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ABSTRACT. Using hyperbolic form convolution with doubly
isometry-invariant kernels, the explicit expression of the inverse
of the de Rham laplacian ∆ acting on m-forms in the Poincaré
space Hn is found. Also, by means of some estimates for hy-
perbolic singular integrals, Lp-estimates for the Riesz transforms
∇i∆−1, i ≤ 2, in a range of p depending on m,n are ob-
tained. Finally, using these, it is shown that ∆ defines topologi-
cal isomorphisms in a scale of Sobolev spaces Hsm,p(Hn) in case
m ≠ (n± 1)/2, n/2.

1. STATEMENT OF RESULTS AND PRELIMINARIES

1.1. The main object of study in this paper is the Hodge-de Rham Laplacian∆ acting on m-forms in the Poincaré hyperbolic space (Hn, g). The aim is to
prove that ∆ defines topological isomorphisms in a range Hsm,p(Hn) of Sobolev
spaces of forms defined as follows. For 0 ≤ m ≤ n, 1 ≤ p < ∞ and s ∈ N,
the Sobolev space Hsm,p(Hn) is the completion of the space Dm(Hn) of smooth
m-forms with compact support with respect to the norm

‖η‖p,s =
s∑
i=0

‖∇(i)η‖p.

Here ∇(i) means the i-th covariant differential of η, and for a covariant tensor α

‖α‖p =
(∫

Hn
|α(x)|p dµ(x)

)1/p
,
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|α| being the pointwise norm of α with respect to the metric g and dµ the
volume-invariant measure on Hn given by g. The space Hsm,p(Hn) can be al-
ternatively defined in terms of weak derivatives. The main result of this paper is
the following theorem.

Theorem A. ∆ is a topological isomorphism from Hs+2
m,p(Hn) to Hsm,p for

p ∈ (p1, p2) with

p1 = 2(n− 1)
n− 2+ |n− 2m| ,

1
p1
+ 1
p2
= 1

in casem ≠ (n± 1)/2, n/2.

In the exceptional casem = (n±1)/2, ∆ is one to one but is not a topological
isomorphism for any p. For this case we obtain as well some weighted estimates.
If m = n/2, ∆ is known to have a non-trivial kernel. Of course, Sobolev spaces
Hsm,p can be considered for non integer s as well, and the same results hold by
interpolation.

Notice that the Hodge star operator ∗ establishes an isometry fromHsm,p(Hn)
to Hsn−m,p(Hn) which commutes with ∆, and this is why the range (p1, p2) de-
pends only on |n − 2m|. Notice too that the range (p1, p2) always contains
p = 2 in the non-critical case |n− 2m| > 1 and that for functions (m = 0), the
range of p is (1,∞) (see comments below). We point out that the range (p1, p2)
equals |1/p − 1

2 | <
√µ/(n − 1), where µ denotes the greatest lower bound for

the spectrum of ∆ in H0
m,2(Hn), whose value ([4]) is µ = (n − 1 − 2m)2/4 (for

m < n/2).
For the Sobolev spaces for p = 2, Hsm,2(Hn), another proof of the theorem,

based on energy methods and valid for an arbitrary complete hyperbolic manifold,
is given in [1]. The motivation for the theorem, as with [1], comes from mathe-
matical physics, where most operators exhibit ∆ as their principal part, and results
like the above become essential to establish existence and uniqueness theorems.

Our method of proof is simply to construct an explicit inverse L for ∆ on
Dm(Hn) and show that there is a gain of two covariant derivatives

‖Lη‖p,s+2 ≤ const‖η‖p,s .

Thus Lη plays the role of the classical Riesz transform in the Euclidean setting.
The most delicate part is of course

‖∇(2)Lη‖p ≤ const ‖η‖p, p1 < p < p2, η ∈ Dm(Hn).

Riesz-type operators such as ∇∆−1/2, ∇(2)∆−1 have extensively been studied
in different contexts, for the case of functions. On symmetric spaces, they are
bounded in Lp, 1 < p < ∞ and of weak type (1,1). This was shown in [2]
for the first order ones in some spaces, and later extended to all symmetric spaces
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in [3]. The Lp-boundedness holds as well for higher order Riesz transforms in
symmetric spaces, but not generally the weak type (1,1) estimate. In more general
contexts, this has been shown in [6], [7], [8], among others. In case of m-forms,
0 <m < n, as far as we know, there are much less known results, and is for those
that our result is new. In [12], [13] some aspects of harmonic analysis of forms are
developed; in particular, the exact expression for the heat kernel is given, and it is
very likely that from it one can get as well an explicit expression for ∆−1. Strictly
speaking, to prove the result, an exact expression of ∆−1 is not needed, it is enough
having estimates for the resolvent both local and at infinity. In [8], estimates of
this kind are obtained and applied to Sobolev-type inequalities for forms, and they
might work for this purpose too.1 However, we feel that our approach, that we
next describe, is more elementary and might be interesting in itself.

The de Rham Laplacian ∆ is invariant by all isometriesϕ of Hn. These form
a group that we denote here by Iso(Hn). Denoting by ϕ∗(η)(x) = η(ϕ(x))
the pull-back of a form η by ϕ, this means that ∆ and ϕ∗ commute, for all
ϕ ∈ Iso(Hn). Therefore the inverse L of ∆ should commute too with Iso(Hn).
Among all isometries of Hn, the hyperbolic translations Tr(Hn) constitute a (non-
commutative) subgroup, in one to one correspondence with Hn itself. In Section
2 we do some harmonic analysis for forms in Hn and introduce hyperbolic convo-
lution of forms to describe all operators acting on m-forms and commuting with
Tr(Hn). In a second step (Subsection 2.2) we characterize the hyperbolic convo-
lution kernels k(x,y) corresponding to operators commuting with the full group
Iso(Hn).

Once the general expression of an operator commuting with Iso(Hn) has been
found, we look for our L among these. This corresponds to L having a kernel
k(x,y) which is a fundamental solution of ∆ in a certain sense, and having the
best decay at infinity. This kernel turns out to be unique for m ≠ (n ± 1)/2,
n/2, we call it the Riesz kernel for m-forms in Hn, it is found in Subsection 3.1
and estimated in Subsection 3.2. Section 4 is devoted to the proof of the Lp-
estimates. Here we use standard techniques in real analysis (Haussdorf-Young
inequalities, Schur’s lemma, etc.). For the second-order Riesz transform, to show
its boundedness in the specified range (p1, p2) needs considering some notion of
“hyperbolic singular integral.” There exist some references dealing with this, e.g.
[9], [11], and giving some criteria for Lp-boundedness that might apply; however,
as the singular integral arises locally, we have found it easier and more elementary
to treat it with the classical Euclidean Calderón-Zygmund theory as a local model,
and patch it in a suitable way to infinity.

1.2. We collect here several notations and known facts about Hn. We will
use both the unit ball model Bn with metric g = 4(1 − |x|2)−2∑

i dxi dxi and

1Added in proof. It has been brought to the author’s attention by Professor John M. Lee that when
p = 2, the result in Theorem A is implicit in the work by R. Mazzeo in Comm. Partial Differential
Equations 16 (1991), 1615–1664, and in J.Differential Geometry 28 (1988), 309–339. Also, a similar
result appears in J.M. Lee’s preprint in http://www.arxiv.org/math.DG/0105046 .
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the half-space model Rn+ = {xn > 0} with metric g = x−2
n
∑
i dxi dxi. Both

models are connected via the Cayley transform ψ : Rn+ → Bn given in coordinates
by

yi = 2xi
n−1∑
i
x2
i + (xn + 1)2

, i = 1, . . . , n− 1;

yn =

n∑
1

x2
i − 1

n−1∑
1

x2
i + (xn + 1)2

.

We denote by e ∈ Hn the point (0,0, . . . ,1) ∈ Rn+ or 0 ∈ Bn.
The metric g defines a pointwise inner product (α,β)(x) between forms at

x, for every x ∈ Hn, and a volume measure dµ. In the ball model dµ is written
dµ(x) = 2n(1 − |x|2)−ndx1 · · ·dxn, and dµ(x) = x−nn dx1 · · ·dxn in the
half-space model. We denote by 〈 , 〉 the pairing between forms that makes
Hsm,2(Hn) a Hilbert space

〈α,β〉 =
∫
Hn
(α,β)(x)dµ(x).

We write |α| and ‖α‖ for the pointwise and global norms, respectively, of the
form α. In terms of the Hodge star operator ∗ the inner product can be written
too

〈α,β〉 =
∫
Hn
α∧∗β.

The group Tr(Hn) of hyperbolic translations is in one to one correspondence
x , Tx with Hn through the equation Tx(e) = x. The equations of z = Txy are
better described in the half-space model by

zi = xnyi + xi, i = 1, . . . , n− 1; zn = xnyn.

