L^p-estimates for Riesz Transforms on Forms in the Poincaré Space

JOAQUIM BRUNA

ABSTRACT. Using hyperbolic form convolution with doubly isometry-invariant kernels, the explicit expression of the inverse of the de Rham laplacian Δ acting on *m*-forms in the Poincaré space \mathbb{H}^n is found. Also, by means of some estimates for hyperbolic singular integrals, L^p -estimates for the Riesz transforms $\nabla^i \Delta^{-1}$, $i \leq 2$, in a range of *p* depending on *m*, *n* are obtained. Finally, using these, it is shown that Δ defines topological isomorphisms in a scale of Sobolev spaces $H^s_{m,p}(\mathbb{H}^n)$ in case $m \neq (n \pm 1)/2, n/2$.

1. STATEMENT OF RESULTS AND PRELIMINARIES

1.1. The main object of study in this paper is the Hodge-de Rham Laplacian Δ acting on *m*-forms in the Poincaré hyperbolic space (\mathbb{H}^n, g) . The aim is to prove that Δ defines topological isomorphisms in a range $H^s_{m,p}(\mathbb{H}^n)$ of Sobolev spaces of forms defined as follows. For $0 \le m \le n$, $1 \le p < \infty$ and $s \in \mathbb{N}$, the Sobolev space $H^s_{m,p}(\mathbb{H}^n)$ is the completion of the space $\mathcal{D}_m(\mathbb{H}^n)$ of smooth *m*-forms with compact support with respect to the norm

$$\|\eta\|_{p,s} = \sum_{i=0}^s \|\nabla^{(i)}\eta\|_p$$

Here $\nabla^{(i)}$ means the *i*-th covariant differential of η , and for a covariant tensor α

$$\|\alpha\|_p = \left(\int_{\mathbb{H}^n} |\alpha(x)|^p \, d\mu(x)\right)^{1/p},$$

 $|\alpha|$ being the pointwise norm of α with respect to the metric g and $d\mu$ the volume-invariant measure on \mathbb{H}^n given by g. The space $H^s_{m,p}(\mathbb{H}^n)$ can be alternatively defined in terms of weak derivatives. The main result of this paper is the following theorem.

Theorem A. Δ is a topological isomorphism from $H^{s+2}_{m,p}(\mathbb{H}^n)$ to $H^s_{m,p}$ for $p \in (p_1, p_2)$ with

$$p_1 = \frac{2(n-1)}{n-2+|n-2m|}, \quad \frac{1}{p_1} + \frac{1}{p_2} = 1$$

in case $m \neq (n \pm 1)/2$, n/2.

In the exceptional case $m = (n \pm 1)/2$, Δ is one to one but is not a topological isomorphism for any p. For this case we obtain as well some weighted estimates. If m = n/2, Δ is known to have a non-trivial kernel. Of course, Sobolev spaces $H_{m,p}^s$ can be considered for non integer s as well, and the same results hold by interpolation.

Notice that the Hodge star operator * establishes an isometry from $H^s_{m,p}(\mathbb{H}^n)$ to $H^s_{n-m,p}(\mathbb{H}^n)$ which commutes with Δ , and this is why the range (p_1, p_2) depends only on |n - 2m|. Notice too that the range (p_1, p_2) always contains p = 2 in the non-critical case |n - 2m| > 1 and that for functions (m = 0), the range of p is $(1, \infty)$ (see comments below). We point out that the range (p_1, p_2) equals $|1/p - \frac{1}{2}| < \sqrt{\mu}/(n - 1)$, where μ denotes the greatest lower bound for the spectrum of Δ in $H^0_{m,2}(\mathbb{H}^n)$, whose value ([4]) is $\mu = (n - 1 - 2m)^2/4$ (for m < n/2).

For the Sobolev spaces for p = 2, $H^s_{m,2}(\mathbb{H}^n)$, another proof of the theorem, based on energy methods and valid for an arbitrary complete hyperbolic manifold, is given in [1]. The motivation for the theorem, as with [1], comes from mathematical physics, where most operators exhibit Δ as their principal part, and results like the above become essential to establish existence and uniqueness theorems.

Our method of proof is simply to construct an explicit inverse L for Δ on $\mathcal{D}_m(\mathbb{H}^n)$ and show that there is a gain of two covariant derivatives

$$\|L\eta\|_{p,s+2} \leq \operatorname{const} \|\eta\|_{p,s}.$$

Thus $L\eta$ plays the role of the classical Riesz transform in the Euclidean setting. The most delicate part is of course

$$\|\nabla^{(2)}L\eta\|_p \leq \operatorname{const} \|\eta\|_p, \quad p_1$$

Riesz-type operators such as $\nabla \Delta^{-1/2}$, $\nabla^{(2)} \Delta^{-1}$ have extensively been studied in different contexts, for the case of *functions*. On symmetric spaces, they are bounded in L^p , 1 and of weak type (1, 1). This was shown in [2]for the first order ones in some spaces, and later extended to all symmetric spaces in [3]. The L^p -boundedness holds as well for higher order Riesz transforms in symmetric spaces, but not generally the weak type (1, 1) estimate. In more general contexts, this has been shown in [6], [7], [8], among others. In case of *m*-forms, 0 < m < n, as far as we know, there are much less known results, and is for those that our result is new. In [12], [13] some aspects of harmonic analysis of forms are developed; in particular, the exact expression for the heat kernel is given, and it is very likely that from it one can get as well an explicit expression for Δ^{-1} . Strictly speaking, to prove the result, an exact expression of Δ^{-1} is not needed, it is enough having estimates for the resolvent both local and at infinity. In [8], estimates of this kind are obtained and applied to Sobolev-type inequalities for forms, and they might work for this purpose too.¹ However, we feel that our approach, that we next describe, is more elementary and might be interesting in itself.

The de Rham Laplacian Δ is invariant by all isometries φ of \mathbb{H}^n . These form a group that we denote here by $\mathrm{Iso}(\mathbb{H}^n)$. Denoting by $\varphi^*(\eta)(x) = \eta(\varphi(x))$ the pull-back of a form η by φ , this means that Δ and φ^* commute, for all $\varphi \in \mathrm{Iso}(\mathbb{H}^n)$. Therefore the inverse L of Δ should commute too with $\mathrm{Iso}(\mathbb{H}^n)$. Among all isometries of \mathbb{H}^n , the *hyperbolic translations* $\mathrm{Tr}(\mathbb{H}^n)$ constitute a (noncommutative) subgroup, in one to one correspondence with \mathbb{H}^n itself. In Section 2 we do some harmonic analysis for forms in \mathbb{H}^n and introduce *hyperbolic convolution of forms* to describe all operators acting on *m*-forms and commuting with $\mathrm{Tr}(\mathbb{H}^n)$. In a second step (Subsection 2.2) we characterize the hyperbolic convolution kernels k(x, y) corresponding to operators commuting with the full group $\mathrm{Iso}(\mathbb{H}^n)$.

Once the general expression of an operator commuting with $Iso(\mathbb{H}^n)$ has been found, we look for our L among these. This corresponds to L having a kernel k(x, y) which is a *fundamental solution* of Δ in a certain sense, and having the best decay at infinity. This kernel turns out to be unique for $m \neq (n \pm 1)/2$, n/2, we call it the *Riesz kernel for m-forms in* \mathbb{H}^n , it is found in Subsection **3.1** and estimated in Subsection **3.2**. Section **4** is devoted to the proof of the L^p estimates. Here we use standard techniques in real analysis (Haussdorf-Young inequalities, Schur's lemma, etc.). For the second-order Riesz transform, to show its boundedness in the specified range (p_1, p_2) needs considering some notion of "hyperbolic singular integral." There exist some references dealing with this, e.g. [9], [11], and giving some criteria for L^p -boundedness that might apply; however, as the singular integral arises locally, we have found it easier and more elementary to treat it with the classical Euclidean Calderón-Zygmund theory as a local model, and patch it in a suitable way to infinity.

1.2. We collect here several notations and known facts about \mathbb{H}^n . We will use both the unit ball model \mathbb{B}^n with metric $g = 4(1 - |x|^2)^{-2} \sum_i dx^i dx^i$ and

¹Added in proof. It has been brought to the author's attention by Professor John M. Lee that when p = 2, the result in Theorem A is implicit in the work by R. Mazzeo in *Comm. Partial Differential Equations* **16** (1991), 1615–1664, and in *J.Differential Geometry* **28** (1988), 309–339. Also, a similar result appears in J.M. Lee's preprint in http://www.arxiv.org/math.DG/0105046.

the half-space model $\mathbb{R}^n_+ = \{x_n > 0\}$ with metric $g = x_n^{-2} \sum_i dx^i dx^i$. Both models are connected via the Cayley transform $\psi \colon \mathbb{R}^n_+ \to \mathbb{B}^n$ given in coordinates by

$$y_{i} = \frac{2x_{i}}{\sum_{i=1}^{n-1} x_{i}^{2} + (x_{n}+1)^{2}}, \quad i = 1, \dots, n-1;$$
$$y_{n} = \frac{\sum_{i=1}^{n} x_{i}^{2} - 1}{\sum_{i=1}^{n-1} x_{i}^{2} + (x_{n}+1)^{2}}.$$

We denote by $e \in \mathbb{H}^n$ the point $(0, 0, \dots, 1) \in \mathbb{R}^n_+$ or $0 \in \mathbb{B}^n$.

The metric g defines a pointwise inner product $(\alpha, \beta)(x)$ between forms at x, for every $x \in \mathbb{H}^n$, and a volume measure $d\mu$. In the ball model $d\mu$ is written $d\mu(x) = 2^n(1 - |x|^2)^{-n}dx^1 \cdots dx^n$, and $d\mu(x) = x_n^{-n}dx^1 \cdots dx^n$ in the half-space model. We denote by \langle , \rangle the pairing between forms that makes $H_{m,2}^s(\mathbb{H}^n)$ a Hilbert space

$$\langle \alpha, \beta \rangle = \int_{\mathbb{H}^n} (\alpha, \beta)(x) \, d\mu(x).$$

We write $|\alpha|$ and $||\alpha||$ for the pointwise and global norms, respectively, of the form α . In terms of the Hodge star operator * the inner product can be written too

$$\langle \alpha, \beta \rangle = \int_{\mathbb{H}^n} \alpha \wedge * \beta.$$

The group $Tr(\mathbb{H}^n)$ of hyperbolic translations is in one to one correspondence $x \mapsto T_x$ with \mathbb{H}^n through the equation $T_x(e) = x$. The equations of $z = T_x y$ are better described in the half-space model by

$$z_i = x_n y_i + x_i, i = 1, \dots, n-1; \quad z_n = x_n y_n.$$

It is easily checked that indeed $\text{Tr}(\mathbb{H}^n)$ is a (non-commutative) group. The inverse transformation of T_x will be denoted S_x . Another explicit isometry φ_x mapping e to x, satisfying $\varphi_x^{-1} = \varphi_x$, is given in the ball model by

(1.1)
$$\varphi_{x}(y) = \frac{(|x|^{2} - 1)y + (|y|^{2} - 2xy + 1)x}{|x|^{2}|y|^{2} - 2xy + 1}.$$

Since the isotropy group of 0 is the orthogonal group O(n), the general expression of $\varphi \in \text{Iso}(\mathbb{H}^n)$ is $\varphi = \varphi_x \circ U$, with $x = \varphi(0)$.

