new

events that flow upstream through the tuning network and translating the instrumen-

tation orders for monitoring and tuning that go downstream. Due to the periods of

inactivity that ATMs suffer during the cycle, this policy may leave performance prob-

lems undetected for unacceptable lengths of time because they can only be discovered

by an ATM at a specific level.

This policy could be a good option in situations where the tuning orders from one

level would counteract those of a child or parent level if they were blindly applied at

the same time, or if tuning performed by an ATM at one level would drastically change

the apparent state of the analysis and tuning domain of an ATM at a child or parent

level. However, synchronised analysis does not make the best use of resources, as ATMs

are inactive during the synchronisation cycle. Moreover, an explicit communication

mechanism between ATMs in different levels is required to implement the signal that

activates the analysis and tuning process at each level. This extinguishes part of the

beauty of the abstraction mechanism, as ATMs must be aware that they have other

ATMs in their analysis and tuning domain.

Synchronised Tuning. With a synchronised tuning policy, all ATMs are actively

performing analysis in parallel. However, instrumentation orders for tuning are not sent

until a corresponding tuning order has been received from the parent ATM. When an

Abstractor receives a tuning order, it is responsible for integrating this order with the

ones generated by its associated ATM. This integration consists of taking the ATM’s

more finely grained knowledge of its analysis and tuning domain into account when

performing the instrumentation order translation, as well as combining the newly created

tuning orders with those already generated by its associated ATM.

This policy is only applicable if higher levels in the hierarchy have high priority, i.e.

it is a top-down scheme. Due to the integration of tuning orders this policy may be

able to obtain significant performance improvements with fewer changes in the appli-

cation. On the other hand, if the integration mechanism during the instrumentation

order translation is complex and costly, tuning orders will incur delays as they flow

downstream through the tuning network, which may reduce their effectiveness. This

integration mechanism also requires additional knowledge from the user to conduct the

performance analysis and tuning process.

Asynchronous. The final possibility is an asynchronous policy. In this case ATMs

are continually active during the application execution. Each ATM acts completely

independently, performing analysis and sending tuning orders when necessary. All tuning

orders are received by the application task and applied.
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The asynchronous characteristic of this policy provides dynamism in the behaviour

of the ATMs at each level of the hierarchy. Because of this, the detection of performance

problems takes place as quickly as each ATM is able to react, they are not forced to wait

for any signal or synchronisation coming from parent or child levels. Furthermore, no

additional knowledge or logic is required in the Abstractor -ATM pair. When using this

policy, it is important that the combination of tuning orders coming from different levels

converge towards an improvement of application performance, otherwise the application

performance could be continually oscillating.

Because all ATMs work in parallel and tuning orders from different levels can be re-

ceived by a single application task at the same time, a coherence mechanism is necessary

at the point where the application is instrumented for tuning. This mechanism controls

priority of tuning orders from different levels and also ensures that tuning orders are

only applied if they have been generated based on a reasonably recent parallel applica-

tion state. In a performance tool this mechanism would be located in the module that

controls the insertion of instrumentation orders for tuning in each parallel application

task.

The advantage of this coherence mechanism is that it can be generalised, does not

require specific knowledge about the performance analysis and tuning process.

Tuning Coherence Mechanism

A hierarchical tuning network, performing asynchronous analysis and tuning, requires

a coherence mechanism. This will reside in the performance environment module that

controls the insertion of instrumentation orders for tuning into each parallel application

task.

To provide coherence, this mechanism places two constraints on instrumentation

orders for tuning:

• Non-stale tuning orders. It is possible that while an ATM from one level

collects performance data, analyses them and sends a tuning order, an instrumen-

tation order for tuning from an ATM at another level in the hierarchy produces a

significant change in the state of the application. When this situation occurs the

information upon which the tuning order was based is no longer valid, and it is

denoted stale. The coherence mechanism must keep track of the last instrumented

change in its associated task, and discard tuning orders based on an application

state measured prior to this change.

• Inter-level priority. When a tuning order is received by the module that controls

the instrumentation, it is not applied until the parallel application task passes
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through the associated tuning point. Until this moment, this order is pending.

While an order is pending, there is the possibility that an order from another

level arrives. The coherence mechanism compares the priority of the ATM that

sent each order to decide which order should be kept and which order should be

discarded. ATMs have a priority based on their level in the hierarchy. Levels in

the hierarchy will either have ascending or descending priority, depending on the

characteristics of the performance issue to be resolved.

Figure 3.8 shows a flow diagram detailing the combined application of these two

constraints, which form the coherence mechanism.

New tuning 
order arrival

Is there another 
order pending?

Does the other order 
have higher priority?

Discard 
order

Make new 
order pending

Yes

Yes

Yes

No

No

No

Is the order 
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Figure 3.8: Coherence mechanism.

3.4.5 Case Studies

In this section, we use two theoretical examples to describe how the hierarchical dynamic

performance analysis and tuning process is performed. These examples are focused on

the three phases of dynamic tuning and how the hierarchical tuning network behaves in

each case.

The first example illustrates a master-worker of pipelines application analysed by a

tuning network which employs abstraction and performance models focused on energy

efficiency. The second example shows how a tuning network could be structured over

an SPMD application to conduct load balancing using the appropriate abstraction and

performance models.
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Monitoring

The monitoring phase allows the instrumentation of the parallel application tasks to

obtain information related to the application’s behaviour.

Instrumentation orders for monitoring are generated by the ATMs’ Performance

Evaluator module and are transferred to the Instrumentation Order Sender. This mod-

ule sends these orders to the analysis and tuning domain of its ATM, triggering their

propagation through the analysis hierarchy.

As they flow through the hierarchy, monitoring orders will be received by parallel

application tasks or by Abstractors associated to descendant ATMs. In the first case, the

orders will be inserted into the application tasks. In the second case, a monitoring order

translation phase occurs. At the time of receiving a monitoring order, the Abstractor’s

Instrumentation Order Translator module will translate it. The new order, or orders,

must provide data equivalent to what was requested in the original monitoring order.

The translated orders will be transferred from the Instrumentation Order Translator to

the Instrumentation Order Sender of its associated ATM. Then, these orders will be

sent to the analysis and tuning domain and continue their propagation down through

the hierarchy.

To illustrate this translation phase, we will consider the master-worker of pipelines

example shown previously in Figure 3.5. Suppose that the ATM A1 requires the energy

consumption of each worker in its analysis domain (ATMs A1.1, A1.2, A1.3) in order to

evaluate an energy efficient master-worker performance model. To get this information,

A1 generates an instrumentation order for monitoring each worker. This order is received

by the Abstractors associated with the ATMs A1.1, A1.2 and A1.3, which work with an

energy efficiency pipeline performance model.

Let’s focus on the Abstractor action associated with the ATM A1.1 (the actions for

A1.2 and A1.3 are equivalent). The Abstractor interprets the received order so that

the worker energy consumption is calculated from the pipeline energy consumption. In

order to accomplish the requirements of the received monitoring order, the Abstractor

creates a new order for each stage of the pipeline (T2, T3 and T4) to collect their energy

consumption. These orders are transferred to the Instrumentation Order Sender and

sent to T2, T3 and T4.

In the case of the SPMD example shown in Figure 3.4, suppose that the ATM A1

requires the computation time and the number of work units of each task in its analysis

and tuning domain (A1.1, A1.2, A1.3, A1.4) in order to evaluate a performance model to

balance the application load. To get this information, A1 generates an instrumentation

order for monitoring for each child in its domain. The order is received by the Abstractor
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associated to A1.1, A1.2, A1.3 and A1.4, which work with a load balancing abstraction

model for SPMD.

Let’s focus on the Abstractor action associated with A1.1. In order to accomplish

the requirements of the received monitoring order, the Abstractor needs the computation

time and the work units of each child in its analysis and tuning domain. So, the Abstrac-

tor creates a new order for each task in the analysis and tuning domain of its associated

ATM, requesting this information. These orders are transferred to the Instrumentation

Order Sender, which sends them to T1, T2, T5 and T6.

Analysis

In this phase, the Performance Evaluator module evaluates its performance model with

the information about the analysis domain behaviour received in the form of events from

its Event Manager. Events are generated during the execution of the parallel application

as a result of previously inserted monitoring orders. These events will flow through the

analysis hierarchy, being transformed, according to user provided knowledge, by an Event

Creator at each intermediate level, until they reach the Performance Evaluator which

originally requested the information they contain.

In the case of the master-worker of pipelines application, events containing the energy

consumption of pipeline stages 2, 3 and 4 are received by A1.1. This ATM knows that

this information was requested by its Abstractor. So, it passes these events to the

associated Abstractor. The user provided knowledge will be used by the Abstractor to

sum the energy consumption of each stage. Then, the Abstractor will encapsulate this

energy information into an event which will be sent to the ATM A1. For this ATM,

the received event contains the worker energy consumption, which was the information

previously requested in the monitoring phase.

For the SPMD application example, events containing the computation time and

the number of work units of tasks T1, T2, T5 and T6 are received by A1.1. The

Event Manager knows that this information was requested by its Abstractor. Using the

information specified in the abstraction model, the Event Creator module creates a new

event containing a state representation of its analysis and tuning domain. This contains

the sum of the number of work units and average computation time, for each child in its

domain. The generated event is sent to the ATM A1 to satisfy the previously requested

monitoring order.
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Tuning

After finishing the performance model evaluation, the Performance Evaluator generates

one or more instrumentation orders for tuning in order to fix the detected performance

problems in its analysis domain. These orders will flow through the analysis hierarchy,

being transformed into one or more new orders by the Instrumentation Order Translator

at each intermediate level. The Instrumentation Order Sender will then inject these new

orders downstream, until they reach the parallel application task.

For the master-worker of pipelines example, the ATM A1 may decide that one or

more of its workers should reduce their energy consumption. Suppose that it sends such

a tuning order to its child A1.1. The Abstractor of A1.1 will receive this order, which it

must translate to be applied to the analysis and tuning domain of its associated ATM.

In this case, the abstraction model indicates that the energy consumption of a pipeline

can be reduced by deactivating some of the tasks and redistributing their pipeline stages

across the remaining tasks. So, the Abstractor create an order for T4 ordering it to shut

down, and other tuning orders for T2 and T3 telling them to host the stages that were

previously hosted by T4. These orders are transferred to the Instrumentation Order

Sender and sent to the stages T2, T3 and T4.

In the case of the SPMD example, suppose that after evaluating its performance

model, A1 notices that A1.1 is more loaded than A1.3 and it decides to move load from

one to the other. The Abstractor associated to A1.1 receives a tuning order to move load

to A1.3. In this example, to successfully complete the tuning order translation process,

the Abstractor knows, using the knowledge provided by the user, that this order has to

be transformed into another tuning order for moving load from the application tasks T5

and T6 to tasks T9 and T10 respectively, because T5 and T6 are the only ones that

share a common border with the analysis and tuning domain of A1.3.

3.5 Topology of the Hierarchical Tuning Network

Dynamic tuning tools must be active during the execution of the analysed application.

As such, they require additional resources in order to reduce or eliminate interference

with the application. However, in a time when reducing energy consumption costs is an

important consideration in high performance systems, a careful balance must be struck

when choosing the number of additional resources to dedicate to the analysis and tuning

process. Using too few resources will hamper the effectiveness of the tuning tool, but

unnecessary use of resources should be avoided to reduce power consumption.

In this section, we present an explicit method for calculating an efficient topology for

our proposed hierarchical tuning network. The method provides the minimum number
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of resources needed to carry out a dynamic and automatic analysis and tuning process,

considering specific parameters that characterise the behaviour of the tuning network

and the application being analysed. We also discuss the management of resource usage

carried out by current performance analysis tools.

3.5.1 Method for Determining an Efficient Topology

Given a parallel application, the proposed tuning network may have several topologies.

The structure of the topology will depend on the number of levels in the hierarchy and

the number of Abstractor -ATM pairs in each level.

In this work, we propose the creation of tuning networks that use the fewest possible

resources, so a topology with the minimum number of Abstractor -ATM pairs must be

found. However, these Abstractor -ATM pairs cannot become saturated. An Abstractor -

ATM pair is saturated if it cannot process and act upon the information that it receives

from the application at the frequency with which it is sent.

The amount of work that an Abstractor -ATM pair performs is determined by charac-

teristics of the performance and the abstraction models and the number of nodes which

make up its analysis and tuning domain. In order to determine the domain size that

an Abstractor -ATM pair can manage without becoming saturated, we have developed

an expression that models the work performed by the Abstractor -ATM pair during each

analysis and tuning process.

An analysis and tuning process is defined as the work that an Abstractor -ATM pair

has to complete to perform the detection of performance problems and make decisions to

improve the performance of the parallel application. Considering the variables presented

in Table 3.1, we can define the total time that an Abstractor -ATM pair requires to carry

out an analysis and tuning process as:

N · Ea · Tm + Ta(N) +
Ea

Ec
· Tc + Tt · frp (3.1)

This work can be divided into several actions:

1. Gathering behavioural information about the nodes that make up the analysis and

tuning domain of the ATM. The time required to gather an event and transfer it

to the Performance Evaluator or the Event Creator is Tm. This action is repeated

for each event received before detecting performance problems, i.e N · Ea.

2. Detecting performance problems and making the necessary decisions which will

improve the performance of the application. According to the characteristics of the

performance model, the time taken by an ATM to detect performance problems,
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Table 3.1: Description of variables which represent the performance and abstraction
models.

Variable description

N the number of nodes in the analysis and tuning domain for each ATM
Ea the number of events received from each node of the analysis and tuning domain

before performing analysis to detect performance problems
Ec the number of events received from each node of the analysis and tuning domain

before creating a new event which will be sent to the level above in the hierarchy
Ta(N) the time required to detect performance problems. This time can be constant or

dependent of N
Tm the time required to transfer each event received by the ATM to the correct module,

where it is stored
Tc the time required to create a new event which will be sent to the level above in

the hierarchy
Tt the time required to translate an instrumentation order which will be sent to the

level below in the hierarchy
frp the tuning order reception frequency from the parent Abstractor -ATM pair
frc the event reception frequency from each child node of the analysis and tuning

domain
fe the event generation frequency of the parallel application

Ta(N), can be constant or depend on the number of nodes in its analysis and

tuning domain.

3. Creating a new event using the behavioural information previously gathered, tak-

ing a time equal to Tc. The number of occurrences of this action in an analysis

and tuning process is determined by Ea/Ec.

4. Translating an instrumentation order received from the parent Abstractor -ATM

pair, taking a time of Tt. How often this action is performed depends on the arrival

frequency of tuning orders sent by the parent Abstractor -ATM pair, frp.

The frequency at which an analysis and tuning process takes place in an Abstractor -

ATM pair is fa = frc/Ea. This value ultimately depends on the frequency with which

events are generated in the parallel application task, fe.

In order to avoid saturation, the maximum time that an Abstractor -ATM pair can

dedicate to carry out an analysis and tuning process is 1/fa, the analysis period. This

constraint is defined by the following expression:

N · Ea · Tm + Ta(N) +
Ea

Ec
· Tc + Tt · frp ≤

1

fa
(3.2)

If the time spent performing the work of an analysis and tuning process is equal

to 1/fa, the Abstractor -ATM pair does not have free time between two analysis and

tuning processes. In other words, it is occupied 100% of the time, making efficient use of

the resources. A hierarchical tuning network composed of Abstractor -ATM pairs 100%

occupied (but not saturated) will use the smallest possible number of resources and

consequently, will have the minimum number levels in the hierarchy.
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Knowing the characteristics of the performance and the abstraction models that

guide the operation of an Abstractor -ATM pair, expression 3.2 can be used to determine

the maximum domain size of an ATM without saturating it. The required variables

can be obtained through prior evaluation of the application and the analysis process.

Algorithm 3.1 shows the procedure for determining the topology of a tuning network.

Beginning with the number of parallel application tasks, the first iteration of the loop

calculates the number of Abstractor -ATM pairs which will form the base of the hierarchy.

This is done by calculating the maximum domain size, N , at this level according to

expression 3.2. These Abstractor -ATM pairs will become the tasks to be distributed

amongst the ATMs in the next iteration of the loop. This procedure is repeated until

the number of ATMs at level i in the hierarchy is equal to 1 - this ATM is the root of

the tuning network.

Algorithm 3.1 Calculating the topology of the hierarchical architecture.

Input: #Tasks // Number of tasks of the parallel application.

Input: E
(i)
a , E

(i)
c , T

(i)
a (N), T

(i)
m , T

(i)
c , T

(i)
t , f

(i)
rp , f

(i)
rc // Analysis and tuning process variables for

each level i
Output: Topology[]

i = 0 // i indicates the level of the hierarchy. i = 0 means the base of the hierarchy.
Current level tasks = #Tasks // The base level tasks are all the tasks of the parallel appli-
cation.

repeat

N =

1

f
(i)
a

−E
(i)
a

E
(i)
c

·T (i)
c −T (i)

a (N)−T
(i)
t ·f(i)

rp

E
(i)
a ·T (i)

m

// Solve for N

#AbstractorATM modules = (int)Current level tasks
N

Topology[i] = #AbstractorATM modules

Current level tasks = #AbstractorATM modules

i + +

until #AbstractorATM modules == 1

It is possible that the variables which define the analysis and tuning process are

different at each level i in the hierarchy. For example, a master-worker of pipelines would

require different performance and abstraction models for each paradigm employed. In

this case, the appropriate values for these variables must be used for each level i.

3.5.2 Resource Usage of Related Performance Analysis Tools

As we have detailed in Section 2.2, there are a number of tools which perform dynamic

tuning of parallel applications, such as Active Harmony [56], Autopilot [48], and PerCo

[34]. To perform dynamic tuning, these tools make use of a centralised analysis archi-

tecture, thereby using one additional machine to perform analysis.
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To find examples of similar analysis architectures that exploit the capabilities of

multiple resources, we examined the analysis tools presented in Section 2.3 that provide

automatic performance analysis without dynamic tuning and work in large-scale systems.

The Scalasca toolset [38] performs a post-mortem analysis based on a parallel trace-

analysis scheme. After application termination, Scalasca loads trace files into main

memory and analyses them, making use of the same resources which were used to execute

the parallel application.

In order to work in large-scale systems, efforts presented by the tools TAU [46] and

Paradyn [50], use hierarchical architectures for analysis using MRNet. These hierarchical

analysis architectures are run on additional resources. In these works, the objective is

that analysis network nodes provide a reasonable performance, avoiding the resource

saturation that would lead to a scalability bottleneck in the tool itself. However, in the

architectures used in the experimental tests, no method is given to select the number

of required resources or to justify the topologies presented from the point of view of

resource usage.

In Periscope [4] the automatic analysis is performed by analysis agents structured

according to a hierarchical scheme. Currently, the number of additional resources used

to allocate the agents is a user defined parameter. The analysis agents notify the user if

they were saturated during the last experiment, which allows the user to add additional

analysis resources in future executions.

Unlike the tools presented in this section, our proposal constructs tuning networks

considering the characteristics of the analysis and tuning process and the application

itself. This gives the user much better control over balancing the use of resources with

the quality of the tuning environment.

3.6 Hierarchical Tuning Performance Characterisation

Global performance improvements carried out by the tuning network may require the

combined operation of the ATMs at all levels in the hierarchy. This is because while

an ATM located at a given level seeks to improve the performance of its analysis and

tuning domain, its actions may lead to instability in the state of the analysis and tuning

domains of its children. The child ATMs will then need to carry out analysis and tuning

to restabilise their domains through performance improvements. Therefore, a tuning

action generated at a specific level will lead to a stabilisation process that descends,

level by level, through the hierarchy.

A model of the time required to achieve global performance improvement in the pro-

posed tuning network would give insight into the best manner to reduce the impact of
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this iterative stabilisation process. The time required for the proposed tuning network to

achieve a global performance improvement is heavily dependent on 1) the performance

problem, 2) the performance model used to resolve this problem, and 3) the current

state of the parallel application. Consequently, modelling the global performance im-

provement process is extremely complicated without providing specific details about the

performance model.

However, it is possible to provide a detailed model of a single cycle required by an

Abstractor -ATM pair to analyse the state of its analysis and tuning domain and apply

an instrumentation order for tuning. Such a model is developed in Section 3.6.1, and it

can be used together with specific information about the performance model, to give an

approximation of the time required to achieve a global performance improvement, the

motivation of this section. The outline for this approximation is given in Section 3.6.2

3.6.1 Hierarchical Tuning Cycle Model

The time required to apply a tuning order generated at level i is called the tuning cycle

time at level i, and can be defined as:

T
(i)
TC = T (i)

g + T
(i)
mb + T (i)

a + T
(i)
tu (3.3)

Where:

• T
(i)
g is the time that it takes for the final event required to perform analysis to

arrive at the ATM at level i.

• T
(i)
mb is the time required to manage a batch of events at level i, after the last event

required for the analysis phase has arrived.

• T
(i)
a is the time required at level i to perform the analysis phase, detecting perfor-

mance problems and giving solutions to overcome these problems.

• T
(i)
tu is the time required to apply the tuning order generated in the analysis phase

at level i.

Having in mind the abstraction mechanism between levels in the hierarchy, T
(i)
g and

T
(i)
tu include processing and network times at each level below i.

As such, T
(i)
g can be calculated as

T (i)
g =

{
T
(i)
n + T

(i−1)
g + T

(i−1)
c + T

(i−1)
mb if i > 0

Tn if i = 0
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Where:

• T
(i)
n is the time required for an event to travel between levels i− 1 and i.

• T
(i−1)
c is the time required to create a new event to be sent to level i using the

information received by the ATM at level i− 1.

Equivalently, T
(i)
tu can be expressed by

T
(i)
tu = T (i)

n + T
(i)
I

where T
(i)
n is defined as previously and T

(i)
I is the time required to instrument the

application given as

T
(i)
I =

{
T
(i−1)
t + T

(i−1)
n + T

(i−1)
I if i > 0

TI if i = 0

where T
(i−1)
t is the time required for the Abstractor at level i−1 to transform the tuning

order generated at level i. This new order will be sent to the analysis and tuning domain

of the ATM at level i− 1.

At level 0, T
(0)
I is simply the time required to instrument the actual parallel appli-

cation tasks.

Having modelled the complete tuning cycle time for a given level i, T
(i)
TC , it can be

seen that its value is proportional to the level at which the tuning decision is made. So,

if we consider this time at the root ATM to be the global tuning cycle time, then we

see that it is proportional to the total number of levels in the tuning network topology.

This shows that, exploiting the scalability properties of hierarchical tree structures, the

global tuning cycle time will grow logarithmically with the number of tasks in the parallel

application being tuned.

3.6.2 Time Approximation for a Global Performance Improvement

The level by level stabilisation process described at the beginning of this section, leads

to iterative behaviour, where a global performance improvement can only be assured

after a series of tuning cycles are performed by ATMs located at inferior levels in the

hierarchical tuning network.
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As such, the time required to obtain an improvement in the application performance

when the tuning order has been generated at level i is:

T
(i)
PI = T

(i)
TC +

i−1∑
k=0

Xk · T (k)
TC (3.4)

Where Xk is the number tuning cycles required at each level k, and depends on

the three points defined at the beginning of this section. T
(i)
PI for the root level in the

hierarchy, gives an approximation of the time required to obtain a global performance

improvement.

Considering this behaviour, the number of levels of the tuning network topology will

influence the time required to achieve a global performance improvement. Each level

above the base may provoke destabilisation in the analysis and tuning domains of its

child level. In terms of the interlevel destabilisation, the total number of levels in the

hierarchy should be kept to a minimum, as is proposed in our method to calculate tuning

network topologies.