It is easily checked that indeed Tr(Hn) is a (non-commutative) group. The inverse
transformation of Tx will be denoted Sx . Another explicit isometry ϕx mapping
e to x, satisfying ϕ−1

x = ϕx , is given in the ball model by

(1.1) ϕx(y) = (|x|
2 − 1)y + (|y|2 − 2xy + 1)x
|x|2 |y|2 − 2xy + 1

.

Since the isotropy group of 0 is the orthogonal groupO(n), the general expression
of ϕ ∈ Iso(Hn) is ϕ =ϕx ◦U , with x = ϕ(0).
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The hyperbolic (or geodesic) distance between x, y ∈ Hn is written d(x,y).
We will rather use the pseudohyperbolic distance r = r(x,y), related to d by the
formula d(x,y) = 2 arctanh r(x,y). The explicit expression of r(x,y)2 in the
Rn+ model and the Bn model is respectively

r 2 = |x −y|2
|x −y|2 + 4xnyn

, x,y ∈ Rn+,(1.2a)

r 2 = |ϕx(y)|2 = |x −y|2
(1− |x|2)(1− |y|2)+ |x −y|2 , x,y ∈ Bn.(1.2b)

Associated to the group of translations we have the basis of orthonormal
translation-invariant vector fields Xi(x) = (Tx)∗(Xi(e)), such that Xi(e) =
∂/∂xi. They satisfy Xi(u ◦ Tx) = (Xiu) ◦ Tx for every smooth function u.
We will denote by wi(x) the dual basis of Xi, which accordingly is orthonormal
and translation invariant too: T∗x wi = wi. Their expression in the Rn+ model is
simply

Xi(x) = xn ∂
∂xi

, wi(x) = x−1
n dxi, i = 1, . . . , n.

Because of their translation-invariance property, the (Xi,wi) are more suitable
than the (Xi, ηi) defined in the ball model Bn by

Yi(x) = (1− |x|
2)

2
∂
∂xi

, ηi(x) = 2(1− |x|2)−1 dxi.

For an increasing multiindex I of length |I| =m we writewI = wi1∧wi2∧· · ·∧
wim , and similarly dxI or ηI . The {wI}I is an orthonormal translation-invariant
basis ofm-forms.

Recall that the de Rham Laplacian is defined as ∆ = dδ + δd, where δ is
the adjoint of d with respect to 〈 , 〉. Although strictly speaking not needed,
the following expression of ∆ in wI-coordinates will simplify the analysis at some
points. If α =∑I αIwI , a computation shows that in case n 6∈ J

(1.3) (∆α)J = ∆αJ + 2
∑
k∈J
XkαJk − p(n− p − 1)αJ.

Here Jk means the multiindex obtained replacing k by n. In case n ∈ J,

(1.4) (∆α)J = ∆αJ − 2
∑
` 6∈J
X`α`J − (1− p)(p −n)αJ,

where `J means the multiindex obtained replacing n by `. For a function f

∆f = − n∑
i=1

X2
i f + (n− 1)Xnf .



158 JOAQUIM BRUNA

In the ball model, with usual coordinates,

(1.5) ∆f = −1
4
(1− |x|2)2

n∑
i,j=1

∂2f
∂xi∂xj

+
(

1− n
2

)
(1− |x|2)

∑
xi
∂f
∂xi

.

2. TRANSLATION INVARIANT AND
ISOMETRY INVARIANT OPERATORS ON FORMS

2.1. We are interested in finding the general expression of an operator act-
ing on m-forms, and isometry-invariant. In a first step we consider translation-
invariant operators acting on m-forms; these are described by what we might call
hyperbolic convolution as follows. Let k(x,y) be a double m-form in x, y and
define

(Ckα)(x) =
∫
Hn
α(y)∧∗yk(x,y) = 〈α,k(x, ·)〉, α ∈ Dm(Hn).

If Tz is a translation with inverse Sz

Ck(T∗z α)(x) =
∫
Hn
(T∗z α)(y)∧∗yk(x,y)

=
∫
Hn
α(Tzy)∧∗yk(x,y)

=
∫
Hn
α(y)∧∗yk(x, Szy),

T∗z (Ckα)(x) = Ckα(Tzx)
=
∫
Hn
α(y)∧∗yk(Tzx,y).

Therefore Ck is translation invariant if k is doubly translation invariant in the
sense that

k(x,y) = k(Szx, Szy), ∀Sz.
Using the translation-invariant basis of m-forms wI we see that the general ex-
pression of k is

k(x,y) =
∑
I,J
kI,J(x,y)wI(x)⊗wJ(y),

where kI(x,y) are doubly-invariant functions, that is, of the form kI,J(x,y) =
aI,J(Syx) for some function (or distribution) aI,J . If δ0 denotes the Delta-mass
at e and

δ(x,y) =
∑
I,J
δ0(Syx)wI(x)⊗wJ(y),
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then formally

α(x) =
∫
Hn
α(y)∧∗yδ(x,y).

If P is an operator onm-forms commuting with the Ty , Sy , we will thus have

Pα(x) =
∫
Hn
α(y)∧∗yPx(δ(x,y)),

and indeed k(x,y) = Px(δ(x,y)) is formally doubly-invariant. This shows,
in loose terms, that the operator Ck of convolution with a doubly translation
invariant kernel k gives the general translation-invariant operator acting on m-
forms. If

k(x,y) =
∑
I,J
aI,J(Syx)wI(x)⊗wJ(y)

and α(x) = ∑
αI(x)wI(x), then Ckα has in the basis wI(x) coefficients given

by

(Ckα)I(x) =
∑
J

∫
Hn
aI,J(Syx)αJ(y)dµ(y).

Thus in the basis wI everything reduces of course to convolution of functions.
For a function convolution kernel a(Syx) and a test function u ∈ D(Hn) we
may think of

Cau(x) =
∫
Hn
u(y)a(Syx)dµ(y)

as an infinite linear combination of inverse translates a(Syx) of a(x). Since the
vector fields Xi commute with translations, it follows that, whenever everything
makes sense,

(2.1) Xi(Cau) = CXiau.

We point out that this convolution is not commutative; Cau is in general different
from Cua. Correspondingly, XiCau − CaXiu is in general not zero; in fact one
can easily show ([1, Lemma 3.1]) that these commutators are linear combinations
of other convolution operators built from a(Syx).

2.2. Let P be a generic translation-invariant operator acting on m-forms.
We have seen in the previous subsection that we can associate to P a doubly-
translation invariant kernel k(x,y) so that P = Ck. By the same argument
as before, P will be isometry invariant if and only if k(ϕx,ϕy) = k(x,y)
∀ϕ ∈ Iso(Hn), in which case we say that k is doubly isometry-invariant. Working
in the ball model and since every ϕ ∈ Iso(Hn) is the composition of a transla-
tion with some U ∈ O(n), the additional requirement on the kernel k(x,y) =
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aI,J(Syx)wI(x)⊗wJ(y) amounts to k(Ux,U0) = k(x,0), that is,

∑
I,J
aI,J(Ux)U∗wI(x)⊗ U∗wJ(0) =

∑
I,J
aI,J(x)wI(x)⊗wJ(0), ∀U.

Thus we are interested in describing those k(x,0)—which are m-forms at 0
whose coefficients are m-forms in x—that are doubly invariant by all U ∈ O(n)
in the sense above. Once the k(x,0) having this property are known, k(x,y) =
k(Syx,0) defines the general doubly isometry invariant m-form. For m = 0 the
k(x,0) are simply the radial functions a(|x|), and a(|Syx|) = a(|ϕyx|) is the
general doubly isometry invariant function. Form ≠ 0 their general expression is
not so simple. We find it more convenient to use the usual basis dxI so we look
at k(x,0) in the form

(2.2) k(x,0) =
∑

|I|=|J|=m
bI,J(x)dxI ⊗ dxJ(0),

and we must impose
∑
I,J bI,J(Ux)d(Ux)I ⊗ d(Ux)J(0) = k(x,0), ∀U . For

instance,

γ(x,0) =
n∑
i=1

dxi ⊗ dxi(0)

is easily seen to be doubly O(n)-invariant, and so is

γm = 1
m!
γ ∧ · · · ∧ γ =

∑
|I|=m

dxI ⊗ dxI(0)

(here we use the symbol ∧ to denote as well the exterior product of double forms
defined by (α1 ⊗ β1) ∧ (α2 ⊗ β2) = (α1 ∧ α2) ⊗ (β1 ∧ β2)). Another doubly
O(n)-invariant 1-form is

τ(x,0) =
( n∑
i=1

xi dxi
)
⊗
( n∑
i=1

xi dxi(0)
)
.

Lemma 2.1. The double forms γ and τ generate all doubly O(n)-invariant
k(x,0). More precisely, their general expression in the ball model is

(2.3) k(x,0) =

A1(|x|)γm +A2(|x|)τ ∧ γm−1, 0 <m < n,

A(|x|)γm, m = 0, n.