The hyperbolic (or geodesic) distance between $x, y \in \mathbb{H}^n$ is written d(x, y). We will rather use the *pseudohyperbolic distance* r = r(x, y), related to d by the formula $d(x, y) = 2 \operatorname{arctanh} r(x, y)$. The explicit expression of $r(x, y)^2$ in the \mathbb{R}^n_+ model and the \mathbb{B}^n model is respectively

(1.2a)
$$r^2 = \frac{|x-y|^2}{|x-y|^2 + 4x_n y_n}, \quad x, y \in \mathbb{R}^n_+,$$

(1.2b)
$$r^2 = |\varphi_x(y)|^2 = \frac{|x-y|^2}{(1-|x|^2)(1-|y|^2)+|x-y|^2}, \quad x, y \in \mathbb{B}^n.$$

Associated to the group of translations we have the basis of orthonormal translation-invariant vector fields $X_i(x) = (T_x)_*(X_i(e))$, such that $X_i(e) = \partial/\partial x_i$. They satisfy $X_i(u \circ T_x) = (X_iu) \circ T_x$ for every smooth function u. We will denote by $w^i(x)$ the dual basis of X_i , which accordingly is orthonormal and translation invariant too: $T_x^*w^i = w^i$. Their expression in the \mathbb{R}^n_+ model is simply

$$X_i(x) = x_n \frac{\partial}{\partial x_i}, \quad w^i(x) = x_n^{-1} dx^i, \quad i = 1, \dots, n.$$

Because of their translation-invariance property, the (X_i, w^i) are more suitable than the (X_i, η^i) defined in the ball model \mathbb{B}^n by

$$Y_i(x) = \frac{(1-|x|^2)}{2} \frac{\partial}{\partial x_i}, \quad \eta^i(x) = 2(1-|x|^2)^{-1} dx^i.$$

For an increasing multiindex I of length |I| = m we write $w^I = w^{i_1} \wedge w^{i_2} \wedge \cdots \wedge w^{i_m}$, and similarly dx^I or η^I . The $\{w^I\}_I$ is an orthonormal translation-invariant basis of m-forms.

Recall that the de Rham Laplacian is defined as $\Delta = d\delta + \delta d$, where δ is the adjoint of d with respect to \langle , \rangle . Although strictly speaking not needed, the following expression of Δ in w^{I} -coordinates will simplify the analysis at some points. If $\alpha = \sum_{I} \alpha_{I} w^{I}$, a computation shows that in case $n \notin J$

(1.3)
$$(\Delta \alpha)_J = \Delta \alpha_J + 2 \sum_{k \in J} X_k \alpha_{Jk} - p(n-p-1)\alpha_J.$$

Here *Jk* means the multiindex obtained replacing *k* by *n*. In case $n \in J$,

(1.4)
$$(\Delta \alpha)_J = \Delta \alpha_J - 2 \sum_{\ell \notin J} X_\ell \alpha_{\ell J} - (1-p)(p-n)\alpha_J,$$

where ℓJ means the multiindex obtained replacing *n* by ℓ . For a function *f*

$$\Delta f = -\sum_{i=1}^{n} X_i^2 f + (n-1)X_n f.$$

In the ball model, with usual coordinates,

(1.5)
$$\Delta f = -\frac{1}{4}(1 - |x|^2)^2 \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} + \left(1 - \frac{n}{2}\right)(1 - |x|^2) \sum x_i \frac{\partial f}{\partial x_i}.$$

2. TRANSLATION INVARIANT AND ISOMETRY INVARIANT OPERATORS ON FORMS

2.1. We are interested in finding the general expression of an operator acting on *m*-forms, and isometry-invariant. In a first step we consider *translation-invariant operators* acting on *m*-forms; these are described by what we might call *hyperbolic convolution* as follows. Let k(x, y) be a double *m*-form in x, y and define

$$(C_k\alpha)(x) = \int_{\mathbb{H}^n} \alpha(y) \wedge *_{\mathcal{Y}} k(x, y) = \langle \alpha, k(x, \cdot) \rangle, \quad \alpha \in \mathcal{D}_m(\mathbb{H}^n).$$

If T_z is a translation with inverse S_z

$$C_{k}(T_{z}^{*}\alpha)(x) = \int_{\mathbb{H}^{n}} (T_{z}^{*}\alpha)(y) \wedge *_{y}k(x,y)$$
$$= \int_{\mathbb{H}^{n}} \alpha(T_{z}y) \wedge *_{y}k(x,y)$$
$$= \int_{\mathbb{H}^{n}} \alpha(y) \wedge *_{y}k(x,S_{z}y),$$
$$T_{z}^{*}(C_{k}\alpha)(x) = C_{k}\alpha(T_{z}x)$$
$$= \int_{\mathbb{H}^{n}} \alpha(y) \wedge *_{y}k(T_{z}x,y).$$

Therefore C_k is translation invariant if k is doubly translation invariant in the sense that

$$k(x, y) = k(S_z x, S_z y), \quad \forall S_z.$$

Using the translation-invariant basis of m-forms w^I we see that the general expression of k is

$$k(x, y) = \sum_{I,J} k_{I,J}(x, y) w^{I}(x) \otimes w^{J}(y),$$

where $k_I(x, y)$ are doubly-invariant functions, that is, of the form $k_{I,J}(x, y) = a_{I,J}(S_y x)$ for some function (or distribution) $a_{I,J}$. If δ_0 denotes the Delta-mass at *e* and

$$\delta(x, y) = \sum_{I,J} \delta_0(S_y x) w^I(x) \otimes w^J(y),$$

then formally

$$\alpha(x) = \int_{\mathbb{H}^n} \alpha(y) \wedge *_{\mathcal{Y}} \delta(x, y).$$

If P is an operator on m-forms commuting with the T_{γ} , S_{γ} , we will thus have

$$P\alpha(x) = \int_{\mathbb{H}^n} \alpha(y) \wedge *_{\mathcal{Y}} P_x(\delta(x, y)),$$

and indeed $k(x, y) = P_x(\delta(x, y))$ is formally doubly-invariant. This shows, in loose terms, that the operator C_k of convolution with a doubly translation invariant kernel k gives the general translation-invariant operator acting on *m*-forms. If

$$k(x, y) = \sum_{I,J} a_{I,J}(S_{\mathcal{Y}}x) w^{I}(x) \otimes w^{J}(y)$$

and $\alpha(x) = \sum \alpha_I(x) w^I(x)$, then $C_k \alpha$ has in the basis $w^I(x)$ coefficients given by

$$(C_k\alpha)_I(x) = \sum_J \int_{\mathbb{H}^n} a_{I,J}(S_{\mathcal{Y}}x) \alpha_J(\mathcal{Y}) \, d\mu(\mathcal{Y}).$$

Thus in the basis w^I everything reduces of course to convolution of functions. For a function convolution kernel $a(S_{\mathcal{Y}}x)$ and a test function $u \in \mathcal{D}(\mathbb{H}^n)$ we may think of

$$C_a u(x) = \int_{\mathbb{H}^n} u(y) a(S_y x) \, d\mu(y)$$

as an infinite linear combination of inverse translates $a(S_{\mathcal{Y}}x)$ of a(x). Since the vector fields X_i commute with translations, it follows that, whenever everything makes sense,

We point out that this convolution is not commutative; $C_a u$ is in general different from $C_u a$. Correspondingly, $X_i C_a u - C_a X_i u$ is in general not zero; in fact one can easily show ([1, Lemma 3.1]) that these commutators are linear combinations of other convolution operators built from $a(S_y x)$.

2.2. Let *P* be a generic translation-invariant operator acting on *m*-forms. We have seen in the previous subsection that we can associate to *P* a doubly-translation invariant kernel k(x, y) so that $P = C_k$. By the same argument as before, *P* will be isometry invariant if and only if $k(\varphi x, \varphi y) = k(x, y)$ $\forall \varphi \in \text{Iso}(\mathbb{H}^n)$, in which case we say that *k* is *doubly isometry-invariant*. Working in the ball model and since every $\varphi \in \text{Iso}(\mathbb{H}^n)$ is the composition of a translation with some $U \in O(n)$, the additional requirement on the kernel k(x, y) = k(x, y)

$$\sum a_{I,J}(S_{\gamma}x)w^{I}(x) \otimes w^{J}(\gamma)$$
 amounts to $k(Ux, U0) = k(x, 0)$, that is,

$$\sum_{I,J} a_{I,J}(Ux) U^* w^I(x) \otimes U^* w^J(0) = \sum_{I,J} a_{I,J}(x) w^I(x) \otimes w^J(0), \quad \forall \, U.$$

Thus we are interested in describing those k(x, 0)—which are *m*-forms at 0 whose coefficients are *m*-forms in *x*—that are doubly invariant by all $U \in O(n)$ in the sense above. Once the k(x, 0) having this property are known, $k(x, y) = k(S_y x, 0)$ defines the general doubly isometry invariant *m*-form. For m = 0 the k(x, 0) are simply the radial functions a(|x|), and $a(|S_y x|) = a(|\varphi_y x|)$ is the general doubly isometry invariant function. For $m \neq 0$ their general expression is not so simple. We find it more convenient to use the usual basis dx^I so we look at k(x, 0) in the form

(2.2)
$$k(x,0) = \sum_{|I|=|J|=m} b_{I,J}(x) \, dx^I \otimes dx^J(0),$$

and we must impose $\sum_{I,J} b_{I,J}(Ux) d(Ux)^I \otimes d(Ux)^J(0) = k(x,0), \forall U$. For instance,

$$\gamma(x,0) = \sum_{i=1}^{n} dx^{i} \otimes dx^{i}(0)$$

is easily seen to be doubly O(n)-invariant, and so is

$$\gamma_m = \frac{1}{m!} \gamma \wedge \cdots \wedge \gamma = \sum_{|I|=m} dx^I \otimes dx^I(0)$$

(here we use the symbol \wedge to denote as well the exterior product of double forms defined by $(\alpha_1 \otimes \beta_1) \wedge (\alpha_2 \otimes \beta_2) = (\alpha_1 \wedge \alpha_2) \otimes (\beta_1 \wedge \beta_2)$). Another doubly O(n)-invariant 1-form is

$$\tau(x,0) = \Big(\sum_{i=1}^n x_i \, dx^i\Big) \otimes \Big(\sum_{i=1}^n x_i \, dx^i(0)\Big).$$

Lemma 2.1. The double forms γ and τ generate all doubly O(n)-invariant k(x,0). More precisely, their general expression in the ball model is

(2.3)
$$k(x,0) = \begin{cases} A_1(|x|)\gamma_m + A_2(|x|)\tau \wedge \gamma_{m-1}, & 0 < m < n, \\ A(|x|)\gamma_m, & m = 0, n. \end{cases}$$

Proof. First we prove by induction the following statement S(n): if k(x,0) is a doubly invariant (p,q)-form $\sum_{|I|=p,|J|=q} c_{I,J} dx^I \otimes dx^J(0)$ with constant

coefficients, then $k \equiv 0$ if $p \neq q$, or k is diagonal, i.e., $k(x,0) = c \sum_{|I|=p} dx^I \otimes dx^I(0) = c \gamma_p$ if p = q. Of course S(1) is obvious; assuming S(n-1), let us break k(x,0) in four pieces, depending on whether $i_1, j_1 = 1$ or not:

$$k = \sum_{i_1=j_1=1}^{} c_{I,J} dx^I \otimes dx^J(0) + \sum_{i_1=1, j_1\neq 1}^{} + \sum_{i_1\neq 1, j_1=1}^{} + \sum_{i_1\neq 1, j_1\neq 1}^{} def k_1 + k_2 + k_3 + k_4.$$

We may write $k_1 = (dx^1 \otimes dx^1(0)) \wedge \widetilde{k_1}, k_2 = (dx^1 \otimes 1) \wedge \widetilde{k_2}, k_3 = (1 \otimes dx^1(0)) \wedge \widetilde{k_3}$, with $\widetilde{k_1}, \widetilde{k_2}, \widetilde{k_3}, k_4$ double forms in the $dx^2, \ldots, dx^n, dx^2(0), \ldots, dx^n(0)$ of bidegrees (p-1, q-1), (p-1, q), (p, q-1), and (p, q), respectively. Imposing that k is doubly invariant by U of the type

(2.4)
$$U = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & & & \\ 0 & U_1 & & \\ \vdots & & & \\ 0 & & & \end{pmatrix}, \quad U_1 \in O(n-1),$$

we see that $\widetilde{k_1}$, $\widetilde{k_2}$, $\widetilde{k_3}$, and k_4 are O(n-1)-invariant. We apply the induction hypothesis: if p = q, $\widetilde{k_2} = \widetilde{k_3} = 0$, and $\widetilde{k_1}$, k_4 are diagonal, i.e.,

(2.5)
$$k = c_1 \sum_{i_1=1} dx^I \otimes dx^I(0) + c_2 \sum_{i_1\neq 1} dx^I \otimes dx^I(0).$$

If we use now $U \in O(n)$ permuting the first two axes, we see that $c_1 = c_2$ and hence k is diagonal, establishing S(n) in case p = q. If |p - q| > 1, everything is 0. Finally if |p - q| = 1, say p = q + 1, then $\widetilde{k_2}$ is diagonal and all others are zero

$$k = c(dx^1 \otimes 1) \wedge \sum_{|J|=q} dx'^J \otimes dx'^J(0),$$

where $x' = (x_2, ..., x_n)$. If we impose the invariance under the permutation of the first two axes as before, it is clear that k must be zero.

