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ABSTRACT. The relationship between the non-tangential
maximal function and convenient versions of the area func-
tion of a general (non harmonic) function in a upper-half
space are studied.

1. INTRODUCTION

Let u be a harmonic function in the upper half space Rn+1+ = {(w,y) : w ∈
Rn, y > 0} of Rn. Given α > 0, we define the area function of u at a point
x ∈ Rn as the integral of |∇u|2 over the cone Γα(x) in the xn+1-direction:

(Aαu)(x) =
(∫

Γα(x) |∇u(w,y)|
2y1−n dw dy

)1/2
,

where Γα(x) = {(w,y) ∈ Rn+1+ : |x −w| < αy},
and the non-tangential maximal function of u at x as

(Nαu)(x) = supΓα(x) |u(w,y)|.

We will also consider the (doubly) truncated cone

Γα,t,s(x) = {(w,y) ∈ Rn+1+ : |x −w| < αy, t < y < s}, 0 ≤ t < s ≤ ∞

and the corresponding (doubly) truncated area function (Aα,t,su)(x) and non-
tangential maximal function (Nα,t,su)(x) obtained by replacing Γα(x) by Γα,t,s(x)
in the previous definitions. Note that (Aαu), (Nαu) correspond to (Aα,0,∞u),
(Nα,0,∞u), respectively.
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We say that u is non-tangentially bounded at x if (Nα,0,su)(x) < ∞ for some
α > 0 and some (all) ∞ > s > 0. Calderón ([7]) proved that, if u is a harmonic
function in Rn+1+ and E is the set of points in Rn on which u is non-tangentially
bounded, then for almost every point x ∈ E, (Aα,0,su)(x) < ∞ for all α > 0,
s > 0. Stein [24] proved the converse: if F ⊂ Rn is a set with the property
that for every x ∈ F , there exists α = α(x) > 0, s = s(x) > 0 such that
(Aα,0,su)(x) < ∞, then for almost every point x ∈ F , the function u is non-
tangentially bounded at x. These results were first proved in dimension 1 by
Marcinkiewicz and Zygmund [20] and Spencer [23]. Calderón ([8]) also showed
that a harmonic function in Rn+1+ has a non-tangential limit at almost every point
where it is non-tangentially bounded. Summarizing: if u is a harmonic function
in the upper half space Rn+1+ , the sets

{x ∈ Rn : u has non-tangential limit at x},
{x ∈ Rn : there exist s = s(x), α = α(x) such that (Aα,0,su)(x) < ∞},

can only differ in a set of measure 0.
The results of Calderón and Stein above on the connection between the area

integral and the non-tangential maximal function extend to the Lp-setting. By a
result of Fefferman and Stein, for all α, β, p > 0, the Lp-norm of Aα is dominated
by the Lp-norm of Nβ. The converse estimate holds if one in addition assumes
that limy→∞u(x,y) = 0 for each x ∈ Rn. For an Orlicz-norm extension of
this result see the paper [5] by Burkholder and Gundy. The proofs are based
on inequalities relating the distribution functions of the non-tangential maximal
function and the area function. These inequalities, which came to be known as
good-λ inequalities, were sharpened by Murai and Uchiyama [22] and Bañuelos
and Moore [3]. The result of Murai and Uchiyama can be stated as follows: If u
is a harmonic function in the upper half space Rn+1+ and 0 < β < α, then there
exist constants C1, C2 > 0 (depending on α, β, n) such that for anyM > 1, λ > 0
one has

|{x ∈ Rn : (Aβu)(x) > Mλ, (Nαu)(x) < λ}|(1.1)

≤ C1 exp(−C2M2)|{x ∈ Rn : (Aβu)(x) > λ}|,

and

|{x ∈ Rn : (Nβu)(x) > Mλ, (Aαu)(x) < λ}|(1.2)

≤ C1 exp(−C2M)|{x ∈ Rn : (Nβu)(x) > λ}|.