Proof. First we prove by induction the following statement S(n): if k(x,0)
is a doubly invariant (p, q)-form

∑
|I|=p,|J|=q cI,J dxI ⊗ dxJ(0) with constant
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coefficients, then k ≡ 0 if p ≠ q, or k is diagonal, i.e., k(x,0) = c∑|I|=p dxI ⊗
dxI(0) = cγp if p = q. Of course S(1) is obvious; assuming S(n − 1), let us
break k(x,0) in four pieces, depending on whether i1, j1 = 1 or not:

k =
∑

i1=j1=1

cI,J dxI ⊗ dxJ(0)+
∑

i1=1, j1≠1

+
∑

i1≠1, j1=1

+
∑

i1≠1, j1≠1

def= k1 + k2 + k3 + k4.

We may write k1 = (dx1⊗dx1(0))∧k̃1, k2 = (dx1⊗1)∧k̃2, k3 = (1⊗dx1(0))∧
k̃3, with k̃1, k̃2, k̃3, k4 double forms in the dx2, . . . , dxn, dx2(0), . . . , dxn(0)
of bidegrees (p−1, q−1), (p−1, q), (p, q−1), and (p, q), respectively. Imposing
that k is doubly invariant by U of the type

(2.4) U =


1 0 0 · · ·
0
0 U1
...
0

 , U1 ∈ O(n− 1),

we see that k̃1, k̃2, k̃3, and k4 are O(n − 1)-invariant. We apply the induction
hypothesis: if p = q, k̃2 = k̃3 = 0, and k̃1, k4 are diagonal, i.e.,

(2.5) k = c1
∑
i1=1

dxI ⊗ dxI(0)+ c2
∑
i1≠1

dxI ⊗ dxI(0).

If we use now U ∈ O(n) permuting the first two axes, we see that c1 = c2 and
hence k is diagonal, establishing S(n) in case p = q. If |p − q| > 1, everything is
0. Finally if |p−q| = 1, say p = q+ 1, then k̃2 is diagonal and all others are zero

k = c(dx1 ⊗ 1)∧
∑
|J|=q

dx′J ⊗ dx′J(0),

where x′ = (x2, . . . , xn). If we impose the invariance under the permutation of
the first two axes as before, it is clear that k must be zero.

Having proved that S(n) holds for alln, let now k(x,0) be as in (2.2), doubly
O(n)-invariant. Clearly k(x,0) is then determined by its values k(~r ,0), where
~r = (r ,0,0, . . . ,0). Fixed r , k(~r ,0) may be regarded as a double (m,m)-form
with constant coefficients, which is invariant by all U ∈ O(n) fixing ~r , that is,
of type (2.4). We write now the decomposition of k(~r ,0) in terms of k̃1(r ,0),
k̃2(r ,0), k̃3(r ,0), and k4(r ,0) as before, and applying S(n) we get (2.5)
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k(~r ,0) =
= c1(r)

∑
i1=1

dxI(~r )⊗ dxI(0)+ c2(r)
∑
i1≠1

dxI(~r )⊗ dxI(0)

(ifm = n, the last term is zero and the first is γm), which we write

= (c1(r)− c2(r))
∑

i1=1, |I|=m
dxI(~r )⊗ dxI(0)+ c2(r)

∑
|I|=m

dxI(~r )⊗ dxI(0)

= (c1(r)− c2(r))dx1(~r )⊗ dx1(0)∧
∑

|I|=m−1

dxI(~r )⊗ dxI(0)

+ c2(r)
∑
|I|=m

dxI(~r )⊗ dxI(0)

= (c1(r)− c2(r))r−2τ(~r ,0)γm−1(~r ,0)+ c2(r)γm(~r ,0).

Finally, with fixed x, we choose U such that Ux = ~r , r = |x|, and use the
invariance of k, τ, γ to find (2.3) with A1(r) = c2(r), A2(r) = r−2(c1(r) −
c2(r)). ❐

To find the general expression of a doubly isometry invariant kernel k(x,y) we
must translate k(x,0) to an arbitrary point: k(x,y) = k(Syx, Syy). We may
use any isometry mapping y to 0, for instance we may use ϕy given by (1.1)
instead of Sy . We introduce the basic forms α, β, τ, and γ

α = α(x,y)
=
∑
i
ϕiy(x)dϕ

i
y(x),

β =
∑
i
ϕiy(x)dϕ

i
y(y)

= −
∑
i
ϕiy(x)

dyi

1− |y|2 ,

τ = α⊗ β,

γ(x,y) =
n∑
i=1

dϕiy(x)⊗ dϕiy(y)

= −1
1− |y|2

n∑
i=1

dϕiy(x)⊗ dyi = dxβ.

The lemma gives part (a) of the following theorem. Part (b) gives other equiv-
alent general expressions, which are intrinsic, that is, independent of the model of
Hn at use.
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Theorem 2.2.
(a) The general expression of an (m,m)-form k(x,y) doubly isometry-invariant in

Hn, in the ball model, is

k(x,y) =


A1(|ϕyx|)γm(x,y)

+ A2(|ϕyx|)τ(x,y)∧ γm−1(x,y), 0 <m < n,

A(|ϕyx|)γm(x,y), m = 0, n.

(b) Another equivalent expression for 0 <m < n is

k(x,y) = B1(D)(dxdyD)m + B2(D)(dxD ⊗ dyD)∧ (dxdyD)m−1

= (C1(D)dxdyD + C2(D)dxD ⊗ dyD)m,

where D denotes an arbitrary function of the geodesic distance d(x,y).
(c) All such k(x,y) are symmetric in x, y ∈ Hn.

Proof. Part (a) has been already proved. For (b) note first that it is enough
to consider one function of d: we choose D = r(x,y)2, which in the ball model
equals |ϕy(x)|2. Then dxD = 2α, and using (1.1), (1.2a) one finds

dyD = 2(1−D)
∑
i
ϕiy(x)

diy
1− |y|2 = −2(1−D)β.

This gives τ = α⊗ β = − 1
4(1/(1−D))dxD ⊗ dyD, and

dxdyD = +2dxD ⊗ β− 2(1−D)dxβ = +4τ − 2(1−D)γ.
Therefore (dxdyD)m−1 and 2m−1(1 − D)m−1γm−1 differ in a term containing
τ, and so (b) follows. Part (c) is a consequence of (b). ❐

We will need the expression of the generators τ, γ in terms of the invariant
basis wi. We obtain these using formula (1.2a) for r 2(x,y) in the half-space
model. First

α = dxr
2

2
= 1− r 2

2(|x −y|2 + 4xnyn)

×
(
2
n−1∑
i=1

xn(xi −yi)wi(x)+ (2xn(xn −yn)− |x −y|2)wn(x)
)
,

β = dyr 2

2(r 2 − 1)
= −1

2(|x −y|2 + 4xnyn)

×
(
2
n∑
j=1

yn(yj − xj)wj(y)+ (2yn(yn − xn)− |x −y|2)wn(y)
)
.



164 JOAQUIM BRUNA

In the following we write wij = wi(x)⊗wj(y). We have

τ = α⊗ β = 1
4

1− r 2

(|x −y|2 + 4xnyn)2
∑
ij
Pi,j(x,y)wi,j ,

where the Pij(x,y) are certain homogeneous polynomials. As we know, every-
thing can be written in terms of z = Syx: for instance

1− r 2 = 4xnyn
|x −y|2 + 4xnyn

= 4zn
|z|2 + 2zn + 1

,

and say for i, j < n

Pij
(|x −y|2 + 4xnyn)

= xnyn(xi −yi)(xj −yj)
(|x −y|2 + 4xnyn)2

= znzizj
(|z|2 + 2zn + 1)2

.

Therefore we may write

(2.6) τ = 1− r 2

(|z|2 + 2zn + 1)2
∑
i,j
pi,j(z)wi,j .

For γ = dxβ we obtain a similar expression

4
1− r 2 γ =

n−1∑
i,j=1

(
δij − 2(xi −yi)(xj −yj)

|x −y|2 + 4xnyn

)
wi,j

+

1−
2
n−1∑
i=1

|xi −yi|2

|x −y|2 + 4xnyn

w
n,n

+
n−1∑
i=1

2(xi −yi)(xn −yn)
|x −y|2 + 4xnyn

(wi,n −wn,i).

Again this can be written

γ = 1− r 2

4(|x −y|2 + 4xnyn)

∑
i,j
Qij(x,y)wi,j(2.7)

= 1− r 2

(|z|2 + 2zn + 1)

∑
qij(z)wi,j .
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Notice that

pij(z)
(|z|2 + 2zn + 1)2

= O(1), qij(z)
(|z|2 + 2zn + 1)

= O(1),

and hence

(2.8) |τ(x,y)| = O(1− r 2), |γ(x,y)| = O(1− r 2).