Having proved that S(n) holds for all n, let now k(x, 0) be as in (2.2), doubly O(n)-invariant. Clearly k(x, 0) is then determined by its values $k(\vec{r}, 0)$, where $\vec{r} = (r, 0, 0, ..., 0)$. Fixed r, $k(\vec{r}, 0)$ may be regarded as a double (m, m)-form with constant coefficients, which is invariant by all $U \in O(n)$ fixing \vec{r} , that is, of type (2.4). We write now the decomposition of $k(\vec{r}, 0)$ in terms of $\tilde{k}_1(r, 0)$, $\tilde{k}_2(r, 0)$, $\tilde{k}_3(r, 0)$, and $k_4(r, 0)$ as before, and applying S(n) we get (2.5)

$$k(\vec{r},0) = \\ = c_1(r) \sum_{i_1=1} dx^I(\vec{r}) \otimes dx^I(0) + c_2(r) \sum_{i_1\neq 1} dx^I(\vec{r}) \otimes dx^I(0)$$

(if m = n, the last term is zero and the first is y_m), which we write

$$= (c_{1}(r) - c_{2}(r)) \sum_{i_{1}=1, |I|=m} dx^{I}(\vec{r}) \otimes dx^{I}(0) + c_{2}(r) \sum_{|I|=m} dx^{I}(\vec{r}) \otimes dx^{I}(0)$$

= $(c_{1}(r) - c_{2}(r)) dx^{1}(\vec{r}) \otimes dx^{1}(0) \wedge \sum_{|I|=m-1} dx^{I}(\vec{r}) \otimes dx^{I}(0)$
 $+ c_{2}(r) \sum_{|I|=m} dx^{I}(\vec{r}) \otimes dx^{I}(0)$
= $(c_{1}(r) - c_{2}(r))r^{-2}\tau(\vec{r}, 0)\gamma_{m-1}(\vec{r}, 0) + c_{2}(r)\gamma_{m}(\vec{r}, 0).$

Finally, with fixed x, we choose U such that $Ux = \vec{r}, r = |x|$, and use the invariance of k, τ , γ to find (2.3) with $A_1(r) = c_2(r), A_2(r) = r^{-2}(c_1(r) - c_2(r))$.

To find the general expression of a doubly isometry invariant kernel k(x, y) we must translate k(x, 0) to an arbitrary point: $k(x, y) = k(S_y x, S_y y)$. We may use any isometry mapping y to 0, for instance we may use φ_y given by (1.1) instead of S_y . We introduce the basic forms α , β , τ , and γ

$$\alpha = \alpha(x, y)$$

$$= \sum_{i} \varphi_{\mathcal{Y}}^{i}(x) d\varphi_{\mathcal{Y}}^{i}(x),$$

$$\beta = \sum_{i} \varphi_{\mathcal{Y}}^{i}(x) d\varphi_{\mathcal{Y}}^{i}(y)$$

$$= -\sum_{i} \varphi_{\mathcal{Y}}^{i}(x) \frac{dy^{i}}{1 - |y|^{2}},$$

$$\tau = \alpha \otimes \beta,$$

$$\gamma(x, y) = \sum_{i=1}^{n} d\varphi_{\mathcal{Y}}^{i}(x) \otimes d\varphi_{\mathcal{Y}}^{i}(y)$$

$$=\frac{-1}{1-|\mathcal{Y}|^2}\sum_{i=1}^n d\varphi_{\mathcal{Y}}^i(x)\otimes d\mathcal{Y}^i=d_x\beta.$$

The lemma gives part (a) of the following theorem. Part (b) gives other equivalent general expressions, which are intrinsic, that is, independent of the model of \mathbb{H}^n at use.

Theorem 2.2.

(a) The general expression of an (m, m)-form k(x, y) doubly isometry-invariant in \mathbb{H}^n , in the ball model, is

$$k(x, y) = \begin{cases} A_1(|\varphi_y x|) \gamma_m(x, y) \\ + A_2(|\varphi_y x|) \tau(x, y) \land \gamma_{m-1}(x, y), & 0 < m < n, \\ A(|\varphi_y x|) \gamma_m(x, y), & m = 0, n. \end{cases}$$

(b) Another equivalent expression for 0 < m < n is

$$k(x, y) = B_1(D)(d_x d_y D)^m + B_2(D)(d_x D \otimes d_y D) \wedge (d_x d_y D)^{m-1}$$

= $(C_1(D)d_x d_y D + C_2(D)d_x D \otimes d_y D)^m$,

where D denotes an arbitrary function of the geodesic distance d(x, y). (c) All such k(x, y) are symmetric in $x, y \in \mathbb{H}^n$.

Proof. Part (a) has been already proved. For (b) note first that it is enough to consider *one* function of d: we choose $D = r(x, y)^2$, which in the ball model equals $|\varphi_y(x)|^2$. Then $d_x D = 2\alpha$, and using (1.1), (1.2a) one finds

$$d_{\mathcal{Y}}D = 2(1-D)\sum_{i} \varphi_{\mathcal{Y}}^{i}(x) \frac{d_{\mathcal{Y}}^{i}}{1-|\mathcal{Y}|^{2}} = -2(1-D)\beta.$$

This gives $\tau = \alpha \otimes \beta = -\frac{1}{4}(1/(1-D))d_x D \otimes d_y D$, and

$$d_x d_y D = +2d_x D \otimes \beta - 2(1-D)d_x \beta = +4\tau - 2(1-D)\gamma.$$

Therefore $(d_x d_y D)^{m-1}$ and $2^{m-1}(1-D)^{m-1} \gamma_{m-1}$ differ in a term containing τ , and so (b) follows. Part (c) is a consequence of (b).

We will need the expression of the generators τ , γ in terms of the invariant basis w^i . We obtain these using formula (1.2a) for $r^2(x, \gamma)$ in the half-space model. First

$$\begin{aligned} \alpha &= \frac{d_x r^2}{2} = \frac{1 - r^2}{2(|x - y|^2 + 4x_n y_n)} \\ &\times \left(2 \sum_{i=1}^{n-1} x_n (x_i - y_i) w^i(x) + (2x_n (x_n - y_n) - |x - y|^2) w^n(x)\right), \\ \beta &= \frac{d_y r^2}{2(r^2 - 1)} = \frac{-1}{2(|x - y|^2 + 4x_n y_n)} \\ &\times \left(2 \sum_{j=1}^n y_n (y_j - x_j) w^j(y) + (2y_n (y_n - x_n) - |x - y|^2) w^n(y)\right). \end{aligned}$$

In the following we write $w^{ij} = w^i(x) \otimes w^j(y)$. We have

$$\tau = \alpha \otimes \beta = \frac{1}{4} \frac{1 - r^2}{(|x - y|^2 + 4x_n y_n)^2} \sum_{ij} P_{i,j}(x, y) w^{i,j},$$

where the $P_{ij}(x, y)$ are certain homogeneous polynomials. As we know, everything can be written in terms of $z = S_y x$: for instance

$$1 - r^{2} = \frac{4x_{n}y_{n}}{|x - y|^{2} + 4x_{n}y_{n}} = \frac{4z_{n}}{|z|^{2} + 2z_{n} + 1},$$

and say for i, j < n

$$\frac{P_{ij}}{(|x-y|^2+4x_ny_n)} = \frac{x_ny_n(x_i-y_i)(x_j-y_j)}{(|x-y|^2+4x_ny_n)^2} = \frac{z_nz_iz_j}{(|z|^2+2z_n+1)^2}.$$

Therefore we may write

(2.6)
$$\tau = \frac{1 - r^2}{(|z|^2 + 2z_n + 1)^2} \sum_{i,j} p_{i,j}(z) w^{i,j}.$$

For $\gamma = d_{\chi}\beta$ we obtain a similar expression

$$\frac{4}{1-r^2} \gamma = \sum_{i,j=1}^{n-1} \left(\delta_{ij} - \frac{2(x_i - y_i)(x_j - y_j)}{|x - y|^2 + 4x_n y_n} \right) w^{i,j} + \left(1 - \frac{2\sum_{i=1}^{n-1} |x_i - y_i|^2}{|x - y|^2 + 4x_n y_n} \right) w^{n,n} + \sum_{i=1}^{n-1} \frac{2(x_i - y_i)(x_n - y_n)}{|x - y|^2 + 4x_n y_n} (w^{i,n} - w^{n,i}).$$

Again this can be written

(2.7)
$$y = \frac{1 - r^2}{4(|x - y|^2 + 4x_n y_n)} \sum_{i,j} Q_{ij}(x, y) w^{i,j}$$
$$= \frac{1 - r^2}{(|z|^2 + 2z_n + 1)} \sum_{i,j} Q_{ij}(z) w^{i,j}.$$

Notice that

$$\frac{p_{ij}(z)}{(|z|^2 + 2z_n + 1)^2} = O(1), \quad \frac{q_{ij}(z)}{(|z|^2 + 2z_n + 1)} = O(1),$$

and hence

(2.8)
$$|\tau(x,y)| = O(1-r^2), |\gamma(x,y)| = O(1-r^2).$$

3. Riesz Forms and Riesz Form-potentials in \mathbb{H}^n

3.1. Our next objective is now to find an explicit left-inverse L for Δ on $\mathcal{D}_m(\mathbb{H}^n)$. Since Δ is invariant by all isometries, L should be too. By what has been discussed in Section 2, L should have a kernel $k_m(x, y)$,

$$L\eta(x) = \int_{\mathbb{H}^n} \eta(y) \wedge *_{\mathcal{Y}} k_m(x, y),$$

doubly invariant by all isometries. Alternatively, notice that if k is *some* kernel such that

(3.1)
$$\eta(x) = \int_{\mathbb{H}^n} \Delta \eta(y) \wedge *_{\mathcal{Y}} k(x, y), \quad \eta \in \mathcal{D}_m(\mathbb{H}^n)$$

(which formally exists because $\Delta \eta = 0$, $\eta \in \mathcal{D}_m(\mathbb{H}^n)$ imply $\eta = 0$), then its average over the unitary group O(n) with respect to the normalized left-invariant measure $d\mu(U)$,

$$k_1(x, y) = \int_{O(n)} k_0(Ux, Uy) \, d\mu(U),$$

still satisfies (3.1), and it is doubly invariant by O(n). If φ_x is an isometry mapping x to 0, $k_2(x, y) = k_1(\varphi_x x, \varphi_x y)$ is independent of φ_x , satisfies (3.1), and is doubly invariant by all isometries.

Anyway, we look for a doubly isometry-invariant kernel k_m for which (3.1) holds, and then consider the operator L defined by k_m as above. Taking for granted by now that this operator L is well defined on $\mathcal{D}_m(\mathbb{H}^n)$ and maps $\mathcal{D}_m(\mathbb{H}^n)$ into locally integrable *m*-forms, notice that (3.1) and the symmetry of k_m together imply that L is a right-inverse too, that is, $\Delta L \alpha = \alpha$ for $\alpha \in \mathcal{D}_m(\mathbb{H}^n)$ in the weak sense:

$$\begin{split} \langle \Delta L\alpha, \eta \rangle &= \langle L\alpha, \Delta \eta \rangle = \int_{x} L\alpha(x) \wedge * \Delta \eta(x) \\ &= \int_{x} \left\{ \int_{y} \alpha(y) \wedge *_{y} k_{m}(x, y) \right\} \wedge * \Delta \eta(x) \\ &= \int_{y} \alpha(y) \wedge *_{y} \left\{ \int_{x} k_{m}(x, y) \wedge * \Delta \eta(x) \right\} = \langle \alpha, \eta \rangle. \end{split}$$

We work in the ball model. By Theorem 2.2, $k_m(x, y)$ is of type

$$k_m(x, y) = \begin{cases} A(|\varphi_x y|) \gamma_m, & m = 0, n, \\ A_1(|\varphi_x y) \gamma_m + A_2(|\varphi_x y|) \tau \land \gamma_{m-1}, & 0 < m < n \end{cases}$$

where $\gamma = \sum_i d\varphi_x^i(x) \otimes d\varphi_x^i(y), \tau = \alpha \otimes \beta$ with $\alpha = \sum_i \varphi_x^i(y) d\varphi_x^i(x)$, $\beta = \sum_i \varphi_x^i(y) d\varphi_x^i(y)$ (notice that we are exchanging x, y, using (c) in Theorem 2.2). Condition (3.1) implies $\Delta_y k_m(x, y) = 0$ in $y \neq x$ (while $\Delta Lw = w$ implies $\Delta_x k_m(x, y) = 0$ in $x \neq y$). In fact, (3.1) amounts to requiring $\Delta_y k_m(x, y) = \delta_x$ in a sense to be described below.