The proof involves the construction of certain “sawtooth” regions and estimates
on the BMO-norm of truncated versions of the area function in such regions. Al-
though both estimates have an exponential decay, observe that (1.2) does not have
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the whole subgaussian decay. These results have been extended to other contexts.
In [21], [28], [17] area integrals of subharmonic functions are considered and an
Lp-estimate is proved. Area integrals for solutions of second order elliptic equa-
tions were considered by Dahlberg, Jerison and Kenig [13]. See also [17]. The
result of Bañuelos-Moore is deeper than (1.2), and using the preceding notation
can be stated as:

|{x ∈ Rn : (Nβu)(x) > Mλ, (Aαu)(x) < λ}|(1.3)

≤ C1 exp(−C2M2)|{x ∈ Rn : (Nβu)(x) > λ}|.

The proof is based on reducing the desired estimate to its dyadic martingale ana-
log, which was proved by Chang, Wilson and Wolff ([9]). It is worth mentioning
that Bañuelos and Moore ([3]) extended the Murai-Uchiyama result (1.1) to har-
monic functions in Lipschitz domains, while the estimate (1.3) is not known in
this generality (see [2, p. 98, p.113]). For an exposition and extension of these
ideas see [2, Chapter IV] by Bañuelos and Moore.

Yet another result in similar vein is the Law of the Iterated Logarithm for
harmonic functions that we next describe. Suppose that u is harmonic in the
upper half plane and that |∇u(x,y)| ≤ C/y for each (x,y). Then, according
to a result of Makarov ([19]),

(1.4) lim sup
y→0

|u(x,y)|√
log(1/y) log log log(1/y)

≤ 2C

for almost all x ∈ R. This result was extended to harmonic functions in the
upper half space in [1] and to Lipschitz domains in [18]. It can be considered
as a Fatou type theorem: for each x ∈ Rn, the estimate |∇u(x,y)| ≤ C/y
gives a logarithmic upper bound on the growth of u when y tends to zero, but a
substantially improved estimate holds for almost all x. The following area integral
version of this Law of the Iterated Logarithm was established by Bañuelos, Klemeš
and Moore [1], [2, Chapter III] by reducing it to the dyadic martingale setting.
Fix 0 < β < α and 0 < γ < 1. There is a constant C = C(α,β, γ,n) such that if
u is harmonic in Rn+1+ , then

(1.5) lim sup
(w,y)→(x,0), (w,y)∈Γβ,0,1

|u(w,y)|√
A2
α,γy,1u(x) log logAα,γy,1u(x)

≤ C,

for almost every point x ∈ {x ∈ Rn : Aαu(x) = ∞}.
The results of Calderón and Stein cited above state that the sets where u is

non-tangentially bounded and where the area function is finite can only differ on
a set of Lebesgue measure zero. In the complement of this set, that is, at almost
every point where the function is not non-tangentially bounded, this Law of the
Iterated Logarithm (LIL) measures the relative growth of these quantities.
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It is clear that the results above do not hold for all smooth functions. Very
recently two of us showed in [14] that the result of Makarov on the growth of
harmonic functions has the following analog for solutions to the Poisson equation∆u = f in the unit ball Bn of Rn under a growth condition on f : Let u be a C2

function in the unit ball Bn that satisfies |∇u(x)| ≤ C/(1 − |x|) and assume in
addition that

|∆u(x)| ≤ C

(1− |x|)2
(

log
2

1− |x|
) ,

for all x ∈ Bn. Then

lim sup
r→1

|u(rζ)|√(
log

1
1− r

)
log log 1

1−r

≤ c

for almost all ζ ∈ Sn−1. Here c depends only on C and n.
Notice that the growth order of |u(x)∆u(x)| above is at most C(1−|x|)−2,

which is no more than the worst possible growth of |∇u(x)|2. Because of this,
the contribution of the Laplacian can be embedded in the “gradient” estimates
and the indicated version of the LIL can be proven.