3. RIESZ FORMS AND RIESZ FORM-POTENTIALS IN Hn

3.1. Our next objective is now to find an explicit left-inverse L for ∆ on
Dm(Hn). Since ∆ is invariant by all isometries, L should be too. By what has
been discussed in Section 2, L should have a kernel km(x,y),

Lη(x) =
∫
Hn
η(y)∧∗ykm(x,y),

doubly invariant by all isometries. Alternatively, notice that if k is some kernel
such that

(3.1) η(x) =
∫
Hn
∆η(y)∧∗yk(x,y), η ∈ Dm(Hn)

(which formally exists because ∆η = 0, η ∈ Dm(Hn) imply η = 0), then its
average over the unitary group O(n) with respect to the normalized left-invariant
measure dµ(U),

k1(x,y) =
∫
O(n)

k0(Ux,Uy)dµ(U),

still satisfies (3.1), and it is doubly invariant by O(n). If ϕx is an isometry map-
ping x to 0, k2(x,y) = k1(ϕxx,ϕxy) is independent ofϕx , satisfies (3.1), and
is doubly invariant by all isometries.

Anyway, we look for a doubly isometry-invariant kernel km for which (3.1)
holds, and then consider the operator L defined by km as above. Taking for
granted by now that this operator L is well defined onDm(Hn) and mapsDm(Hn)
into locally integrable m-forms, notice that (3.1) and the symmetry of km to-
gether imply that L is a right-inverse too, that is, ∆Lα = α for α ∈ Dm(Hn) in
the weak sense:

〈∆Lα,η〉 = 〈Lα,∆η〉 = ∫
x
Lα(x)∧∗∆η(x)

=
∫
x

{∫
y
α(y)∧∗ykm(x,y)

}
∧∗∆η(x)

=
∫
y
α(y)∧∗y

{∫
x
km(x,y)∧∗∆η(x)} = 〈α,η〉.
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We work in the ball model. By Theorem 2.2, km(x,y) is of type

km(x,y) =
A(|ϕxy|)γm, m = 0, n,

A1(|ϕxy)γm +A2(|ϕxy|)τ ∧ γm−1, 0 <m < n,

where γ = ∑
i dϕix(x) ⊗ dϕix(y), τ = α ⊗ β with α = ∑

i ϕix(y)dϕix(x),
β = ∑

i ϕix(y)dϕix(y) (notice that we are exchanging x,y , using (c) in The-
orem 2.2). Condition (3.1) implies ∆ykm(x,y) = 0 in y ≠ x (while ∆Lw =
w implies ∆xkm(x,y) = 0 in x ≠ y). In fact, (3.1) amounts to requiring∆ykm(x,y) = δx in a sense to be described below.

3.2. In a first step we look for conditions on theA1,A2, so that∆ykm(x,y)
= 0 in y ≠ x. A lengthy computation will show that the general harmonic km
depends on four parameters. By the invariance of km, we may assume x = 0, in
which case, writing r = |y|,

km(x,y) = A(r)γm, m = 0, n,
km(0, y) = A1(r)γm +A2(r)τ ∧ γm−1,

with γ = ∑
dxi(0) ⊗ dyi, τ = α ⊗ β, α = ∑

yi dxi(0), β = r dr . Since
∗x ∗y km(x,y) is again doubly invariant, it must have an analogous expression
withm replaced by n−m. Indeed, it is easily checked that

∗x ∗y γm = m!
(n−m)!(1− r

2)2m−nγn−m,

∗x ∗y (τ ∧ γm−1) = (m− 1)!(1− r 2)2m−n
(
r 2 γn−m
(n−m)! −

τ ∧ γn−m−1

(n−m− 1)!

)
,

whence

∗x ∗y km(x,y) = m!
(n−m)!(1− r

2)2m−nγn−m, form = 0, n,

and

(3.2) ∗x ∗ykm(0, y) =

= (m− 1)!(1− r 2)2m−n

(n−m)! [(mA1 + r 2A2)γn−m − (n−m)A2τ ∧ γn−m−1],

for 0 <m < n.

Moreover, since ∗ commutes with ∆, it is natural to require as well that ∗x ∗y
km = kn−m, that is, we may assume from now on that 0 ≤m ≤ n/2. Form = 0,
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using (1.5) we find

∆(A(r)) = 1
4
(1− r 2)[−1(1− r 2)A′′ + ((3−n)r + r−1(1−n))A′],

from which it follows that A′(r) = c0(1− r 2)n−2r 1−n and

A(r) = c1 − c0

∫ 1

r
(1− s2)n−2s1−n ds.

We start now computing ∆ykm(0, y) for 0 < m ≤ n/2, using that on m-forms∆ equals (−1)m+1(∗d∗d + (−1)nd∗d∗). The double form ∆ykm(x,y) is
also doubly invariant, and therefore it must have the same expression as km with
A1, A2 replaced by other functions B1, B2 to be found. In the computations we
will use besides (3.2) the equations

dyα = γ,
dy(τ ∧ γm−1) = −r dr ∧ γm = −β∧ γm,
∗x ∗y dr ∧ γm = (−1)m

m!
(n−m− 1)!

(1− r 2)2m+2−nr−1α∧ γn−m−1,

which are easily checked as well. First, dykm(0, y) = (A′1− rA2)dr ∧γm, so by
the equations above

(3.3) ∗x ∗ydykm(0, y)
= (−1)m

m!
(n−m− 1)|!(1− r

2)2m+2−n(A′1 − rA2)r−1α∧ γn−m−1

def= (−1)mm!
(n−m− 1)!

A3α∧ γn−m−1,

∗xdy ∗y dykm(0, y) = (−1)mm!
(n−m− 1)!

(A3γn−m +A′3r−1τ ∧ γn−m−1)

∗ydy ∗y dykm(0, y) = (−1)m(n−m−1) ∗y ∗x(A3γn−m +A′3r−1τ ∧ γn−m−1)

= (−1)m(n−m−1) m!
(n−m− 1)!

(1− r 2)n−2m

×
(
A3
(n−m)!
m!

γm +A′3r
(n−m− 1)!

m!
γm

− A′3r−1 (n−m− 1)!
(m− 1)!

τ ∧ γm−1

)
= (−1)m(n−m+1)(1− r 2)n−2m

× [((n−m)A3 +A′3r)γm −mA′3r−1τ ∧ γm−1].
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By analogous computation, applying dy to (3.2)

∗x dy ∗y km(0, y) = (m− 1)!
(n−m)!

[
[(mA1 + r 2A2)(1− r 2)n−2m]′

+ (n−m)rA2(1− r 2)n−2m
]
dr ∧ γn−m,

(3.4) ∗y dy ∗y km(0, y) =

= (−1)(m+1)(n−m)(1− r 2)2m+2−nr−1

=
[
[(mA1+r 2A2)(1−r 2)n−2m]′ +(n−m)rA2(1−r 2)n−2m

]
α∧γm−1

def= (−1)(m+1)(n−m)A4α∧ γm−1,

dy ∗y dy ∗y km(0, y) = (−1)(n−m)(m+1)(A′4r
−1τ ∧ γm−1 +A4γm).

It follows finally that ∆ = (−1)nm+1(∗d∗d+ (−1)nd∗d∗) on km equals

∆ykm(0, y) = B1γm + B2τ ∧ γm−1,

with

B1 = −A4 − (1− r 2)n−2m((n−m)A3 +A′3r),
B2 = −A4r−1 +m(1− r 2)n−2mA′3r

−1.

Therefore, ∆yk(0, y) = 0 is equivalent to the system B1 = 0, B2 = 0. It easily
follows from this that A3 satisfies the equation

r(1− r 2)A′′3 + [(n+ 1)− r 2(3n+ 1− 4m)]A′3 − 2(n− 2m)(n−m)rA3 = 0.

Replacing in the equation B1 = 0, A4 by its expression in terms of A1 and A2,
and then A2 by its expression in terms of A1 and A3, we find that A1 satisfies the
inhomogeneous equation

r(1− r 2)A′′1 + [(n+ 1)+ (n− 1− 4m)r 2]A′1 + 2m(n− 2m)rA1

= 2rA3(1+ r 2)(1− r 2)n−2m−2.

The change of variables A1(r) = G(x), A3(r) = H(x), x = r 2, transforms these
into the hypergeometric equations

(3.5) x(1− x)H′′(x)+
[
n
2
+ 1−

(
3
2
n+ 1− 2m

)
x
]
H′(x)

−
(
n
2
−m

)
(n−m)H = 0,
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(3.6) x(1− x)G′′(x)+
[
n
2
+ 1−

(
2m+ 1− n

2

)
x
]
G′(x)−m

(
m− n

2

)
G

= 1
2
(1+ x)(1− x)n−2m−2H(x) def= f(x).

This system is equivalent to ∆ykm(x,y) = 0 in y ≠ x, whence the general
doubly-invariant km harmonic in y ≠ x depends on four parameters. Note
that for m = n/2, the homogeneous equations are the same and can be solved
explicitly: the general solution is H = as−n/2 + b and

(3.7) G(x) = cx−n/2 + d

+ 1
2

∫ x
1/2
t−n/2−1

{∫ t
0
sn/2(1+ s)(1− s)−3(as−n/2 + b)ds

}
dt.

For m< n/2, a fundamental family for the equation (3.5) is given by

u1(x) = x−n/2F
(
−m, n

2
−m,1− n

2
, x
)
,

u2(x) = F
(
n
2
−m,n−m, n

2
+ 1, x

)
.