3.2. In a first step we look for conditions on the A_1, A_2 , so that $\Delta_y k_m(x, y) = 0$ in $y \neq x$. A lengthy computation will show that the general harmonic k_m depends on four parameters. By the invariance of k_m , we may assume x = 0, in which case, writing r = |y|,

$$k_m(x, y) = A(r)\gamma_m, \quad m = 0, n,$$

$$k_m(0, y) = A_1(r)\gamma_m + A_2(r)\tau \wedge \gamma_{m-1},$$

with $\gamma = \sum dx^i(0) \otimes dy^i$, $\tau = \alpha \otimes \beta$, $\alpha = \sum y^i dx^i(0)$, $\beta = r dr$. Since $*_x *_y k_m(x, y)$ is again doubly invariant, it must have an analogous expression with *m* replaced by n - m. Indeed, it is easily checked that

$$*_{x} *_{y} \gamma_{m} = \frac{m!}{(n-m)!} (1-r^{2})^{2m-n} \gamma_{n-m},$$
$$*_{x} *_{y} (\tau \wedge \gamma_{m-1}) = (m-1)! (1-r^{2})^{2m-n} \left(r^{2} \frac{\gamma_{n-m}}{(n-m)!} - \frac{\tau \wedge \gamma_{n-m-1}}{(n-m-1)!} \right),$$

whence

$$*_x *_y k_m(x, y) = \frac{m!}{(n-m)!} (1-r^2)^{2m-n} \gamma_{n-m}, \text{ for } m = 0, n,$$

and

$$(3.2) \quad *_{x} *_{y} k_{m}(0, y) = \\ = \frac{(m-1)!(1-r^{2})^{2m-n}}{(n-m)!} [(mA_{1}+r^{2}A_{2})y_{n-m} - (n-m)A_{2}\tau \wedge y_{n-m-1}], \\ \text{for } 0 < m < n \end{cases}$$

Moreover, since * commutes with Δ , it is natural to require as well that $*_x *_y k_m = k_{n-m}$, that is, we may assume from now on that $0 \le m \le n/2$. For m = 0,

167

using (1.5) we find

$$\Delta(A(r)) = \frac{1}{4}(1-r^2)[-1(1-r^2)A'' + ((3-n)r + r^{-1}(1-n))A'],$$

from which it follows that $A'(r) = c_0(1-r^2)^{n-2}r^{1-n}$ and

$$A(r) = c_1 - c_0 \int_r^1 (1 - s^2)^{n-2} s^{1-n} \, ds.$$

We start now computing $\Delta_{\mathcal{Y}} k_m(0, \mathcal{Y})$ for $0 < m \le n/2$, using that on *m*-forms Δ equals $(-1)^{m+1}(*d*d+(-1)^nd*d*)$. The double form $\Delta_{\mathcal{Y}} k_m(x, \mathcal{Y})$ is also doubly invariant, and therefore it must have the same expression as k_m with A_1 , A_2 replaced by other functions B_1 , B_2 to be found. In the computations we will use besides (3.2) the equations

$$d_{\mathcal{Y}} \alpha = \mathcal{Y},$$

$$d_{\mathcal{Y}}(\tau \wedge \mathcal{Y}_{m-1}) = -r \, dr \wedge \mathcal{Y}_m = -\beta \wedge \mathcal{Y}_m,$$

$$*_x *_{\mathcal{Y}} dr \wedge \mathcal{Y}_m = (-1)^m \frac{m!}{(n-m-1)!} (1-r^2)^{2m+2-n} r^{-1} \alpha \wedge \mathcal{Y}_{n-m-1},$$

which are easily checked as well. First, $d_{y}k_{m}(0, y) = (A'_{1} - rA_{2}) dr \wedge y_{m}$, so by the equations above

$$(3.3) \quad *_{x} *_{y} d_{y} k_{m}(0, y) \\ = (-1)^{m} \frac{m!}{(n-m-1)!!} (1-r^{2})^{2m+2-n} (A'_{1}-rA_{2})r^{-1} \alpha \wedge \gamma_{n-m-1} \\ \stackrel{\text{def}}{=} \frac{(-1)^{m} m!}{(n-m-1)!} A_{3} \alpha \wedge \gamma_{n-m-1},$$

$$*_{x}d_{y} *_{y}d_{y}k_{m}(0,y) = \frac{(-1)^{m}m!}{(n-m-1)!}(A_{3}\gamma_{n-m} + A'_{3}r^{-1}\tau \wedge \gamma_{n-m-1}) *_{y}d_{y} *_{y}d_{y}k_{m}(0,y) = (-1)^{m(n-m-1)} *_{y} *_{x}(A_{3}\gamma_{n-m} + A'_{3}r^{-1}\tau \wedge \gamma_{n-m-1}) = (-1)^{m(n-m-1)}\frac{m!}{(n-m-1)!}(1-r^{2})^{n-2m}$$

$$\times \left(A_3 \frac{(n-m)!}{m!} \gamma_m + A'_3 r \frac{(n-m-1)!}{m!} \gamma_m - A'_3 r^{-1} \frac{(n-m-1)!}{(m-1)!} \tau \wedge \gamma_{m-1} \right)$$

= $(-1)^{m(n-m+1)} (1 - r^2)^{n-2m} \times [((n-m)A_3 + A'_3 r) \gamma_m - mA'_3 r^{-1} \tau \wedge \gamma_{m-1}].$

By analogous computation, applying d_{γ} to (3.2)

$$*_{x} d_{y} *_{y} k_{m}(0, y) = \frac{(m-1)!}{(n-m)!} \Big[(mA_{1} + r^{2}A_{2})(1-r^{2})^{n-2m} \Big]' \\ + (n-m)rA_{2}(1-r^{2})^{n-2m} \Big] dr \wedge \gamma_{n-m},$$

$$(3.4) \quad *_{\mathcal{Y}} d_{\mathcal{Y}} *_{\mathcal{Y}} k_{m}(0, \mathcal{Y}) = \\ = (-1)^{(m+1)(n-m)} (1-r^{2})^{2m+2-n} r^{-1} \\ = \left[\left[(mA_{1}+r^{2}A_{2})(1-r^{2})^{n-2m} \right]' + (n-m)rA_{2}(1-r^{2})^{n-2m} \right] \alpha \wedge \gamma_{m-1} \\ \stackrel{\text{def}}{=} (-1)^{(m+1)(n-m)} A_{4} \alpha \wedge \gamma_{m-1},$$

$$d_{\mathcal{Y}} *_{\mathcal{Y}} d_{\mathcal{Y}} *_{\mathcal{Y}} k_m(0, \mathcal{Y}) = (-1)^{(n-m)(m+1)} (A'_4 r^{-1} \tau \wedge \gamma_{m-1} + A_4 \gamma_m).$$

It follows finally that $\Delta = (-1)^{nm+1} (*d * d + (-1)^n d * d *)$ on k_m equals

$$\Delta_{\mathcal{Y}}k_m(0,\mathcal{Y})=B_1\mathcal{Y}_m+B_2\tau\wedge\mathcal{Y}_{m-1},$$

with

$$B_1 = -A_4 - (1 - r^2)^{n-2m} ((n - m)A_3 + A'_3 r),$$

$$B_2 = -A_4 r^{-1} + m(1 - r^2)^{n-2m} A'_3 r^{-1}.$$

Therefore, $\Delta_{\mathcal{Y}}k(0, \mathcal{Y}) = 0$ is equivalent to the system $B_1 = 0$, $B_2 = 0$. It easily follows from this that A_3 satisfies the equation

$$r(1-r^2)A_3'' + [(n+1) - r^2(3n+1-4m)]A_3' - 2(n-2m)(n-m)rA_3 = 0.$$

Replacing in the equation $B_1 = 0$, A_4 by its expression in terms of A_1 and A_2 , and then A_2 by its expression in terms of A_1 and A_3 , we find that A_1 satisfies the inhomogeneous equation

$$r(1-r^2)A_1'' + [(n+1) + (n-1-4m)r^2]A_1' + 2m(n-2m)rA_1$$

= 2rA_3(1+r^2)(1-r^2)^{n-2m-2}.

The change of variables $A_1(r) = G(x)$, $A_3(r) = H(x)$, $x = r^2$, transforms these into the hypergeometric equations

(3.5)
$$x(1-x)H''(x) + \left[\frac{n}{2} + 1 - \left(\frac{3}{2}n + 1 - 2m\right)x\right]H'(x) - \left(\frac{n}{2} - m\right)(n-m)H = 0,$$

L^p-estimates for Riesz Transforms on Forms in the Poincaré Space 169

(3.6)
$$x(1-x)G''(x) + \left[\frac{n}{2} + 1 - \left(2m + 1 - \frac{n}{2}\right)x\right]G'(x) - m\left(m - \frac{n}{2}\right)G$$

 $= \frac{1}{2}(1+x)(1-x)^{n-2m-2}H(x) \stackrel{\text{def}}{=} f(x).$

This system is equivalent to $\Delta_{y}k_{m}(x, y) = 0$ in $y \neq x$, whence the general doubly-invariant k_{m} harmonic in $y \neq x$ depends on four parameters. Note that for m = n/2, the homogeneous equations are the same and can be solved explicitly: the general solution is $H = as^{-n/2} + b$ and

(3.7)
$$G(x) = cx^{-n/2} + d + \frac{1}{2} \int_{1/2}^{x} t^{-n/2-1} \left\{ \int_{0}^{t} s^{n/2} (1+s)(1-s)^{-3} (as^{-n/2} + b) \, ds \right\} dt.$$

For m < n/2, a fundamental family for the equation (3.5) is given by

$$u_1(x) = x^{-n/2} F\left(-m, \frac{n}{2} - m, 1 - \frac{n}{2}, x\right),$$

$$u_2(x) = F\left(\frac{n}{2} - m, n - m, \frac{n}{2} + 1, x\right).$$

The hypergeometric function in u_1 is a polynomial in x of degree m with positive coefficients, 1 + x if m = 1. A fundamental family for the equation (3.6) is given by

$$\begin{split} u_3(x) &= x^{-n/2} F\left(m-n, m-\frac{n}{2}, 1-\frac{n}{2}, x\right) \\ &= x^{-n/2} (1-x)^{n+1-2m} F\left(\frac{n}{2}+1-m, 1-m, 1-\frac{n}{2}, x\right), \\ u_4(x) &= F\left(m, m-\frac{n}{2}, 1+\frac{n}{2}, x\right). \end{split}$$

The hypergeometric function in u_3 is a polynomial of degree m - 1 with positive coefficients (see [5] for all these facts). The wronskian w(x) for this second equation is, by Liouville's formula,

$$W(x) = W(x_0) \exp - \int_{x_0}^x \frac{\frac{n}{2} + 1 - \left(2m + 1 - \frac{n}{2}\right)t}{t(1-t)} dt$$
$$= c_{mn} x^{-n/2 - 1} (1 - x^{n-2m}).$$