In this paper, we continue the analysis of the relation between the non-tangen-
tial maximal function and the area function of non-harmonic functions. To con-
trol the non-tangential maximal function by the area function, very light assump-
tions on the function are needed. More precisely, we say that a C2-function u
in Rn+1+ has ϕ-controlled oscillation if there exists a constant 0 ≤ η < 1 and an
increasing positive function ϕ : [0,∞) → [0,∞), ϕ(0) = 0, sup{ϕ(2t)/ϕ(t) :
t > 0} < ∞, such that for any ball B ⊂ Rn+1+ of radius rB satisfying 2B ⊂ Rn+1+ ,
the estimate:

(∗) max{|u(w1)−u(w)| : w1, w ∈ B}

≤ ϕ
((
r 1−n
B

∫
(1+η)B

|∇u(x,y)|2 + |u(x,y)| |∆u(x,y)|dx dy)1/2)
holds, where (1+ η)B is the ball with the same center as B and radius (1+ η)rB .
We will often refer to this condition as condition (∗).

A harmonic function u in Rn+1+ satisfies condition (∗) for any 0 < η < 1 with
ϕ(t) = Ct, where C is a constant depending on η. This is a simple consequence
of the subharmonicity of |∇u|. Condition (∗) holds for many functions. For
instance, we will prove that a function u ∈ C2(Rn+1+ ) satisfying

(1.6) |u∆u| ≤ C|∇u|2
on Rn+1+ , for a fixed constant C, satisfies condition (∗) with the function ϕ(t) =
At, where A = A(C) is a constant. In the general context of functions u satisfying
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(∗), we consider the area function Sαu defined as

(Sαu)(x) =
(∫

Γα(x)(|∇u(w,y)|
2 + |u(w,y)| |∆u(w,y)|)y1−n dw dy

)1/2
.

Clearly, for functions satisfying (1.6), the area function (Sαu) is comparable
to the usual area function (Aαu). Also, if x ∈ Rn and y > 0, we denote
by (Sαu)(x,y) (resp. (Nαu)(x,y)) the area function (resp. the non tangen-
tial maximal function), obtained by replacing the cone Γα(x) by its translationΓα(x,y) = y + Γα(x) so that its vertex is at (x,y).

We prove a good-λ inequality analogous to (1.2), relating the non-tangential
maximal function and the area function Sα of a function satisfying condition (∗).
We do not know if a subgaussian estimate of the type of (1.3) holds in this more
general setting. The good-λ inequality we prove leads to a Fatou-type theorem, to
Lp-estimates and to a certain LIL, which we collect in the following result.

Theorem 1.1. Let u be a C2-function in Rn+1+ having ϕ-controlled oscillation.
Assume

lim inf
λ→∞

ϕ(λ)
λ

> 0.

Fix 0 < α < β and assume there exists x0 ∈ Rn such that (Nα,1,∞u)(x0) < ∞.
Then,
(a) For a.e. x ∈ {x ∈ Rn : (Sβu)(x) < ∞}, the function u(w,y) has a finite

limit when (w,y) ∈ Γα(x) tends to x.
(b) Assumeϕ(t) ≥mt for any t ∈ (0,∞) and limu(x,y) = 0 as ‖(x,y)‖ → ∞.

For 0 < p < ∞, there exists a constant C depending on p, α, β, n, ϕ, m such
that

‖Nαu‖Lp(Rn) ≤ C‖ϕ(Sβu)‖Lp(Rn).
(c) There exists a constant C depending on α, β, ϕ, n such that

lim sup
t→0

(Nαu)(x, t)
ϕ((Sβu)(x, t)) log logϕ((Sβu)(x, t))

≤ C,

for a.e. x ∈ {x ∈ Rn : (Sβu)(x) = ∞}.
As mentioned before, in the harmonic case one can take ϕ(t) = ct. So, in

this case, comparing (c) with the LIL (1.5) which holds for harmonic functions,
there is a square root missing in the term log logSα. This is due to the fact that the
good-λ inequality we prove does not have the whole subgaussian decay. On the
other hand, our results hold on Lipschitz domains, while the LIL and the good-λ
inequality with subgaussian decay for harmonic functions on Lipschitz domains
are open problems. See [2, p. 98]. Also, for solutions of second order elliptic
equations an estimate analogous to (1.3) is only known in very concrete cases. See
[27] and [2, p. 49].
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The control of the area function by the non-tangential maximal function re-
quires more specific assumptions on the function u. Let u ∈ C2(Rn+1+ ). We say
that the function u satisfies condition (1.7) if there exists 0 < θ < 1 such that