The hypergeometric function in u1 is a polynomial in x of degreem with positive
coefficients, 1+ x ifm = 1. A fundamental family for the equation (3.6) is given
by

u3(x) = x−n/2F
(
m−n,m− n

2
,1− n

2
, x
)

= x−n/2(1− x)n+1−2mF
(
n
2
+ 1−m,1−m,1− n

2
, x
)
,

u4(x) = F
(
m,m− n

2
,1+ n

2
, x
)
.

The hypergeometric function in u3 is a polynomial of degree m − 1 with posi-
tive coefficients (see [5] for all these facts). The wronskian w(x) for this second
equation is, by Liouville’s formula,

W(x) = W(x0) exp−
∫ x
x0

n
2
+ 1−

(
2m+ 1− n

2

)
t

t(1− t) dt

= cmnx−n/2−1(1− xn−2m).

It follows from this that the parametrization for G is given by

(3.8) G(x) = c(x)u3(x)+ d(x)u4(x),
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where c(x), d(x) satisfy, with H(x) = au1(x)+ bu2(x),

c′(x) = u4(x)f(x)
x(1− x)W(x)

= 1
2
c−1
mnH(x)(1+ x)xn/2(1− x)−3u4(x),

d′(x) = − u3(x)f(x)
x(1− x)W(x)

= −1
2
c−1
mnH(x)(1+ x)xn/2(1− x)−3u3(x).

Once A1(r) = G(r 2) and A3(r) = H(r 2) are known, the kernel km(x,y) is
completely known, because by the definition of A3 in (3.3),

A2(r) = −(1−r 2)n−2m−2A3(r)+r−1A′1(r) = −(1−x)n−2m−2H(x)+2G′(x).

The choice a = 0, c(0) = 0 (a = c = 0 in the parametrization (3.7) for m =
n/2) gives all doubly invariant km(x,y) which are globally harmonic, with no
singularity, and they are therefore spanned by the forms corresponding to the
choice G = u4 and to the choice a = 0, b = 1, c(0) = 0, d(0) = 0,

G(x) =
{∫ x

0
(1+ t)(1− t)−3tn/2u2(t)u4(t)dt

}
u3(x)

−
{∫ x

0
(1+ t)(1− t)−3tn/2u2(t)u3(t)dt

}
u4(x).

As a particular case, note that for m = n/2, γm is harmonic in H2m, and it is the
simplest example of a non-zero harmonic m-form in L2(H2m).

3.3. Besides being harmonic in y ≠ x, the singularity at y = x must be
such that (3.1) holds. Again, we may assume x = 0; we check this property using
second’s Green identity, whose version for general forms we recall now.

The operator δ being the adjoint of d, one has, for a smooth domain Ω̄ ⊂ Bn
and α, β smooth forms on Ω̄ with degα = degβ− 1,∫

∂Ωα∧∗β =
∫
Ω dα∧∗β−

∫
Ωα∧∗δβ.

Given two m-forms η, ω, applying this with α = δη, β = ω, next with α = ω,
β = dη and subtracting, one gets the first Green’s identity for m-forms∫

∂Ω(δη∧∗ω−ω∧∗dη) =
∫
Ω(∆η∧∗ω− δη∧∗δω− dη∧∗dω).
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Permutingω, η and subtracting again gives the second Green’s identity∫
∂Ω(δη∧∗ω−ω∧∗dη−δω∧∗η+η∧∗dω) =

∫
Ω(∆η∧∗ω−∆ω∧∗η).

We apply this to Ω = B(0, R) − B(0, ε) 0 < ε < R < 1, η ∈ Dm(Hn) and our
km(0, y) to get∫

|y|≥ε
∆η∧∗y km(0, y)(3.9)

=
∫
|y|=ε

(km ∧∗dη+ δykm ∧∗η− δη∧∗y km − η∧∗dkm).

In case m = 0, the terms in δkm, δη are of course zero; to get a term in η(0)
on the right when ε → 0, we need dkm of the order of ε1−n and km of the order
of ε2−n in |y| = ε. That makes km locally integrable too, and (3.1) is obtained
letting ε → 0. This means that, for m = 0, k is unique and is given by the
well-known Green’s function

(3.10) A(r) = cn
∫ 1

r
(1− s2)n−2s1−n ds,

for an appropriate choice of cn. In case m > 0, again we need |km(0, y)| =
o(r 1−n) as r → 0, so that the first and third terms on the right have limit 0
as ε → 0; then km is integrable in y , and the integral on the left converges to∫ ∆η∧∗km. Using the expression for ∗dkm in (3.3), we find

∫
|y|=ε

η∧∗dykm = (−1)m(n−m+1)n!
(n−m− 1)!

A3(ε)∗x
∫
|y|=ε

η∧α∧ γn−m−1.

By Stoke’s theorem, and since α = O(r), the last integral equals

(−1)m
∫
|y|<ε

η∧ γn−m +O(ε).

If A3(ε) = a0ε−n + · · · , we see that

lim
ε

∫
|y|=ε

η∧∗dykm = cn(n−m)m!a0η(0).

Using (3.4) for δkm = (−1)n(m+1)+1∗d∗, and proceeding in the same way,∫
|y|=ε

δykm ∧∗η = −A4(ε)
∫
|y|=ε

α∧ γm−1 ∧∗η

= −A4(ε)
∫
|y|<ε

(γm ∧∗η+O(ε)).
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But by the equation B1 = 0, A4(ε) = −(1−ε2)n−2m((n−m)A3(ε)+εA′3(ε)) =
a0mε−n+O(ε1−n), and hence the limit of the above expression is−cnm!a0mη(0).
Altogether, we conclude that if A3(ε) = a0ε−n + O(ε1−n) and km(0, y) =
o(r 1−n), one has ∫ ∆η∧∗ykm(0, y) = −cnnm!a0η(0),

so (3.1) will hold for an appropriate choice of a0. Taking into account the
definition of A3 in (3.3) and that |km| ' |A1| + r 2|A2|, we see from (3.7)
that if m = n/2, this is accomplished by the choice c = 0, a = a0; then
G(x) ∼ logx, A1(r) ∼ log r , A′1(r) = O(1/r), A2(r) = O(r 2) if n = 2;
if n > 2, A1(r) ∼ r 2−n and A2 = O(r−n). For 0 < m < n/2, in terms
of the functions H, G introduced before, this translates to H(x) ∼ a0x−n/2,
G(x) ∼ x1−n/2. Now look at the general expression of H, G in (3.8). The condi-
tion H(x) ∼ c0x−n/2 fixes a = a0; then near x = 0, c′(x) is bounded and d′(x)
behaves like x−n/2. Since u4(x) is bounded, the term d(x)u4(x) behaves like
x1−n/2. So, we must normalize c(x) by c(0) = 0, so that c(x) = O(x), and the
other term c(x)u3(x) will behave like x1−n/2.

In conclusion, all this discussion shows that the doubly invariant kernels
km(x,y) satisfying (3.1) constitute a two parameter family described by H =
a0u1(x) + bu2(x), c(0) = 0. The two parameters are b and the constant of
integration for d(x) in (3.8). Equivalently, they are obtained by adding to the
form corresponding to H = a0u1(x), c(0) = 0, and say d( 1

2) = 0 the general
globally smooth one described before.

3.4. In order to produce the best estimates, in a sense we need to choose
the best of the kernels km. Naturally enough, we choose the km having the best
behaviour at infinity, x = 1, that is, so that G, H have the best decrease in size
as x → 1. In case m = n/2, where we already have the normalization c = 0,
a = a0, the choice b = −a gives the best growth H(x) = O(1− x) and G(x) =
O(log(1− x)).

The hypergeometric function u3 behaves like (1 − x)n+1−2m near x = 1,
while u4(x) = F(m,m − n/2,1 + n/2, x) is bounded because 1 + n/2 −m −
(m−n/2) = 1+n−2m > 0. Similarly, u1 is bounded near x = 1; for u2(x) =
F(n/2−m,n−m,n/2+1, x) we haven/2+1−(n/2−m)−(n−m) = 2m+1−n
and hence it behaves like (1 − x)2m+1−n if 2m < n − 1, and like log(1 − x) if
2m = n− 1. We use equations (3.8)

c(x) = cm,n
∫ x

0
H(t)(1+ t)tn/2(1− t)−3u4(t)dt,

d(x) = −cm,n
∫ x

1/2
H(t)(1+ t)tn/2(1− t)−3u3(t)dt + d0.
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If b ≠ 0, thenH(t) = a0u1(t)+bu2(t) behaves like (1−t)2m+1−n if 2m < n−1,
and like log(1− t) if 2m = n− 1, resulting in c(x) = O(1−x)2m−n−1, d(x) =
O(log(1 − x)) if 2m < n − 1, and c(x) = O((1 − x)−2 log(1 − x)), d(x) =
O((1−x)−1 log(1−x)) if 2m = n−1. So if b ≠ 0, one hasG(x) = O(log(1−x))
if 2m < n−1 and G(x) = O((1−x)−1 log(1−x)) if 2m = n−1. If b = 0, then
H is bounded, giving c(x) = O((1 − x)−2) and d(x) = O(1) for 2m < n − 1,
d(x) = O(log(1 − x)) for 2m = n − 1. In case 2m < n − 1, however, we can
choose the constant d0 so that d(1) = 0, and then d(x) = O(1 − x)n−2m−1.
This choice gives G(x) = O(1−x)n−2m−1 for 2m < n− 1. For 2m = n− 1, no
choice of d0 can improve the bound G(x) = O(log(1− x)).