It follows from this that the parametrization for G is given by

(3.8)
$$G(x) = c(x)u_3(x) + d(x)u_4(x),$$

where c(x), d(x) satisfy, with $H(x) = au_1(x) + bu_2(x)$,

$$c'(x) = \frac{u_4(x)f(x)}{x(1-x)W(x)}$$

= $\frac{1}{2}c_{mn}^{-1}H(x)(1+x)x^{n/2}(1-x)^{-3}u_4(x),$
$$d'(x) = -\frac{u_3(x)f(x)}{x(1-x)W(x)}$$

= $-\frac{1}{2}c_{mn}^{-1}H(x)(1+x)x^{n/2}(1-x)^{-3}u_3(x)$

Once $A_1(r) = G(r^2)$ and $A_3(r) = H(r^2)$ are known, the kernel $k_m(x, y)$ is completely known, because by the definition of A_3 in (3.3),

$$A_{2}(r) = -(1-r^{2})^{n-2m-2}A_{3}(r) + r^{-1}A_{1}'(r) = -(1-x)^{n-2m-2}H(x) + 2G'(x).$$

The choice a = 0, c(0) = 0 (a = c = 0 in the parametrization (3.7) for m = n/2) gives all doubly invariant $k_m(x, y)$ which are *globally* harmonic, with no singularity, and they are therefore spanned by the forms corresponding to the choice $G = u_4$ and to the choice a = 0, b = 1, c(0) = 0, d(0) = 0,

$$\begin{split} G(x) &= \left\{ \int_0^x (1+t)(1-t)^{-3}t^{n/2}u_2(t)u_4(t)\,dt \right\} u_3(x) \\ &\quad - \left\{ \int_0^x (1+t)(1-t)^{-3}t^{n/2}u_2(t)u_3(t)\,dt \right\} u_4(x). \end{split}$$

As a particular case, note that for m = n/2, y_m is harmonic in \mathbb{H}^{2m} , and it is the simplest example of a non-zero harmonic *m*-form in $L^2(\mathbb{H}^{2m})$.

3.3. Besides being harmonic in $y \neq x$, the singularity at y = x must be such that (3.1) holds. Again, we may assume x = 0; we check this property using *second's Green identity*, whose version for general forms we recall now.

The operator δ being the adjoint of d, one has, for a smooth domain $\overline{\Omega} \subset \mathbb{B}^n$ and α , β smooth forms on $\overline{\Omega}$ with deg $\alpha = \text{deg }\beta - 1$,

$$\int_{\partial\Omega} \alpha \wedge \ast \beta = \int_{\Omega} d\alpha \wedge \ast \beta - \int_{\Omega} \alpha \wedge \ast \delta \beta.$$

Given two *m*-forms η , ω , applying this with $\alpha = \delta \eta$, $\beta = \omega$, next with $\alpha = \omega$, $\beta = d\eta$ and subtracting, one gets *the first Green's identity for m-forms*

$$\int_{\partial\Omega} (\delta\eta \wedge *\omega - \omega \wedge *d\eta) = \int_{\Omega} (\Delta\eta \wedge *\omega - \delta\eta \wedge *\delta\omega - d\eta \wedge *d\omega).$$

Permuting ω , η and subtracting again gives *the second Green's identity*

$$\int_{\partial\Omega} (\delta\eta \wedge *\omega - \omega \wedge *d\eta - \delta\omega \wedge *\eta + \eta \wedge *d\omega) = \int_{\Omega} (\Delta\eta \wedge *\omega - \Delta\omega \wedge *\eta).$$

We apply this to $\Omega = B(0,R) - B(0,\varepsilon)$ $0 < \varepsilon < R < 1$, $\eta \in \mathcal{D}_m(\mathbb{H}^n)$ and our $k_m(0,\gamma)$ to get

(3.9)
$$\int_{|\mathcal{Y}| \ge \varepsilon} \Delta \eta \wedge *_{\mathcal{Y}} k_m(0, \mathcal{Y}) \\ = \int_{|\mathcal{Y}| = \varepsilon} (k_m \wedge * d\eta + \delta_{\mathcal{Y}} k_m \wedge * \eta - \delta \eta \wedge *_{\mathcal{Y}} k_m - \eta \wedge * dk_m).$$

In case m = 0, the terms in δk_m , $\delta \eta$ are of course zero; to get a term in $\eta(0)$ on the right when $\varepsilon \to 0$, we need dk_m of the order of ε^{1-n} and k_m of the order of ε^{2-n} in $|\mathcal{Y}| = \varepsilon$. That makes k_m locally integrable too, and (3.1) is obtained letting $\varepsilon \to 0$. This means that, for m = 0, k is unique and is given by the well-known Green's function

(3.10)
$$A(r) = c_n \int_r^1 (1 - s^2)^{n-2} s^{1-n} \, ds,$$

for an appropriate choice of c_n . In case m > 0, again we need $|k_m(0, y)| = o(r^{1-n})$ as $r \to 0$, so that the first and third terms on the right have limit 0 as $\varepsilon \to 0$; then k_m is integrable in y, and the integral on the left converges to $\int \Delta \eta \wedge * k_m$. Using the expression for $* dk_m$ in (3.3), we find

$$\int_{|\mathcal{Y}|=\varepsilon} \eta \wedge * d_{\mathcal{Y}} k_m = \frac{(-1)^{m(n-m+1)} n!}{(n-m-1)!} A_3(\varepsilon) *_{\mathcal{X}} \int_{|\mathcal{Y}|=\varepsilon} \eta \wedge \alpha \wedge \gamma_{n-m-1}.$$

By Stoke's theorem, and since $\alpha = O(r)$, the last integral equals

$$(-1)^m \int_{|\mathcal{Y}|<\varepsilon} \eta \wedge \gamma_{n-m} + O(\varepsilon).$$

If $A_3(\varepsilon) = a_0 \varepsilon^{-n} + \cdots$, we see that

$$\lim_{\varepsilon} \int_{|\mathcal{Y}|=\varepsilon} \eta \wedge * d_{\mathcal{Y}} k_m = c_n(n-m) \, m! \, a_0 \eta(0).$$

Using (3.4) for $\delta k_m = (-1)^{n(m+1)+1} * d *$, and proceeding in the same way,

$$\begin{split} \int_{|\mathcal{Y}|=\varepsilon} \delta_{\mathcal{Y}} k_m \wedge * \eta &= -A_4(\varepsilon) \int_{|\mathcal{Y}|=\varepsilon} \alpha \wedge \mathcal{Y}_{m-1} \wedge * \eta \\ &= -A_4(\varepsilon) \int_{|\mathcal{Y}|<\varepsilon} (\mathcal{Y}_m \wedge * \eta + O(\varepsilon)). \end{split}$$

But by the equation $B_1 = 0$, $A_4(\varepsilon) = -(1 - \varepsilon^2)^{n-2m}((n-m)A_3(\varepsilon) + \varepsilon A'_3(\varepsilon)) = a_0 m \varepsilon^{-n} + O(\varepsilon^{1-n})$, and hence the limit of the above expression is $-c_n m! a_0 m \eta(0)$. Altogether, we conclude that if $A_3(\varepsilon) = a_0 \varepsilon^{-n} + O(\varepsilon^{1-n})$ and $k_m(0, \gamma) = o(\gamma^{1-n})$, one has

$$\int \Delta \eta \wedge *_{\mathcal{Y}} k_m(0, \mathcal{Y}) = -c_n n m! a_0 \eta(0),$$

so (3.1) will hold for an appropriate choice of a_0 . Taking into account the definition of A_3 in (3.3) and that $|k_m| \approx |A_1| + r^2 |A_2|$, we see from (3.7) that if m = n/2, this is accomplished by the choice c = 0, $a = a_0$; then $G(x) \sim \log x$, $A_1(r) \sim \log r$, $A'_1(r) = O(1/r)$, $A_2(r) = O(r^2)$ if n = 2; if n > 2, $A_1(r) \sim r^{2-n}$ and $A_2 = O(r^{-n})$. For 0 < m < n/2, in terms of the functions H, G introduced before, this translates to $H(x) \sim a_0 x^{-n/2}$, $G(x) \sim x^{1-n/2}$. Now look at the general expression of H, G in (3.8). The condition $H(x) \sim c_0 x^{-n/2}$ fixes $a = a_0$; then near x = 0, c'(x) is bounded and d'(x) behaves like $x^{-n/2}$. So, we must normalize c(x) by c(0) = 0, so that c(x) = O(x), and the other term $c(x)u_3(x)$ will behave like $x^{1-n/2}$.

In conclusion, all this discussion shows that the doubly invariant kernels $k_m(x, y)$ satisfying (3.1) constitute a *two parameter family* described by $H = a_0u_1(x) + bu_2(x)$, c(0) = 0. The two parameters are *b* and the constant of integration for d(x) in (3.8). Equivalently, they are obtained by adding to the form corresponding to $H = a_0u_1(x)$, c(0) = 0, and say $d(\frac{1}{2}) = 0$ the general globally smooth one described before.

3.4. In order to produce the best estimates, in a sense we need to choose the best of the kernels k_m . Naturally enough, we choose the k_m having the best behaviour at infinity, x = 1, that is, so that G, H have the best decrease in size as $x \to 1$. In case m = n/2, where we already have the normalization c = 0, $a = a_0$, the choice b = -a gives the best growth H(x) = O(1 - x) and $G(x) = O(\log(1 - x))$.

The hypergeometric function u_3 behaves like $(1 - x)^{n+1-2m}$ near x = 1, while $u_4(x) = F(m, m - n/2, 1 + n/2, x)$ is bounded because 1 + n/2 - m - (m - n/2) = 1 + n - 2m > 0. Similarly, u_1 is bounded near x = 1; for $u_2(x) = F(n/2-m, n-m, n/2+1, x)$ we have n/2+1-(n/2-m)-(n-m) = 2m+1-n and hence it behaves like $(1 - x)^{2m+1-n}$ if 2m < n - 1, and like $\log(1 - x)$ if 2m = n - 1. We use equations (3.8)

$$c(x) = c_{m,n} \int_0^x H(t)(1+t)t^{n/2}(1-t)^{-3}u_4(t) dt,$$

$$d(x) = -c_{m,n} \int_{1/2}^x H(t)(1+t)t^{n/2}(1-t)^{-3}u_3(t) dt + d_0.$$

If $b \neq 0$, then $H(t) = a_0 u_1(t) + b u_2(t)$ behaves like $(1-t)^{2m+1-n}$ if 2m < n-1, and like $\log(1-t)$ if 2m = n-1, resulting in $c(x) = O(1-x)^{2m-n-1}$, $d(x) = O(\log(1-x))$ if 2m < n-1, and $c(x) = O((1-x)^{-2}\log(1-x))$, $d(x) = O(((1-x)^{-1}\log(1-x)))$ if 2m = n-1. So if $b \neq 0$, one has $G(x) = O(\log(1-x))$ if 2m < n-1 and $G(x) = O(((1-x)^{-1}\log(1-x)))$ if 2m = n-1. If b = 0, then H is bounded, giving $c(x) = O(((1-x)^{-2})$ and d(x) = O(1) for 2m < n-1, $d(x) = O(\log(1-x))$ for 2m = n-1. In case 2m < n-1, however, we can choose the constant d_0 so that d(1) = 0, and then $d(x) = O((1-x)^{n-2m-1}$. This choice gives $G(x) = O((1-x)^{n-2m-1}$ for 2m < n-1. For 2m = n-1, no choice of d_0 can improve the bound $G(x) = O(\log(1-x))$.