At the same time, care must be taken in the design of the performance and ab-

straction models in order to reduce the secondary effects that a decision, generated at a

specific level to improve the performance, will have on lower levels. Tuning actions that

provoke serious instability will lead to longer stabilisation periods, and therefore the

original tuning action will be less effective since the performance state of the application

could have evolved in this period.

3.7 Conclusions

Dynamic tuning of parallel applications is a challenge in large-scale contexts. The ma-

jority of the current approaches that offer dynamic tuning follow a centralised scheme

where a single component is responsible for improving the performance of the entire

parallel application. When tuning parallel applications running on many thousands of

processes, this centralised component becomes a bottleneck.

In this chapter, a solution to the problem of dynamic tuning for large-scale parallel

application has been presented. This solution takes the form of a model that enables a

decentralised scheme for dynamic tuning. Application decomposition and an abstraction

mechanism are the two key concepts which support this model. The decomposition

allows a parallel application to be divided into smaller parts to be analysed and tuned

individually, while the abstraction mechanism allows these subsets to be viewed as a

single virtual application so that global performance improvements can be achieved.
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The model follows a collaborative approach to perform dynamic tuning. In order to

operate it requires the integration of knowledge to guide the performance analysis and

tuning process (the performance model) and the abstraction mechanism (abstraction

model).

To design a dynamic tuning tool, the model is translated into a hierarchical tun-

ing network composed of modules which perform analysis and tuning in a distributed

manner. This effectively decentralises the responsibility for the improvement of the per-

formance of the parallel application. Meanwhile, the abstraction mechanism permits an

analysis and tuning process which does not need to be aware of the hierarchical structure

in which it exists.

One of the principal advantages of this scheme is that the tuning network is adaptable

to the size of the parallel application and the characteristics of the analysis and tuning

process. In this chapter we have also presented a method that, considering these two

aspects, calculates topologies composed of the minimum number of resources necessary

to provide an effective tuning network.

Finally, by modelling the time required to achieve global performance improvements

in the application, some insights have been drawn into best practices for designing

performance and abstraction models.
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Model Scalability Validation

“To climb steep hills requires a slow pace at first.”

– William Shakespeare

This chapter presents the validation of the scalability of the proposed model for

hierarchical dynamic tuning. To perform this validation, a simulation environment has

been developed. To support the scalability validation, it has been verified that the

proposed method to calculate efficient tuning networks produces topologies composed of

the minimum number of resources required to provide an effective tuning environment.
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4.1 Introduction

The model for hierarchical dynamic tuning presented in this work has been designed in

order to permit tuning of large-scale parallel applications. The model’s design is based

on a hierarchical tuning network of analysis modules whose topology can be adapted in

order to operate over different sized applications and achieve the required scalability.

When considering a scalable environment for dynamic tuning, it is important to

validate the desired scalability without the distraction of tuning effectiveness. This is

because, while a tuning strategy requires a quality environment in which to operate, its

effectiveness is often influenced by many factors external to this environment. With this

in mind, a simulation environment has been developed to validate the scalability of the

proposed model for hierarchical tuning prior to performing actual dynamic tuning.

The simulation environment takes the form of a tuning network based on the pro-

posed model, which directly implements the hierarchical communication aspects of the

tuning network and simulates the analysis and tuning process. The design and imple-

mentation of the simulation environment and its parameterisation is explained in detail

in Section 4.2.

An important aspect of the scalability of the hierarchical tuning network is its adapt-

able topology. Previously, in Section 3.5, we proposed a method to calculate efficient

topologies for tuning networks. These topologies are composed of the minimum number

of resources required to provide a quality tuning environment. The proposed method

takes into consideration the size of the parallel application being analysed and the char-

acteristics of the analysis and tuning process.

As a prior step to validating the scalability of the proposed model, a study was per-

formed using the simulation environment in order to verify that the topologies calculated

following the proposed method are indeed composed of the minimum possible number

of resources while providing a quality tuning environment. This evaluation is described

in Section 4.3.

Finally, the principal objective of this chapter, validating the scalability of the pro-

posed model for hierarchical dynamic tuning, is detailed in Section 4.4.

4.2 Hierarchical Tuning Network Simulation Environment

A simulation environment has been developed in order to validate the scalability of the

proposed model for hierarchical dynamic tuning. Based on the design of the hierarchical

tuning network, presented in Section 3.4, this simulation environment implements a
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tree based communication structure. The behaviour of this environment simulates all

the actions that take place during the analysis and tuning process. These actions are

parameterised in order to simulate the effects of different performance and abstraction

models.

To implement the hierarchical communication scheme the MRNet framework is em-

ployed [51]. In summary, MRNet allows tools to use a hierarchical network of internal

processes as a communication substrate between a front-end process and back-end pro-

cesses via logical channels called streams. At MRNet internal processes, filters synchro-

nise and aggregate dataflows, where they can efficiently compute averages, sums, and

other more complex aggregations and analyses on tool data. An extensive description

of MRNet will be provided in Section 5.3.2.

The parameterised simulation is guided by the parameters previously presented in

Section 3.5.1 in Table 3.1. These parameters permit the configuration of the simulated

behaviour of the Abstractor -ATM pair and application tasks.

In the simulation environment, application tasks are simulated by the MRNet back-

end processes. Each back-end generates upstream packets (simulated events) at a certain

frequency, fe, following a normal distribution in time. As the principal aim of this

environment is to evaluate the proposed hierarchical tuning network, the effect of tuning

on these tasks is not considered. This is because we are focused on the scalability of the

model and not the effectiveness of specific tuning strategies.

The MRNet internal processes, that represent the Abstractor -ATM pairs, are each

divided into two components: the Upstream Filter (UF) and the Downstream Filter

(DF). These filters simulate the behaviour of the performance and abstraction model

integrated into the Abstractor-ATM pair. The UF works with data that flows upstream

through the network (simulated events), and the DF works with data that flows in the

opposite direction (simulated instrumentation orders).

The Upstream Filter performs a parameterised simulation of the three components of

the Abstractor -ATM pair that operate on events that flow upwards through the network.

These are the Event Manager (Tm) and the Performance Evaluator (Ea, Ta(N)) from

the ATM, and the Event Creator (Ec, Tc) from the Abstractor. The UF also generates

downstream packets that represent instrumentation orders generated as a result of the

performance evaluation process.

Algorithm 4.2 describes the work simulated for each of these components. This

algorithm defines the average amount of work that must be completed by an UF for

each received batch of events. A batch of events is composed of one event from each

child in the analysis and tuning domain.

The function Work(t) simulates t seconds of computational work.
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Algorithm 4.2 Upstream filter pseudocode.

Input: Events[], N,Ea, Ec, Ta(N), Tm, Tc

Output: TranslatedEvents[], TuningOrders[]

Event count = 0 // Received event counter

for all event in Events[] do
Event count + +
Work(Tm)

if (Event count%(Ea ·N)) == 0 then
Work(Ta(N))
Append(TuningOrders[], newOrder())

end if

if (Event count%(Ec ·N)) == 0 then
Work(Tc)
Append(TranslatedEvents[], newEvent())

end if

end for

The Downstream Filter simulates the Instrumentation Order Translator (Tt) from

the Abstractor module. As a result of this operation, the DF generates one or more

downstream packets, representing the translated instrumentation orders. In Algorithm

4.3, the work required to perform this operation is defined.

Algorithm 4.3 Downstream filter pseudocode.

Input: InstrumentationOrders[], Tt

Output: TranslatedOrders[]

for all order in InstrumentationOrders[] do
Work(Tt)
Append(TranslatedOrders[], newOrder())

end for

The front-end of the tuning network prototype is responsible for launching the hier-

archical network, and from then on it simulates the root Abstractor-ATM pair.

4.3 Validation of Topology Selection Method

The goal of this study is to assess the efficiency of tuning networks built following the

method described in Section 3.5.1. Specifically, we wish to verify that the proposed

method is able to calculate topologies that are composed of the minimum number of

non-saturated Abstractor -ATM pairs. The experiments to perform this validation have

been conducted using the hierarchical tuning network simulation environment presented

in the previous section.

The supercomputer SuperMUC at Leibniz Supercomputing Centre was used to per-

form the experimental tests. Each experiment used a subset of a single island composed
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of 512 nodes interconnected by Infiniband FDR10. The nodes have 2 8-core 2.7GHz

Intel Xeon processors and run SuSe Linux.

Each node on SuperMUC hosts 16 back-ends (one per core). On the other hand,

each Abstractor -ATM pair1 is assigned 4 cores because each of the MRNet internal nodes

is multi-threaded and manages two threads for every directly connected node (children

and parent) in the hierarchy [7].

The experimental assessment is structured in two use cases, each one presenting

different circumstances which can arise when using a hierarchical tuning network.

4.3.1 Local and Global Analysis Process

Many problems can be attacked in a distributed manner in order to more efficiently solve

performance issues. As an example, the analysis and tuning process required to perform

load balancing can often be conducted both locally and globally. In this performance

problem, local improvements can be achieved without worsening the global performance

of the application.

In this use case, the hierarchical tuning network will perform both local analysis, at

intermediate Abstractor -ATM pairs and global analysis at the root ATM. The abstrac-

tion mechanism allows the ATMs to carry out the same analysis and tuning process,

regardless of which level they are in.

To represent this use case, we suppose a parallel SPMD application with 2048 tasks

and performance and abstraction models characterised by the following values:

• fe of 10 events per second per simulated task.

• Ea of 5, a performance problem detection phase is performed every 5 batches of

events.

• Ec of 1, a single new event is sent to the parent level every batch of events, as such

frc = fe at all levels.

• Linear Ta(N) of 1ms, i.e. the performance problems detection phase lasts 1ms per

node within the analysis and tuning domain of the ATM.

• Tm of 1.1ms.

• Tc and Tt of 0.1ms.

• frp of fe/(10 · Ea), a tuning action is received every 10 seconds.

These values have been selected as coherent values which enables us to explore the

capabilities of the tuning network with the available resources. However, we should

1In the experimental evaluation presented in this chapter, MRNet internal processes are referred to
as Abstractor -ATM pairs, the components that they simulate the behaviour of.
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not place too much importance on the specific values chosen, since we can calculate a

topology for any set of values.

In this use case, we suppose that Abstractor -ATM pairs at all levels in the tuning

network use the same performance and abstraction models. For this reason, these same

values are used to parameterise the behaviour of the UFs and DFs at all levels in the

hierarchy.

To calculate the predicted topology, the Algorithm 3.1 presented in Section 3.5.1 is

used. Since Ec has a value of 1, the frequency at which batches of events are received

by Abstractor -ATM pairs at all levels in the hierarchy is the same. Coupled with the

fact that all Abstractor -ATM pairs in the hierarchy are simulated according to the same

parameter values, this means that the maximum domain size will be the same for all

Abstractor -ATM pairs independent of their level. For this reason, we only need to

calculate the first iteration of the algorithm.

Substituting these values into Expression 3.2 (repeated below), the value of Nmax

can be calculated. This will give the number of children that an Abstractor -ATM pair

can manage without becoming saturated.

1

fa
≥ Nmax · Ea · Tm + Ta(Nmax) +

Ea

Ec
· Tc + Tt · frp

Nmax =

⌊
1
2 − 0.5

1000 − 0.1
1000 · 0.1

5.5
1000 + 1

1000

⌋
Nmax = 76

With Nmax equal to 76, each analysis and tuning domain controlled by an Abstractor -

ATM pair at the base of the hierarchy will be composed of at most 76 application tasks.

With a total of 2 048 application tasks, this gives 27 base level Abstractor -ATM pairs.

As it was mentioned previously, Abstractor -ATM pairs at all levels in the hierarchy use

the same performance and abstraction models and can also support 76 child nodes, so

only one additional level is required, the root of the hierarchy.

This predicted topology is given for Experiment 1 in Table 4.1.

Table 4.1: Tuning network topologies for local and global analysis.

Level 0 Level 1
Experiment #Abstractor - Domain #Abstractor - Domain

ATM pairs size ATM pairs size

1 27 76 1 27
2 28 74 1 28
3 26 79 1 26
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In order to achieve the goal of the experimental study, it is necessary to compare the

predicted tuning network topology with other topologies, without changing the charac-

teristics of the parallel application or the performance and abstraction models. Experi-

ment 2 in Table 4.1 presents a topology with an additional level 0 Abstractor -ATM pair,

meanwhile, Experiment 3 has one less Abstractor -ATM pair at level 0.

To determine whether or not the hierarchical tuning network is structured optimally

to use the smallest number of non-saturated Abstractor -ATM pairs, we define a mea-

surement called analysis lag. This is defined as the time between the generation of the

final event required for an analysis and tuning process and the beginning of that process,

as shown in Figure 4.1.

tEvent batch Management Analysis

Analysis lag

Figure 4.1: Analysis lag.

A saturated Abstractor -ATM pair presents steadily increasing analysis lag during the

experiment’s execution. This is because the ATM has an increasing backlog of events

to process due to being unable to complete an analysis and tuning process within the

analysis period. On the other hand, a stable analysis lag, one that does not change

significantly over time, indicates a non-saturated ATM.

Figure 4.2 shows the analysis lag over time for the Abstractor -ATM pairs located

at level 0 in the hierarchy for the three compared topologies. These results show the

expected behaviour, wherein the analysis lag from Experiment 3 reflects its saturated

state (due to having fewer level 0 Abstractor -ATMs than necessary). Experiments 1 and

2, are not saturated as demonstrated by the stability of their analysis lag.
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Figure 4.2: Analysis lag of the level 0 Abstractor -ATM pairs in milliseconds for local
and global analysis.
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Figure 4.3 shows that the analysis lag in level 1 does not change significantly between

experiments. The root ATM is operating far below its saturation point, however the

quality of the performance analysis and tuning process carried out by the root ATM in

Experiment 3 will be greatly degraded by the saturated state of the level 0 Abstractor -

ATM pairs.
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Figure 4.3: Analysis lag of the root ATM (level 1) in milliseconds for local and global
analysis.

Figure 4.4 shows the average occupation of the Abstractor -ATM pairs for each level

in the hierarchy. Abstractor -ATM pair occupation is used to measure the efficiency of

the tuning network from the point of view of resource usage. This metric is calculated

as the proportion of time that an Abstractor -ATM pair is carrying out abstraction and

performance analysis and tuning actions against the total time that it is active. Experi-

ments 1 and 3 have level 0 Abstractor -ATM pairs that make efficient (near optimal) use

of the resources, but the level 0 Abstractor -ATM pairs in Experiment 2 are less occupied.

This is due to having fewer nodes in the analysis and tuning domain than the maximum

it can manage, whereas Experiment 1 has a number of nodes near the maximum and

Experiment 3 exceeds this limit. Given that the level 1 ATM, the root, is operating

below its saturation point, it is unavoidably under occupied in all experiments.

Taking into account the analysis lag and occupation, the predicted tuning network

topology, Experiment 1, is the best candidate. It provides near optimal efficiency with

respect to the use of resources while employing the minimum number of non-saturated

Abstractor -ATM pairs. While Experiment 3 has level 0 Abstractor -ATM pairs with

slightly higher efficiency, their saturated state would lead to a severely degraded analysis

and tuning process. Meanwhile, Experiment 2 presents a small reduction in the analysis

lag, but does not make efficient use of resources.
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Figure 4.4: Percentage of occupation of the Abstractor -ATM pairs for each conducted
experiment for local and global analysis.

4.3.2 Centralised-only Analysis Process

Certain problems can only be solved with a global view of the application, by the root

ATM, while the rest of the lower level Abstractor -ATM pairs support it via the ab-

straction mechanism. An example of such a situation is tuning the MPI parameter

MP EAGER LIMIT, which consists of setting the optimal maximum size for sending mes-

sages without the handshaking protocol.

In these cases the hierarchical tuning network would be heterogeneous, because the

behaviour of the Abstractor -ATM pairs is different depending on the level at which they

are located. The level 0 Abstractor -ATM pairs will aggregate data from their analysis

and tuning domains to pass on to the root ATM, which will perform the actual analysis.

Once again we suppose a parallel SPMD application composed of 2 048 tasks. Pa-

rameter values used in the simulation are:

• fe of 10 events per second per simulated task.

• Ea of 5, a performance problem detection phase is performed every 5 batches of

events.

• Ec of 1, a single new event is sent to the parent level every batch of events, as such

frc = fe at all levels.

• Linear Ta(N) of 50ms for level 1 only, i.e. the performance problems detection

phase lasts 50ms per node within the analysis and tuning domain of the root ATM.

• Tm of 0.42ms.

• Tc and Tt of 0.1ms.

• frp of fe/(10 · Ea), a tuning action is received every 10 seconds.

In this use case, the level 0 Abstractor -ATM pairs do not perform analysis, and so

the Ta(N) term can be removed from Expression 3.2, before calculating the maximum
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number of child nodes that an Abstractor -ATM pair can support without becoming

saturated. This maximum Nmax is calculated as follows.

1

fa
≥ Nmax · Ea · Tm +

Ea

Ec
· Tc + Tt · frp

Nmax =

⌊
1
2 − 0.5

1000 − 0.1
1000 · 0.1

2.1
1000

⌋
Nmax = 237

So, each level 0 Abstractor -ATM pair can manage up to 237 child nodes. This gives

a total of 9 Abstractor -ATM pairs at the base level of the hierarchy.

We now need to calculate Nmax for the next level in the hierarchy. As the base

level only contains 9 Abstractor -ATM pairs, we will assume that the next level will be

the root. In order to confirm this, we will calculate the maximum domain size for this

supposed root ATM. If Nmax ≥ 9, then this is our root ATM and the tuning network

will be formed of two levels. Giving the assumption that this will be the root ATM, the

times for event creation and instrumentation order translation are not included:

1

fa
≥ Nmax · Ea · Tm + Ta(N)

Nmax =

⌊
1
2

2.1
1000 + 50

1000

⌋
Nmax = 9

This confirms our assumption that the hierarchy would be composed of two levels.

This topology is given for Experiment 1 in Table 4.2. The evaluation process is the same

as in the previous use case, where Experiments 2 and 3 represent tuning networks with

one more and one less level 0 Abstractor -ATM pairs respectively.

Table 4.2: Tuning network topologies for centralised-only analysis.

Level 0 Level 1
Experiment #Abstractor - Domain #Abstractor - Domain

ATM pairs size ATM pairs size

1 9 228 1 9
2 10 205 1 10
3 8 256 1 8

Since level 0 Abstractor -ATM pairs do not perform analysis, we substitute the anal-

ysis lag measurement for event creation lag. The event creation lag is the time between

the generation of the final event required to create a new event to be sent to the parent

level in the hierarchy and the beginning of that event creation process.
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Figure 4.5 shows the event creation lag for the level 0 Abstractor -ATM pairs. The

most important observation here is that an Abstractor -ATM pair cannot handle, even

theoretically, an infinite number of application tasks even when it has no analysis time.

This is due to the time it takes to perform other duties, such as event management and

the creation of events to be sent to the parent level in the hierarchy. Figure 4.5 shows

that level 0 Abstractor -ATM pairs in Experiment 3 are saturated, as expected.
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Figure 4.5: Event creation lag of the level 0 Abstractor -ATM pairs in milliseconds for
centralised-only analysis.

The analysis lag for the root ATM, at level 1, is presented in Figure 4.6. In this case,

the root ATM in the predicted tuning network is also close to saturation. As such, when

an additional ATM is added in Experiment 2, alleviating the level 0 Abstractor -ATM

pairs, this root ATM becomes saturated. This shows a border line case where, if only a

few more application tasks were added, a third level in the hierarchy would be required.
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Figure 4.6: Analysis lag of the level root ATM in milliseconds for centralised-only
analysis.

In contrast to the previous use case, the characteristics of this use case generate high

occupation in both levels in the hierarchy, as can bee seen in Figure 4.7. In Experiment

1, both levels are almost 100% occupied because their analysis and tuning domains
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present the maximum size. In Experiment 2, level 0 Abstractor -ATM pairs are slightly

less occupied than in Experiment 1, while the level 1 ATM remains almost completely

occupied. In fact the level 1 ATM is saturated, as we saw in Figure 4.6 - however the

occupation measurement does not reflect this saturated state. This situation is reversed

in Experiment 3, where the level 1 ATM is slightly less occupied than in Experiment 1

and level 0 Abstractor -ATM pairs show the same occupation level even though they are

saturated.
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Figure 4.7: Percentage of occupation of the Abstractor -ATM pairs for each conducted
experiment for centralised-only analysis.

As in the previous use case, the predicted hierarchical tuning network, given in

Experiment 1, is in fact the topology that makes the best use of resources. Additionally,

with this use case we show how the proposed method calculates the most efficient non-

saturated topology, including heterogeneous situations where the analysis process differs

from one level to another, up to extreme cases where some levels do not perform any

analysis.

4.4 Validation of the Model’s Scalability

In this section, we present an experimental evaluation that verifies the scalability of the

proposed hierarchical dynamic tuning model. In order to perform this evaluation, we

employ the prototype previously described in Section 4.2.

The primary measure of scalability is the time required by the tuning network to

react to a performance problem in the parallel application, and how this time changes

with the number of parallel application tasks. For this purpose, the global decision time

is used.

The decision time at level i is defined as the segment of the tuning cycle time

presented in Section 3.6, which ends at the level i ATM with the generation of a tuning
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action. Using the same terminology, it can be defined as:

T
(i)
d = T (i)

g + T
(i)
mb + T (i)

a

Since both the tuning cycle time and the decision time include recursive terms, they

are proportional. In this case, the decision time is used to reduce the complexity of

the measurement process. The decision time is measured at each level i as the interval

between the generation of the final event required for an analysis and tuning process in

an ATM at level i, and the end of that process, when a tuning order is prepared. The

global decision time, analogous to the global tuning cycle time, is the decision time at

the root level of the tuning network.

The decision times presented in this evaluation represent the worst case because

an analysis and tuning process is activated at each level in the hierarchy by the same

event. As well as creating a new event to be sent to the parent level, the same event will

also activate a performance problem detection process at the same level. Additionally,

MRNet filters, which host the Abstractor -ATM pair functionality, operate sequentially.

So, events created to be sent to higher levels in the hierarchy are not emitted until the

simulated analysis and tuning process has been finalised. For this reason the decision

time at any level i, includes the time required for an analysis and tuning process at each

descendant level, as shown in Figure 4.8.
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... ...

Parallel Application

... ... ...
...

...

Decision time at level 1

Decision time at level 0

Global decision time 

Level 0

Level 1

Root level

Network transfer
Management
Performance analysis
New event creation

time... ... ...

Figure 4.8: Decision time at each level in the hierarchy.

To carry out the desired validation, four experiments have been conducted. In the

first three, we assess the behaviour of the tuning network with respect to different analy-

sis time patterns. These patterns represent analysis times with different dependencies on

the number of children to be analysed. The first experiment simulates an analysis time,
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Ta, that does not depend on the size of the analysis and tuning domain. This constant

time represents a case where the analysis time scales perfectly. The second and third

experiments simulate analysis time that is linear and quadratic with respect to the size

of the analysis and tuning domain. These cases represent good and poor analysis time

scalability respectively. In the final experiment, we check that the scalability properties

of the tuning network remain independent to the execution environment and continues

for tests conducted in larger scale scenarios.

The experiments were performed using two different supercomputers, MareNostrum

at the Barcelona Supercomputing Center and SuperMUC at Leibniz Supercomputing

Centre. The first three experiments were conducted on MareNostrum, and the last

experiment used both machines.