(1.7) |u(x,y)| |∆u(x,y)| ≤ θ|∇u(x,y)|2,
for any (x,y) ∈ Rn+1+ . As before, for functions u satisfying condition (1.7),
the area functions Aαu and Sαu are comparable. We prove a good-λ inequality
which is analogous to the estimate (1.1) of Murai and Uchiyama. Again, the
good-λ inequality leads to a Fatou type result, an Lp-estimate and to a Law of the
Iterated Logarithm.

Theorem 1.2. Let u ∈ C2(Rn+1+ ) be a function satisfying condition (1.7) for
a constant 0 < θ < 1. Let 0 < α < β and assume there exists x0 ∈ Rn such that
(Aα,1,∞u)(x0) <∞. Then:
(a) For a.e. x ∈ {x ∈ Rn : (Nαu)(x) <∞}, one has (Aαu)(x) < ∞.
(b) For 0 < p < ∞, there exists a constant C1 depending on p, α, β, n, θ such that

‖Aαu‖Lp(Rn) ≤ C1‖Nβu‖Lp(Rn).

(c) There exists a constant C2 depending on α, β, n, θ such that

lim sup
t→0

(Aαu)(x, t)√
(Nβu)(x, t) log log(Nβu)(x, t)

≤ C2

for a.e. x ∈ {x ∈ Rn : (Nβu)(x) = ∞}.
Local versions of Theorems 1.1 and 1.2 also hold. For instance, one can

replace Aα, Nα in (a) in both results by Aα,0,1, Nα,0,1.
We do not have an example to show that the condition 0 ≤ θ < 1 is essential,

but we see no real hope in relaxing this condition because of the following: There
is a bounded C2-function u so that the area integral of u is infinite at every point,
but still (1.6) holds in the following averaged sense for some constant C ≥ 1:∫

B
|u∆u| ≤ C ∫

B
|∇u|2

for each ball B = B((w, t), (1 − ε)t), where ε > 0 is a small positive constant.
This indicates that perhaps one should replace (1.7) by an averaged integral, and
similarly replace u by the average of u. We have not been able to do this, but the
reason might well be only technical.

The proofs of Theorems 1.1 and 1.2 are based on stopping time arguments
and on Green’s formula on sawtooth regions. In this sense, the work of Murai
and Uchiyama [22] and of Bañuelos and Moore [3] provide not only an outline
for our proof, but also important techniques. However, the fact that our function
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is not harmonic causes several difficulties, which are solved by a careful choice of
the domains where we apply Green’s formula, by stopping time arguments and
Caccioppoli inequalities. Even if one only wishes to prove the results in the upper
half space, the use of stopping time arguments and sawtooth regions leads to Lips-
chitz domains, and one needs to study the corresponding results in this context. It
is actually on the setting of Lipschitz domains that we prove our results. The work
of Dahlberg ([11]) provides the necessary estimates for the harmonic measure and
Green’s functions on such domains.

The paper is organized as follows. Section 2 contains notation and back-
ground material on Lipschitz domains. Section 3 is devoted to the results on the
control of the non-tangential maximal function by the area function S. Section
4 is devoted to the converse results, that is, to the control of the area function by
the non-tangential maximal function. Finally, Section 5 contains the proof that
condition (1.6) implies (∗) with ϕ(t) = At.

We are indebted to the referee who pointed out several errors and proposed
alternative arguments.

2. NOTATION, DEFINITIONS AND BACKGROUND ON
LIPSCHITZ DOMAINS

From now on, we will consider domains of the form

Ω = {(x,y) ∈ Rn+1+ : y > φ(x)},
where φ : Rn → R is a Lipschitz function with Lipschitz constant M, that is,

|φ(x)−φ(z)| ≤ M|x − z| if x, z ∈ Rn.
Given x ∈ Rn, α > 0, define Γα(x) = {(z,y) ∈ Rn+1+ : |z − x| <

α(y −φ(x))}. Since y −φ(x) ≥ dist((x,y), ∂Ω) ≥ (y −φ(x))/(√1+M2)
if (x,y) ∈ Ω, then Γα(x) ⊂ Ω provided 0 < α < 1/M. Hereafter, we will only
consider such values of α.