It remains to estimate the growth of $A_2(r)$ near r = 1. Recall that the definition (3.3) of A_3 translates to $A_2(r) = 2G'(x) - (1-x)^{n-2m-2}H(x)$. Both terms grow like $(1-x)^{n-2m-2}$, but a cancellation occurs. The functions u_1 , u_3 are C^{∞} at 1 and have developments

$$\begin{split} u_3(x) &= A(1-x)^{n+1-2m} + O(1-x)^{n+2-2m}, \\ u_3'(x) &= -A(n+1-2m)(1-x)^{n-2m} + O(1-x)^{n+1-2m}, \\ H(x) &= a_0 u_1(x) = B + O(1-x). \end{split}$$

In $u_4(x) = F(m, m-n/2, 1+n/2, x), 1+n/2-m-(m-n/2) = n+1-2m \ge 2$, whence u_4 has a finite derivative at 1 and a development

$$u_4(x) = C + D(1-x) + O(1-x)^{1+\varepsilon} \quad \forall \ \varepsilon < 1, \quad u'_4(x) = O(1).$$

Then $W(x) = u'_3 u_4 - u_3 u'_4 = CA(2m - n - 1)(1 - x)^{n-2m} + \cdots$, and so the constant c_{mn} in (3.8) is CA(2m - n - 1). Then from (3.8)

$$c'(x) = \frac{B(1-x)^{-3}}{A(2m-n-1)} + O(1-x)^{-2},$$

$$d'(x) = -\frac{B(1-x)^{n-2m-2}}{C(2m-n-1)} + O(1-x)^{n-2m-1}$$

which gives

$$c(x) = \frac{1}{2} \frac{B}{2(2m - n - 1)} (1 - x)^{-2} + O(1 - x)^{-1},$$

$$d(x) = \begin{cases} O(1 - x)^{n - 2m - 1}, & 2m < n - 1, \\ O(\log(1 - x)), & 2m = n - 1. \end{cases}$$

But $G' = c(x)u'_3(x) + d(x)u'_4(x)$; the second term $d(x)u'_4(x)$ satisfies the required bound, while the first $c(x)u'_3(x)$ has a development

$$c(x)u'_{3}(x) = -\frac{1}{2}\frac{B}{A(2m-n-1)}A(n+1-2m)(1-x)^{n-2m-2} + O(1-x)^{n-2m-1}$$
$$= \frac{B}{2}(1-x)^{n-2m-2} + O(1-x)^{n-2m-1}.$$

As $(1-x)^{n-2m-2}H(x) = B(1-x)^{n-2m-2} + O(1-x)^{n-2m-1}$, the bound for A_2 follows for $2m \le n-1$.

However, for m = n/2, this no longer holds. Indeed, from (3.7), where $c = 0, a = a_0, b = -a$,

$$2G'(x) = x^{-n/2-1} \int_0^x s^{n/2} (1+s)(1-s)^{-3} a(s^{-n/2}-1) \, ds$$

has development

$$2G'(x) = na(1-x)^{-1} + O(\log(1-x)),$$

while

$$(1-x)^{-2}a(x^{-n/2}-1) = \frac{n}{2}a(1-x)^{-1} + \cdots$$

We point out that all this can be obtained, in loose terms, working directly with the hypergeometric equations relating G, H,

$$\begin{aligned} x(1-x)G''(x) + \left[\frac{n}{2} + 1 - \left(2m + 1 - \frac{n}{2}\right)x\right]G'(x) - m\left(m - \frac{n}{2}\right)G\\ &= \frac{1}{2}(1+x)(1-x)^{n-2m-2}H(x), \end{aligned}$$

and using asymptotic developments. If $H(x) = h_0 + h_1(1-x) + \cdots$ and $G(x) = g_j(1-x)^j + \cdots$, identifying the lower order terms in both sides gives,

$$g_j j (j-1-n+2m)(1-x)^{j-1} = h_0(1-x)^{n-2m-2}.$$

When $H \equiv 0$, one must have either j = 0 (corresponding to u_4) or j = n - 2m + 1 (corresponding to u_3). For the inhomogeneous equation, if $j \neq 0$, $j \neq n + 1 + 2m$ (that is, *G* contains no contribution from u_3 , u_4), one finds j = n - 2m - 1 if 2m < n - 1 and $g_j j = -h_0/2$. Then $2G'(x) = h_0(1 - x)^{n-2m-2} + \cdots$, $(1 - x)^{n-2m-2}H(x) = h_0(1 - x)^{n-2m-2}$, showing cancellation. An analogous argument works if 2m = n - 1, but not for 2m = n.

We summarize the results in this and the previous subsections in the following theorem.

L^p-estimates for Riesz Transforms on Forms in the Poincaré Space 175

Theorem 3.1. For |n - 2m| > 1, there is a unique doubly invariant kernel

$$k_m(x, y) = \begin{cases} A_1(|\varphi_x y|) \gamma_m + A_2(|\varphi_x y|) \tau \land \gamma_{m-1}, & m \neq 0, \\ A(|\varphi_x y|) \gamma_m, & m = 0, n \end{cases}$$

for which (3.1) holds, and satisfying moreover

$$|A_i(r)| = O(1 - r^2)^{|n-2m|-1}, \text{ as } r \to 1.$$

For $m = (n \pm 1)/2$, there is a one-parameter family of such kernels satisfying

 $|A_i(r)| = O(\log(1 - r^2)).$

For m = n/2, there is a one-parameter family of such kernels satisfying

$$|A_i(r)| = O(1 - r^2)^{-1}.$$

In all cases $A_1(r) \sim r^{2-n}$, $A_2(r) \sim r^{-n}$ as $r \to 0$.

For |n - 2m| > 1, we call $k_m(x, y)$ the *Riesz kernel for m-forms* in \mathbb{H}^n , and

$$L\eta(x) = \int_{\mathbb{H}^n} \eta(y) \wedge *_{\mathcal{Y}} k_m(x, y)$$

the Riesz potential of η , whenever this is defined. From (2.8) we see that

(3.11)
$$|k_m(x,y)| = O(1-r^2)^{n-m-1}$$

With the notations used before, the function $A_3(r) = H(r^2)$ is bounded with bounded derivatives near r = 1. Then (3.3) and symmetry imply

(3.12)
$$|d_x k_m(x, y)|, |d_y k_m(x, y)| = O(1 - r^2)^{n-m-1}$$

too. The growth of A_3 also implies $A_4 = O(1 - r^2)^{n-2m}$ because $B_1 \equiv 0$, and then (3.4) gives as well

(3.13)
$$|\delta_x k_m(x,y)|, |\delta_y k_m(x,y)| = O(1-r^2)^{n-m-1}.$$

By construction, one has $L\Delta \eta = \eta$ for $\eta \in \mathcal{D}_m(\mathbb{H}^n)$. We will need the following generalization of this fact.

Proposition 3.2. If η is a smooth form in \mathbb{H}^n such that

$$|\eta(y)|, |\nabla \eta(y)| = o(1-|y|^2)^m, \quad y \in \mathbb{B}^n,$$

then $L\Delta\eta = \eta$.

Proof. In (3.9) we would get an extra term

$$\int_{|\mathcal{Y}|=R} (k_m \wedge *d\eta + \delta k_m \wedge *\eta - \delta \eta \wedge *k_m - \eta \wedge *dk_m)$$

Estimates (3.11), (3.12) and (3.13) imply that, with x fixed and $|y| = R \land 1$,

$$|k_m|, |\delta k_m|, |dk_m| = O(1-R^2)^{n-m-1}.$$

Inserting $|\eta(y)|$, $|\nabla \eta(y)| = o(1 - |y|^2)^m$ we see that this extra term vanishes as $R \neq 1$.

4. PROOF OF THE MAIN THEOREM

4.1. Once the Riesz form $k_m(x, y)$ has been found, our aim is now to prove that the corresponding convolution

$$L_m\eta(x) = \int_{\mathbb{H}^n} \eta(y) \wedge *_{\mathcal{Y}} k_m(x, y)$$

satisfies

(4.1)
$$\|L_m \eta\|_{p,s+2} \le c \|\eta\|_{p,s},$$

for $m \neq (n \pm 1)/2$, n/2, and p in the range $p_1(m) = (n-1)/(n-1-m) , and for a compactly supported$ *m* $-form <math>\eta$ (recall that we are assuming without loss of generality that $m \leq n/2$). Since these are dense in the Sobolev spaces and we already know that $\Delta L_m \eta = L_m \Delta \eta = \eta$, this will prove the theorem for $m \neq (n \pm 1)/2$, n/2. The case $m = (n \pm 1)/2$ will be commented later.

We work in the translation invariant basis w^I . Taking into account formulas (2.6) and (2.7) for γ , τ , the Riesz form is written in the \mathbb{R}^n_+ model

$$k_m(x, y) = \sum_{|I|=|J|=m} a_{I,J}(S_{\mathcal{Y}}x)w^I(x) \otimes w^J(y),$$

where each coefficient $a_{I,J}$ has an expression, with $z = S_{\gamma} x$,

$$a_{I,J}(z) = \Psi_{I,J}(r) \frac{p_{I,J}(z)}{(|z|^2 + 2z_n + 1)^{2m}},$$

$$r^2 = \frac{1 + |z|^2 - 2z_n}{1 + |z|^2 + 2z_n} = \frac{|x - y|^2}{|x - y|^2 + 4x_n y_n}$$

Here $p_{I,J}(z)$ is a certain polynomial in $z_1, \ldots, z_n, \Psi_{I,J}$ is C^{∞} in (0,1) with $\Psi_{I,J}(r) \sim c_0 r^{2-n}$ as $r > 0, \Psi_{I,J}(r) = O(1-r^2)^{n-m-1}$ as $r \neq 1$. The term $q_{I,J}(z) = p_{I,J}(z)/(|z|^2 + 2z_n + 1)^{2m}$ is bounded.

If $\eta = \sum_I \eta_I(y) w^I(y)$, the coefficient $(L\eta)_I(x)$ of $L\eta$ in the basis w^I is a finite linear combination of hyperbolic convolutions

$$(L\eta)_I(x) = \sum_J \int_{\mathbb{H}^n} \Psi_{I,J}(r) q_{I,J}(z) \eta_J(y) \, d\mu(y).$$

By ellipticity of Δ , $L\eta$ is a smooth form. Moreover, since η has compact support, we see from (1.2a) and (3.11), (3.12), (3.13) that, in the ball model,

$$|L\eta(x)|, |d(L\eta)(x)|, |\delta(L\eta)(x)| = O(1 - |x|^2)^{n-m-1}$$

which amounts to

(4.2)
$$|(L\eta)_I(x)|, |X_i(L\eta)_I(x)| = O(1-|x|^2)^{n-m-1}.$$

We claim that for second-order derivatives we have too

(4.3)
$$\begin{aligned} |X_j X_i(L\eta)_I(x)| &= O(1-|x|^2)^{n-m-1}, \quad \text{i.e.,} \\ |\nabla^{(2)}(L\eta)(x)| &= O(1-|x|^2)^{n-m-1}. \end{aligned}$$

Notice that since we already know that $\Delta L\eta = \eta$, from the expression of Δ in the basis w^I given in (1.3)–(1.5) it follows that it is enough to show that for j < n. We will see below (equation (4.7) and invariance of the X_i) that each of the functions $a(z) = \Psi_{I,J}(r)q_{I,J}(z)$ satisfies

$$|X_i X_i a(z)| = O(1 - r^2)^{n - m - 1},$$

from which (4.3) follows as before. In fact, the discussion that follows will show that $|\nabla^{(k)}L\eta(x)| = O(1 - |x|^2)^{n-m-1}, \forall k$.