On MareNostrum we had access to a maximum of 256 compute nodes connected by

Myrinet Network. Each node, running SuSe Linux, has 2 dual-core 2.3 GHz PowerPC

970MP processors. On SuperMUC we used an island composed of 512 nodes intercon-

nected by Infiniband FDR10. Each node, running SuSe Linux, has 2 8-core 2.7GHz Intel

Xeon processors.

In the experimental tests presented in this section, each back-end is allocated one

core, whereas each Abstractor -ATM pair uses four cores. This is because each of the

internal nodes of MRNet is multi-threaded and manages two threads for every directly

connected node (children and parent) in the hierarchy [7].

In each of the experiments, the variables representing the abstraction and perfor-

mance models were kept the same while the number of parallel application tasks was

changed. Additionally, the same values were used for these variables for all levels within

each tuning network. For each number of application tasks the tuning network topol-

ogy was chosen using Algorithm 3.1 from Section 3.5.1. In the first three experiments,

application sizes from 16 to 768 tasks were considered, while in the final experiment the

size of the simulated application was between 25 and 6400 tasks.

4.4.1 Constant Analysis Time

In this experiment we explore a case where the analysis time is constant irrespective

of the size of an ATM’s analysis and tuning domain. This provides an example of a

situation where the size of the tuning network is controlled, not by the analysis time,

but by the management time, Tm.

Suppose a performance and abstraction model simulated by the prototype with the

following parameters:

• fe of 10 events per second per simulated task.
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• Ea of 10, a performance problem detection phase is performed every 10 batches of

events.

• Ec of 1, a single new event is sent to the level above in the hierarchy every batch

of events, as such frc = fe at all levels.

• Constant Ta(N) of 780ms.

• Tm of 1ms.

• Tc and Tt of 0.1ms.

• frp of fe/(10 · Ea), a tuning action is received every 10 seconds

Using these values, it is necessary to calculate the maximum size of an analysis

and tuning domain in order to calculate the tuning network topology for each parallel

application size. Since Ec has a value of 1, this maximum domain size will be the same

for all levels in the hierarchy, and only needs to be calculated once.

Proceeding in the same manner as in the previous section, the values presented

are substituted into Expression 3.2 (repeated below), and the value of Nmax can be

calculated.

1

fa
≥ Nmax · Ea · Tm + Ta +

Ea

Ec
· Tc + Tt · frp

Nmax =

⌊
1− 780

1000 − 10 · 0.1
1000 − 0.1

1000 · 0.1
10 · 1

1000

⌋
Nmax = 21

So, the maximum size of the analysis and tuning domain that an Abstractor -ATM

pair can manage without becoming saturated is 21 children. This value is used to

calculate the tuning network topologies, which are presented in Table 4.3.

Figure 4.9 depicts the average decision time measured for each level in the hierarchy

for each application size.

Table 4.3: Tuning network topologies for constant analysis time for parallel applica-
tions composed of different numbers of tasks.

# Tasks of Level 0 Level 1 Level 2
the parallel #Abstractor - Domain #Abstractor - Domain #Abstractor - Domain
application ATM pairs size ATM pairs size ATM pairs size

16 1 16 - - - -
32 2 16 1 2 - -
64 4 16 1 4 - -
128 7 19 1 7 - -
256 13 20 1 13 - -
512 25 21 2 13 1 2
768 37 21 2 19 1 2
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Figure 4.9: Scalability pattern with constant analysis time. The time required to
make a decision is shown. The time is measured for each level in the hierarchy.

As it can be seen, the management time, which is essentially linear, does not greatly

influence the global decision time due to its small value relative to the analysis time.

For this reason, the global decision time remains almost constant for tuning networks

with topologies composed of the same number of levels, even though the size of the root

ATM’s analysis and tuning domain may be different. This is the case for application

sizes from 32 to 256 tasks (a two level tuning network) and from 512 to 768 tasks (a

three level tuning network).

One may be led to think that an ATM with a constant analysis time could manage

an analysis and tuning domain composed of infinite tasks. However, this is not the

case. Because 10 batches of events are required for each analysis process, in this case

the management time leads to the addition of new levels in the hierarchy. Furthermore,

managing an infinite domain size is obviously not possible, as some degree of limitation

will always exist at the hardware or operating system level. As such, the global decision

time presents the same logarithmic growth as levels are added to the hierarchy. This

will be observed in the linear and quadratic cases.

4.4.2 Linear Analysis Time

The major characteristic of this experimental evaluation is that the analysis time, Ta, is

linear, i.e. the time required to perform an analysis process increases linearly with the

size of an ATM’s analysis and tuning domain.

Suppose a performance and abstraction model simulated by the prototype with the

following parameters:

• fe of 10 events per second per simulated task.

• Ea of 10, a performance problem detection phase is performed every 10 batches of

events.
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• Ec of 1, a single new event is sent to the level above in the hierarchy every batch

of events, as such frc = fe at all levels.

• Linear Ta(N) of 40ms, i.e. the performance problems detection phase lasts 40ms

per node within the analysis and tuning domain of the ATM.

• Tm of 1ms.

• Tc and Tt of 0.1ms.

• frp of fe/(10 · Ea), a tuning action is received every 10 seconds

The tuning network topologies are calculated using these values. Once again, the

maximum domain size will be the same for all levels in the hierarchy because Ec has a

value of 1.

Employing Expression 3.2, we can obtain the value of Nmax.

1

fa
≥ Nmax · Ea · Tm + Ta(Nmax) +

Ea

Ec
· Tc + Tt · frp

Nmax =

⌊
1− 10 · 0.1

1000 − 0.1
1000 · 0.1

10 · 1
1000 + 40

1000

⌋
Nmax = 19

The details of each topology calculated for this experiment are given in Table 4.4.

Figure 4.10 presents the average time required to make a decision for each level in

the hierarchy for each application size.

For level 0, it can be seen that, when increasing the number of parallel application

tasks, the ATMs quickly have their analysis and tuning domain filled up. From this

point (64 application tasks) onwards the decision time at level 0 is roughly the same

for the remainder of the application sizes. This situation occurs because, as the parallel

application grows, additional level 0 Abstractor -ATM pairs are simply added, each one

having the same, near maximum, domain size.

Table 4.4: Tuning network topologies for linear analysis time for parallel applications
composed of different numbers of tasks.

# Tasks of Level 0 Level 1 Level 2
the parallel #Abstractor - Domain #Abstractor - Domain #Abstractor - Domain
application ATM pairs size ATM pairs size ATM pairs size

16 1 16 - - - -
32 2 16 1 2 - -
64 4 16 1 4 - -
128 7 19 1 7 - -
256 14 19 1 14 - -
512 27 19 1 27 - -
768 41 19 2 21 1 2
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Figure 4.10: Scalability pattern with linear analysis time. The time required to make
a decision is shown. The time is measured for each level in the hierarchy.

At level 1, the analysis and tuning domain of the single ATM, which is presented

with a number of application tasks from 32 to 512, is composed of all Asbtractor -ATM

pairs located at level 0. For this reason, the time to make a global decision grows by an

amount proportional to the size of the analysis and tuning domain at this level in the

hierarchy.

The described growth results in the time required to make a global decision for

a parallel application composed of 512 tasks, being only double the time required for

one composed of 64 tasks. This depicts a global decision time that appears to grow

logarithmically with respect to the number of tasks in the application.

In the case of a parallel application with 768 tasks, the tuning network requires

a third level in the hierarchy. It can be seen that the global decision time decreases

with respect to the case of 512 tasks. This occurs because the analysis time increases

linearly with the size of the analysis and tuning domain, and the two level 1 ATMs,

which are working in parallel, each have a smaller analysis and tuning domain than the

root ATM for 512 tasks. Meanwhile, the new root ATM (at level 2) only has these two

Abstractor -ATM pairs in its own analysis and tuning domain.

4.4.3 Quadratic Analysis Time

In many cases, the analysis time increases quadratically with respect to the number of

tasks being analysed. In a centralised tuning network, the single ATM would quickly

become a bottleneck, making a non-centralised tuning network even more important.

The same parameters are used for this case as in the linear experiment, with the

following exception:

• fe of 10 events per second per simulated task.
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• Ea of 10, a performance problem detection phase is performed every 10 batches of

events.

• Ec of 1, a single new event is sent to the level above in the hierarchy every batch

of events, as such frc = fe at all levels.

• Quadratic Ta(N) of 12ms, i.e. the performance problems detection phase lasts

N2 · 12ms, where N is the size of the analysis and tuning domain of the ATM.

• Tm of 1ms.

• Tc and Tt of 0.1ms.

• frp of fe/(10 · Ea), a tuning action is received every 10 seconds

The maximum domain size is calculated in order to determine the topologies of the

tuning networks for each application size. Since the analysis time is quadratic, Nmax

can be found using Expression 3.2 and the quadratic formula.

1

fa
≥ Nmax · Ea · Tm + Ta(Nmax) +

Ea

Ec
· Tc + Tt · frp

Nmax =

− (10 · 1
1000

)
±
√(

10 · 1
1000

)2 − 4 ·
(

12
1000

)
·
(
10 · 0.1

1000 + 0.1
1000 · 0.1− 1

)
2 ·
(

12
1000

)


Nmax = 8

The details of each topology calculated for each size of the parallel application are

given in Table 4.5. In this case, the size of the parallel application only reaches 512

tasks, this is because the combined number of nodes required for the application and

the hierarchy in the case of 768 tasks exceeds the resources available in the MareNostrum

supercomputer.

Figure 4.11 presents the average time required to make a decision for each application

size and for each level in the hierarchy.

In this case, the size of the analysis and tuning domain that each ATM can manage

is considerably smaller than in the previous linear experiment. As such, an application

Table 4.5: Tuning network topologies for quadratic analysis time for parallel applica-
tions composed of different numbers of tasks.

# Tasks of Level 0 Level 1 Level 2
the parallel #Abstractor - Domain #Abstractor - Domain #Abstractor - Domain
application ATM pairs size ATM pairs size ATM pairs size

16 2 8 1 2 - -
32 4 8 1 4 - -
64 8 8 1 8 - -
128 16 8 2 8 1 2
256 32 8 4 8 1 4
512 64 8 8 8 1 8
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Figure 4.11: Scalability pattern with quadratic analysis time. The time required to
make a decision is shown. The time is measured for each level in the hierarchy.

with 16 tasks already requires a tuning network composed of two levels. For the same

reason, an application size of 128 tasks already requires a three level hierarchy.

The quadratic behaviour of the analysis time means that the global decision time

increases substantially faster while the tuning network has the same number of levels,

for example from 128 tasks to 512 tasks. However, as levels are added to the hierarchy,

the global decision time presents the same logarithmic growth as in the experiment with

linear analysis time.

4.4.4 Multi-environment Validation

In order to verify the independence of the results from the underlying execution en-

vironment we have performed the same experiment on two different supercomputer

architectures. Taking advantage of the additional nodes available on SuperMUC, the

experiment has also been extended to a larger parallel application size.

The characteristics of the performance and abstraction model simulated by the pro-

totype are the following:

• fe of 10 events per second per simulated task.

• Ea of 10, a performance problem detection phase is performed every 10 batches of

events.

• Ec of 1, a single new event is sent to the level above in the hierarchy every batch

of events, as such frc = fe at all levels.

• Linear Ta(N) of 30ms, i.e. the performance problems detection phase lasts 30ms

per node within the analysis and tuning domain of the ATM.

• Tm of 1.5ms.

• Tc and Tt of 0.1ms.
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• frp of fe/(10 · Ea), a tuning action is received every 10 seconds

All levels in the hierarchy will present the same maximum domain size (Ec = 1). As

in the previous sections, the value of this maximum domain size, Nmax, is calculated

using Expression 3.2

1

fa
≥ Nmax · Ea · Tm + Ta(Nmax) +

Ea

Ec
· Tc + Tt · frp

Nmax =

⌊
1− 10 · 0.1

1000 − 0.1
1000 · 0.1

10 · 1.5
1000 + 30

1000

⌋
Nmax = 22

Using Nmax with value equal to 22, tuning networks topologies for each application

size has been calculated. The details of the topologies used on both MareNostrum and

SuperMUC are shown in Table 4.6.

Table 4.6: Tuning network topologies for parallel applications composed of different
number of tasks.

# Tasks of Level 0 Level 1 Level 2
the parallel #Abstractor - Domain #Abstractor - Domain #Abstractor - Domain
application ATM pairs size ATM pairs size ATM pairs size

Tuning Networks executed in MareNostrum and SuperMUC

25 2 13 1 2 - -
50 3 16 1 3 - -
100 5 20 1 5 - -
200 10 20 1 10 - -
400 19 22 1 19 - -
800 37 22 2 19 1 2

Tuning Networks executed in SuperMUC

1600 73 22 4 20 1 4
3200 146 22 7 21 1 7
6400 292 22 14 21 1 14

Figure 4.12 shows the average decision time for each level in the hierarchy from 25

to 800 application tasks in both MareNostrum and SuperMUC. The differences between

the time measured in each system were less than 0.8%, and as such can be considered

negligible. This figure shows that the time to make a decision at level 0 rapidly reaches

a ceiling, when the ATMs are controlling the maximum number of tasks. This situation

occurs because, as the parallel application grows, additional ATMs are simply added.

The decision time at level 1 increases proportionally to the size of the analysis and

tuning domain at this level in the hierarchy. When the application reaches 800 tasks,

a new level is required. However, in this last experiment, since the two ATMs at level

1 are working in parallel, the global decision time is only slightly larger than for 400

application tasks. This small increase from 400 to 800 tasks highlights the key benefit

of the hierarchical architecture.
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Figure 4.12: Scalability at MareNostrum. The time required to make a decision is
shown. The time is measured for each level in the hierarchy.

The experiment was continued in SuperMUC up to 6400 parallel application tasks.

The average decision times for each level are shown in Figure 4.13.
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Figure 4.13: Scalability at SuperMUC. The time required to make a decision is shown.
The time is measured for each level in the hierarchy.

This experiment demonstrates that the pattern of the previously discussed results

continues as the application grows. Given that all the ATMs work in parallel, except for

the root, the overall increase in global decision time grows logarithmically as the number

of application tasks increases and new levels are filled up or added to the hierarchy.

4.5 Conclusions

In this chapter a validation of the scalability of the hierarchical tuning model proposed

in this thesis has been presented.

To perform this validation, a simulation environment that reproduces the behaviour

of a tuning network has been used. This has allowed an evaluation independent of the

properties of a specific tuning strategy to be carried out.
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The first step to validate the scalability, was to verify the correctness of the method

to calculate an efficient topology, which was presented in Section 3.5. In order to achieve

this, an experimental evaluation has been performed using two distinct use cases which

demonstrate that the proposed method is able to adapt to different classes of analysis

and tuning processes. In all cases, the method selects hierarchical tuning networks

characterised by providing a high quality analysis and tuning environment, using the

minimum number of resources required to do so.

In validating the scalability of the model, it has been demonstrated that irrespec-

tive of the analysis time pattern and the underlying execution environment, the global

decision time presents a logarithmic growth with the size of the parallel application.

Moreover, while the parameters that define the performance and abstraction model will

change the values of the results observed, the underlying behaviour will remain. From

this behaviour arises the scalable properties of the proposed hierarchical dynamic tuning

model, which does not depend upon the specific characteristics of the application and

the performance and abstraction models’ parameters.
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5
ELASTIC

“Elastic: able to encompass much variety and change; flexible and adaptable.”

– Oxford Dictionary

In this chapter we present ELASTIC, a tool for large-scale tuning. ELASTIC im-

plements the hierarchical model for dynamic tuning presented in Chapter 3. First, we

introduce the motivation and goals of our tool. Subsequently, functional and design

requirements of ELASTIC are presented. Finally, ELASTIC is described and its archi-

tecture and its main components are detailed.
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5.1 Motivation and Goals

In order to bring dynamic performance analysis and tuning to high performance comput-

ers, in this thesis we have presented a model for scalable dynamic tuning. This model is

based on a hierarchical tuning network of analysis modules, combined with an abstrac-

tion model, which will allow for scalable analysis and tuning through a combination of

local and global improvements.

To complete the development of this model, it is necessary to implement the con-

ceptual design of the model in a real tool that enables the dynamic improvement of the

performance of large-scale parallel applications.

Several performance tools have been studied that provide, by employing different

approaches, dynamic tuning of parallel applications. The operation of these tools is

focused on tuning medium scale applications, and does not extend to parallel applications

running on tens of thousands of processors, a situation which is becoming increasingly

common. Currently, there is no tool that, operating on large-scale systems, provides

continuous monitoring, analysis and tuning phases in a dynamic manner.

Our goal is to develop a tuning tool, based on the model proposed in this thesis, that

is able to scale to provide effective hierarchical dynamic tuning on large-scale parallel

applications. The tool must be able to collect and utilise the large amounts of data

involved in the analysis process as well as being able to effectively “distribute” instruc-

tions to modify the parallel application to improve its performance. This must all be

possible, while allowing user defined performance and abstraction models to drive the

analysis and tuning process, an important part of a general purpose tuning tool.

5.2 Functional and Design Requirements

The goal of the tuning tool is to improve a parallel application’s performance, minimise

its execution time and exploit the potential of the execution system. Moreover, the

tuning tool has to be scalable in order to operate with parallel applications composed of

tens of thousands of tasks. In order to improve the application at runtime, as well as to

be efficient, useful and easy to extend, the tuning tool must consider several functional

requirements that will be described in the following sections.

Hierarchical Architecture

Following the model for hierarchical dynamic tuning presented in this thesis, the tuning

tool has to fit a hierarchical structure. It should be composed of a front-end process
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connected to a number of back-end processes via a hierarchical tuning network com-

posed of analysis modules. The communication established in the tuning network must

present mechanisms that can efficiently transport the necessary data between levels in

the hierarchy during the performance analysis and tuning process. It must be possible

to configure the topology of the hierarchical tuning network, depending on the size and

structure of the underlying parallel application.

The MRNet framework has been chosen to meet these requirements, it will be de-

scribed in Section 5.3.2.

Control of the Application Lifecycle

In order to perform dynamic performance improvement, the tuning tool must be able to

control the entire execution of the application, from start to finish. The tool must launch

the parallel application and then connect to it, allowing dynamic instrumentation. It

must also be able to detect when the parallel application terminates its execution.

This is achieved by the back-ends of the tuning tool, each of which controls a single

parallel application task.

Automatic and Dynamic Improvement of the Parallel Application

The primary purpose of the proposed tuning tool is the automatic and dynamic tuning

of a parallel application. This process can be divided into three phases: monitoring,

analysis and tuning.

The performance monitoring phase requires the instrumentation of the parallel ap-

plication and the collection of the resulting monitoring data. These actions must be

performed automatically while the application is running.

The insertion of the monitoring code in the application is carried out by the back-

ends of the tuning tool using DynInst, a tool that will be explained in more detail in

Section 5.3.1. This monitoring code is constructed using information sent by an analysis

module (Instrumentation Order for Monitoring) that indicates points in the application

that have to be measured to gather information about its behaviour.

Following the conceptual design of the hierarchical tuning model proposed in this

work, the dynamic monitoring is based on event tracing. Event tracing makes use of

events to obtain information about the state of the application. Each event has to

contain information about 1) what action occurred, 2) where this action occurred in

the application execution, 3) when this action occurred, and 4) additional information

related to the specific action.
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So, the instrumentation for monitoring must be able to generate events contain-

ing information about the state of the application. This information will be injected

into the tuning network by the back-ends to be received by analysis modules. Using

this information, the analysis modules are able to analyse the performance state of the

application.

In accordance with the proposed hierarchical tuning model, the performance analysis

process is guided by the performance and abstraction models. The tuning tool must

enable a user to load the necessary codified knowledge to guide this process into the

analysis modules. This must be done in such a way that no user intervention is required

during the dynamic tuning process.

In order to implement the proposed changes in the application as a result of the

analysis phase, the analysis modules must be able to communicate these changes, in the

form of Instrumentation Orders for Tuning, through the tuning network to the back-

ends, which must then instrument their application tasks. These Tuning Orders must

contain all the required information, specifically which task is to be tuned, what must

be changed (the tuning action), where the change must occur in the application (the

tuning point), and at which moment the change should be applied (synchronisation).

Applying the chosen solution is performed by means of the DynInst library, since this

operation must be done during runtime, without recompiling or restarting the parallel

application.

Intrusion Reduction

A primary concern of any tuning tool is maintaining the intrusion on the parallel appli-

cation to a minimum. This ensures that the benefits of the performance tuning are not

outweighed by the overhead created by the presence of the tuning tool.

In our dynamic tuning process, there are several possible sources of intrusion.

One source is in the event tracing mechanism. Since event tracing can produce large

amounts of data, it can be reasonably invasive, and should therefore only be active when

necessary. For this reason, using the capacity of dynamic instrumentation, our tuning

tool is able to add and remove monitoring code during the execution of the application.

This allows it to control the intrusion originating from event tracing.

However it should be noted that dynamic instrumentation is also a source of intru-

sion. This includes the instrumentation performed to add and remove monitoring code,

as well as the instrumentation to change the application to improve its performance.

The overhead exists because the instrumentation involves stopping the execution of the
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application task to be instrumented while its code is modified. To mitigate this intrusion,

it is important to keep the instrumentation as simple as possible.

The final source of intrusion is in the overlying tuning network. To reduce this

intrusion, the front-end and analysis modules of the tuning tool should be located in

different machines to those used by the application. Due to functional requirements,

the back-ends must be running together with their associated parallel application tasks.

For this reason, the back-ends should present a light-weight design.

Target environment and portability

Currently, the great majority of large-scale scientific parallel applications are imple-

mented using the Message Passing Interface (MPI) standard to perform interprocess

communication. With the aim of offering performance analysis over these kinds of ap-

plications, the tuning tool should support MPI based parallel applications.

In a similar vein, most large-scale parallel computers run UNIX operating systems

(over 90% of the Top 500 supercomputer list run a Linux based operating system [59]).

As our main objective is to propose a model for dynamic tuning of applications running

on these kinds of large-scale systems, our target environment is UNIX based supercom-

puters.

It should be noted that the portability of our tuning tool is dependant on the con-

straints of some of the technologies used in its development. On one hand, an MPI

environment is necessary as mentioned above. On the other hand, the technologies used

by the tuning tool have certain requirements, which must be met in the target system.

These are:

• Multiple threads per core. In order to make efficient use of resources no additional

cores are allocated for the tuning tool back-ends. For this reason, multiple threads

are used in each core, one for the application task and one or more for the back-

end. Additionally, the internal nodes of the tuning network use multiple threads

to manage communication.

• Socket based communication. Both the event collection in the back-ends and the

hierarchical communication utilise sockets.

• ELF or DWARF binary format. The dynamic instrumentation library is only

capable of reading and writing binaries which have been compiled in either of

these formats.
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5.3 Employed Technologies

There are two key technologies required for the implementation of the hierarchical tuning

network for which mature solutions already exist. These are dynamic instrumentation

and efficient hierarchical communication.

The dynamic instrumentation of the parallel application carried out by the tuning

tool presented in this chapter is performed using the DynInst library. DynInst is a dy-

namic instrumentation library that provides a machine independent interface to permit

the creation of tools and applications that use runtime code patching. Its potential

has been exploited in a broad range of uses, such as performance measurement and

debugging tools, execution drive simulations and computational steering.