It remains to estimate the growth of A2(r) near r = 1. Recall that the defini-
tion (3.3) of A3 translates to A2(r) = 2G′(x)− (1−x)n−2m−2H(x). Both terms
grow like (1−x)n−2m−2, but a cancellation occurs. The functions u1, u3 are C∞
at 1 and have developments

u3(x) = A(1− x)n+1−2m +O(1− x)n+2−2m,

u′3(x) = −A(n+ 1− 2m)(1− x)n−2m +O(1− x)n+1−2m,

H(x) = a0u1(x) = B +O(1− x).

In u4(x) = F(m,m−n/2,1+n/2, x), 1+n/2−m−(m−n/2) = n+1−2m ≥
2, whence u4 has a finite derivative at 1 and a development

u4(x) = C +D(1− x)+O(1− x)1+ε ∀ ε < 1, u′4(x) = O(1).

Then W(x) = u′3u4 −u3u′4 = CA(2m−n− 1)(1− x)n−2m + · · · , and so the
constant cmn in (3.8) is CA(2m−n− 1). Then from (3.8)

c′(x) = B(1− x)−3

A(2m−n− 1)
+O(1− x)−2,

d′(x) = −B(1− x)
n−2m−2

C(2m−n− 1)
+O(1− x)n−2m−1,

which gives

c(x) = 1
2

B
2(2m−n− 1)

(1− x)−2 +O(1− x)−1,

d(x) =
O(1− x)

n−2m−1, 2m < n− 1,

O(log(1− x)), 2m = n− 1.
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But G′ = c(x)u′3(x) + d(x)u′4(x); the second term d(x)u′4(x) satisfies the
required bound, while the first c(x)u′3(x) has a development

c(x)u′3(x) = −
1
2

B
A(2m−n− 1)

A(n+ 1− 2m)(1− x)n−2m−2

+ O(1− x)n−2m−1

= B
2
(1− x)n−2m−2 +O(1− x)n−2m−1.

As (1−x)n−2m−2H(x) = B(1−x)n−2m−2+O(1−x)n−2m−1, the bound for A2
follows for 2m ≤ n− 1.

However, for m = n/2, this no longer holds. Indeed, from (3.7), where
c = 0, a = a0, b = −a,

2G′(x) = x−n/2−1
∫ x

0
sn/2(1+ s)(1− s)−3a(s−n/2 − 1)ds

has development

2G′(x) = na(1− x)−1 +O(log(1− x)),
while

(1− x)−2a(x−n/2 − 1) = n
2
a(1− x)−1 + · · · .

We point out that all this can be obtained, in loose terms, working directly
with the hypergeometric equations relating G, H,

x(1− x)G′′(x)+
[
n
2
+ 1−

(
2m+ 1− n

2

)
x
]
G′(x)−m

(
m− n

2

)
G

= 1
2
(1+ x)(1− x)n−2m−2H(x),

and using asymptotic developments. If H(x) = h0+h1(1−x)+· · · and G(x) =
gj(1− x)j + · · · , identifying the lower order terms in both sides gives,

gjj(j − 1−n+ 2m)(1− x)j−1 = h0(1− x)n−2m−2.

WhenH ≡ 0, one must have either j = 0 (corresponding tou4) or j = n−2m+1
(corresponding to u3). For the inhomogeneous equation, if j ≠ 0, j ≠ n+1+2m
(that is, G contains no contribution from u3, u4), one finds j = n − 2m − 1 if
2m < n − 1 and gjj = −h0/2. Then 2G′(x) = h0(1 − x)n−2m−2 + · · · ,
(1 − x)n−2m−2H(x) = h0(1 − x)n−2m−2, showing cancellation. An analogous
argument works if 2m = n− 1, but not for 2m = n.

We summarize the results in this and the previous subsections in the following
theorem.
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Theorem 3.1. For |n− 2m| > 1, there is a unique doubly invariant kernel

km(x,y) =
A1(|ϕxy|)γm +A2(|ϕxy|)τ ∧ γm−1, m ≠ 0,

A(|ϕxy|)γm, m = 0, n,

for which (3.1) holds, and satisfying moreover

|Ai(r)| = O(1− r 2)|n−2m|−1, as r → 1.

For m = (n± 1)/2, there is a one-parameter family of such kernels satisfying

|Ai(r)| = O(log(1− r 2)).

For m = n/2, there is a one-parameter family of such kernels satisfying

|Ai(r)| = O(1− r 2)−1.

In all cases A1(r) ∼ r 2−n, A2(r) ∼ r−n as r → 0.

For |n− 2m| > 1, we call km(x,y) the Riesz kernel form-forms in Hn, and

Lη(x) =
∫
Hn
η(y)∧∗ykm(x,y)

the Riesz potential of η, whenever this is defined. From (2.8) we see that

(3.11) |km(x,y)| = O(1− r 2)n−m−1.

With the notations used before, the function A3(r) = H(r 2) is bounded with
bounded derivatives near r = 1. Then (3.3) and symmetry imply

(3.12) |dxkm(x,y)|, |dykm(x,y)| = O(1− r 2)n−m−1

too. The growth of A3 also implies A4 = O(1 − r 2)n−2m because B1 ≡ 0, and
then (3.4) gives as well

(3.13) |δxkm(x,y)|, |δykm(x,y)| = O(1− r 2)n−m−1.

By construction, one has L∆η = η for η ∈ Dm(Hn). We will need the
following generalization of this fact.

Proposition 3.2. If η is a smooth form in Hn such that

|η(y)|, |∇η(y)| = o(1− |y|2)m, y ∈ Bn,

then L∆η = η.
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Proof. In (3.9) we would get an extra term∫
|y|=R

(km ∧∗dη+ δkm ∧∗η− δη∧∗km − η∧∗dkm).

Estimates (3.11), (3.12) and (3.13) imply that, with x fixed and |y| = R ↗ 1,

|km|, |δkm|, |dkm| = O(1− R2)n−m−1.

Inserting |η(y)|, |∇η(y)| = o(1−|y|2)m we see that this extra term vanishes as
R ↗ 1. ❐

4. PROOF OF THE MAIN THEOREM

4.1. Once the Riesz form km(x,y) has been found, our aim is now to prove
that the corresponding convolution

Lmη(x) =
∫
Hn
η(y)∧∗ykm(x,y)

satisfies

(4.1) ‖Lmη‖p,s+2 ≤ c‖η‖p,s,

for m ≠ (n ± 1)/2, n/2, and p in the range p1(m) = (n − 1)/(n − 1 −m) <
p < (n − 1)/m = p2(m), and for a compactly supported m-form η (recall that
we are assuming without loss of generality that m ≤ n/2). Since these are dense
in the Sobolev spaces and we already know that ∆Lmη = Lm∆η = η, this will
prove the theorem for m ≠ (n ± 1)/2, n/2. The case m = (n ± 1)/2 will be
commented later.

We work in the translation invariant basis wI . Taking into account formulas
(2.6) and (2.7) for γ, τ, the Riesz form is written in the Rn+ model

km(x,y) =
∑

|I|=|J|=m
aI,J(Syx)wI(x)⊗wJ(y),

where each coefficient aI,J has an expression, with z = Syx,

aI,J(z) = ΨI,J(r) pI,J(z)
(|z|2 + 2zn + 1)2m

,

r 2 = 1+ |z|2 − 2zn
1+ |z|2 + 2zn

= |x −y|2
|x −y|2 + 4xnyn

.

Here pI,J(z) is a certain polynomial in z1, . . . , zn, ΨI,J is C∞ in (0,1) withΨI,J(r) ∼ c0r 2−n as r ↘ 0, ΨI,J(r) = O(1 − r 2)n−m−1 as r ↗ 1. The term
qI,J(z) = pI,J(z)/(|z|2 + 2zn + 1)2m is bounded.



Lp-estimates for Riesz Transforms on Forms in the Poincaré Space 177

If η = ∑
I ηI(y)wI(y), the coefficient (Lη)I(x) of Lη in the basis wI is a

finite linear combination of hyperbolic convolutions

(Lη)I(x) =
∑
J

∫
Hn
ΨI,J(r)qI,J(z)ηJ(y)dµ(y).