We continue the proof of (4.1). We claim first that it is enough to prove (4.1) for s = 0. For a smooth form $\eta = \sum \eta_I w^I$, let $X_i \eta$ denote here the *m*-form $X_i \eta = \sum X_i \eta_I w^I$. It is clear from formulas (1.3)–(1.5) and the commutation properties,

$$[X_i, X_j] = 0, i, j < n, [X_n, X_i] = X_i, i < n,$$

that for each *i* there is an operator P_i of order two in the X_1, \ldots, X_n such that

$$X_i \Delta \eta - \Delta(X_i \eta) = P_i(X) \eta.$$

Applying this to $L\eta$, which is smooth by the ellipticity of Δ , we get

$$(X_i - \Delta X_i L)\eta = P_i(X)L\eta.$$

But $X_i L\eta$ satisfies, by (4.2) and (4.3)

$$|X_i L\eta(x)|, |d(X_i L\eta)(x)|, |\delta(X_i L\eta)(x)| = O(1 - |x|^2)^{n-m-1},$$

and hence by Proposition 3.2, $L\Delta = \text{Id on it.}$ We conclude that for all $\eta \in \mathcal{D}_m(\mathbb{H}^n)$

$$(LX_i - X_iL)\eta = LP_i(X)L\eta.$$

Assume that (4.1) has been proved up to *s*, so that by density it holds for $\alpha \in H^s_{m,p}(\mathbb{H}^n)$ too, and let γ be a multiindex of length $|\gamma| \leq s$. For i = 1, ..., n and $\eta \in \mathcal{D}_m(\mathbb{H}^n)$,

$$X^{\gamma}X_{i}L\eta = X^{\gamma}LX_{i}\eta - X^{\gamma}LP_{i}(X)L\eta,$$

so using twice the induction hypothesis

$$||X^{\gamma}X_{i}L\eta||_{p} \leq \text{const} (||X_{i}\eta||_{p,s} + ||P_{i}(X)L\eta||_{p,s}) \leq \text{const} (||\eta||_{p,s+1} + ||\eta||_{p,s}),$$

proving (4.1) for s + 1. Proving (4.1) for s > 0 means proving

$$\|(L\eta)_I\|_p, \|X_i(L\eta)_I\|_p, \|X_jX_i(L\eta)_I\|_p \le \text{const} \|\eta\|_p.$$

As before, using that we already know that $\Delta L\eta = \eta$, we see that for the secondorder derivatives we may assume j < n. In the following we delete the indexes *I*, *J* and denote by $a(z) = \psi(r)Q(z)$ a convolution kernel with ψ , *Q* as above, and proceed to prove that the convolution

$$(C_a\alpha)(z) = \int_{\mathbb{H}^n} a(S_{\mathcal{Y}}x)\alpha(\mathcal{Y}) \, d\mu(\mathcal{Y})$$

satisfies

$$(4.4) \quad \|C_a\alpha\|_p, \ \|X_i(C_a\alpha)\|_p, \ \|X_jX_iC_a(\alpha)\|_p \le \operatorname{const} \|\alpha\|_p, \quad p_1 \le p \le p_2,$$

where in the last case we may assume that j < n. The fields X_i are invariant, and therefore $X_i C_a \alpha$, $X_j X_i C_a \alpha$ are obtained, respectively, by convolution with $Z_i a$, $Z_j Z_i a$ (by (2.1)). Recall that

$$\Psi(r) = O(1-r^2)^{n-m-1} = O\left(\frac{4z_n}{1+|z|^2+2z_n}\right)^{n-m-1} \text{ as } r \neq 1,$$

and

$$\psi(r) \sim r^{2-n}, \qquad \text{as } r \searrow 0$$

In order to estimate $Z_i a$, $Z_i Z_j a$, we collect first some auxiliary estimates. We claim that

(4.5)
$$\begin{aligned} |Z_i Q| &\leq \text{const}, \qquad |Z_i Z_j Q| \leq \text{const}, \\ |Z_i r| &\leq \text{const} (1 - r^2), \qquad |Z_i Z_j r| \leq \text{const} r^{-1} (1 - r^2). \end{aligned}$$

The first two are routinely checked, for instance, when differentiating the denominator in Q,

$$\left| Z_i \frac{1}{(1+|z|^2+2z_n)^{2m}} \right| = \left| \frac{4mz_n z_1}{(1+|z|^2+2z_n)^{2m+1}} \right|$$

$$\leq \frac{\text{const}}{(1+|z|^2+2z_n)^{2m}} \qquad (i < n),$$

so that the term $p_{I,J}(z)Z_i[(1 + |z|^2 + 2z_n)^{-2m}]$ will still be bounded. All other terms can be treated similarly. Differentiating $1 - r^2 = 4z_n/(1 + |z|^2 + 2z_n)$, we get

$$\begin{split} Z_i r &= \frac{1-r^2}{2} \frac{z_i z_n}{r(1+|z|^2+2z_n)}, \\ Z_n r &= -\frac{1-r^2}{2} \frac{1}{r} \frac{1+|z|^2-2z_n^2}{1+|z|^2+2z_n}, \\ Z_j Z_i r &= \frac{1-r^2}{2r} \left\{ \frac{\delta_{ij} z_n^2}{1+|z|^2+2z_n} - \frac{1+5r^2}{2r^2} \frac{z_i z_j z_n^2}{(1+|z|^2+2z_n)^2} \right\}, \quad i,j < n \\ Z_j Z_n r &= \frac{1-r^2}{r} \left\{ -\frac{2z_n^2 z_j (1+z_n)}{(1+|z|^2+2z_n)^2} + \frac{(1+r^2)}{4r^2} \frac{z_j z_n (1+|z|^2-2z_n)}{(1+|z|^2+2z_n)^2} \right\}, \quad j < n. \end{split}$$

These imply (4.5) because

$$\begin{aligned} |z_i z_n|, \ 1 + |z|^2 - 2z_n^2 &\leq (1 + |z|^2 - 2z_n)^{1/2} (1 + |z| + 2z_n)^{1/2} \\ &= r(1 + |z|^2 + 2z_n). \end{aligned}$$

Now

(4.6a)
$$Z_{i}a(z) = \psi'(r)Z_{i}rQ(z) + \psi(r)(Z_{i}Q)(z),$$

(4.6b)
$$Z_{j}Z_{i}a(z) = \psi''(r)(Z_{i}r)(Z_{j}r)Q(z) + \psi'(r)(Z_{j}Z_{i}r)Q\psi'(r)Z_{i}rZ_{j}Q + \psi'(r)Z_{j}rZ_{i}Q + \psi(r)Z_{j}Z_{i}Q.$$

The estimates (4.5) imply

(4.7)
$$\begin{aligned} &|a(z)|, \quad |Z_i a(z)|, \quad |Z_j Z_i a(z)| = O(1 - r^2)^{n - m - 1} \quad \text{as } r \neq 1, \\ &|a(z)| = O(r^{2 - n}), \quad |Z_i a(z)| = O(r^{1 - n}), \quad |Z_j Z_i a(z)| = O(r^{-n}). \end{aligned}$$

We will call a convolution kernel b(z) *m-admissible* if $|b(z)| = O(r^{1-n})$ as $r \\ > 0$ and, moreover, $|b(z)| = O(1 - r^2)^{n-m-1}$ as $r \\ < 1$. We will prove later (Theorem 4.2) that a hyperbolic convolution with *m*-admissible kernels defines a bounded operator in $L^p(\mathbb{H}^n)$ for the range $(p_1(m), p_2(m))$, as specified in the statement of the main result. From the estimates (4.6) we see that *a* and $Z_i a$ are *m*-admissible kernels, and so (4.4) will be proved for them. As $|Z_jZ_ia(z)| = O(r^{-n})$ has the critical non-integrable singularity at r = 0, $Z_jZ_ia(z)$ is not an *m*-admissible kernel. Notice however from (4.6), (4.7) that the last three terms $\psi'(r)Z_irZ_jQ$, $\psi'(r)Z_jrZ_iQ$, $\psi(r)Z_jZ_iQ$ are indeed *m*-admissible. Moreover, the estimate $|Z_iQ| \le \text{const implies that } Q$ is Lipschitz with respect to the hyperbolic metric, in particular

$$Q(z) = Q(e) + O\left(\log\frac{1+r}{1-r}\right) = Q(e) + O(r),$$

for small r. This means that replacing Q by Q - Q(e) in the first two terms leads to an m-admissible kernel again. All this leaves us with the kernel

$$\psi^{\prime\prime}(r)Z_irZ_jr + \psi^{\prime}(r)Z_jZ_ir, \quad j < n.$$

If $\psi(r) = c_0 r^{2-n} + \cdots$, write $\phi(r) = c_0 r^{2-n} (1 - r^2)^{n-m-1}$; then the above differs from

$$\phi^{\prime\prime}(r)Z_irZ_jr + \phi^{\prime}(r)Z_jZ_ir$$

in an *m*-admissible kernel. By the same reason, we may replace $\phi''(r)$, $\phi'(r)$ respectively by $(r^{2-n})''(1-r^2)^{n-m-1}$, $(r^{2-n})'(1-r^2)^{n-m-1}$, that is to say we must deal with the convolution kernel

(4.8)
$$(1-r^2)^{n-m-1}Z_iZ_i(r^{2-n}).$$

We introduce a class of singular hyperbolic convolution kernels to deal with the later. For this purpose it is more convenient to work in the ball model, so now *b* is defined in \mathbb{B}^n , and r = |z|. We replace the integrable singularity r^{1-n} by a typical Calderón-Zygmund singularity (see e.g. [14]). Thus, we will call *b* a *m*-Calderón-Zygmund singular kernel if it has the form

$$b(z) = \Omega(w)r^{-n}(1-r^2)^{n-m-1}, \quad z = rw, \ w \in S^{n-1},$$

where Ω is say a Lipschitz function on S^{n-1} satisfying the cancellation condition

(4.9)
$$\int_{S^{n-1}} \Omega(w) \, d\sigma(w) = O.$$

In Theorem 4.2 below we prove that m-Calderón-Zygmund singular kernels define bounded operators in the same range of p. With the following proposition,

applied to $\phi_2(z) = |z|^{2-n}$, this will end the proof of the main result. The proposition is the analogue of the well-known statement that for ϕ smooth and homogeneous of degree 1 - n in \mathbb{R}^n , $\partial \phi / \partial x_i$ defines a Calderón-Zygmund kernel; it is homogeneous of degree -n, and the cancellation condition (4.9) is automatically satisfied, because

$$\int_{r_1 < |x| < r_2} \frac{\partial \phi}{\partial x_i} dV(x)$$

= $\left(\int_{|x| = r_2} - \int_{|x| = r_1} \right) \phi(x) dx^1 \wedge \dots \wedge dx^i \wedge \dots \wedge dx^n = 0.$

Proposition 4.1. If ϕ_1 , ϕ_2 are homogeneous functions of degree 1 - n, 2 - n respectively, the kernels $(1 - r^2)^{n-m-1}Z_i\phi_1$, $(1 - r^2)^{n-m-1}Z_jZ_i\phi_2$ are sum of (m - 1)-admissible and (m - 1)-Calderón-Zygmund singular kernels.

Proof. We replace the Z_j by $Y_j = (1 - r^2)\partial/\partial z_j$; we have

$$Y_{i}\phi_{1} = (1 - r^{2})\frac{\partial\phi_{1}}{\partial z_{i}},$$

$$Y_{i}\phi_{2} = (1 - r^{2})\frac{\partial\phi_{2}}{\partial z_{i}} = (1 - r^{2})O(r^{1-n}),$$

$$Y_{j}Y_{i}\phi_{2} = (1 - r^{2})\frac{\partial^{2}\phi_{2}}{\partial z_{i}\partial z_{j}} - 2(1 - r^{2})z_{j}\frac{\partial\phi_{2}}{\partial z_{i}}$$

$$= (1 - r^{2})\frac{\partial^{2}\phi_{2}}{\partial z_{i}\partial z_{j}} + (1 - r^{2})O(r^{2-n}),$$

so in all cases we get an extra factor $(1 - r^2)$. Besides, $\partial \phi_1 / \partial z_i$ and $\partial^2 \phi_2 / \partial z_i \partial z_j$ are, as noted before, homogeneous of degree -n, and satisfy the cancellation condition (4.9).

4.2. It remains to prove the following result.

Theorem 4.2. Both m-admissible and m-Calderón-Zygmund kernels define, by hyperbolic convolution, bounded operators in $L^p(\mathbb{H}^n)$ for

$$\frac{n-1}{n-1-m}$$

We will make use of the following well-known Schur's lemma for boundedness in L^p of an integral operator with positive kernel.

Lemma 4.3. If K(x, y) is a positive kernel in a measure space X and $1 , the operator <math>Kf(x) = \int_X K(x, y)f(y) d\mu(y)$ is bounded in $L^p(\mu)$ if and only

if there exists $h \ge 0$ such that

(4.10)
$$\int_X K(x,y)h(y)^q d\mu(y) = O(h(x)^q), \quad x \in X,$$

(4.11)
$$\int_X K(x,y)h(x)^p d\mu(x) = O(h(y)^p), \quad y \in Y.$$

Here q is the conjugate exponent of p, 1/p + 1/q = 1. If h can be taken $\equiv 1$, that is,

$$\sup_{x}\int_{X}K(x,y)\,d\mu(y),\,\sup_{y}\int_{X}K(x,y)\,d\mu(x)<+\infty,$$

then K is bounded in $L^p(\mu)$ for all $p, 1 \le p \le \infty$.