In the case of hierarchical communication, the MRNet framework has proven to be

an efficient communication substrate in large-scale systems. Its use has provided positive

results in areas like clock synchronisation, equivalence classification, time-aligned data

aggregation, performance analysis and debugging. As MRNet meets the requirements

of the hierarchical communication employed by the tuning network, it has been used for

the development of the tuning tool presented in this chapter.

The following sections describe the main aspects of these two technologies.

5.3.1 Dynamic Instrumentation via DynInst

The main idea of dynamic instrumentation is to postpone the application instrumenta-

tion until it is running and insert, change or remove this instrumentation dynamically

during the application execution. DynInst is a post-compiler program manipulation tool

that allows this dynamic instrumentation. Using this library, it is possible to instrument

and modify applications during execution [10].

The DynInst API is based on object-oriented technology and provides a set of classes

and methods that support the programmer in the process of developing an application

that will instrument another application during runtime. Specifically, DynInst allows

the programmer to:

• Modify a running application or to start a new one.

• Create a new piece of code and insert it into an executing application.

• Access and use existing code and data structures.

• Remove inserted code from a running application.
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In order to modify a running application, DynInst manipulates the address-space

image of the application. For this reason, this library only needs access to the run-

ning application, not its source code. Therefore, a running application modified using

DynInst does not need to be re-compiled, re-linked, or re-started in order to be able to

continue running. However, it should be noted that for DynInst to modify an applica-

tion at runtime, the application must be compiled with the option that enables debug

information. DynInst needs this information to locate functions, data structures and

variables in the instrumented application.

The goal of this API is to provide a machine independent interface to permit the

creation of tools and applications that use runtime code patching and work on different

types of execution environments. The last version of DynInst, 8.1.1, supports the follow-

ing platforms: Tru64 Unix on the Alpha processor, Linux 2.4/2.6 on Intel x86, IA-64, or

AMD-64 based processors, Windows XP/2000/2003 on Intel x86 based processors, AIX

Version 5.1, and Solaris 2.9 on SPARC processors.

The DynInst API is based on several abstractions with interactions, as shown in

Figure 5.1, that permit the modelling of the components necessary in the dynamic

instrumentation mechanism:

• Mutatee. The application to be instrumented.

• Mutator. A separate application which controls the mutatee and instruments it

via DynInst.

• Thread. A thread corresponding to the application in execution.

• Image. The static representation of the application on a disk. Each thread is

associated with an image.

• Point. A specific place in the application where the instrumentation could be

inserted. For instance, this place could represent a function entry, function exit, a

loop, etc.

• Snippet. The representation of a piece of executable code to be inserted into the

application at a point.

To dynamically instrument a parallel application via DynInst, several steps have to

be performed during the development phase and during the execution time phase.

During the development phase, the programmer has to check that:

• A mutatee, compiled with debug information, is available.

• The mutator implements snippets using the DynInst API.

• The mutator has been compiled and linked with DynInst Library.

• The mutator can be launched.
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Figure 5.1: Abstractions used in DynInst.

Secondly, at runtime, DynInst is responsible for:

• Dynamically loading the DynInst Library into the address space of the mutator.

• Using the DynInst API, the mutator can create the mutatee.

• Automatically attaching its runtime library to the address of the mutatee.

• Inserting calls to the snippet code at specific points in the mutatee.

The tuning tool presented in this chapter uses DynInst to dynamically instrument

the application. The tuning tool acts as the mutator and the parallel application acts as

the mutatee. Snippets and points depend on the information necessary to evaluate the

behaviour of the application which is determined by the performance model. Snippets

are the pieces of software used to obtain the information and make the events, which

have to be inserted in specific points of the parallel application.

5.3.2 MRNet

MRNet [51] is a communication software infrastructure for parallel tools and applica-

tions with a master/slave architecture. MRNet acts to reduce the cost of centralised

tools’ activities by incorporating a hierarchical network of processes (tree-based overlay

network-TBON) between the tool’s front-end and back-ends, as is shown in Figure 5.2.

MRNet uses these internal processes to distribute many important tool communication

and computation activities.

To build scalable tools, the major characteristics that MRNet offers are:

• Flexible organisation of the TBON of internal processes. The organisation is de-

termined by a configuration file.

• Scalable data aggregation provided by the internal nodes of the network.
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Figure 5.2: Typical architecture of a tool built using MRNet.

• Scalable and efficient multicast communication, reducing the communication cost

between the front-end and all its back-ends.

• Multiple and concurrent communication data channel between tool components.

As we explained in Chapter 2, MRNet has been integrated into several existing tools

in order to provide scalable properties, such as Paradyn [50] and TAU [46]. Moreover,

other new tools, such as STAT [2] and TBON-FS [6], have made direct use of MRNet

as an scalable platform.

The last version of MRNet, 4.0.0, has been successfully tested on the following

platforms: x86, x86 64, powerpc32 and powerpc64 for Linux, and x86 for Windows.

MRNet is based on two main components: the library API and the mrnet commnode

program. Tool’s front-end and back-ends are linked to the library API in order to

establish communication between them via MRNet. The mrnet commnode program is

run on the internal nodes between the front-end and the back-ends, enabling distributed

data processing and implementing scalable group communications.

MRNet is based on the following abstractions:

• End-points. The tool’s back-ends processes, i.e. the leaves of the tree network.

• Communicators. Groups of end-points. Using communicators, the front-end

can communicate with back-ends in unicast or multicast mode.
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• Streams. Logical communication channels that connect the front-end to the end-

points of a specific communicator. Streams transport data packets downstream,

from the front-end to the back-ends, and upstream, from the back-ends to the

front-end.

• Filters. The functions located at the internal processes of the network, to syn-

chronise and aggregate data packets sent to the front-end. Filters are defined as a

dynamic function that is bound to a stream during the stream creation. In MR-

Net, there are two types of filters: synchronisation filters and transformation filters.

Synchronisation filters organise upstream data packets into synchronised waves of

data packets, while transformation filters operate on the synchronised upstream or

downstream data packets, generating one or more output packets. MRNet offers

some general purpose filters as well as facilities for adding user-defined filters to

perform tool-specific aggregation operation.

It should be noted that in order to use MRNet, the front-end and the back-ends

have to be compiled and linked with the MRNet library. If the filter used is user-

defined, it must be compiled into a valid shared object, and front-end and back-ends

which dynamically load these kinds of filters must be built with compiler options that

notify the linker to export global symbols.

In the proposed model for hierarchical tuning, the instrumentation orders and the

events containing behavioural information about the application must flow throughout

the hierarchical communication network. To implement this kind of communication, the

tool presented in this chapter employs the MRNet framework. Also, the strength of

the filters has been used to place the Abstractor -ATM pair at the internal processes of

the MRNet TBON. The manner in which the tuning tool presented in this work uses

MRNet is detailed in Section 5.4.7.

5.4 ELASTIC

The proposed model for hierarchical dynamic tuning presented in Chapter 3 has been

implemented as a performance analysis tool called ELASTIC.

ELASTIC provides dynamic performance tuning of large-scale parallel applications.

The steering of the application is based on three phases: performance monitoring, perfor-

mance analysis and tuning. These phases are carried out automatically and continuously

by ELASTIC while the parallel application is running on large-scale systems.
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5.4.1 Architecture

ELASTIC is composed of the following components which cooperate to control and to

improve the execution of the application:

• ELASTIC Front-End (EFE). The root process of the network, responsible for

creating and instantiating the internal processes of the tuning network.

• Abstractor-ATM pair. Located at the internal nodes of the tuning network,

they carry out the performance analysis and tuning of the parallel application, as

well as providing the abstraction mechanism between levels in the hierarchy.

• ELASTIC Back-End (EBE). A daemon that controls the execution and dy-

namic instrumentation of each individual task of the parallel application, receiving

monitoring and tuning orders from the Abstractor -ATM pair.

• Task Monitoring Library (TMLib). A shared library that is dynamically

loaded by the EBE in each application task, to support monitoring and behavioural

data gathering.

The knowledge required to perform dynamic tuning in ELASTIC is built into a set

of code and configuration called an ELASTIC Package. To conduct the hierarchical

dynamic tuning proposed in this thesis, this package must contain information that (1)

guides the performance analysis and tuning process and (2) determines how to transform

information between different levels in the tuning network. As was detailed in Section

3.4.3, such required knowledge takes the form of a performance model and abstraction

model respectively.

Figure 5.3 shows the ELASTIC architecture. The hierarchical communication layer

is established through MRNet. This framework allows for the connection of the ELAS-

TIC front-end with ELASTIC back-ends as well as enabling the Abstractor -ATM pairs

to be distributed across MRNet’s TBON of internal processes, utilising the strength of

filters. The details of how ELASTIC takes advantage of the features of MRNet can be

found in Section 5.4.7.

Each of the ELASTIC components are explained in detail in the following sections.

Their design, functionality and interfaces are presented.

5.4.2 ELASTIC Front-End

The front-end is the root process of the ELASTIC architecture. Its main responsibilities

are the initialisation and finalisation of the ELASTIC infrastructure. Specifically, the

EFE is in charge of the following actions:
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Figure 5.3: ELASTIC architecture.

• Instantiate the hierarchical tuning network.

• Control the correct connection of EBEs.

• Create the communication channels between it and EBEs.

• Load the functionality of the Abstractor -ATM pair in each internal node of the

hierarchy.

• Initialise the performance analysis and tuning.

• Delete the tuning network when the execution of the parallel application has fin-

ished.

To conduct all these actions, the EFE uses the MRNet API. The details of how these

processes are performed will be detailed in Section 5.4.7.

5.4.3 Abstractor-ATM Pair

The Abstractor -ATM pair is the fundamental component of the ELASTIC architecture.

It enables a distributed dynamic performance analysis and tuning process through the

tuning network. Each Abstractor -ATM pair is located at an internal node of MRNet’s

TBON architecture.

The dynamic tuning cycle begins with the monitoring order generation carried out

by the ATMs at each level in the hierarchy. The ATM sends these orders to its children,

i.e. the nodes of its analysis and tuning domain. In the case that these nodes are other

Abstractor -ATM pairs, the Abstractor in the child node is responsible for translating the

received monitoring orders and continuing their propagation downstream through the

tuning network. When these orders arrive at an ELASTIC back-end, they are applied

to the application task.
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Still in the monitoring phase, events are sent from the application task upstream to

the Abstractor -ATM pairs. These events can be used for an analysis process or, if they

are destined for an Abstractor -ATM pair at a higher level, the Abstractor will transform

and send them to the parent level in the hierarchy.

If, as a result of the analysis process, tuning is required, an instrumentation order

will be sent by the Abstractor -ATM pair to the necessary children in the analysis and

tuning domain. During this tuning phase, the orders received by an Abstractor -ATM

pair from the parent level will be translated to be applied to the child level, until these

orders reach the ELASTIC back-ends.

Based on the hierarchical dynamic tuning model presented in Chapter 3, the Ab-

stractor -ATM pair is composed of several cooperating modules, shown in Figure 5.4.

q

Instrumentation 
Order Sender

Instrumentation 
Order Translator

Performance 
Evaluator

Event Creator

Event Manager

Network Proxy

Network Proxy

Abstractor-ATM pair

Downstream packets
(instrumentation orders)

Downstream packets
(instrumentation orders)

Upstream packets
(events)

Upstream packets
(events)

Figure 5.4: Internal architecture of the Abstractor -ATM pair.

The functionality of each of the components presented in Figure 5.4 is implemented

as a C++ class.

As mentioned in Section 3.4.3, to carry out the proposed hierarchically distributed

performance analysis and tuning process, the user has to provided the knowledge related

to the performance model and the abstraction model. The integration of this knowledge

in ELASTIC is provided in the form of concrete subclasses of the C++ classes which

implement the Abstractor -ATM pair components. The collection of these subclasses

and some additional configuration options form the ELASTIC Package, the mechanism

through which the user interacts with ELASTIC. From within these subclasses, the user

will have access to the public properties and methods of each of the described classes,

which form the Tuning and Abstraction API .
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The functional description of each of the main components of the Abstractor -ATM

pair is presented below, followed by the specification of the Tuning and Abstraction API.

Functional Component Description

Performance Evaluator. This module is the core of the Abstractor -ATM pair because

it directs the performance analysis and tuning process using the integrated knowledge.

Beginning with the monitoring phase, the Performance Evaluator creates monitoring

orders to request specific information required in the analysis phase. These orders must

be registered with the Event Manager before being sent to the Instrumentation Order

Sender. This is necessary so that when events containing the requested information

are received by the Event Manager, they can be correctly routed to the Performance

Evaluator.

When the Performance Evaluator receives an event it must store the information

contained in this event. Having received events containing the complete information

about the state of the analysis and tuning domain, the Performance Evaluator activates

the analysis and tuning process. As a result of this process, a tuning order may be

passed to the Instrumentation Order Sender.

Instrumentation Order Sender. This module works with instrumentation orders for

monitoring and for tuning. In both cases it is responsible for converting their received

orders into a format that can be sent across the network. The Instrumentation Order

Sender must pack one or more orders into a serialised format for network transfer by

the Network Proxy.

Instrumentation Order Translator. When instrumentation orders are sent by an

Abstractor -ATM pair which is not in the base level of the hierarchy, it will need to

be translated at each intermediate level to be applied coherently to the final parallel

application tasks. Therefore, the Instrumentation Order Translator is responsible for

this operation at each level of the tuning network. Based on user-provided knowledge,

each instrumentation order for monitoring or tuning received, results in orders that can

be applied to the level directly below. These orders are sent to the Instrumentation

Order Sender.

In the case of monitoring orders, the Instrumentation Order Translator must register

each type of order with the Event Manager to ensure that the corresponding generated

events are passed to the Event Creator in this Abstractor -ATM pair.

Event Manager. During the monitoring phase the Event Manager handles the reg-

istration of the monitoring orders generated by the Performance Evaluator and the
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Instrumentation Order Translator. The information from this registration is later used,

when packets containing events coming from the analysis and tuning domain are received,

in order to decide the destination of each event. An event received by this module will

be passed to the Performance Evaluator, the Event Creator or both components.

Event Creator. This module is in charge of managing events received as a result

of monitoring orders created by the Instrumentation Order Translator which resides

in the same Abstractor -ATM pair. Using knowledge provided by the user, the events

containing information about the analysis and tuning domain are abstracted and a new

event is created and sent to the parent level in the tuning network.

To inject the newly created event into the tuning network, the Event Creator must

serialise it for communication and pass the serialised representation to the Network

Proxy.

Network Proxy. In order to abstract the communication with the tuning network

via MRNet, the Network Proxy module implements network specific functionality. This

module controls the connection of the Abstractor -ATM with the tuning network. Its

capability resides in the conversion between the serialised versions of instrumentation

orders and events, and the MRNet packets.

MRNet packets containing instrumentation orders are received as downstream pack-

ets, and new instrumentation orders are also sent as downstream packets. On the other

hand, MRNet packets containing events are received as upstream packets, and likewise

newly created events are sent as upstream packets.

Tuning and Abstraction API

This API encapsulates the aspects that implement the model for hierarchical dynamic

tuning proposed in this thesis, which are located in the Abstractor -ATM pair. With this

API, the components of the Abstractor -ATM pair are represented as objects of specific

classes and the interactions between them are established.

In this section, the specification of the Tuning and Abstraction API is detailed.

• PerformanceEvaluator Class.

Properties

– Domain *d - representation of the analysis and tuning domain.

– InstrumentationOrderSender *ios - the Instrumentation Order Sender in-

stance used by this object.
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– EventManager *em - the Event Manager instance used to register instrumen-

tation orders for monitoring.

Methods

– InitialMonitoringOrders - called once, when the analysis and tuning pro-

cess begins, should return at least one initial monitoring order.

– HandleEvent - called by the Event Manager for each new event.

– NewEvent - called to manage and store each new event, should return true if

the complete information about the state of the analysis and tuning domain

has been collected to initiate performance evaluation.

– EvaluatePerformance - called to evaluate the performance of the analysis

and tuning domain, should return a vector of tuning and/or monitoring orders

(if any) which will be sent to the Instrumentation Order Sender.

• Event Manager Class.

Properties

– PerformanceEvaluator *pe - the Performance Evaluator instance that re-

ceives events for performance evaluation in this Abstractor -ATM pair.

– EventCreator *ec - the Event Creator instance that receives events for ab-

straction to a higher level in the tuning network.

Methods

– ManageEvent - called for each event that is received by this Abstractor -ATM

pair. This event will be forwarded to either the Performance Evaluator, the

Event Creator or both.

– RegisterEventForPerformanceEvaluator - called by the Performance Eval-

uator to register a monitoring order. This instructs this object to forward

the associated event to the Performance Evaluator.

– UnregisterEventForPerformanceEvaluator - called by the Performance

Evaluator to unregister a monitoring order.

– RegisterEventForEventCreator - called by the Instrumentation Order Trans-

lator to register a monitoring order. This instructs this object to forward the

associated event to the Event Creator.

– UnregisterEventForEventCreator - called by the Instrumentation Order

Translator to unregister a monitoring order.
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• InstrumentationOrderTranslator Class.

Properties

– Domain *d - representation of the analysis and tuning domain.

– InstrumentationOrderSender *ios - the Instrumentation Order Sender in-

stance used by this object.

– EventManager *em - the Event Manager instance used to register instrumen-

tation orders for monitoring whose associated events will be sent to the Event

Creator.

Methods

– HandleOrder - called when an instrumentation order for monitoring or tuning

is received. It is responsible for sending the translated order via the Instru-

mentation Order Sender and registering monitoring orders with the Event

Manager.

– TranslateMonitoringOrder - called to translate an instrumentation order

for monitoring, should return a vector of monitoring orders to be applied to

the analysis and tuning domain.

– TranslateTuningOrder - called to translate an instrumentation order for

tuning, should return a vector of tuning orders to be applied to the analysis

and tuning domain.

• InstrumentationOrderSender Class.

Properties

– NetworkProxy *np - the Network Proxy instance via which this object injects

instrumentation order packets into the tuning network.

Methods

– SendTuningOrder - send an instrumentation order for tuning via the Network

Proxy.

– SendMonitoringOrder - send an instrumentation order for monitoring via

the Network Proxy.

• EventCreator Class.

Properties

– NetworkProxy *np - the Network Proxy instance via which this object injects

event packets into the tuning network.
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Methods

– HandleEvent - called by the Event Manager for each new event. It is respon-

sible for sending newly created events via the Network Proxy.

– NewEvent - called to manage and store each new event, should return true if

the complete information about the state of the analysis and tuning domain

has been collected to initiate the abstraction and event creation process.

– CreateEvent - called to create a new event by abstracting the information

from previously received events.

• NetworkProxy Class.

Properties

– EventManager *em - all events received are sent to this Event Manager in-

stance.

– InstrumentationOrderTranslator *iot - all instrumentation orders received

are sent to this Instrumentation Order Translator instance.

Methods

– SendOrder - called to inject a packet containing instrumentation orders into

the tuning network, abstracting the MRNet implementation specifics.

– SendEvent - called to inject a packet containing events into the tuning net-

work, abstracting the MRNet implementation specifics.

As well as the classes that represent Abstractor -ATM components, there are classes

which encapsulates the information contained within instrumentation orders for mon-

itoring and tuning, and events. Instances of these classes are the objects which are

passed between the functional components of the Abstractor -ATM pair and, as will be

described in Section 5.4.4, are also used in the ELASTIC back-end.

• Event Class.

Properties

– Timestamp ts - represent the time when the event was generated at the

application level.

– int eid - represent the id of the event corresponding to the monitoring order

which provoked its generation.

– int tid - represent the rank of the task where the event was generated.
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– vector<Value> v - contains the values of the attributes requested by the

monitoring order which provoked the generation of this event.

• Order Class.

Properties

– int tid - represent the rank of the task where the order has to be applied.

• MonitoringOrder Class (subclass of Order)

Properties

– int eid - represent the id of the events which will be generated as a result

of this order.

– int action - determines whether this order is to add new monitoring or

remove existing monitoring instrumentation, 0 - add, 1 - remove.

– string funcName - the name of the function to be traced in the parallel

application.

– int place - point of instrumentation in the function, 1 - entry of the function,

0 - exit of the function.

– vector<string> attrs - names of the variables to be read at the instrumen-

tation point.

• TuningOrder Class (subclass of Order)1

Properties

– int type - represent the type of the tuning order to be applied.

0 - empty tuning order.

1 - SetVariableValue.

2 - ReplaceFunction.

3 - InsertFunctionCall.

4 - OneTimeFunctionCall.

5 - RemoveFunctionCall.

6 - FunctionParamChange.

7 - LoadLibrary.

1To perform dynamic tuning the user works with subclasses of this class containing all the information
required for each different type of tuning order. The subclass definitions are beyond the scope of this
section, and can be found in Appendix A.
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To show the primary sequences of interaction carried out by the classes described

above, we will present a number of typical scenarios where these interactions occur.

The first scenario, depicted in Figure 5.5, shows the Performance Evaluator generat-

ing an order for monitoring. Once the order has been constructed inside the Performance

Evaluator, it is registered with the Event Manager (1). It is then passed to the Instru-

mentation Order Sender (2), which in turn injects the order into the network via the

Network Proxy (3).

Event 

Manager

Performance 

Evaluator

Instrumentation 

Order Sender
Network Proxy

Register() (1)

SendMonitoringOrder() (2)

SendOrder() (3)

Figure 5.5: Sequence diagram: Generation of monitoring orders.

In Figure 5.6 the second scenario is presented. It represents the possible interactions

triggered when an event is received by the Abstractor -ATM pair. The received event

is transferred to the Event Manager (1), where it has two possible destinations. If the

event is destined for this level in the hierarchy, then it is passed to the Performance

Evaluator (2), or if the event is to be sent to a higher level in the hierarchy, then it is

passed to the Event Creator (5). In the case of the Performance Evaluator, it is possible

that the arrival of this event will invoke an analysis process resulting in a tuning order

being generated. If this occurs the tuning order is sent to the Instrumentation Order

Sender (3). Finally, the tuning order is injected into the network via the Network Proxy

(4). In the second possible case (5), the event is sent to the Event Creator, which may

result in a new event being generated to be sent to a higher level in the tuning network.

This new event is injected into the network via the Network Proxy (6).

Finally, the third scenario, Figure 5.7 shows the interactions that occur when an

instrumentation order for monitoring or tuning coming from the parent level is received

by an Abstractor -ATM pair. The received order is transferred to the Instrumentation

Order Translator (1). The orders resulting from the translation process are sent to the

Instrumentation Order Sender, independent of whether they are orders for monitoring

(2) or tuning (3). The Instrumentation Order Sender then injects the orders into the

tuning network via the Network Proxy (4).

The manner in which the user exploits the capacity of this API to construct an

ELASTIC Package is described in Section 5.4.6.
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Event 
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ManageEvent() (1)
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HandleEvent() (5)

SendEvent() (6)

Figure 5.6: Sequence diagram: Event reception.

Instrumentation 
Order Translator

Instrumentation 
Order SenderNetwork Proxy

HandleOrder() (1)

SendTuningOrder (2)

SendOrder() (4)

SendMonitoringOrder (3)

Figure 5.7: Sequence diagram: Translation of instrumentation orders.

5.4.4 ELASTIC Back-End

The ELASTIC back-ends are the leaf nodes of the ELASTIC tuning network. Each back-

end is responsible for managing a task of the parallel application during the analysis and

tuning process. Specifically, the actions of this module cover the following aspects:

• Launch and finalise the parallel application tasks.

• Load the Task Monitoring Library (TMLib) in the application task.

• Manage application instrumentation.

– Receive instrumentation orders for monitoring or tuning from the tuning net-

work.

– Generate, insert and remove monitoring and tuning snippets.