By ellipticity of ∆, Lη is a smooth form. Moreover, since η has compact support,
we see from (1.2a) and (3.11), (3.12), (3.13) that, in the ball model,

|Lη(x)|, |d(Lη)(x)|, |δ(Lη)(x)| = O(1− |x|2)n−m−1,

which amounts to

(4.2) |(Lη)I(x)|, |Xi(Lη)I(x)| = O(1− |x|2)n−m−1.

We claim that for second-order derivatives we have too

(4.3)
|XjXi(Lη)I(x)| = O(1− |x|2)n−m−1, i.e.,

|∇(2)(Lη)(x)| = O(1− |x|2)n−m−1.

Notice that since we already know that ∆Lη = η, from the expression of ∆ in
the basis wI given in (1.3)–(1.5) it follows that it is enough to show that for
j < n. We will see below (equation (4.7) and invariance of the Xi) that each of
the functions a(z) = ΨI,J(r)qI,J(z) satisfies

|XjXia(z)| = O(1− r 2)n−m−1,

from which (4.3) follows as before. In fact, the discussion that follows will show
that |∇(k)Lη(x)| = O(1− |x|2)n−m−1, ∀k.

We continue the proof of (4.1). We claim first that it is enough to prove (4.1)
for s = 0. For a smooth form η = ∑

ηIwI , let Xiη denote here the m-form
Xiη =

∑
XiηIwI . It is clear from formulas (1.3)–(1.5) and the commutation

properties,
[Xi,Xj] = 0, i, j < n, [Xn,Xi] = Xi, i < n,

that for each i there is an operator Pi of order two in the X1, . . . , Xn such that

Xi∆η−∆(Xiη) = Pi(X)η.
Applying this to Lη, which is smooth by the ellipticity of ∆, we get

(Xi −∆XiL)η = Pi(X)Lη.
But XiLη satisfies, by (4.2) and (4.3)

|XiLη(x)|, |d(XiLη)(x)|, |δ(XiLη)(x)| = O(1− |x|2)n−m−1,
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and hence by Proposition 3.2, L∆ = Id on it. We conclude that for all η ∈
Dm(Hn)

(LXi −XiL)η = LPi(X)Lη.
Assume that (4.1) has been proved up to s, so that by density it holds for α ∈
Hsm,p(Hn) too, and let γ be a multiindex of length |γ| ≤ s. For i = 1, . . . , n and
η ∈ Dm(Hn),

XγXiLη = XγLXiη−XγLPi(X)Lη,
so using twice the induction hypothesis

‖XγXiLη‖p ≤ const (‖Xiη‖p,s + ‖Pi(X)Lη‖p,s)
≤ const (‖η‖p,s+1 + ‖η‖p,s),

proving (4.1) for s + 1. Proving (4.1) for s > 0 means proving

‖(Lη)I‖p, ‖Xi(Lη)I‖p, ‖XjXi(Lη)I‖p ≤ const‖η‖p.

As before, using that we already know that ∆Lη = η, we see that for the second-
order derivatives we may assume j < n. In the following we delete the indexes I,
J and denote by a(z) = ψ(r)Q(z) a convolution kernel withψ, Q as above, and
proceed to prove that the convolution

(Caα)(z) =
∫
Hn
a(Syx)α(y)dµ(y)

satisfies

(4.4) ‖Caα‖p, ‖Xi(Caα)‖p, ‖XjXiCa(α)‖p ≤ const‖α‖p, p1 ≤ p ≤ p2,

where in the last case we may assume that j < n. The fields Xi are invariant, and
therefore XiCaα, XjXiCaα are obtained, respectively, by convolution with Zia,
ZjZia (by (2.1)). Recall that

ψ(r) = O(1− r 2)n−m−1 = O
(

4zn
1+ |z|2 + 2zn

)n−m−1

as r ↗ 1,

and

ψ(r) ∼ r 2−n, as r ↘ 0.

In order to estimate Zia, ZiZja, we collect first some auxiliary estimates. We
claim that

(4.5)
|ZiQ| ≤ const, |ZiZjQ| ≤ const,

|Zir | ≤ const (1− r 2), |ZiZjr | ≤ const r−1(1− r 2).
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The first two are routinely checked, for instance, when differentiating the denom-
inator in Q,∣∣∣∣Zi 1

(1+ |z|2 + 2zn)2m

∣∣∣∣ = ∣∣∣∣ 4mznz1

(1+ |z|2 + 2zn)2m+1

∣∣∣∣
≤ const
(1+ |z|2 + 2zn)2m

(i < n),

so that the term pI,J(z)Zi[(1 + |z|2 + 2zn)−2m] will still be bounded. All other
terms can be treated similarly. Differentiating 1− r 2 = 4zn/(1+ |z|2 + 2zn), we
get

Zir = 1− r 2

2
zizn

r(1+ |z|2 + 2zn)
,

Znr = −1− r 2

2
1
r

1+ |z|2 − 2z2
n

1+ |z|2 + 2zn
,

ZjZir = 1− r 2

2r

{
δijz2

n

1+ |z|2 + 2zn
− 1+ 5r 2

2r 2

zizjz2
n

(1+ |z|2 + 2zn)2

}
, i, j < n

ZjZnr = 1− r 2

r

{
− 2z2

nzj(1+ zn)
(1+ |z|2 + 2zn)2)

+ (1+ r
2)

4r 2

zjzn(1+ |z|2 − 2zn)
(1+ |z|2 + 2zn)2

}
,

j < n.

These imply (4.5) because

|zizn|, 1+ |z|2 − 2z2
n ≤ (1+ |z|2 − 2zn)1/2(1+ |z| + 2zn)1/2

= r(1+ |z|2 + 2zn).

Now

Zia(z) = ψ′(r)ZirQ(z)+ψ(r)(ZiQ)(z),(4.6a)

ZjZia(z) = ψ′′(r)(Zir)(Zjr)Q(z)+ψ′(r)(ZjZir)Qψ′(r)ZirZjQ(4.6b)

+ ψ′(r)ZjrZiQ+ψ(r)ZjZiQ.

The estimates (4.5) imply

(4.7)
|a(z)|, |Zia(z)|, |ZjZia(z)| = O(1− r 2)n−m−1 as r ↗ 1,

|a(z)| = O(r 2−n), |Zia(z)| = O(r 1−n), |ZjZia(z)| = O(r−n).
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We will call a convolution kernel b(z) m-admissible if |b(z)| = O(r 1−n) as
r ↘ 0 and, moreover, |b(z)| = O(1 − r 2)n−m−1 as r ↗ 1. We will prove later
(Theorem 4.2) that a hyperbolic convolution withm-admissible kernels defines a
bounded operator in Lp(Hn) for the range (p1(m),p2(m)), as specified in the
statement of the main result. From the estimates (4.6) we see that a and Zia are
m-admissible kernels, and so (4.4) will be proved for them. As |ZjZia(z)| =
O(r−n) has the critical non-integrable singularity at r = 0, ZjZia(z) is not an
m-admissible kernel. Notice however from (4.6), (4.7) that the last three terms
ψ′(r)ZirZjQ, ψ′(r)ZjrZiQ, ψ(r)ZjZiQ are indeed m-admissible. Moreover,
the estimate |ZiQ| ≤ const implies that Q is Lipschitz with respect to the hyper-
bolic metric, in particular

Q(z) = Q(e)+O
(

log
1+ r
1− r

)
= Q(e)+O(r),

for small r . This means that replacing Q by Q−Q(e) in the first two terms leads
to an m-admissible kernel again. All this leaves us with the kernel

ψ′′(r)ZirZjr +ψ′(r)ZjZir , j < n.

If ψ(r) = c0r 2−n + · · · , write φ(r) = c0r 2−n(1 − r 2)n−m−1; then the above
differs from

φ′′(r)ZirZjr +φ′(r)ZjZir
in an m-admissible kernel. By the same reason, we may replace φ′′(r), φ′(r)
respectively by (r 2−n)′′(1 − r 2)n−m−1, (r 2−n)′(1 − r 2)n−m−1, that is to say we
must deal with the convolution kernel

(4.8) (1− r 2)n−m−1ZjZi(r 2−n).

We introduce a class of singular hyperbolic convolution kernels to deal with
the later. For this purpose it is more convenient to work in the ball model, so
now b is defined in Bn, and r = |z|. We replace the integrable singularity r 1−n
by a typical Calderón-Zygmund singularity (see e.g. [14]). Thus, we will call b a
m-Calderón-Zygmund singular kernel if it has the form

b(z) = Ω(w)r−n(1− r 2)n−m−1, z = rw, w ∈ Sn−1,

where Ω is say a Lipschitz function on Sn−1 satisfying the cancellation condition

(4.9)
∫
Sn−1

Ω(w)dσ(w) = O.
In Theorem 4.2 below we prove that m-Calderón-Zygmund singular kernels de-
fine bounded operators in the same range of p. With the following proposition,
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applied to φ2(z) = |z|2−n, this will end the proof of the main result. The propo-
sition is the analogue of the well-known statement that for φ smooth and homo-
geneous of degree 1−n in Rn, ∂φ/∂xi defines a Calderón-Zygmund kernel; it is
homogeneous of degree −n, and the cancellation condition (4.9) is automatically
satisfied, because∫

r1<|x|<r2

∂φ
∂xi

dV(x)

=
(∫

|x|=r2

−
∫
|x|=r1

)
φ(x)dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn = 0.