Now, if x ∈ Rn, 0 < α < 1/M, 0 ≤ t ≤ s ≤ +∞, we also introduce the
truncated cones:

Γα,t,s(x) = Γα(x)∩ {(z,y) : φ(z)+ t < y < φ(z)+ s},
with special attention to the cases t = 0 or s = ∞.

Let Ω, φ, α be as above. Let u : Ω → R, f : Ω → [0,+∞] be measurable
functions, x ∈ Rn and 0 ≤ t ≤ s ≤ ∞. We define the non-tangential maxi-
mal function of u by: (Nαu)(x) = supΓα(x) |u|, and also its truncated version:
(Nα,t,su)(x) = supΓα,t,s(x) |u|. Furthermore, we define the area function associ-
ated to the density f by:

(Aαf)(x) =
(∫

Γα(x) f (z,y)(y −φ(x))
1−n dzdy

)1/2
,
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and also the truncated version:

(Aα,t,sf )(x) =
(∫

Γα,t,s(x) f (z,y)(y −φ(x))
1−n dzdy

)1/2
.

We are specially interested in the case f = |∇u|2. Then, we will simply denote,

(Aαu)(x) =
(∫

Γα(x) |∇u(z,y)|
2(y −φ(x))1−n dzdy

)1/2
,

(Aα,t,su)(x) =
(∫

Γα,t,s(x) |∇u(z,y)|
2(y −φ(x))1−n dzdy

)1/2

and we will refer to them as the (truncated) area functions of u. When u is
harmonic, these forms of the area functions were already used in [3]. If (z,y) ∈Γα(x), the quantity |y−φ(x)| is comparable to dist((z,y), ∂Ω). HenceAαu(x),
Aα,t,su(x) are comparable to

(∫
Γα(x) |∇u(w)|

2δ(w)1−n dm(w)
)1/2

,(∫
Γα,t,s(x) |∇u(w)|

2δ(w)1−n dm(w)
)1/2

,

where δ(w) = dist(w, ∂Ω), w ∈ Ω ⊂ Rn+1+ and dm is the Lebesgue measure in
Rn+1+ .

We also need to consider a new square function (Sαu)(x), in spirit very sim-
ilar to the usual area function, (Aαu)(x). In fact, they both coincide when u is
harmonic. So, following the notation above, we define

(Sαu)(x) =
(∫

Γα(x)
(
|∇u(w)|2 + |u(w)∆u(w)|)δ(w)1−n dm(w))1/2

and its truncated version

(Sα,t,su)(x) =
(∫

Γα,t,s(x)
(
|∇u(w)|2 + |u(w)∆u(w)|)δ(w)1−n dm(w))1/2

.

If Ω, φ are as above, then, whenever E ⊂ Rn, we denote by GE = {(x,φ(x)) :
x ∈ E} the piece of the graph above E. IfQ ⊂ Rn is a cube with side length `(Q),
we define

Q̂ = {(x,y) ∈ Ω : x ∈ Q, φ(x) < y < φ(x)+ `(Q)} ,
T(Q̂) =

{
(x,y) ∈ Ω : x ∈ Q, φ(x)+ 1

2`(Q) < y < φ(x)+ `(Q)
}
.
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As in the case of Rn, it is useful to deal with dyadic decompositions in Ω.
Denote by Fk the family of all dyadic cubes of the generation k, that is, all cubes
Q of the form Q =∏n

i=1[mi2−k, (mi+1)2−k], where mi ∈ Z. Then {GQ}Q∈Fk
is called a dyadic partition of ∂Ω and, for each k ∈ N and each Q ∈ Fk, the
collection {T(Q̂′) : Q′ ∈ Fj, Q′ ⊂ Q, j ≥ k} is called a dyadic partition of Q̂.

Finally, we close this preliminary section with some properties of Green’s func-
tion and the harmonic measure in Lipschitz domains that will be needed later.