• Manage events.

– Receive events from the TMLib.

– Inject these events into the tuning network.
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The ELASTIC back-end is composed of a number of modules that cooperate to

perform these actions. In Figure 5.8 the internal architecture of the ELASTIC back-end

is depicted.

Network Proxy

Instrumentor

Instrumentation 
Order Manager Event Collector

ELASTIC Back-end

Downstream packets
(instrumentation orders)

Upstream packets
(events)

TMLib
Parallel Application Task

Figure 5.8: Internal architecture of the ELASTIC back-end.

Instrumentation Order Manager. This module receives a serialised representation

of instrumentation orders from the tuning network. Here, the instrumentation order for

monitoring or tuning is deserialised before being passed to the Instrumentor.

Instrumentor. This module is in charge of launching and terminating a single parallel

application task. It must also perform the dynamic instrumentation for monitoring and

tuning its application task.

When the back-end starts up, the Instrumentor creates the parallel application task

and loads the TMLib in its memory space, using the DynInst API.

The monitoring in ELASTIC is based on the event tracing of function calls. During

the course of the application execution, the Instrumentor receives monitoring orders

from the Abstractor -ATM pairs of the tuning network. When these orders get to the

Instrumentor, the DynInst library is used to dynamically insert instrumentation code

(the snippet) into the parallel application task to generate events to be traced. The

inserted snippet uses the TMLib to gather the information requested in the monitoring

order by reading the values of global variables or function parameters at the monitoring

point. These values are composed into an event and sent to the Event Collector as

described in Section 5.4.5. It should be noted that the received monitoring orders can

also request the removal of a previously inserted snippet.
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Changes to improve the performance are dynamically made in the parallel appli-

cation task, following instrumentation orders for tuning received, by the Instrumentor.

The Instrumentor reads the information encapsulated in the tuning order and then uses

the DynInst library to create a snippet which is inserted into the running application

task.

Event Collector. This module facilitates the transfer of events from the TMLib to the

tuning network. Events are sent to the Event Collector via a low-level event collection

protocol based on TCP/IP. The events are then serialised for network transfer and passed

to the Network Proxy to be injected into the tuning network.

Once the parallel application task has finished its main processing loop, a special

event is sent to the Event Collector which then notifies the Instrumentor that it may

terminate its task. Subsequently, the Event Collector sends the finalisation event to the

tuning network and terminates.

Network Proxy. This module offers the same functionality as in the Abstractor -

ATM pair, abstracting the low-level network interactions related to the sending and

receiving of serialised events and instrumentation orders respectively in the form of

MRNet packets.

5.4.5 Task Monitoring Library

The Task Monitoring Library (TMLib) is a library that provides support for event

tracing of parallel application tasks. The TMLib is an adaptation of the Dynamic

Monitoring Library created for use in the performance tool MATE [39]. The TMLib

is loaded at runtime by the ELASTIC back-end into the memory address space of its

associated task. As such, the TMLib is designed to be able to satisfy the types of

requests for monitoring generated by the Abstractor -Analyzer pair.

The TMLib offers a set of functions that assist in three main parts of the monitoring

process:

• Initialisation: The TMLib shared library is loaded into the task and a TCP/IP

connection is establish with the Event Collector. This connection is used during

the entire task execution. In this stage, it is also specified at which point in the

task execution the finalisation of the TMLib occurs.

• Event tracing: During the execution of the parallel application, snippets are

inserted into the application task by the Instrumentor, which call functions from

the TMLib to catch events. These calls result in the values of variables or function

parameters being collected and composed into events. The events are then sent
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via the previously established connection to the Event Collector using a low-level

event collection protocol. In this way, the TMLib facilitates the collection of the

information requested by the Abstractor -ATM pairs in monitoring orders.

• Finalisation: When the application task reaches the predefined point, the TMLib

finalisation process will be invoked. This involves sending a finalisation event to

the Event Collector, freeing all the allocated resources and closing the TCP/IP

connection to the Event Collector.

During the event tracing stage, the TMLib generates instances of the Event class

detailed in Section 5.4.3. Following its properties, the event is filled out with a timestamp

that indicates the time at which it was generated, an event identifier which indicates

which monitoring order requested it, and the task id which contains the MPI rank of

the parallel application task where it is generated. This is in addition to the variable

values requested by the monitoring order.

5.4.6 ELASTIC Package

ELASTIC is a general purpose tuning tool which permits the resolution of a wide array of

performance issues in large-scale parallel applications. To conduct performance analysis

and tuning, user provided knowledge about the performance problems and possible

solutions is required in the form of an ELASTIC Package.

As was detailed in Section 3.4.3, the required knowledge takes the form of a perfor-

mance model, to guide the performance analysis and tuning process, and an abstraction

model, to determine how to transform information as it moves between different levels

in the tuning network.

The performance model is composed of a set of measurement points, a set of per-

formance evaluation expressions, and a set of tuning actions. In ELASTIC, these three

parts all reside in the Performance Evaluator module.

The information in the abstraction model is related to the translation of instrumen-

tation orders for monitoring and for tuning which are received from the parent level in

the hierarchy and the creation of events which abstract information about the state of

the analysis and tuning domain of the Abstractor -ATM pair.

In order to integrate the performance and abstraction models into ELASTIC, the

user must provide the codification of this knowledge in the form of the implementation

of specific subclasses of the Tuning and Abstraction API. The classes which must be

subclassed are the Performance Evaluator to implement the performance model, and

the Event Creator and Instrumentation Order Translator to implement the abstraction

model.
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The implementation of these subclasses, together with some configuration informa-

tion, forms an ELASTIC Package. In addition to these subclasses, the user may provide

alternative implementation of other classes from the Tuning and Abstraction API in

order to further customise the analysis and tuning process. The benefits of this plugin

architecture will be discussed at the end of this section.

Performance and Abstraction Model

As previously mentioned, the user must provide a performance model in the form of

a concrete implementation of a subclass of the Performance Evaluator class. In this

subclass, three methods must be implemented:

vector<MonitoringOrder> PerformanceEvaluator::InitialMonitoringOrders()

In this method, the user must specify the initial measurement points of the perfor-

mance model in terms of one or more MonitoringOrder objects. This set of monitoring

orders form the output of this method.

bool PerformanceEvaluator::NewEvent(Event *e)

The storage of each new event should be performed in this method. The implemen-

tation must be able to recognise when all the events required to activate a performance

evaluation have been received, in which case the output of this method should be true

- otherwise false.

vector<Order> PerformanceEvaluator::EvaluatePerformance()

This method will be called when a call to NewEvent() results in a true response.

The user must implement the performance problem detection process, which makes

use of the information contained in the previously collected events. In the case that

a performance problem is detected, the appropriate TuningOrder objects should be

created, based on the tuning points and actions of the performance model. The set of

tuning orders form the output of this method, or an empty set if no tuning is necessary.

It is also possible that the monitoring process requires more or less detail about the

state of the parallel application. In this case, the set of orders that are the output of

this method can also contain monitoring orders.

The implementation of the abstraction model is distributed between two classes, the

Instrumentation Order Translator and the Event Creator. Their respective methods,

which must be overwritten, are detailed below:
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vector<MonitoringOrder> InstrumentationOrderTranslator::

TranslateMonitoringOrder(MonitoringOrder *mo)

This method hosts the functionality necessary to convert monitoring orders from the

parent level, to be applied to the level below in such a manner that the events generated

as a result of these orders, satisfy the requirements of the original monitoring order. The

output from this method should be a set of new MonitoringOrder objects which will

be sent to the analysis and tuning domain.

vector<TuningOrder> InstrumentationOrderTranslator::

TranslateTuningOrder(TuningOrder *to)

This method contains the knowledge necessary to convert tuning orders from the

parent level, to be applied to the level below. These new tuning orders, must provoke

the equivalent change in the analysis and tuning domain as was requested in the original

tuning order. The output from this method should be a set of new TuningOrder objects.

bool EventCreator::NewEvent(Event *e)

The storage of each new event should be performed in this method. The implemen-

tation must recognise when all the events required to create a new event to be sent to

the parent level have been received, in which case the output of this method should be

true - otherwise false.

vector<Event> EventCreator::CreateEvent()

This method will be called when a call to NewEvent() results in a true response.

To implement the abstraction model, this method should produce one or more new

events which encapsulate the state of the analysis and tuning domain as if it were a single

parallel application task. The information in this event should match the information

which was requested by a monitoring order previously translated by the associated In-

strumentation Order Translator. The output of this method is formed by a set of one

or more Event objects.

Plugin Architecture

As its name implies, ELASTIC is a flexible tool that gives the user a great amount

of freedom with respect to the manner in which the performance analysis and tuning

process is conducted. This flexibility is due to the plugin architecture that ELASTIC

Packages offer.

By basing the codification of the performance and abstraction models on the sub-

classing of core Abstractor -ATM components, the user provided code in an ELASTIC

108



5.4. ELASTIC

Package is given the same access as the base classes implementing the core Abstractor-

ATM pair modules. This allows a level of customisation beyond what could be provided

by a “black-box” architecture with a simple API interface. Additionally, this gives

the ELASTIC developers the possibility of providing generalised ELASTIC Packages,

which users can customise for a specific application, without having to change the code

that guides the performance analysis and tuning, by simply following the design of the

subclasses.

5.4.7 MRNet in ELASTIC

MRNet is a framework that establishes a hierarchical network of processes as communica-

tion substrate between a front-end and a number of back-ends. In the case of ELASTIC,

the hierarchical network connects the ELASTIC front-end with the ELASTIC back-ends

via the Abstractor -ATM pairs located at the internal nodes of this communication net-

work.

Now, we will present how ELASTIC makes use of the capabilities provided by the

MRNet framework in order to perform analysis and tuning on large-scale parallel appli-

cations.

To begin, the EFE uses the MRNet API to create and connect the internal processes

of our tuning network. The tuning network topology that must be created is determined

by a topology file that specifies the hosts on which the internal processes of the network

should be located. Then, the EFE waits for the connection of the back-ends. To connect

to the created network, back-ends require information such as process host name and

port number, that is provided by the EFE via the file system. This mode of MRNet

network instantiation is called back-end attach mode and it is suitable for tools that

require their back-ends to create, monitor, and control other processes, as in our case.

Once the back-ends have attached to the network, the EFE uses two streams, one for

control and one for performance analysis and tuning that will be used for communicating

between the EFE, EBEs and the internal processes of the network, the Abstractor -ATM

pairs.

The control stream is used to send metadata about the state of the tuning network

at the beginning and end of the operation of ELASTIC. At the beginning, the EFE

ensures that all EBEs work correctly and are connected to the network, and then the

EFE initiates the performance analysis and tuning process. At the end, EFE checks,

before deleting the tuning network, the all EBEs have finished the performance analysis

and tuning over their task.
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The performance analysis and tuning stream is used to send the performance analysis

and tuning data (monitoring orders, events and tuning orders) between the EBEs and

the internal nodes of the hierarchy where the Abstractor -ATM pairs are hosted.

In order to locate each Abstractor -ATM in an internal node, ELASTIC uses two

MRNet filters. Both filters are bound to the performance analysis and tuning stream.

One of these filters receives the upstream packets, while the other receives the down-

stream packets, they are named the Upstream Filter (UF) and the Downstream Filter

(DF) respectively. It should be remembered that in the ELASTIC tuning network, up-

stream packets contain events and downstream packets contain instrumentation orders

for monitoring or tuning.

To implement the Abstractor -ATM pair, its functionality must be divided between

these two filters.

The UF accommodates the components of the Abstractor -ATM pair which are di-

rectly or indirectly involved in the reception and processing of events. These components

are the Event Manager, the Event Creator, the Performance Evaluator, and the Instru-

mentation Order Sender. Additionally, to manage the connection with MRNet, the UF

contains a Network Proxy.

To complete the functionality of the Abstractor -ATM pair, the DF hosts the compo-

nents whose functionality is related to the translation of instrumentation orders. These

components are the Instrumentation Order Translator and the Instrumentation Order

Sender, as well as a Network Proxy.

Figure 5.9 shows how the components of the Abstractor -ATM pair are split between

the UF and the DF.
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Order Sender

Performance 
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Event Manager
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(events)

Upstream Packets
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Downstream Packets
(instrumentation orders)

Figure 5.9: Abstractor -ATM pair as MRNet filters.
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The operation of the UF includes the creation of new events and the performance

evaluation process. As a result of the creation of new events, upstream packets are emit-

ted to feed the UF of the parent level. On the other hand, the performance evaluation

process may result in the generation of instrumentation orders for monitoring or tuning,

which are sent as downstream packets. All downstream packets received by the DF will

be transformed into one or more new downstream packets, containing instrumentation

orders for monitoring or tuning. The instrumentation orders sent by both the UF and

the DF feed DFs in the child level or will be received directly by ELASTIC back-ends.

The UF and DF share a common storage space. This storage is used for communica-

tion between the Instrumentation Order Translator and the Event Manager components

which reside in different filters.

When the required infrastructure for communication and analysis has been created,

the EFE starts to communicate with the EBEs following the pattern shown in Figure

5.10.

ELASTIC 
front-end

ELASTIC
 back-ends

send(INIT)

send(INIT_ACK)

send(START_ANALYSIS)

send(END_ANALYSIS)

send(END)

Analysis and tuning process between the 
back-ends and the internal nodes of the 

network (Abstractor-ATM pairs)

Hierarchical Network

Control stream

Performance analysis and tuning stream

Figure 5.10: Communication protocol between the front-end and the back-ends in
ELASTIC.

The EFE initialises the control stream, sending an INIT broadcast packet to the

EBEs. EBEs launch the parallel application, and respond with an INIT ACK packet let-

ting the EFE know that they are ready to start the analysis and tuning process. Then,

the EFE initialises the performance analysis and tuning stream sending a START ANALYSIS
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packet to the EBEs. This START ANALYSIS packet is “bounced” back upstream so that

it passes through all the DFs and UFs of the tuning network, activating the beginning

of the analysis and tuning process. From this moment, the EFE stops receiving data

from EBEs, because performance information about the application only travels through

the internal processes of the network where Abstractor -ATM pairs are hosted by filters,

carrying out the performance analysis and tuning process on the parallel application

tasks.

When the parallel application finishes its execution, each EBE informs the EFE,

sending a FINISH ANALYSIS packet using the data stream. Then, EFE broadcasts an

END packet via the control stream to the EBEs and proceeds to destroy the network.

5.5 Conclusions

The principal objective of this work is to face the challenges posed by performing dy-

namic tuning on parallel applications composed of many thousands of tasks. In this

chapter, this objective is met in the form of the implementation of the proposed model

for hierarchical dynamic tuning. The result is the tool for large-scale tuning called

ELASTIC.

ELASTIC follows the closed tuning loop of continuous monitoring, analysis and

tuning. In the monitoring phase, ELASTIC uses event tracing to collect information

about the application at the task level. This information is sent to the Abstractor -

ATM pairs, the nodes of the tuning network where automatic performance analysis

is conducted. After detecting a performance problem, tuning orders are sent to the

ELASTIC back-ends to be inserted into the application task at runtime. These three

phases comprise the dynamic tuning in ELASTIC.

The two main technologies employed by ELASTIC are DynInst and MRNet. The

dynamic instrumentation required for the insertion of monitoring code and tuning orders

into the parallel application is conducted using the DynInst library. The hierarchical

communication of the proposed model is established in ELASTIC using the MRNet

framework.

The knowledge required to guide the performance analysis and tuning process is

integrated into ELASTIC in the form of ELASTIC Packages. The authors of ELASTIC

Packages have access to a rich array of features via the Tuning and Abstraction API,

which also defines the structure of the packages themselves. This plugin architecture

gives ELASTIC the flexibility to tackle a wide range of performance problems.
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6
Experimental Evaluation

“Esperando el nudo se deshace y la fruta madura.”

– Federico Garćıa Lorca

In this chapter, we present the experimental evaluation conducted in order to verify

that our model, presented in Chapter 3 and implemented in ELASTIC, enables dynamic

tuning of large-scale parallel applications.
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6.1 Introduction

Throughout this thesis, a model for hierarchical dynamic tuning has been presented

and its implementation in the tool ELASTIC has been detailed. Therefore, this chapter

presents an experimental evaluation with the aim of demonstrating that the proposed

model implemented in ELASTIC enables dynamic tuning of large-scale parallel applica-

tions.

The evaluation consists of executing a parallel application which presents a spe-

cific performance problem and using ELASTIC to dynamically detect and resolve this

problem. The first part of this evaluation is designed to test the scalability, achieved

by adapting the tuning network to the application size, of the model for hierarchical

dynamic tuning. It will show that ELASTIC is capable of managing the volume of con-

nections and information necessary to effectively tune large scale parallel applications.

This will also validate the scalability experimentation conducted using the prototype in

Section 4.4. The second part of the evaluation attempts to show that when operating

at large scales, ELASTIC is able to achieve performance improvements in the analysed

parallel application.

Two parallel applications have been used in the evaluation. The first is a synthetic

SPMD (Single Programme Multiple Data) parallel application into which various load

imbalance patterns have been introduced. These load imbalances must be solved by

ELASTIC using local migrations between neighbouring tasks. The second application

is an agent based simulation which also follows an SPMD paradigm. This application

simulates an epidemic model, which due to the dynamic nature of the agents (reproduc-

tion and death), presents load imbalance problems. In this case, the migration of agents

to balance the load follows an all-to-all pattern.

These applications have been chosen because, of all the currently employed parallel

programming paradigms, SPMD is that which is most likely to scale to tens of thousands

of processes [53]. Similarly, in current SPMD applications load imbalance is common and

one of the main causes of inefficient use of parallel machine resources. Furthermore, load

balancing is a problem which cannot truly be resolved without a global view of the load

state of the application, differing from locally resolvable problems such as inefficient use

of cache memory. As such, load balancing exploits the potential of the proposed model

in this work because it is a decomposable and abstractable problem.

For each one of these parallel applications, an ELASTIC Package which is capable

of resolving the inefficiencies related to the load imbalance has been integrated into

ELASTIC. Each of these packages takes into account the characteristics of the underlying
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parallel application and implements a strategy to conduct dynamic tuning, improving

the performance.

The details of the experiments performed with the synthetic SPMD application, and

their results, are presented in Section 6.2. Then, in Section 6.3, the use of ELASTIC with

the agent based application is detailed. A study of the overhead caused by ELASTIC

is presented in Section 6.4. Finally, Section 6.5 presents conclusions and some final

remarks arising from the experimentation.

Execution Environment

The experimental evaluation was executed on the supercomputer SuperMUC at Leibniz

Supercomputing Centre. As of the June 2013 Top500 list of supercomputers, SuperMUC

ranks in ninth place [59]. SuperMUC is composed of 9 400 compute nodes, with a total

of 155 656 processor cores and over 300 Terabytes of main memory between them.

The experiments were conducted using thin node islands. Each island is composed of

512 nodes interconnected by Infiniband FDR10. The nodes have 2 8-core 2.7GHz Intel

Xeon processors and 32GB main memory, running SuSe Linux. During the experiments,

up to 3 islands were used for each execution.

In the experimental tests presented in this section, each ELASTIC back-end is allo-

cated in one core, whereas each Abstractor -ATM pair uses four cores. This is because

each of the internal nodes of MRNet is multi-threaded and manages two threads for

every directly connected node (children and parent) in the hierarchy [7].

6.2 Synthetic Application

The synthetic application has been developed following the SPMD programming paradigm

using MPI as the library for inter-process communication.

The tasks that make up the application are logically arranged in a square two di-

mensional grid. As such, each task has up to four neighbouring tasks, with those tasks

on the edge of the grid having fewer. Each task is only able to communicate directly

with its neighbouring tasks. Figure 6.1 shows a representation of the application grid,

with the communication lines between tasks.

Each iteration consists of a computation phase followed by a communication phase.

Each task has a number of work units, which represent a fixed amount of computation

to be performed in each iteration. In this way, the amount of work to be performed by

each task in the computation phase is proportional to the number of work units it has.
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Figure 6.1: Logical layout of the synthetic application.

In the communication phase, each task exchanges messages with all of its neighbouring

tasks. Each message is of a fixed size.

In order to ensure that the synthetic application was able to operate in a large-scale

context, the amount of work to be performed in each iteration was kept equivalent to

the number of parallel application tasks. This situation is common in many scientific

applications, such as meteorological simulations, where a larger number of tasks are used

to increase the granularity of the simulation, rather than reduce execution time. In our

experimental evaluation, each task started the execution with 20 work units.

A synthetic parallel application was chosen to perform these experiments as it pro-

vides the possibility of testing different configurations in the most controlled manner.

6.2.1 Performance Problem

A common performance issue in SPMD applications is the imbalance of workload be-

tween individual tasks. This causes inefficiency in the application performance, due

to the tasks with less workload having to wait for overloaded tasks to complete the

iteration. This situation is illustrated in Figure 6.2.
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Figure 6.2: Load imbalance problem.

Since we are working with the synthetic application, the load pattern can be con-

trolled. To demonstrate the dynamic tuning capabilities of ELASTIC, load imbalance

was introduced into the synthetic application at runtime. In all cases, the load imbalance
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introduced was localised to one or more logical areas of the application grid, forming

“hotspots” of additional load.

Two different load imbalance scenarios have been employed: single localised hotspot

and multiple hotspots.

Single Localised Hotspot.

This scenario is characterised by presenting a single area of additional workload located

at the centre of the application grid. This area of additional workload is introduced at

a specific iteration of the synthetic application execution.

The hotspot contains three concentric areas of incremental additional load. The

widest area has a diameter of approximately 40% of the width of the application grid.

The additional load introduced is from 20 work units at the outer edge of the hotspot to

60 work units at the inner most point. Counting the original 20 work units, each of these

inner tasks will have a total of 80 work units. In total, the introduced load accounts for

an additional 10% of the initial application workload for all application sizes.

Figure 6.3 depicts an example of a single localised hotspot in a synthetic application

made up of 1 024 tasks in a 32×32 grid. This figure is a heatmap, the space represents

the logical grid of application tasks. The colour assigned to each task represents its

number of work units.
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Figure 6.3: Centralised hotspot in a 1 024 task synthetic application.
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Multiple Hotspots.

In this scenario the additional load introduced is distributed amongst a number of smaller

hotspots. To demonstrate the usefulness of dynamic tuning, hotspots are introduced in

three groups, each group at specific moments during the execution of the synthetic

application.

Each group of hotspots represents an additional 7% of the initial application load

(21% throughout the entire execution) for all the application sizes. The hotspots are

randomly placed in the application grid, however this placement does ensure that the

area covered by hotspots from the same group does not overlap. The three groups are

laid out so that the first two groups do not overlap, but the second and third groups

do. This situation presents different levels of imbalance throughout the application

execution.

Each hotspot is formed of two concentric areas of incremental additional load. The

hotspots in the first and third groups add up to 20 work units, while those of the second

group add up to 40 units. If no load balancing takes place, the maximum number of

work units for a single task after each of the three injections of additional load will be

40, 60 and 80 respectively.

An example layout of the three groups (a, b, c) is presented in Figure 6.4 for a

synthetic application composed of 1 024 tasks in a 32×32 grid.
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Figure 6.4: Multiple hotspots in a 1 024 task synthetic application.