Proposition 4.1. If φ1, φ2 are homogeneous functions of degree 1 − n, 2 − n
respectively, the kernels (1 − r 2)n−m−1Ziφ1, (1 − r 2)n−m−1ZjZiφ2 are sum of
(m− 1)-admissible and (m− 1)-Calderón-Zygmund singular kernels.

Proof. We replace the Zj by Yj = (1− r 2)∂/∂zj ; we have

Yiφ1 = (1− r 2)
∂φ1

∂zi
,

Yiφ2 = (1− r 2)
∂φ2

∂zi
= (1− r 2)O(r 1−n),

YjYiφ2 = (1− r 2)
∂2φ2

∂zi∂zj
− 2(1− r 2)zj

∂φ2

∂zi

= (1− r 2)
∂2φ2

∂zi∂zj
+ (1− r 2)O(r 2−n),

so in all cases we get an extra factor (1− r 2). Besides, ∂φ1/∂zi and ∂2φ2/∂zi∂zj
are, as noted before, homogeneous of degree −n, and satisfy the cancellation con-
dition (4.9). ❐

4.2. It remains to prove the following result.

Theorem 4.2. Bothm-admissible andm-Calderón-Zygmund kernels define, by
hyperbolic convolution, bounded operators in Lp(Hn) for

n− 1
n− 1−m < p <

n− 1
m

, 0 ≤m <
n− 1

2
.

We will make use of the following well-known Schur’s lemma for boundedness
in Lp of an integral operator with positive kernel.

Lemma 4.3. If K(x,y) is a positive kernel in a measure space X and 1 < p <

∞, the operator Kf(x) =
∫
X
K(x,y)f(y)dµ(y) is bounded in Lp(µ) if and only
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if there exists h ≥ 0 such that

∫
X
K(x,y)h(y)q dµ(y) = O(h(x)q), x ∈ X,(4.10) ∫

X
K(x,y)h(x)p dµ(x) = O(h(y)p), y ∈ Y .(4.11)

Here q is the conjugate exponent of p, 1/p+1/q = 1. If h can be taken ≡ 1, that is,

sup
x

∫
X
K(x,y)dµ(y), sup

y

∫
X
K(x,y)dµ(x) < +∞,

then K is bounded in Lp(µ) for all p, 1 ≤ p ≤ ∞.

Proof. Let us prove Theorem 4.2. If b ism-admissible, then b = b1+b2 with
b1(z) = O(r 1−n) for r ≤ 1

2 , b1(z) = 0 for r > 1
2 , and b2(z) = O(1− r 2)n−m−1

for all r . We apply to b1 the second criterion in Lemma 4.3, working in the ball
model (recall that |SyX| = |ϕyx| is symmetric in x, y).

∫
X
b1(Syx)dµ(x),

∫
X
b1(Syx)dµ(y) ≤ c

∫
|Syx|≤1/2

|Syx|1−n dµ(x)

= c
∫
|z|≤1/2

|z|1−n dµ(z)

= const
∫ 1/2

0

dr
(1− r 2)n

< +∞.

We apply to (1 − r 2)n−m−1 the criteria of the first part on Lemma 4.3, working
this time for convenience in the half-space model, where the kernel is written

K(x,y) = (1− r 2)n−m−1

=
(

4zn
1+ |z|2 + 2zn

)n−m−1

=
(

4xnyn
|x −y|2 + 4xnyn

)n−m−1

.

We test h(y) = yαn in (4.10) for an exponent α to be chosen, so we need

∫
yn>0

y−m−1+αq
n dy

(|x −y|2 + 4xnyn)n−m−1 = O(x
αq+m+1−n
n ).
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We write |x−y|2+4xnyn = |x′−y ′|2+(xn+yn)2, where x′ = (x1, . . . , xn−1) ∈
Rn−1, and analogously for y ′, and integrate first in y ′. One has for 2m < n− 1∫

Rn−1

dy ′

(|x′ −y ′|2 + (xn +yn)2)n−m−1 = c
∫∞

0

sn−2

(s2 + (xn +yn)2)n−m−1

= O((xn +yn)2m+1−n),

and so the above becomes∫∞
0

yαq−m−1
n dyn

(xn +yn)n−1−2m = O(xαq+m+1−n
n ).

By homogeneity (yn = xnt) this reduces to∫∞
0

tαq−m−1

(1+ t)n−1−2m = O(1),

which holds whenever m < αq < n − 1 −m. By symmetry, for (4.11) we need
as well m < αp < n − 1 −m. Therefore, a choice of α is possible whenever
mmax(1/p,1/q) < (n− 1−n)min(1/p,1/q), and this gives the range

n− 1
n− 1−m < p <

n− 1
m

.

Consider now am-Calderón-Zygmund kernel b(z) = Ω(w)r−n(1− r 2)n−m−1.
Since |Syx| = |ϕyx|, we may replace z = Syx by z = ϕxy . Using (1.1) this is
given by

z = (x −y)(1− |x|
2)+ x|x −y|2
A

,

where we use the notation A = (1− |x|2)(1− |y|2)+ |x −y|2; note that

(1− |x|2), (1− |y|2) Ü A1/2.

Also recall that r = |z| and Ar 2 = |x −y|2. Hence we can write

z
r
− x −y
|x −y| =

x −y
|x −y|

(
1− |x|2√

A
− 1

)
+ x · r .

But

1− |x|2√
A

− 1 = (1− |x|2)2 −A√
A((1− |x|2)+√A)

= (1− |x|
2)O(|x −y|)+O(|x −y|2)

A



184 JOAQUIM BRUNA

is O(r). Therefore, modulo an m-admissible kernel, we may replace Ω(w) byΩ((x −y)/(|x −y|)). This leaves us with the kernel

K = (1− r 2)n−m−1Ω( x −y|x −y|

)
r−n

= (1− r 2)n−m−1|x −y|−nΩ( x −y|x −y|

)
An/2(x,y).

Fix p, 1 < p <∞. Write

An/2(x,y) = (1− |x|2)n/p(1− |y|2)n/q +O(|x −y|A(n−1)/2).

Since |x −y|1−nA(n−1)/2 = r 1−n, the kernel K differs from

(1− r 2)n−m−1|x −y|−nΩ( x −y|x −y|

)
(1− |x|2)n/p(1− |y|2)n/q

in am-admissible kernel, so we keep this one. We write it as the sum of

|x −y|−nΩ( x −y|x −y|

)
(1− |x|2)n/p(1− |y|2)n/q = K1(x,y)

and another K2(x,y), which we estimate by

|K2(x,y)| = O(r 2|x −y|−n(1− |x|2)n/p(1− |y|2)n/q)
= O(r 2−n(1− |x|2)n/p(1− |y|2)n/qA−n/2).

Write KΩ for the (euclidean) Calderón-Zygmund convolution operator with ker-
nel |x − y|−nΩ((x − y)/(|x − y|)), which as it is well-known, satisfies an
Lp(dV)-estimate. Notice that

K1f(x) = (1− |x|2)n/pKΩ(f (1− |y|2)−n/p)
and therefore, using the Lp-boundedness of KΩ∫

Bn
|K1f(x)|p dµ(x) =

∫
Bn
|KΩ(f (1− |y|2)−n/p)|p dV(x)

≤
∫
Bn
|f(x)|p dµ(y).

For K2, we can ignore the integrable singularity r 2−n and arguing as we just did
with K1, we need to show that the integral operator

K3f(x) =
∫
|y|≤1

1
(1− |x| + |x −y|)n f (y)dV(y)

satisfies Lp(dV)-estimates for all p, 1 < p < ∞. To see this, just check that the
criteria in Lemma 4.3 holds, with h(x) = (1− |x|2)−1/(pq). ❐
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Notice that in case m = 0 a m-Calderón-Zygmund kernel defines a bounded
operator in all Lp(Hn), 1 < p < ∞: this is the right analogue of the euclidian
kernels, because (1 − r 2)n−1 is the typical growth at infinity of a weak L1(dµ)
function in Hn.

4.3. Finally we make some comments, with no proofs, on the critical case
m = (n− 1)/2 in the main theorem.

In this case, the m-admissible and m-Calderón-Zygmund operators appear-
ing inXjXiCau, etc. have (1−r 2)(n−1)/2 log(1/(1−r 2)) instead of (1−r 2)n−m−1 =
(1 − r 2)(n−1)/2 as a factor. One can then prove that for β > 0 and 2 ≤ p <
2+ 2β/(n− 1),

‖Lpη‖p,2 ≤ const
∫
Bn
|η|p(1− |y|2)−β dµ(y).

The Lp-estimates do not hold in this case for any p, because they do not hold for
p = 2 and ∆ is self-adjoint.
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