Suppose that Q is a cube in Rn, centered at x0 ∈ Rn, with side length `(Q).
Set pQ = (x0,φ(x0)+ 1

2`(Q)) and let g,ω be Green’s function and the harmonic
measure in Q̂, with respect to pQ. We also denote by ω∗ the projection of ω,
restricted to the graph GQ, that is, ω∗(E) = ω(GE,pQ, Q̂), for E ⊂ Q. The
following theorem proved by Dahlberg [11] collects the central properties ofω.

Theorem 2.1 ([11], [17]). With the notation above,

(a) ω is mutually absolutely continuous with respect to the surface measure of ∂Q̂.
In particular, ω∗ is mutually absolutely continuous with respect to the Lebesgue
measure in Q.

(b) The density dω∗/dx is an A∞-weight. Actually, there exist positive constants, C,
α, β depending only on M (the Lipschitz constant of Ω), such that

C−1

(
|E|
|Q∗|

)β
≤ ω∗(E)
ω∗(Q∗)

≤ C
(
|E|
|Q∗|

)α

whenever Q∗ ⊂ Q is a cube and E ⊂ Q∗ ⊂ Q.
(c) Let Q∗ in Rn be a cube with Q∗ ⊂ 1

2Q, where 1
2Q is the cube with the same

center as Q and half its side length. Then

C−1

(
`(Q∗)
`(Q)

)n−1

g(pQ∗) ≤ω∗(Q∗) ≤ C
(
`(Q∗)
`(Q)

)n−1

g(pQ∗).

3. CONTROL OF THE NON-TANGENTIAL MAXIMAL FUNCTION BY THE
AREA FUNCTION

Throughout this section we will consider functions u ∈ C2(Ω) whose oscilla-
tion on hyperbolic balls is controlled by a quantity similar to the one defining
(Sαu)(x). By a hyperbolic ball centered at a point w0 ∈ Ω, we will understand
an euclidean ball centered at w0 whose radius is cδ(w0), where 0 < c < 1, and
δ(w0) = dist(w0, ∂Ω). Since Ω is a Lipschitz domain, these balls are actually
comparable to the ones induced by the hyperbolic metric in Ω.

We recall the notation given at the introduction. We say that a function u
satisfies condition (∗) if there exists a constant η, 0 ≤ η < 1, and an increasing
function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0, ϕ(2t) < Cϕ(t), such that for any
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ball B ⊂ Ω of radius rB satisfying 2B ⊂ Ω, the following holds:

osc(u, B) = max{|u(w1)−u(w2)| : w1,w2 ∈ B}

≤ϕ
((∫

(1+η)B
(|∇u|2 + |u∆u|)r 1−n

B dm
)1/2)

,

where (1+ η)B is the ball with the same center as B and radius (1+ η)rB .
Note that, if u is harmonic in Ω, then it satisfies condition (∗) for any 1 >

η > 0 and ϕ(t) = Ct, where C is a constant depending on η. This is simply a
consequence of the subharmonicity of the gradient. Actually, given w1, w2 ∈ B,
let L be the line that joins them. Then, using that |∇u| is subharmonic, Fubini’s
Theorem and Hölder’s inequality, we get for ρ = ρ(η) < δ(w0) that

|u(w1)−u(w2)| ≤
∫
L
|∇u(s)|ds ≤

∫
L

∫
B(s,ρ)

|∇u(w)|dw ds

Ü
(∫

(1+η)B
|∇u|2r 1−n

B dm
)1/2

,

with comparison constants only depending on η. From now on,
∫
B
f will denote

the average of the function f over the ball B.
We proceed now to state and prove a lemma that will become our main aux-

iliary result, but before that let us fix the notation.
Let Ω = {(x,y) ∈ Rn+1+ , y > φ(x)} be a Lipschitz domain with Lipschitz

constantM. Denote by Q a dyadic cube in Rn centered at x0 ∈ Rn of side length
`(Q), and by wQ the point wQ = (x0, φ(x0)+`(Q)), which is contained in the
boundary of T(Q̂). Also recall that the usual dyadic decomposition of Q gives a
dyadic decomposition of Q̂ ⊂ Ω.