Proof. Let us prove Theorem 4.2. If *b* is *m*-admissible, then $b = b_1 + b_2$ with $b_1(z) = O(r^{1-n})$ for $r \le \frac{1}{2}$, $b_1(z) = 0$ for $r > \frac{1}{2}$, and $b_2(z) = O(1 - r^2)^{n-m-1}$ for all *r*. We apply to b_1 the second criterion in Lemma 4.3, working in the ball model (recall that $|S_y X| = |\varphi_y x|$ is symmetric in *x*, *y*).

$$\begin{split} \int_X b_1(S_{\mathcal{Y}}x) \, d\mu(x), \ \int_X b_1(S_{\mathcal{Y}}x) \, d\mu(\mathcal{Y}) &\leq c \int_{|S_{\mathcal{Y}}x| \leq 1/2} |S_{\mathcal{Y}}x|^{1-n} \, d\mu(x) \\ &= c \int_{|z| \leq 1/2} |z|^{1-n} \, d\mu(z) \\ &= \text{const} \int_0^{1/2} \frac{dr}{(1-r^2)^n} < +\infty. \end{split}$$

We apply to $(1 - r^2)^{n-m-1}$ the criteria of the first part on Lemma 4.3, working this time for convenience in the half-space model, where the kernel is written

$$K(x, y) = (1 - r^2)^{n - m - 1}$$
$$= \left(\frac{4z_n}{1 + |z|^2 + 2z_n}\right)^{n - m - 1}$$
$$= \left(\frac{4x_n y_n}{|x - y|^2 + 4x_n y_n}\right)^{n - m - 1}$$

We test $h(y) = y_n^{\alpha}$ in (4.10) for an exponent α to be chosen, so we need

$$\int_{y_n>0} \frac{y_n^{-m-1+\alpha q} \, dy}{(|x-y|^2+4x_ny_n)^{n-m-1}} = O(x_n^{\alpha q+m+1-n}).$$

We write $|x-y|^2 + 4x_n y_n = |x'-y'|^2 + (x_n+y_n)^2$, where $x' = (x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1}$, and analogously for y', and integrate first in y'. One has for 2m < n-1

$$\int_{\mathbb{R}^{n-1}} \frac{dy'}{(|x'-y'|^2 + (x_n + y_n)^2)^{n-m-1}} = c \int_0^\infty \frac{s^{n-2}}{(s^2 + (x_n + y_n)^2)^{n-m-1}} = O((x_n + y_n)^{2m+1-n}),$$

and so the above becomes

$$\int_0^\infty \frac{y_n^{\alpha q - m - 1} dy_n}{(x_n + y_n)^{n - 1 - 2m}} = O(x_n^{\alpha q + m + 1 - n}).$$

By homogeneity $(y_n = x_n t)$ this reduces to

$$\int_0^\infty \frac{t^{\alpha q - m - 1}}{(1 + t)^{n - 1 - 2m}} = O(1),$$

which holds whenever $m < \alpha q < n - 1 - m$. By symmetry, for (4.11) we need as well $m < \alpha p < n - 1 - m$. Therefore, a choice of α is possible whenever $m \max(1/p, 1/q) < (n - 1 - n) \min(1/p, 1/q)$, and this gives the range

$$\frac{n-1}{n-1-m}$$

Consider now a *m*-Calderón-Zygmund kernel $b(z) = \Omega(w)r^{-n}(1-r^2)^{n-m-1}$. Since $|S_{\mathcal{Y}}x| = |\varphi_{\mathcal{Y}}x|$, we may replace $z = S_{\mathcal{Y}}x$ by $z = \varphi_x \mathcal{Y}$. Using (1.1) this is given by

$$z = \frac{(x - y)(1 - |x|^2) + x|x - y|^2}{A}$$

where we use the notation $A = (1 - |x|^2)(1 - |y|^2) + |x - y|^2$; note that

$$(1 - |\mathbf{x}|^2), \ (1 - |\mathbf{y}|^2) \leq A^{1/2}.$$

Also recall that r = |z| and $Ar^2 = |x - y|^2$. Hence we can write

$$\frac{z}{r} - \frac{x-y}{|x-y|} = \frac{x-y}{|x-y|} \left(\frac{1-|x|^2}{\sqrt{A}} - 1\right) + x \cdot r.$$

But

$$\frac{1-|x|^2}{\sqrt{A}} - 1 = \frac{(1-|x|^2)^2 - A}{\sqrt{A}((1-|x|^2) + \sqrt{A})}$$
$$= \frac{(1-|x|^2)O(|x-y|) + O(|x-y|^2)}{A}$$

is O(r). Therefore, modulo an *m*-admissible kernel, we may replace $\Omega(w)$ by $\Omega((x - y)/(|x - y|))$. This leaves us with the kernel

$$K = (1 - r^2)^{n - m - 1} \Omega\left(\frac{x - y}{|x - y|}\right) r^{-n}$$
$$= (1 - r^2)^{n - m - 1} |x - y|^{-n} \Omega\left(\frac{x - y}{|x - y|}\right) A^{n/2}(x, y).$$

Fix p, 1 . Write

$$A^{n/2}(x, y) = (1 - |x|^2)^{n/p} (1 - |y|^2)^{n/q} + O(|x - y|A^{(n-1)/2}).$$

Since $|x - y|^{1-n}A^{(n-1)/2} = r^{1-n}$, the kernel *K* differs from

$$(1-r^2)^{n-m-1}|x-y|^{-n}\Omega\left(\frac{x-y}{|x-y|}\right)(1-|x|^2)^{n/p}(1-|y|^2)^{n/q}$$

in a m-admissible kernel, so we keep this one. We write it as the sum of

$$|x-y|^{-n}\Omega\left(\frac{x-y}{|x-y|}\right)(1-|x|^2)^{n/p}(1-|y|^2)^{n/q} = K_1(x,y)$$

and another $K_2(x, y)$, which we estimate by

$$\begin{split} |K_2(x,y)| &= O(r^2|x-y|^{-n}(1-|x|^2)^{n/p}(1-|y|^2)^{n/q}) \\ &= O(r^{2-n}(1-|x|^2)^{n/p}(1-|y|^2)^{n/q}A^{-n/2}). \end{split}$$

Write K_{Ω} for the (euclidean) Calderón-Zygmund convolution operator with kernel $|x - y|^{-n}\Omega((x - y)/(|x - y|))$, which as it is well-known, satisfies an $L^{p}(dV)$ -estimate. Notice that

$$K_1 f(x) = (1 - |x|^2)^{n/p} K_{\Omega} (f(1 - |y|^2)^{-n/p})$$

and therefore, using the L^p -boundedness of K_{Ω}

$$\int_{\mathbb{B}^n} |K_1 f(x)|^p d\mu(x) = \int_{\mathbb{B}^n} |K_\Omega(f(1-|y|^2)^{-n/p})|^p dV(x)$$
$$\leq \int_{\mathbb{B}^n} |f(x)|^p d\mu(y).$$

For K_2 , we can ignore the integrable singularity r^{2-n} and arguing as we just did with K_1 , we need to show that the integral operator

$$K_3 f(x) = \int_{|y| \le 1} \frac{1}{(1 - |x| + |x - y|)^n} f(y) \, dV(y)$$

satisfies $L^p(dV)$ -estimates for all $p, 1 . To see this, just check that the criteria in Lemma 4.3 holds, with <math>h(x) = (1 - |x|^2)^{-1/(pq)}$.

Notice that in case m = 0 a *m*-Calderón-Zygmund kernel defines a bounded operator in all $L^{p}(\mathbb{H}^{n})$, $1 : this is the right analogue of the euclidian kernels, because <math>(1 - r^{2})^{n-1}$ is the typical growth at infinity of a weak $L^{1}(d\mu)$ function in \mathbb{H}^{n} .

4.3. Finally we make some comments, with no proofs, on the critical case m = (n - 1)/2 in the main theorem.

In this case, the *m*-admissible and *m*-Calderón-Zygmund operators appearing in $X_j X_i C_a u$, etc. have $(1-r^2)^{(n-1)/2} \log(1/(1-r^2))$ instead of $(1-r^2)^{n-m-1} = (1-r^2)^{(n-1)/2}$ as a factor. One can then prove that for $\beta > 0$ and $2 \le p < 2+2\beta/(n-1)$,

$$\|L_p\eta\|_{p,2} \leq \operatorname{const} \int_{\mathbb{B}^n} |\eta|^p (1-|\gamma|^2)^{-\beta} d\mu(\gamma).$$

The L^p -estimates do not hold in this case for any p, because they do not hold for p = 2 and Δ is self-adjoint.

References

- JOAQUIM BRUNA and JOAN GIRBAU, Mapping properties of the Laplacian in Sobolev spaces of forms on complete hyperbolic manifolds, Ann. Global Anal. Geom. 25 (2004), 151–176, http://dx.doi.org/10.1023/B:AGAG.0000018554.31037.23. 2 046 770
- [2] JEAN-PHILIPPE ANKER and NOËL LOHOUÉ, *Multiplicateurs sur certains espaces symétriques*, Amer. J. Math. **108** (1986), 1303–1353. MR 88c:43008 (French)
- [3] JEAN-PHILIPPE ANKER, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257–297. MR 93b:43007
- [4] HAROLD DONNELLY, *The differential form spectrum of hyperbolic space*, Manuscripta Math. 33 (1980/81), 365–385. MR 82f:58085
- [5] ARTHUR ERDÉLYI, WILHELM MAGNUS, FRITZ OBERHETTINGER, and FRANCESCO G. TRICOMI, *Higher Transcendental Functions. Vols. I, II*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. MR 15,419i
- [6] NOËL LOHOUÉ, Comparaison des champs de vecteurs et des puissances du laplacien sur une variété riemannienne à courbure non positive, J. Funct. Anal. 61 (1985), 164–201, http://dx.doi.org/10.1016/0022-1236(85)90033-3. MR 86k:58117 (French)
- [7] NOËL LOHOUÉ, Transformées de Riesz et fonctions de Littlewood-Paley sur les groupes non moyennables, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 327–330. MR 89b:43008 (French, with English summary)
- [8] _____, Estimations asymptotiques des noyaux résolvants du laplacien des formes différentielles sur les espaces symétriques de rang un, de type non compact et applications, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 551–554. MR 89i:58148 (French, with English summary)
- [9] _____, Remarques sur les intégrales singulières sur les variétés à courbure non positive, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 647–649. MR 90e:58151 (French, with English summary)
- [10] NOËL LOHOUÉ and NICOLAS TH. VAROPOULOS, Remarques sur les transformées de Riesz sur les groupes de Lie nilpotents, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 559–560. MR 87b:43008 (French, with English summary)

- [11] ALEXANDRU D. IONESCU, Singular integrals on symmetric spaces of real rank one, Duke Math. J. 114 (2002), 101–122. MR 2003c:43008
- [12] EMMANUEL PEDON, Analyse harmonique des formes différentielles sur l'espace hyperbolique réel. I. Transformation de Poisson et fonctions sphériques, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 671–676,

http://dx.doi.org/10.1016/S0764-4442(98)80028-1. MR 99h:43022 (French)

 [13] EMMANUEL PEDON, Analyse harmonique des formes différentielles sur l'espace hyperbolique réel. II. Transformation de Fourier sphérique et applications, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 781–786, http://dx.doi.org/10.1016/S0764-4442(98)80012-8. MR 99h:43010 (French)

[14] ELIAS M. STEIN, *Singular Integrals and Differentiability Properties of Functions*, Princeton Math-

ematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 44 #7280

Departament de Matemàtiques Universitat Autònoma de Barcelona Campus de Bellaterra 08193 Cerdanyola del Vallès (Barcelona), Spain. E-MAIL: bruna@mat.uab.es

KEY WORDS AND PHRASES: Hodge-de Rham laplacian, Sobolev spaces, Riesz transforms, hyperbolic form convolution

2000 MATHEMATICS SUBJECT CLASSIFICATION, 2000: 53C21, 58J05, 58J50, 58J70 *Received: July 18th, 2003.*