6.2.2 ELASTIC Package

To solve the problems related to load imbalance in the synthetic application an ELASTIC

Package has been implemented and integrated into ELASTIC. The same ELASTIC

Package is used in all the Abstractor -ATM pairs.
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This ELASTIC Package attempts to balance the load evenly amongst all the tasks

in the synthetic application. Each instance balances the load in the analysis and tuning

domain of the ATM where it is located. Firstly, the package monitors the state of its

domain, and detects which tasks are underloaded and which are overloaded. Then, the

package decides how to redistribute the work units according to the communication

pattern presented in the synthetic application. In the remainder of this section, the

specific details of the functionality implemented by this package are presented.

This ELASTIC Package uses the Asynchronous Policy of the tuning network pre-

sented in Section 3.4.4 along with the Tuning Coherence Mechanism proposed in the

same section.

To structure the content of this ELASTIC Package, it will be presented divided into

its two conceptual parts, the performance model and the abstraction model.

Performance Model

The performance model provides the knowledge required to guide the dynamic analysis

and tuning process carried out by ELASTIC.

As it was presented in Section 3.3.1, a performance model for dynamic tuning is de-

fined in terms of measurement points (parameters that have to be measured at specific

points in the application to collect information about its performance), a set of expres-

sions to detect performance problems and give solutions to overcome them, and tuning

points, actions and a synchronisation method (where to insert changes, what kind of

changes to insert, and when to insert these changes).

Measurement Points. To detect load imbalance, the performance model requires,

for a given iteration, the number of work units of each application task over which

it is performing load balancing (i.e. the set of tasks that comprises an analysis and

tuning domain). This information is provided by a variable in the application called

work units. It is also necessary to identify the task from which this information comes

and the iteration in which it was collected. For this, we use the task’s MPI rank and

the variable iteration id.

The values of work units and iteration id are collected at the beginning of the

function which constitutes the computation phase, work(). The MPI rank is automati-

cally included in the event generated. Following the MonitoringOrder class specification,

detailed in Section 5.4.3, the contents of the monitoring order generated are shown in

Figure 6.5.

Only one monitoring order is necessary to gather the parameter required to evaluate

the performance expressions. This monitoring order is sent by the ATMs to all the tasks
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1 0 work 1 [ work_units, iteration_id]

eid action funcName place attrs

Figure 6.5: Monitoring order to collect the required information from measurement
points in the synthetic application.

in their analysis and tuning domains at the beginning of the application execution, and

then inserted into the application tasks. As a consequence of this monitoring order, each

task will generate one event per iteration containing the requested information.

Performance Expressions. In this ELASTIC Package the performance expressions

take the form of an algorithm for load balancing. As previously mentioned, the input

of the algorithm is, for a given iteration, the number of work units in each task of the

analysis and tuning domain. The output is the number of work units (if any) that each

task should send to each of its neighbours.

When the Performance Evaluator in an ATM has received an event from each task,

for a given iteration, performance analysis is activated. The load balancing algorithm

is only executed if the imbalance in the analysis and tuning domain, in terms of work

units per task, is greater than a specific threshold. The imbalance is calculated as the

difference between the maximum and minimum number of work units per task, divided

by the average of work units per task. In this ELASTIC Package the threshold was set

to 5%.

Each task object t in the algorithm contains a number of properties:

• work - the number of work units in this task

• rank - the rank of this task

• to send[4] - a map defining the number of work units to be sent to each neighbour-

ing task

• to receive[4] - a map defining the number of work units to be received from each

neighbouring task

• available work - the number of work units after subtracting units to be sent

(t.work −∑ t.to send[])

• next iter work - the number of work units after adding units to be received and

subtracting units to be sent (t.work +
∑

t.to receive[]−∑ t.to send[])

Pseudocode describing the operation of the algorithm is presented in Algorithm 6.4.

The algorithm looks at each row and each column of tasks in the analysis and

tuning domain individually. The row or column is balanced by first finding the ideal

number of work units based only on the tasks in that row or column. Then, the most
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Algorithm 6.4 Pseudocode to load balance the synthetic application.

Input: tasks[N ]
Input: size // the size of the analysis and tuning domain (size.width ∗ size.height = N)
Input: threshold // the imbalance threshold
Output: tasks[N ] // array of tasks with to send and to receive updated

max work ← maximum number of work units for a task in tasks[]
min work ← minimum number of work units for a task in tasks[]
ideal work ← average number of work units for tasks in tasks[]

if (max work −min work)/ideal work > threshold then

// Balance individual columns
for i = 0→ size.width− 1 do

column[size.height]← ith column of domain
k ← index of task in column[] with greatest number of work units
ideal← average number of work units for tasks in columns[]
lower col[k + 1]← column[] elements 0 up to k
calculate vector balance(lower col, ideal)
upper col[size.width− k]← column[] elements (size.height− 1) down to k
calculate vector balance(upper col, ideal)

end for

// Balance individual rows
for i = 0→ size.height− 1 do

row[size.width]← ith row of domain
k ← index of task in row[] with greatest number of work units
ideal← average number of work units for tasks in row[]
lower row[k + 1]← row[] elements 0 up to k
calculate vector balance(lower row, ideal)
upper row[size.width− k]← row[] elements (size.height− 1) down to k
calculate vector balance(upper row, ideal)

end for

end if

overloaded task is found, and the row or column is divided around that task. Each

part of the row or column is called a task vector, and passed separately to the function

calculate vector balance(). Figure 6.6 shows an example of this behaviour for a single

row composed of six tasks.

Pseudocode describing calculate vector balance() is given in Algorithm 6.5. It should

be noted that both vectors include the most overloaded task.

Each vector is balanced by starting at the opposite end to where the overloaded

tasks is located. Each task is checked in turn, and if the task is underloaded, work

units are moved from the next task in the vector. This process is repeated until the

overloaded task is reached. The migration information is stored in the task objects, in

the properties to send and to receive.

By balancing each row and column separately, a migration scheme to improve the

imbalance in the entire analysis and tuning domain is achieved. It is important to

recognise, that due to the local-only communication pattern to which this algorithm is
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Figure 6.6: Single row load balance example.

Algorithm 6.5 Pseudocode for calculate vector balance() function.

Input: task vector[M ] // array of tasks from a column or row of size M
Input: ideal // the ideal number of work units in the given row or column
Output: task vector[M ] // array of tasks with to send and to receive updated

for j = 0→M − 2 do
if task vector[j].next iter work < ideal then

to move← min{ideal−task vector[j].next iter work, task vector[j+1].available work}
task vector[j].to receive[task vector[j + 1]]← to move
task vector[j + 1].to send[task vector[j]]← to move

end if
end for

subjected, it is often not possible to balance the load perfectly in one execution of the

load balance algorithm. However the imbalance state of the analysis and tuning domain

will be improved.

Tuning Points, Tuning Actions and Synchronisation Method. In order to move

load between tasks a migration function has been inserted into the execution flow of the

synthetic application after the communication phase. This migration phase is activated

every three iterations in each application task, independent of whether there is anything

to be migrated. This is because a task does not have prior knowledge about whether it

is going to receive work units from one of its neighbours or not.

The maximum migration frequency possible is every 2 iterations because a full it-

eration is required to collect information about the state the application after each
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migration. The migration frequency of every 3 iterations was chosen to strike a balance

between responsiveness and minimising the intrusion generated by the tuning process.

To activate the migration of work units from one task to another, the sending task

must be instrumented. In this instrumentation, the tuning points are the variables

that represent the number of work units to be sent to each neighbouring task. These

variables are located in the migration function and are called send north, send south,

send east, and send west. The names correspond to the neighbouring tasks located at

each cardinal point. The tuning action to be performed is setting the value of each of

these variables with the value resulting from the load balancing algorithm. This action

occurs at the beginning of the migration phase (synchronisation).

After the performance evaluation and in the case that load imbalance is detected,

an ATM creates and sends tuning orders for each task in its domain. A tuning order

is an instruction to set the value of a single variable, one of send north, send south,

send east, or send west. So, each task will be sent up to 4 tuning orders.

Abstraction Model

The abstraction model determines how the information generated during the analysis

and tuning process is transferred between the Abstractor -ATM pairs at different levels

in the hierarchy, as well as how the application is divided into domains.

This section describes a) how the decomposition is performed over the synthetic

application, b) how events that encapsulate the information which represents the state

of an analysis and tuning domain are generated, and c) how monitoring and tuning

orders are translated as they flow down through the hierarchy.

Division Scheme. The abstraction model defines how the application is divided into

domains to perform a hierarchically distributed analysis and tuning process.

In the case of the synthetic application, an “abstractable” decomposition can be

obtained by ensuring that the original application is divided into domains, each of which

is composed of contiguous blocks of tasks, as shown in Figure 6.7.

These domains are the analysis and tuning domains of ATMs at the base level of the

hierarchy. So, these ATMs, following the communication pattern of the application, are

able to balance the load within their own domain. Following the abstraction concept

of the model proposed in this work, the Abstractor -ATM pairs in the base level form a

virtual synthetic application. As shown in Figure 6.7, this virtual application may then

be further subdivided to form the analysis and tuning domains of the Abstractor -ATM

pairs at the parent level in the hierarchy. When an ATM at this parent level decides to
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Real parallel application
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Figure 6.7: Parallel application decomposition into “abstractable” domains.

move load in its analysis and tuning domain, this decision is applied at the level of the

original application, as movement of load, between the application tasks which form the

borders between domains.

To maintain the homogeneousness of the original application, each domain in the

same level will have the same dimensions. This division scheme also produces domains

which are analysable and tunable. In all the experiments with the synthetic application

in this section, the application and the domains are square.

Monitoring Order Translation. The information required by the performance model

is the total number of work units in each application task and the rank of the task. As the

same ELASTIC Package is used at all levels in the hierarchy, the same monitoring orders

are generated at all levels. Therefore, when an Abstractor receives the monitoring order

from its parent ATM, it simply registers that order with the Event Manager module. In

this way, the Abstractor will also received the events generated as a consequence of the

monitoring order sent by its associated ATM.

Event Creation. The Abstractor must be able to satisfy the monitoring order received

from its parent ATM and provide the number of work units and the iteration when this

information was collected.

This abstraction model considers the number of work units of an analysis and tuning

domain (which will be represented as a virtual task) to be the sum of the work units of

each of the tasks within it. To calculate this value, an Event Creator has to received

one event from each task in the domain for a give iteration.

In Figure 6.8, an example of the event creation process is shown. Supposing an

analysis and tuning domain composed of 4 tasks, when the Event Creator has received

4 events for the same iteration, it can create a new event. The 4 received events and the

new event are represented in terms of the Event class detailed in Section 5.4.3.
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Figure 6.8: Event creation example for the synthetic application.

The timestamp of the new event, ts, is the minimum of the received events because

the information in the new event should be considered as old as the oldest event from

which it is created. The event ID, eid , is the same, and it should be noted that it

corresponds with the ID of the monitoring order that requested the information. The

rank, tid , is the rank of the Abstractor -ATM pair where the Event Creator is located.

This value is assigned at the beginning of the execution of ELASTIC, in this example it

is 0. Finally, the value of work units is the sum of this variable in each of the received

events and the iteration is the same.

Tuning Order Translation. Tuning orders are generated by ATMs after evaluating

the performance model in order to improve the parallel application’s performance. When

an Abstractor receives a tuning order from its parent ATM, it must be translated to be

applied to the analysis and tuning domain of its associated ATM. The translated tuning

orders must provoke the same change in the application at the level below (be it the

original parallel application or another virtual application) as was requested by the

tuning order received at this level.

This abstraction model implements this translation according to the communication

pattern of the synthetic application. This means that an order to migrate work units

between two Abstractor -ATM pairs is translated so that the migration occurs between

the tasks of their respective analysis and tuning domains which share a common border.

To clarify this behaviour, Figure 6.10 shows an example where an order from level

i + 1 is received, by a given Abstractor AB at level i, to move 200 work units to the

neighbouring Abstractor -ATM pair to the north, N (a). AB actually represents a 4×4

grid of tasks at level i− 1 (the analysis and tuning domain of its associated ATM). The

200 work units to be moved are evenly divided, so that each task on the north border of

the domain (at level i−1) receives a tuning order directing it to move 50 work units to its

north neighbouring task (b). If level i is not the base level in the tuning network, then
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AB

N

Level i
(parent level)

200

Level i-1
(child level)

50 50 50 50

(a)

(b)

T3T1 T2 T4

Figure 6.9: Tuning order translation diagram for the synthetic application.

these tasks are actually also Abstractor -ATM pairs, and the tuning order translation

process will be repeated in each one.

So, in this example, the tuning order to set the value of the variable send north

to 200 is translated into 4 tuning orders which are sent to the tasks T1, T2, T3 and

T4, located on the northern border of the analysis and tuning domain of AB. This

translation in terms of the specification of the TuningOrder class is shown in Figure

6.10. The definition of SetVariableValueTuningOrder subclass used can be found in

Appendix A.

AB 1 send_north 200

tid type varName varValue

T1 1 send_north 50

tid type varName varValue

T2 1 send_north 50

T3 1 send_north 50

T4 1 send_north 50

Tuning order to be translated

Translated tuning orders 

Figure 6.10: Example of SetVariableValueTuningOrder translation for the synthetic
application.
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New tuning 
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Discard 
order

Make new 
order pending

Yes

No

Is the order 
stale?

Figure 6.11: Simplified coherence mechanism.

According to the characteristics of the migration process and the abstraction mech-

anism, an individual task (virtual or real) cannot receive contradictory orders, from

different levels in the tuning network, directing it to migrate work units in the same

direction. Using the previous example, the task T3 can receive orders to migrate work

east, south or west from the the ATM located at level i in the hierarchy, and orders

to migrate work north which originate at level i + 1 and are then translated at level i.

Because orders cannot be contradictory, the coherence mechanism described in Section

3.4.4 can be simplified, and so the ELASTIC Package follows the decision flow shown in

Figure 6.11

6.2.3 Tuning Network Topology

Throughout the experimental evaluation with the synthetic application, tests were exe-

cuted using application configurations composed of different numberst of tasks. For each

application size, the topology of ELASTIC’s tuning network was calculated, following

Algorithm 3.1 depicted in Section 3.5.1, so that the Abstractor -ATM pairs would not

become a bottleneck.

In order to calculate these topologies, certain values had to be measured while others

could be calculated directly from the configuration of the synthetic application and the

analysis and tuning process. The values of all the required variables can be found in

Table 6.1
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Table 6.1: Values of variables required to calculate tuning network topology for the
synthetic application.

Variable Value Description

Ea 1 # events from each child node required for analysis
Ec 1 # events from each child node required for event creation
Ta(N) 0.004 ·N2 ms analysis time (quadratic)
Tm 0.02 ms management time
Tc 0.2 ms event creation time
Tt 0.3 ms instrumentation order translation time
fe 2.5 events/s frequency of event generation in the parallel application
frc 2.5 batches/s frequency of event reception from each child node
frp 2.5 orders/s frequency of tuning order reception from the parent ATM

Parameters Calculation

As was explained in Section 6.2.2, the analysis process in the ATMs requires one event

from each child node to be activated, and from each of these “event batches”, a new

event is created to be sent to the parent ATM. For these reasons, Ea and Ec respectively

take the value 1.

In the synthetic application, each work unit represents an amount of work that must

be performed in each iteration. Since the iterations are synchronised by barriers, the

iteration time for the application as a whole is equal to that of its slowest task. As such,

the minimum iteration time is when the application is fully balanced.

In our evaluation, the imbalance introduced into the application never reduced the

total number of work units in the application from its starting amount, which is 20 work

units per task. In order to ensure that the topology does not become saturated at any

point in the execution, it is this minimum which we must use to calculate it. A single

work unit represents approximately 20ms, which means that the minimum computation

time for the application in each iteration is approximately 400ms.

As the synthetic application represents a computation bound application, the time

required for communication between tasks can be disregarded for the purpose of these

calculations, and we will consider the iteration computation time to be equivalent to the

total iteration time. As such, fe = 1/400ms = 2.5 events per second.

Since the rate at which events are created (Ec) is 1, the frequency with which an

event is received from each child node will be the same at all levels in the tuning network,

and is equal to the frequency with which events are generated at the application level.

So, frc = fe.

In this load balance experimental evaluation, it is expected that there will be times

when a tuning order is created following every analysis process performed, which will

lead to a frequency of tuning order generation that is equal to that of the reception
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of event batches. For this reason, the frequency with which tuning orders are received

from the parent ATM is considered to also be the same as the frequency that events are

generated in the application, i.e. frp = fe.

The remaining variables represent the time required to perform various tasks from

the analysis and tuning process, Tm, Tc, Tt and Ta(N). In this case, the values have

been obtained through prior evaluation of the analysis process. In the case of the analysis

time, it was found that the level of imbalance in the analysis and tuning network affected

the time required to perform analysis, but only up to a certain level (where migration

had to be considered for every task in the domain). This maximum time is the value

used for Ta(N), which is a quadratic function in the number of nodes in the analysis

and tuning domain.

Topology Calculation

Using the previous values, we can calculate the most efficient topology for ELASTIC’s

tuning network. While the topology will be different for different application sizes, the

number of application tasks that a base level ATM can support will remain the same,

although the actual analysis and tuning domains of these ATMs may be changed for

different application sizes.

To calculate the maximum domain size for the base level ATMs, the first iteration of

the loop in Algorithm 3.1 must be followed, for i = 0, and the following expression must

be solved for Nmax. The analysis frequency is equal to frequency with which events are

generated in the application, fe = fa = 2.5 analyses / second.

Nmax · Ea · Tm + Ta(Nmax) +
Ea

Ec
· Tc + Tt · frp =

1

fa(
0.004

1000

)
N2

max +

(
0.02

1000

)
Nmax +

(
0.2

1000
+

0.3

1000
· 2.5− 1

2.5

)
= 0

Using the quadratic formula we can solve for Nmax, which gives,

Nmax ≈ 314

This indicates that each ATM at the base level of the tuning network is capable of

supporting an analysis and tuning domain of up to 314 application tasks.

Because the ELASTIC Package used to perform load balancing on the synthetic

application is the same at all levels of the hierarchy, and because a new event is created

and sent to the parent ATM for every event batch received (Ec = 1), this expression
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is the same for all levels in the tuning network. As such, all ATMs, irrespective of the

level at which they are situated, are able to support an analysis and tuning domain of

up to 314 child nodes without becoming saturated.

In order to evaluate the scalability and effectiveness of the proposed model for dy-

namic tuning as it is implemented by ELASTIC, the experiments presented have been

run for applications composed of different numbers of tasks.

In the case of the local communication limitations present in the synthetic applica-

tion, load balancing performance becomes dependent on the geometry of the application.

Balancing the load of a 12×12 grid is not equivalent to doing the same over a 16×9 grid,

even though both are composed of 144 application tasks.

In order to make experiments over different numbers of application tasks as com-

parable as possible, it is desirable that all applications have proportional geometry. To

extend this proportionality to the analysis and tuning domains as well, all the appli-

cation grids as well as the analysis and tuning domains should have square geometry,

that is, the grid of application tasks has equal height and width. Additionally, to aid

comparability, the width of the application should be divisible by the width of each

analysis and tuning domain.

The application sizes have been chosen to accommodate analysis and tuning domains

of 16×16 application tasks. This gives 256 application tasks, a square number below

Nmax, the maximum number of tasks that a single ATM can support. The application

sizes and their associated tuning network topologies are presented in Table 6.2.

Table 6.2: ELASTIC tuning network topologies over the synthetic application.

Number of Level 0 Level 1
Application Tasks Number of ATMs Number of ATMs

256 1 -
1 024 4 1
2 304 9 1
4 096 16 1
9 216 36 1
16 384 64 1

The 256 task application is analysed and tuned by a centralised tuning network,

while the remainder of the application sizes are analysed and tuned by tuning networks

made up of two levels. A single ATM at the root level controlling between 4 and 64

ATMs at the base level.
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6.2.4 Scalability Evaluation

The first evaluation to be performed has been designed to test the scalability of ELAS-

TIC.

This experimentation will be used to verify the results obtained in Section 4.4 and

demonstrate that the proposed hierarchical model provides a scalable environment which

offers the capabilities necessary to perform dynamic tuning over parallel applications

composed of tens of thousands of tasks.

As in Section 4.4, the global decision time will be measured for parallel applications

of different sizes. The results to be presented come from the same experiments used to

demonstrate the effectiveness of ELASTIC in the sections that follow. Specifically, we

have used the experiments featuring multiple hotspots of imbalance.

The most influential component of the decision time is the analysis time. As it

was mentioned, the analysis time of the load balancing algorithm implemented in the

employed ELASTIC Package is variable, depending on the state of imbalance in the

analysis and tuning domain. In order to obtain results comparable with those presented

in Section 4.4, where the analysis time did not vary during the execution, the maximum

decision time during an execution is used. We believe that this also presents a stronger

case for the scalability of our model.

Using the application sizes and their associated ELASTIC topologies presented in

Table 6.2, Figure 6.12 presents the maximum decision time for each level in ELASTIC’s

tuning network for each application size.
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Figure 6.12: ELASTIC’s global decision time tuning a synthetic application.

Because the load balancing performance model used to analyse and tune the syn-

thetic application presents a quadratic analysis time with respect to the number of tasks

in the analysis and tuning domain, the global decision time is seen to grow accordingly

for the experiments from 1 024 to 16 384 application tasks. This follows the same pattern
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that was observed during the experimentation in Section 4.4, offering validation that the

global decision time increases logarithmically with the number of tasks in the parallel

application.

6.2.5 Effectiveness Evaluation

Having shown that the proposed model for hierarchical tuning is able to scale to manage

applications composed of many thousands of tasks, it remains to show that this model is

able to effectively tune a parallel application. In this section, the results of how ELASTIC

tunes the synthetic application will be presented. Two separate load imbalance scenarios

will be tuned, as detailed previously in this section: single localised hotspot and multiple

hotspots.

Following the performance and abstraction models, implemented in the ELASTIC

Package and described in Section 6.2.2, each analysis module at the base of the hierarchy

balances the workload of its analysis and tuning domain. The root analysis module,

whose domain is composed of the base level analysis modules, balances the workload

between the domains of its child analysis modules. The workload migration decisions

made at both levels balance the load of the entire application.

Centralised Hotspot

To begin this section, we will show how ELASTIC employs hierarchical performance

analysis and tuning in order to distribute additional load which is dynamically intro-

duced at the centre of the application grid.

Using the synthetic application composed of 4096 tasks, we will use a series of

heatmaps to show the state of the load imbalance in the synthetic application and how

it changes under the dynamic tuning performed by ELASTIC.

In Figure 6.13 (a) the load state of the application is depicted in the iteration when

the imbalance is first introduced.

The analysis and tuning domain of each Abstractor -ATM pair at the base level of

the tuning network, composed of 256 tasks, is delimited by the black lines. In turn,

the root ATM controls the virtual application composed of these Abstractor -ATM pairs.

The view that the root ATM has of the application is show in Figure 6.13 (b), where

each square represents an abstracted analysis and tuning domain at the base level as a

virtual application task. The work units in each virtual task, following the abstraction

model, are equal to the sum of the work units of all the tasks in the domain that it

represents.
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Figure 6.13: Initial centralised load imbalance in (a) the synthetic application and
(b) the virtual application.

As can be seen the load imbalance takes the form of a centralised hotspot of addi-

tional load. Once ELASTIC detects this imbalance situation, the ATMs will send tuning

orders to their respective analysis and tuning domains in order to correct the imbalance.

As was previously mentioned, load migration between neighbouring tasks occurs

every three iterations. Therefore, since no changes can be observed between migrations,

we are only interested in the state of the application every three iterations as ELASTIC

performs dynamic tuning. In Figure 6.14 the heatmaps obtained from the dynamic

tuning process are shown, up until the point where the state of the application becomes

stable and no further tuning is performed.

The transitions between heatmaps show the effects of how ELASTIC dynamically

balances the load of the application. Throughout the sequence of heatmaps it can be

seen how the imbalance situation detected by the root ATM is corrected by moving

load between the tasks located at the borders of the domains. Due to the abstraction

mechanism implemented in the ELASTIC Package, the tuning orders generated by the

root ATM cause destabilisation within the individual domains that comprise the real

application. The imbalance introduced by the actions of the root ATM will result in the

tasks of the domain borders being over or underloaded. It is observed that when the

base level Abstractor -ATM pairs discover this imbalance, new tuning orders are sent to

correct the situation, while the root ATM continues performing its analysis and tuning

process. This behaviour reflects the pattern of level by level stabilisation described in

Section 3.6.

The progression of the load balancing process shown in the heatmaps reflects how

ELASTIC’s combination of operations performed by all the Abstractor -ATM pairs in the
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Figure 6.14: Heatmaps obtained during the synthetic application execution.
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tuning network is able to produce a performance improvement which takes into account

a complete vision of the parallel application. This is achieved by the two main processes

of the proposed model for large-scale tuning. The decomposition of the application

into domains allows local load balancing, and the abstraction mechanism between levels

in the tuning network permits the load imbalance that exists between domains to be

rectified.

Figure 6.15 presents the application iteration time for the executions of synthetic

applications ranging from 256 to 16 384 tasks. Each graph shows the evolution of the

application performance with and without ELASTIC performing analysis and tuning.

The third line shows the theoretical ideal iteration time if the load in the application

were perfectly balanced.

The patterns reflected by the iteration time of the applications without ELASTIC

present show how the introduced load imbalance affects the application performance.

Since the iteration time is dependent on the computation time of the task with the

maximum number of work units in the synthetic application, this pattern remains the

same for all application sizes.

When the synthetic application is tuned by ELASTIC, the behaviour of the iteration

time for all application sizes follows a similar pattern. Once the introduced imbalance is

detected by ELASTIC, a period characterised by tuning operations takes place. After

which the load imbalance reaches a level where ELASTIC decides no further tuning is

necessary. It is this period of load migration where we will focus our attention.

As the size of the application increases it takes longer for the load balancing algorithm

distributed hierarchically to spread the centralised additional load throughout the rest of

the application grid. For this reason, the period of load migration lasts more iterations

for larger applications before a stable state is reached. The peaks of additional imbalance

that can be seen in the iteration times of larger application sizes are due to movement

of load between domains as we previously explained in the description of the heatmaps.

Even though this kind of localised performance problem presents a challenge for

ELASTIC’s hierarchical tuning network as the application size grows, it is capable of

resolving the load imbalance effectively. It should be noted that, as shown in the graphs,

the number of iterations required to distribute the load throughout the application does

not increase proportionally with the size of the application, highlighting the capabilities

of the hierarchical tuning process.

The effects of the load balance performed by ELASTIC finally result in an improve-

ment of the application performance, which is reflected in a reduction in the execution

time of the synthetic parallel application. Figure 6.16 shows the execution times for each

of the experiments presented in this section. The percentage presented above the second
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Figure 6.15: Iteration times for centralised hotspot imbalance for each parallel appli-
cation size.
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bar is the reduction in the execution time when the application is tuned by ELASTIC

compared to the original application.
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Figure 6.16: Execution time of the synthetic application with a single centralised
hotspot.

As can be seen, ELASTIC reduced the execution time of the parallel application

for all sizes tested. This shows that our approach is able to manage the data generated

during the monitoring process and use its tuning network to effectively detect the induced

load imbalance and correct it in the synthetic application running on many thousands

of processors.

Multiple Hotspots

In this scenario, ELASTIC faces a pattern of load imbalance characterised by multiple

hotspots of load, distributed throughout the application grid, introduced at various

moments of the synthetic application execution.

In Figure 6.17 the first introduction of imbalance in the case of the synthetic appli-

cation composed of 4 096 tasks is presented. The smaller hotspots that are introduced

can be observed in Figure 6.17 (a). Different to the centralised hotspot in the previ-

ous section, these hotspots appear as randomised imbalance from the point of view of

the root ATM, shown in Figure 6.17 (b). This pattern repeats for the subsequent two

injections of load imbalance.

In this scenario, the load state of the synthetic application changes due to migrations

and due to the three injections of additional load. In Figure 6.18 the heatmaps show the

process of load balancing resulting from the first injection of additional load. As can be

seen, ELASTIC achieves a load balanced state after 3 migrations. Once again, the root
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Figure 6.17: First introduction of multiple hotspots in (a) the synthetic application
and (b) the virtual application.
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Figure 6.18: Heatmaps obtained after the first injection of additional load.
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ATM balances the load between the domains. Meanwhile, the base level Abstractor -

ATM pairs resolve the injected load imbalance as well as that provoked by the tuning

actions of the root ATM.

Figure 6.19 depicts the heatmaps that reflect the load situation after the second

injection of additional load. This includes the third injection, which is timed so that

ELASTIC would not have had enough time to resolve the problems derived from the sec-

ond injection of load. This situation demonstrates how ELASTIC is capable of reacting

to dynamic changes throughout the application execution.

As in the previous scenario, Figure 6.20 presents individual graphs for each synthetic

application size, showing the iteration time throughout the execution with and without

ELASTIC performing analysis and tuning. The third line represents the theoretical

ideal iteration time, if the application were perfectly balanced.

The behaviour of the synthetic application without ELASTIC shows the three dis-

tinct rises in the iteration execution time as the additional load is injected.

In all the cases where ELASTIC is tuning the synthetic application, the injection

of additional load is countered by the dynamic tuning performed at each level in the

tuning network. In these executions, the same general load pattern can be observed. In

the case of 9 216 and 16 384 tasks, there is one last peak of instability before obtaining

a load balanced state, which occurs after the final injection of additional load. This is

caused by a migration of data from multiple domains to a single domain, ordered by the

root ATM. This situation becomes more probable as the number of domains into which

the application is decomposed increases.

The peaks of instability are caused by the näıve manner in which the performance

and abstraction models operate with respect to the migration of work units between

domains. Migrations between domains are performed with no specific knowledge of the

state of the tasks which are located at the borders. Although the domain as a whole is

underloaded, migrating large quantities of work units will cause these border tasks to

become temporarily overloaded.

As can be seen from the iteration times for this type of imbalance, ELASTIC achieves

a final balanced state at roughly the same time for each application size. This occurs

between iterations 65 and 75. This differs from the centralised hotspot presented in the

previous section, which required more iterations to balance the load as the size of the

application increases. This difference highlights the strength of ELASTIC’s hierarchical

tuning network when resolving partially distributed performance problems.

The graph in Figure 6.21 shows how the difference can be appreciated in the exe-

cution times for the synthetic application with multiple distribution hotspots injected,
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Figure 6.19: Heatmaps obtained after the second and third injection of additional
load.
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Figure 6.20: Iteration times for multiple hotspots of imbalance for each parallel
application size.
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for the original application and for the application tuned by ELASTIC. The percentage

presented depicts the reduction in the execution time when the application is tuned by

ELASTIC compared to the original application.
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Figure 6.21: Execution time of the synthetic application with multiple distributed
hotspots.

It can be seen that the reduction in the performance improvement gained with the

size of the synthetic application is not as pronounced in this scenario as in the case

of the centralised hotspot. This is because the multiple hotspots are introduced in a

more distributed manner and so it does not take as long to spread the additional load

throughout the application grid.

From these results, it can be observed how in this case ELASTIC is also capable

of improving the performance of the synthetic application when the load dynamically

changes throughout the execution.

6.3 Agent-Based Application

In this section, the model for hierarchical dynamic tuning proposed in this thesis and

implemented in ELASTIC is applied to a real parallel application. The application is

a large-scale agent-based simulation of a SIR epidemic model, named for the primary

agent states: Susceptible (S), Infectious (I), and Recovered (R) and follows an SPMD

paradigm.

The simulation describes how an epidemic spreads throughout a population. In this

model, agents represent members of a population divided into three groups:

• Susceptible. These agents can contract the disease, but are not yet infected or

immune.
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• Infectious. These agents have been infected, and may pass the disease on to others.

• Recovered. These agents have recovered from the disease and are now immune.

During the simulation, the age of each agent is known, which is used to trigger

reproduction and natural death in the population. As such, new agents are created as

a consequence of birth and agents are removed due to death of natural causes or from

the disease. The simulation takes places in a 2D toroidal grid.

This SIR model is implemented using the agent-based simulation tool FLAME (Flex-

ible Large-scale Agent Modelling Environment) [25]. FLAME is an agent-based applica-

tions generator. Through model X-Machine Markup Language specification files and the

implementation of the agent functions, FLAME automatically generates the simulation

code in C.

FLAME enables parallel execution of agent-based simulations via MPI following an

SPMD paradigm. Each task executes the same code, but operates over a different set

of agents. At the beginning of the application execution, agents are assigned to parallel

application tasks following a round-robin scheme.

In each iteration the parallel application tasks communicate in order to exchange

the information that they will require to simulate the following iteration. The applica-

tion follows an “any-to-any” communication pattern, wherein each task may exchange

information with any other task in each iteration.

The communication between tasks arises from the interactions amongst the agents

that they host. Agents have a geographic location in the simulation space. An agent

only interacts with other agents that are geographically near. Therefore, tasks that

contains agents which are near to one another will need to exchange information.

6.3.1 Performance Problem

During the course of the simulation, agents are created through births and they are

eliminated because of death. When a new agent is created, it is allocated to the same

task as its parent agent. The addition of agents to some tasks and elimination from

others can lead to computation imbalance between tasks in the parallel application.

Additionally, the computation time required to process each agent is not uniform. Due

to the complex interactions between agents, some of them require more computation

than others in each iteration.

Tasks with more computation to perform in each iteration will slow down the ex-

ecution of the entire application as tasks with less computation must wait to perform

inter-iteration synchronisation. This situation results in a similar performance problem
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to that induced in the synthetic application. Furthermore, because the simulation is

stochastic this imbalance will occur differently from one execution to the next. This

makes this application suitable to apply dynamic tuning.

Figure 6.22 shows the level of imbalance, in terms of the computation time per

iteration, present in an example execution using 1 024 parallel application tasks. It

can be observed that the imbalance increases during the application execution. This is

a tendency of the performance problem present in this application, where overloaded

tasks tend to become more overloaded as the simulation progresses.
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Figure 6.22: Increasing level of imbalance in the agent-based application executed on
1 024 tasks.

6.3.2 ELASTIC Package

The load imbalance problem in the agent-based application has been tackled employing

ELASTIC with a specific ELASTIC Package. In this experimentation, the Abstractor -

ATM pairs at all levels in the tuning network use the same ELASTIC Package.

In this instance, the ELASTIC Package is based on an algorithm for balancing the

load in agent-based SPMD applications which is presented in [29]. This algorithm uses

information about the number of agents and the computation time of each task in the

application, to determine how to move agents between tasks in order to improve the

application’s performance.

In the functional behaviour of the agent-based application, the computation associ-

ated with an agent does not depend on the application task where it is performed. For

this reason, migration can be performed between any tasks in the application, and is

not restricted in the same manner as was the case for the synthetic application.

The ELASTIC Package described in this section, embeds the functionality of this

algorithm, which it performs over its analysis and tuning domain.
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Performance Model

To guide the analysis and tuning process of the agent-based application, the performance

model required has been defined based on the agent-based load balance algorithm pre-

viously introduced. In this section, it is detailed in terms of the measurement points,

performance expressions, and tuning points, tuning actions and synchronisation method.

Measurement Points. The measurement points of the performance model are the

inputs of the load balance algorithm. These inputs are the number of agents and the

total computation time for each task in a given iteration. This information is contained

in two variables of the application, agent count and iter work. The current iteration

is also collected from the variable iteration id.

There are four computation phases in each iteration. Therefore, the computation

time per iteration is calculated as the sum of these phases, and will be available to be

collected at the end of the final computation phase of each iteration, phase 4(). To

reduce the number of events generated in the parallel application, the number of agents

is also collected at this point.

The contents of the monitoring order generated is shown in Figure 6.23, following

the MonitoringOrder class specification, detailed in Section 5.4.3.

1 0 phase_4 0 [ agent_count, iter_work, iteration_id ]

eid action funcName place attrs

Figure 6.23: Monitoring order to collect the required information from measurement
points in the agent-based application.

A single monitoring order is sufficient to collect these three parameters, and therefore

a single event containing the requested information is generated by each task in each

iteration.

Performance Expressions. The performance expressions in this ELASTIC Package

correspond with a set of rules and the evaluation of the load balance algorithm schema

presented in [29].

The algorithm decides how to balance the load within an analysis and tuning domain

by using the computation time and number of agents of each task in the domain, collected

from the measurement points. An acceptable imbalance threshold is defined by the user,

as the percentage deviation from the mean computation time. This imbalance threshold

was set to ±10%.

After each iteration, when the Performance Evaluator has received an event con-

taining the required information from each task in the domain, the performance analysis
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process is activated. If the imbalance detected is over the defined threshold, the load

balancing algorithm is executed.

The algorithm operates by assigning agents to be migrated from the most overloaded

tasks to the most underloaded tasks successively, until the projected load in all tasks

is within the designated threshold. These migrations can be between any two tasks

in the analysis and tuning domain. Each load balance algorithm execution provides a

migration scheme that achieves a balanced state in the analysis and tuning domain.

In Algorithm 6.6, pseudocode describing the operation of the algorithm is presented.

Algorithm 6.6 Load balance scheme for agent-based application.

Input: N // Number of tasks in the analysis and tuning domain
Input: iter work[N ] // Computation time for each task
Input: agent count[N ] // Number of agents for each task
Output: migration[N ][N ] // Agents to migrate from each task o to each task u. Initialised to

0.

avg time←∑
iter work[]/N

tolerance← threshold ∗ avg time
proj work[]← iter work[] // Create a copy of iter work

if max0≤i≤N {|iter work[i]− avg work|} > tolerance then
centre← least overloaded task
o← index of most overloaded task

while proj work[o]− avg time > tolerance do
exceeded time← proj work[o]− avg time
time per agent← iter work[o]/agent count[o]
u← index of most underloaded task

while avg time− proj work[u] > tolerance do
required time← avg time− proj work[o]
migration[o][u]← to migrate(exceeded time, required time,

time per agent)
proj work[o]← proj work[o]− (migration[o][u] ∗ time per agent)
proj work[u]← proj work[u] + (migration[o][u] ∗ time per agent)

end while

o← index of most overloaded task
end while

end if

The algorithm selects the most overloaded task, tasko, and the most underloaded

task, tasku. A number of agents are selected to be migrated from tasko to tasku such

that the projected load of one or both of these tasks is situated inside the threshold.

Considering the projected load after the proposed migration, the new most underloaded

task is designated tasku. If the projected load of tasko remains above the threshold,

then further agents are designated to be migrated to the new tasku, otherwise a new

tasko is selected and the algorithm continues.

Since the computation time of each agent is not fixed, to calculate the number of

agents to migrate, the average computation time per agent in the overloaded task is
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considered. It is this average time per agent that is used to calculate the projected

computation time in both the sending and receiving tasks in a proposed migration. So,

the number of agents to migrate from tasko to tasku is calculated in Algorithm 6.7.

Algorithm 6.7 Pseudocode for to migrate() function.

Input: exceeded time
Input: required time
Input: time per agent
Output: agents to migrate

if exceeded time < required time then
agents to migrate← exceeded time/time per agent

else
agents to migrate← required time/time per agent

end if

Tuning Points, Tuning Actions and Synchronisation Method. The tuning oper-

ation in this case, consists of moving agents between parallel application tasks as directed

by the performance expressions.

Currently, simulations generated by FLAME do not include the mechanism required

to migrate agents from one task to another in order to distribute the computation equally

between parallel application tasks. As such, additional code to perform the migration

must be introduced dynamically into the application. This migration method is also

taken from the work in [29].

The migration is performed in two phases. In the first phase a collective communica-

tion is conducted amongst all tasks in the domain in order to establish how many agents

each task will receive from each other task in the same domain. Then, point-to-point

communication is established to send the actual agent information between tasks. This

migration operation takes place every 2 iterations, however if there are no agents to

send, then only the first phase of collective communication is performed.

The tuning point in each task consists of an array, intradomain migrate, that

represents the number of agents to migrate to each task in the same domain. A second

array interdomain migrate is another tuning point, which represents the number of

agents to migrate to the corresponding tasks of other domains. The tuning action

associated with these variables corresponds to dynamically setting their contents with

the result of the evaluation of the performance expression. This action takes place at

the beginning of the migration process (synchronisation).

Abstraction Model

In this section, the abstraction model associated with the agent-based load balancing

performance model is described. This includes how the application is decomposed into
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domains as well as the event creation and instrumentation order translation processes.

Decomposition Scheme. When tuning the agent-based application, there is no con-

cept of application task nearness because the migration follows an “any-to-any” pattern.

Because the concept of contiguous blocks of tasks has no meaning, the decomposition of

the application into domains does not have any restriction with respect to which tasks

should be placed in the same domain. So, an ATM at the base of the hierarchy will be

able to treat any grouping of application tasks as an analysable and tunable domain.

In order for the domains to be “abstractable”, the only requirement placed on the

decomposition process is that all the domains contain the same number of application

tasks. As such the domains are homogeneous, in the same way that the underlying

processors are homogeneous.

Figure 6.24 illustrates an example of an agent-based application composed of 16

tasks. Although the tasks have been placed in a grid, the distribution is not relevant.

The domains could be formed of (a) blocks of tasks, (b) rows of tasks, or (c) other

configurations. These three examples are functionally equivalent as the groups contain

the same number of tasks.

(a) (b) (c)

Figure 6.24: Examples of valid decomposition schemes for the agent-based applica-
tion.

Monitoring Order Translation. Since the same ELASTIC Package is used at all

levels in the hierarchy, all ATMs generate the same monitoring order requesting the

same information. As such, when an Abstractor receives a monitoring order coming

from its parent ATM, it only needs to register that order with the Event Manager

module. This is the same behaviour presented in the abstraction model in the synthetic

application case.

Event Creation. In order to present itself as a virtual application task, the Abstractor

must provide its parent ATM with the information that was requested by the previously

received monitoring order. In this case, the required information is the number of agents,

the computation time, and the ID of the iteration for which the information has been

collected.
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To create a new event, an Event Creator requires one event from each task in the

domain. The number of agents is calculated as the sum of all the agents hosted in tasks

in the analysis and tuning domain of the Abstractor’s associated ATM. The mean of the

computation time of all tasks is used as the virtual task’s computation time. Similar to

the case for the synthetic application, a rank is assigned to each Abstractor -ATM pair

at the beginning of ELASTIC’s execution.

An example of the event creation process is given in Figure 6.25. An analysis and

tuning domain with 4 tasks is considered. Once the Event Creator receives 4 events for

the same iteration, a new event can be created. In this figure the events are shown in

terms of the Event class detailed in Section 5.4.3.

20.2 1 0 [ 45, 105.5, 3 ]

ts eid tid

22.1 1 1 [ 20, 70.2, 3 ]

19.3 1 2 [ 113, 120.8, 3 ]

20.5 1 3 [ 98, 110.4, 3 ]

19.3 1 0 [ 276, 101.7, 3 ]

ts eid tid

Events received from the 
analysis and tuning domain 

[ agent_count, iter_work, iteration_id ]

[ agent_count, iter_work, iteration_id ]

Event created

Figure 6.25: Event creation example for the agent-based application.

As in the case of the synthetic application, the timestamp of the new event, ts, is

the minimum of the received events. The event ID, eid , corresponds to the ID of the

associated monitoring order that requested the information contained in the event, and

the rank, tid , is that of the Abstractor -ATM pair, which is 0 in this example.

Tuning Order Translation. In this ELASTIC Package, the tuning orders sent by

ATMs contain the number of agents to migrate between tasks of its analysis and tuning

domain. When these tasks belong to a virtual application, these orders are received by

the Abstractor representing this virtual task and translated to be applied to the analysis

and tuning domain of its associated ATM.

The abstraction model must translate orders to migrate agents from one Abstractor -

ATM pair to another into orders that affect the domains that these Abstractors represent.

This translation is performed in such a way that every task in the sending domain will

send a number of agents to a distinct task in the receiving domain, i.e. no two sending

tasks migrate agents to the same receiving task and vice versa. The agents to be sent are

divided evenly between all the tasks in the sending domain, and so all the tasks in the

receiving domain will receive the same number of agents. The tuning order translation

is illustrated with an example in Figure 6.26.
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AR

Level i
(parent level)

Level i-1
(child level)

AS
80

20

20

20

20

T1 T2

T3 T4

Figure 6.26: Tuning order translation diagram for the agent-based application.

In this example, a tuning order from level i + 1 directing an Abstractor AS at level

i to migrate 80 agents to Abstractor AR. This order is translated into a tuning order

for each of the 4 tasks (T1, T2, T3, T4), at level i − 1, in the domain represented by

AS. Each new tuning order directs a task in this domain to migrate 20 agents to its

corresponding task in the domain represented by AR. If level i is not the base level in

the tuning network, then the tasks at level i−1 are actually also Abstractor -ATM pairs,

and the tuning order translation process will be repeated in each one.

In Figure 6.27, this example of tuning order translation is presented in terms of the

SetVariableValueTuningOrder class, defined in Appendix A.

AS 1 intradomain_migrate[4] [ 0, 0, 0, 80 ]

tid type varName varValue

Tuning order to be translated
T1 1 interdomain_migrate[4] [ 0, 0, 0, 20 ]

tid type varName varValue

Translated tuning orders

T2 1 interdomain_migrate[4] [ 0, 0, 0, 20 ]

T3 1 interdomain_migrate[4] [ 0, 0, 0, 20 ]

T4 1 interdomain_migrate[4] [ 0, 0, 0, 20 ]

Figure 6.27: Example of SetVariableValueTuningOrder translation for the agent-
based application.

As AS and AR are in the same analysis and tuning domain, the order received by

AS is to set the value of the array intradomain migrate, which specifies intra-domain

migrations. However, due to the abstraction mechanism, the translated orders are to set

the value of the array interdomain migrate, which implies migrations between tasks

of different domains.

Since there are 4 virtual tasks at level i and 4 domains at level i − 1, the size of

both intradomain migrate and interdomain migrate is 4. Additionally, the rank of

a virtual task and the domain that it represents will be the same. For this reason, the
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agents to migrate to AR in intradomain migrate are in the same position of this array

as those to be migrated to the domain that it represents in interdomain migrate.

It should be noted that only the receiving domain, and not the receiving task within

it, needs to be specified. This is because the pairs of tasks that communication between

two domains are predefined in the migration code.

This abstraction model uses the same simplified coherence mechanism that was pre-

sented in Section 6.2.2. This is because inter-domain migrations involve interactions

with different tasks rather than intra-domain migrations.

6.3.3 Tuning Network Topology

Tests using the agent-based application were executed using configurations composed of

different numbers of tasks. Therefore, for each application size the topology of ELAS-

TIC’s tuning networks was calculated. This calculation was done following Algorithm

3.1 explained in Section 3.5.1, that permits the creation of topologies composed of ATMs

that are not saturated.

The calculation of the topologies is based on parameters that characterise the anal-

ysis and tuning process. The values of these parameters, which have been obtained

from specific measurements or from the configuration of the agent-based application,

are depicted in Table 6.3.

Table 6.3: Values of variables required to calculate tuning network topology for the
agent-based application.

Variable Value Description

Ea 1 # events from each child node required for analysis
Ec 1 # events from each child node required for event creation
Ta(N) 0.0003 ms analysis time (quadratic)
Tm 0.02 ms management time
Tc 0.2 ms event creation time
Tt 0.3 ms instrumentation order translation time
fe - events/s frequency of event generation in the parallel application
frc fe batches/s frequency of event reception from each child node
frp fe orders/s frequency of tuning order reception from the parent ATM

Parameters Calculation

The load balancing process is activated in an ATM when it receives one event from each

task in its analysis and tuning domain, so Ea takes the value 1. Using an event from

each task in the domain, a new event is created and sent to the parent ATM, as such

Ec is equal to 1.
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The computation time of a single iteration depends on the agents residing in a task

and the complexity of their interactions in that iteration. This complexity is influenced

by the number of agents in the entire simulation. For this reason, the iteration time, and

as such the frequency of event generation, is different for each simulation scenario. In this

experimental evaluation, a simulation scenario exists for each parallel application size.

The information that describes these scenarios can be found in the following section.

To calculate the event generation frequency, fe, it was necessary to execute the

agent-based application and measure iteration times to gain an idea of the minimum

iteration time for a task in a balanced execution. A good estimation of the minimum

iteration time can be made by calculating the average time required to process an agent

across the entire application and multiplying this by the average number of agents per

task (a balanced situation). This calculation is performed for each iteration, and the

minimum is chosen because it represents the maximum event generation frequency. This

value is given for each application size in Table 6.4.

Table 6.4: Event generation frequency for each agent-based parallel application size.

Application Size fe

256 4.7 events/s
512 3.1 events/s

1 024 2.3 events/s
2 048 1.4 events/s

As the event creation rate Ec is equal to 1, the frequency with which events are

received from the child tasks in each level of the tuning network is equal to the event

generation frequency in the application, i.e. frc = fe. The analysis rate Ea of 1, has the

same effect on the frequency with which orders are received from the parent level, and

so frp = fe. Therefore, the values of frc and frp change for each scenario as shown in

Table 6.4.

The values of the variables which represent the time required to perform tasks in the

Abstractor -ATM pair, Tm, Tc, Tt and Ta(N), have been measured by executing the

agent-based application with different numbers of tasks and a two level tuning network

operating over it. The tuning network requires two levels to perform these measurements,

so that the time of the inter-level operations (event creation and order translation) can

be obtained. The value of analysis time, Ta(N) is quadratic in the number of tasks in

the analysis and tuning domain of an ATM.

Topology Calculation

The values of these variables are employed to calculate the topology with the minimum

number of non-saturated ATMs for ELASTIC’s tuning network. Because the same
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ELASTIC Package is used at each level and event creation rate is 1, the same values

can be used to calculate the maximum number of tasks that an ATM at any level in

the hierarchy can support without becoming saturated. Following the first iteration of

Algorithm 3.1 in Section 3.5.1, the following expression is used to calculate this maximum

value Nmax. This value has to be calculated for each different fe using the formula below:

Nmax · Ea · Tm + Ta(Nmax) +
Ea

Ec
· Tc + Tt · frp =

1

fa

Nmax · Ea · Tm + Ta(Nmax) +
Ea

Ec
· Tc + Tt · fe =

Ea

fe(
0.0003

1000

)
N2

max +

(
0.02

1000

)
Nmax +

(
0.2

1000
+

0.3

1000
· fe −

1

fe

)
= 0

Using the quadratic formula we can solve Nmax for each application size and its fe,

the results are shown in Table 6.5.

Table 6.5: Nmax for each agent-based parallel application size.

Application Size Nmax

256 792
512 990

1 024 1159
2 048 1501

So, the base level Abstractor -ATM pairs are able to support analysis and tuning

domains of up to the calculated number of tasks, Nmax, without becoming saturated.

These values for Nmax would give centralised tuning network topologies for the first

three scenarios. However, constraints in the underlying execution environment do not

permit many more than 512 children per Abstractor -ATM pair. This is because MRNet

spawns two threads for each connection, which can cause performance issues when the

number of threads per available core grows too large. This limit can depend on the event

reception frequency as well as thread support in the operating system and hardware.

In this experimental evaluation, the number of children per Abstractor -ATM pair

has been limited to 512. Because the event creation rate is 1, Nmax for the level 1 ATM

will also be set to 512. Therefore, the topology for the application composed of 1 024

and 2 048 tasks will be composed of two levels.

The application sizes and the topology of the tuning network used to analyse and

tune the application are given in Table 6.6.

The 256 task and 512 task applications are analysed and tuned by a centralised

tuning network, on the other hand the applications composed of 1 024 and 2 048 tasks
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Table 6.6: ELASTIC tuning network topologies over the agent-based application.

Number of Level 0 Level 1
Application Tasks Number of ATMs Number of ATMs

256 1 -
512 1 -

1 024 2 1
2 048 4 1

are analysed and tuned by two level tuning networks, with the root ATM controlling 2

and 4 base level Abstractor -ATM pairs respectively.

6.3.4 Effectiveness Evaluation

In this section we test the effectiveness of our model for hierarchical tuning using it to

improve the performance of the agent-based parallel application.

The simulations were performed with a set of agent parameters defined in Table 6.7.

Table 6.7: Agent parameter configuration for all simulations.

Agent Parameter Value

Starting number of infectious agents 10
Agent lifespan (iterations) 100
Average number of offspring 4
Probability of disease transmission 0.6
Probability of recovery 0.5
Disease duration (iterations) 20

For each size of the parallel application the number of agents in the simulation

was scaled accordingly. Furthermore, the simulated space size was increased to avoid

simulations characterised by a high infection rate and subsequent mass agent die-off.

The details of these scenarios are shown in Table 6.8. The experiments were performed

during 50 simulation iterations.

Table 6.8: Simulation scenarios for each size of the agent-based application.

Number of Number of Simulated Space
Application Tasks Agents Size

256 37 500 1020×1020
512 75 000 1440×1440

1 024 150 000 1800×1800
2 048 300 000 2240×2240

In the available execution environment, issues were encountered that prevented the

execution of applications composed of more than 2 048 tasks. Additionally, we were
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6.3. AGENT-BASED APPLICATION

unable to find reference in the literature of successful experimentation using FLAME

based simulations at this scale.

Each of these scenarios were executed with and without ELASTIC performing dy-

namic tuning over the application using the ELASTIC Package detailed in Section 6.3.2.

Figure 6.28 shows the computation time for each iteration for each of the executed

scenarios. This computation time for each task includes only the time required for the

computation phases, and does not include communication between tasks to synchronise

the simulation state or migration time to balance the load. Specifically, the graphs show

the maximum computation time of all tasks, which dictates the iteration time for the

application as a whole.

Each graph displays three computation times, the original agent-based application,

the application tuned by ELASTIC and a perfectly balanced “ideal” computation time.
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Figure 6.28: Computation times for the agent-based application with and without
ELASTIC.

As the graphs in Figure 6.28 show, the original application presents serious load

imbalance issues, as is evident from the difference between the application computation
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time and the ideal. Moreover, this imbalance increases with larger sized applications. On

the other hand, the computation time for the application tuned by ELASTIC remains

much closer to the ideal time. This highlights the effective operation of ELASTIC to

dynamically balance the load between the tasks of the agent-based application.

In this application, ELASTIC does not provoke peaks of instability due to movement

of load between domains. This is because of the strategy used to move the load between

domains, in which there is no concept of distinct borders between domains. Since every

task in a domain will receive an equal number of agents, global improvements do not

provoke local performance degradation. This behaviour presents an ideal situation in

which to take advantage of the hierarchical tuning conducted by ELASTIC.

The benefit of balancing the load and reducing the computation time can also be

appreciated in the total application execution time, shown in Figure 6.29. This figure

presents the comparative execution times for the different simulation scenarios and the

percentage that expresses the reduction in the execution time when the application is

tuned by ELASTIC compared to the original application. The execution time shown

includes all aspects of the simulation, both the computation and the inter-task com-

munication, as well as the time required for the migration of agents in the case of the

application tuned by ELASTIC. The times are given for the original application, and

for the application tuned by ELASTIC.
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Figure 6.29: Execution times of the agent-based application with and without ELAS-
TIC.

The same behaviour that was seen in the computation time graphs is repeated here.

Although, the scalability of the original agent-based application is limited, ELASTIC

is able to provide considerable performance improvements for all simulation scenarios.

In fact, the reduction in execution time as a percentage of the original execution time

increases as the application grows. This is due to the increasing imbalance in larger size

applications which was apparent in Figure 6.28.
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In this experimental evaluation, it has again been demonstrated that ELASTIC is

not only able to scale with the size of the application, but is also able to provide effective

dynamic tuning via the employed ELASTIC Package.

6.4 ELASTIC Overhead

An important consideration for any dynamic tuning tool is the amount of overhead that

it introduces into the application being analysed and tuned. This intrusion should be

limited so that the benefits of improving the parallel application’s performance are not

outweighed by the overhead.

The overhead in ELASTIC can be divided into three categories:

• Instrumentation overhead. This intrusion is related to the modification of the

running application via the DynInst API. It consists of inserting or removing code

snippets to generate events, and the modifications that fulfil the requirements of

the tuning orders.

• Event tracing overhead. The generation of events implies the execution of code

from the TMLib in order to collect information from the monitoring points and

transmit it to the Event Collector.

• Concurrent BE execution. Each BE runs on the same core as the application task

that it controls. The BE and the application task must contend for resources.

Additionally, overhead may be introduced due to the execution of user-generated

snippets that are required by the tuning process. In this situation, the overhead does

not come from ELASTIC, but from the specific tuning strategy being employed. For

example, the migration phase in each of the applications presented in this chapter can

be considered overhead of this type.

To measure the intrusion caused by ELASTIC when tuning the synthetic applica-

tion, we have used the single localised hotspot scenario. For each application size, the

synthetic application was executed with ELASTIC performing all analysis and tuning

functions, but without executing the migration phase. In this way, the application re-

mained imbalanced, and the difference between this execution time and the execution

time of the synthetic application without ELASTIC gives a measurement of the overhead

introduced by ELASTIC.

Table 6.9 shows the execution times for each application size executed with ELASTIC

(but without migrations) and without ELASTIC. The overhead is given as a percentage

of the execution time without ELASTIC.
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Table 6.9: ELASTIC overhead measured in the synthetic application.

Number of With ELASTIC Without ELASTIC Overhead
Application Tasks (seconds) (seconds) (%)

256 148.886 148.813 0.049
1 024 148.891 148.820 0.048
2 304 148.918 148.826 0.062
4 096 148.931 148.831 0.067
9 216 148.957 148.853 0.070
16 384 148.952 148.851 0.068

As can be seen, the overhead introduced by ELASTIC is only a fraction of a second,

which represents less than 0.1% of the execution time for all application sizes.

Due to the small amount of overhead measured it has not been possible to determine

how much influence each overhead category has in this total intrusion. For this reason,

the origin of the slight increase in the overhead with the size of the parallel application

is undetermined. However, it is believed that this is related to the number of parallel

application tasks with the maximum number of work units amongst all other tasks.

If the intrusion in these tasks, caused by the instrumentation of tuning orders, falls

within the work phase, then it could delay the completion of this phase, thereby increas-

ing the iteration time of the entire application. If this occurs in a task which has fewer

than the maximum number of work units, the iteration time of the application will not

be affected, as this task will have to wait for tasks with more work. In the centralised

hotspot scenario, larger applications have more tasks with the maximum number of work

units. So, there is a greater probability that an intrusion of this kind will delay each

iteration as the size of the parallel application grows.

We have shown that ELASTIC’s strategy of performing all costly operations in

a distributed manner without using application resources ensures that the intrusion

required to perform dynamic tuning is kept to a minimum.

It was not possible to isolate the overhead introduced into the agent-based applica-

tion. The execution time in the scenarios presented varied by approximately 5% between

runs, which can be attributed to the complex inter-task communications performed by

this application. It was found that there was no distinguishable difference between

executions with ELASTIC (but without performing migrations) and the original ap-

plication. The overhead remains unknown, but must be significantly less than the 5%

variance between executions.
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6.5 Discussion

In this chapter we have presented experimental evaluations using ELASTIC, an envi-

ronment that implements the hierarchical tuning model proposed in this thesis. The

evaluations have been carried out using a synthetic SPMD application as well as a real

agent-based parallel application.

The experimental evaluation demonstrates that ELASTIC is able to scale to dynam-

ically tune large-scale parallel applications, achieving performance improvements. As its

name suggests, ELASTIC’s architecture can adapt to the size of the parallel application

being analysed, as well as the requirements of the ELASTIC Package used to conduct

performance analysis.

The quality of the results achieved using ELASTIC depends on the intelligence

integrated into the ELASTIC Packages. However, it is ELASTIC which permits the

employment of this intelligence to tune large-scale parallel applications.

Two performance problems related to load imbalance have been addressed. However,

the resolution of other kinds of performance problems using ELASTIC is completely

viable, owing to its plugin architecture.

The overhead that ELASTIC introduces into the application in order to perform

dynamic tuning has been evaluated, and shown to be minimal compared to the execution

time of the applications studied.

To conclude, the results highlight the viability of using the proposed model for

hierarchical tuning and, by extension, ELASTIC in the area of large-scale dynamic

tuning.
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7
Conclusions

“Begin at the beginning,” the King said, gravely, “and go on till you come to

an end; then stop.”

– Lewis Carroll, Alice in Wonderland

This chapter presents the experiences gained and conclusions derived from this thesis.

We also describe the viable open lines that can be considered in the future in order to

continue evolving in the area of large-scale dynamic tuning of parallel applications.
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7.1 Conclusions

The defining aspect of this thesis is that it provides a conceptually simple, yet powerful

approach to apply dynamic tuning to large-scale parallel applications. This approach

employs a decentralised scheme for performance analysis and tuning, which presents

inherently scalable qualities that a centralised approach will never be able to provide.

The spectacular growth that hardware has experienced in recent years has led to two

principal challenges in the performance analysis and tuning area. Firstly, performance

tools must be developed that are capable of analysing and correcting performance prob-

lems at execution time, and secondly, these tools must be able to match the scalability

of the parallel applications they propose to analyse, potentially, up to tens of thousands

of processes.

Currently, there are no approaches which meet both these challenges and provide

scalable dynamic tuning of parallel applications. The work developed in this thesis is

focused on filling this void.

We began our work by researching well-known available dynamic tuning tools. An

important aspect of this study was to determine where the scalability limits reside in

these tools and what methods, if any, they had used to attempt to overcome them. The

focus of our investigation was then turned to existing tools that conduct performance

analysis (without tuning at runtime), which are able to operate in large-scale contexts.

In this field, we found approaches often presented a decentralised design. This provided

us with inspiration on how to face the challenge of scalability in our own area, dynamic

tuning.

Considering the lessons learnt and with our objectives in mind, we created a model

which consists of an efficient decentralised, but coordinated, approach to automatically

and dynamically analyse and tune large-scale parallel applications. In this model, par-

allel applications which are too large to be analysed and tuned in a centralised manner

are decomposed into disjoint subsets of tasks, that can be operated upon individually.

To view the application as a whole an abstraction mechanism was devised, which

permits the representation of each subset as a single “task”, which together form a virtual

parallel application. For large parallel applications, the decomposition and abstraction

is repeated until the size of the virtual application is such that it can be managed in a

centralised manner. This gives rise to the hierarchical structure of the proposed model.

The virtual application at the top level in the hierarchy enables analysis using a coarse

global view of the application state. At lower levels in the hierarchy, analysis is restricted

to subsets of the application, but using more detailed information about the application

state.
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In order to offer effective dynamic tuning, we decided to follow a collaborative ap-

proach rather than attempt blind dynamic tuning. This collaborative approach requires

the integration of knowledge into the model, to guide the performance analysis and tun-

ing and to define the abstraction process. We codified the required knowledge in the

form of a performance model and an abstraction model.

As the next step towards developing a dynamic tuning tool, we translated the model

into a hierarchical tuning network. The nodes of the network are analysis modules,

that represent the model’s virtual parallel application tasks and conduct the distributed

performance analysis and tuning. The hierarchical tuning network has been defined in

such a way that its topology (the number of levels and the number of analysis modules

per level) can be adapted to the complexity of the performance and abstraction models

and the number of tasks in the parallel application being tuned.

To accompany this adaptability, we also developed a method that addresses the

challenge of calculating network topologies that are composed of the minimum num-

ber of analysis modules. Since dynamic tuning tools are active during the application

execution, they need additional resources to reduce their influence on the tuned ap-

plication. In a time where the use of resources, and the associated energy costs, are

carefully controlled, providing a method that determines how many additional resources

are necessary is more valuable then ever.

Having completed the hierarchical tuning network design, we focused on the scal-

ability of the proposed model. We carried out a scalability study using a simulation

environment which implements the tuning network’s hierarchical communication and

simulates the analysis, tuning and abstraction processes. To validate the scalability we

measured the global decision time of the tuning network. The global decision time is the

time required for the root node to detect a performance problem in the application be-

ing analysed. In the scalability study we revealed that the global decision time presents

a logarithmic growth with the size of the parallel application, which demonstrates the

scalability of the proposed model for dynamic tuning.

At this point, we wished to prove that the proposed model, when it takes the form

of a tool, is able to provide effective dynamic tuning over large parallel applications.

Therefore, our development concluded with the implementation of ELASTIC, a tool for

large-scale dynamic tuning. ELASTIC offers dynamic tuning through monitoring (based

on event tracing), performance analysis, and dynamic modifications. These three oper-

ations are performed automatically and continuously during the application execution.

To provide monitoring and tuning at execution time ELASTIC uses dynamic instrumen-

tation.
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In order to guide the dynamic tuning in ELASTIC, we gave it a plugin architecture.

The plugins take the form of ELASTIC Packages, which are a set of code and configu-

ration that allow a tuning strategy, specified in terms of performance and abstraction

models, to be employed to improve the performance of a parallel application.

Finally, we concluded this work with an experimental evaluation of ELASTIC and

through it the proposed model for large-scale dynamic tuning. The tests were performed

over a synthetic application composed of up to 16 384 tasks and a real parallel application

composed of up to 2 048 tasks. The synthetic application had load imbalance introduced

in order to evaluate ELASTIC’s reaction to different scenarios. The real application is an

agent-based simulation which suffers from load imbalance due to the agent life cycle. For

each case, an ELASTIC Package was developed to resolve a load imbalance performance

problem affecting the application. In both cases, ELASTIC is shown to not only scale

to meet the demands of dynamic tuning over thousands of processes, but also effectively

improve the performance of the applications tested.

The results of the experimental evaluation have been very encouraging and indicate

the potential of ELASTIC as a tool for parallel application performance improvement.

Consequently, it is shown that the main contribution of this thesis, the model for hi-

erarchical dynamic tuning, is a viable solution to the problem of performing dynamic

tuning over large-scale parallel applications.

7.2 Future Work

The work presented in this thesis will allow for further investigation into specific dynamic

tuning techniques for large-scale parallel applications.

The most directly related extension of this work is the creation of additional ELAS-

TIC Packages which model different performance issues. Thanks to the plugin archi-

tecture which ELASTIC provides, a valuable resource could be created in the form of

generalised packages which solve a given performance problem, and which would require

only small adaptations in order to be applied to a specific parallel application which

exhibits this problem.

This research could also be used to further validate the proposed model for hierarchi-

cal dynamic tuning with applications based on distinct parallel programming paradigms,

which present different performance problems to be resolved.

The AutoTune project [36] also offers exciting possibilities for ELASTIC Package

creation. The extensive search capabilities of AutoTune identify the aspects of an ap-

plication which most heavily influence its performance. This knowledge could then be
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directly employed to construct the performance model required by an ELASTIC Pack-

age.

An open line of research arises from the calculation of tuning network topologies.

It would be beneficial to generalise the proposed method to calculate topologies for

other approaches that perform online automatic or dynamic performance analysis in

large-scale contexts. This would allow resource usage tradeoffs to be compared between

tools and assist users in selecting the appropriate configuration given their individual

requirements.

This proposed method could calculate efficient tuning network topologies that in-

clude criteria other than minimal usage of resources. Topologies chosen to balance mul-

tiples objectives could be considered. For example, a maximum time to initiate a tuning

action could be specified in conjunction with criteria to reduce the energy consumption

of the tuning network resources. In such a situation, finding a good compromise between

these constraints when calculating the topology would provide an effective, but energy

efficient tuning environment.
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A
Tuning Order Subclasses

The TuningOrder base class specifies a type property which should be set to indicate

one of the seven available types of tuning orders. The properties which are available for

each of these subclasses are defined in this appendix.

For the sake of completeness, the TuningOrder class definition is repeated below,

followed by the definitions for each of the subclasses..

• TuningOrder Class (subclass of Order)

Properties

– int type - represent the type of the tuning order to be applied.

0 - empty tuning order.

1 - SetVariableValue.

2 - ReplaceFunction.

3 - InsertFunctionCall.

4 - OneTimeFunctionCall.

5 - RemoveFunctionCall.

6 - FunctionParamChange.

7 - LoadLibrary.

177



APPENDIX A. TUNING ORDER SUBCLASSES

• SetVariableValueTuningOrder Class (subclass of TuningOrder)

Changes the value of a global variable in the application process.

Properties

– string varName - the name of the variable to change the value of.

– string varValue - the new value to assign to this variable.

• ReplaceFunctionTuningOrder Class (subclass of TuningOrder)

Replaces all calls to the function named oldFunc with calls to the function named

newFunc.

Properties

– string oldFunc - the name of the function to be replaced.

– string newFunc - the name of the new function where calls will be directed.

• InsertFunctionCallTuningOrder Class (subclass of TuningOrder)

Inserts a call to the function named funcName with parameters attrs. The call is

inserted into the function named destFunc at either the entry or the exit.

Properties

– string funcName - the name of the function to be called.

– vector<string> attrs - the parameters to call the function with.

– string destFunc - the name of the function where the call is to be inserted.

– int place - point of instrumentation in destFunc, 1 - entry of the function,

0 - exit of the function.

• OneTimeFunctionCallTuningOrder Class (subclass of TuningOrder)

Inserts a function call in exactly the same way as the InsertFunctionCallTuningOrder

class, but the inserted function call is automatically removed after it is called for

the first time.

Properties

– string funcName - the name of the function to be called.

– vector<string> attrs - the parameters to call the function with.

– string destFunc - the name of the function where the call is to be inserted.

– int place - point of instrumentation in destFunc, 1 - entry of the function,

0 - exit of the function.
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• RemoveFunctionCallTuningOrder Class (subclass of TuningOrder)

Removes all calls to the function named funcName from within the function callerFunc.

Properties

– string funcName - the name of the function to which calls are to be removed.

– string callerFunc - the name of the function from which the calls are to

be removed.

• FunctionParamChangeTuningOrder Class (subclass of TuningOrder)

Changes the value of a single parameter on the function named funcName. The pa-

rameter with index paramIdx is assigned newValue before the body of the function

is called. If requiredOldValue is set, then the parameter must have previously

had this value for the change to take place.

Properties

– string funcName - the name of the function to change the parameters of.

– int paramIdx - the index of the parameter to changed in the function.

– string newValue - the new value to call this function with.

– string requiredOldValue - if this parameter is set, the value will only be

changed if the parameter had this value.

• LoadLibraryTuningOrder Class (subclass of TuningOrder)

Loads the dynamic library located at libraryPath into the application task’s

memory space.

Properties

– string libraryPath - the file system path of the library to be loaded.
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