Lemma 3.1. Let u be a function satisfying condition (∗) in Ω. Fix α > 0.
Assume that for each x ∈ Q,

(Sαu)(x) ≤ a ≤ Cϕ(a).

Then there exist constants c = c(α,M,n,C), A = A(α,M,n,C) such that: If
N ≥ A and {Qj} are the maximal dyadic cubes of Rn contained in Q satisfying

sup
w∈T(Q̂j)

|u(w)−u(wQ)| ≥ Nϕ(ca),

then
1

(`(Q))n
∑
j
(`(Qj))n ≤ ε(N),

where ε(N)→ 0 as N →∞.
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Proof. The idea is similar to the one given in [25] to prove the local version of
Fatou’s Theorem for harmonic functions. We will build a new Lipschitz domain
R ⊂ Ω and we will apply Green’s formula in R to the functions (u − u(wQ))2
and g(z), where g(z) is some Green’s function to be specified later on. In the
harmonic case, the boundary terms in Green’s formula are controlled using prop-
erties of the Poisson Kernel. Since this tool is not available in our setting, we will
need to choose very carefully the hyperplanes in the construction of ∂R, in order
to overcome the technical difficulties that arise in estimating such boundary terms.

We will often use dm and dσ to denote the Lebesgue measure and the surface
measure, respectively. Also by A Ü B, (A Ý B) we will mean that A ≤ CB
(A ≥ CB), where C is a constant. Moreover, A ' B means that A Ü B and A Ý B.
Without loss of generality we can assume that `(Q) = 1. Thus δ(w) ' 1 if w ∈
T(Q̂). Since T(Q̂) can be covered by a fixed number of cones and (Sαu)(x) ≤ a
for all x ∈ Q, we get

∫
T(Q̂)

(|∇u|2 + |u∆u|)dm Ü a2,

with comparison constant depending on α, M and n. By Chebychev’s inequality,
we can choose a “horizontal hyperplane” L such that

(3.1)
∫
L∩T(Q̂)

(|∇u|2 + |u∆u|)dσ Ü a2,

where L∩ T(Q̂) = {(x,y) : x ∈ Q, y = φ(x)+y0} with 1
2 < y0 < 1.

Observe that condition (∗) and the bound on the function Sα give that
osc(u, T(Q̂)) < C(α,M,n)ϕ(a). Hence, if the constants c, A are chosen suffi-
ciently large, one may assume that Q̂j ⊂ Q̂ \ T(Q̂), for j = 1, 2, . . . .

Next, consider the domain

D = {(x,y) : x ∈ Q, φ(x) < y < φ(x)+ 2y0} ∩
(Ω \⋃ Q̂j

)
.

Let p0 = (x0,φ(x0) + 3
2y0) and let g(·) = g(·, p0) be Green’s function of D

with pole at p0. Denote by ω(·) = ω(·, p0,D) the harmonic measure in D
with respect to p0. Even though D is not a Lipschitz domain, it is clear that the
results concerning the harmonic measure and behavior of Green’s function stated
in Theorem 2.1 hold on D as well.

Applying now Green’s formula in the region

R = {(x,y) : x ∈ Q, φ(x) < y < φ(x)+y0} ∩D
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to the functions (u−u(wQ))2 and g, we obtain

(3.2)
∫
∂R
(u−u(wQ))2∂~ng dσ −

∫
∂R
∂~n(u−u(wQ))2g dσ

=
∫
R
(|∇u|2 + (u−u(wQ))∆u)g dm,

∆(u2) = 2(|∇u|2 +u∆u) and g is harmonic in R.
Note that ∂R = (∂D∩ ∂R)∪ (L∩ T(Q̂)). Because g vanishes in ∂D∩ ∂R,

the integrals on ∂R can be written as

∫
∂D∩∂R

(u−u(wQ))2∂~ng dσ +
∫
L∩T(Q̂)

(u−u(wQ))2∂~ng dσ

−
∫
L∩T(Q̂)

∂~n(u−u(wQ))2g dσ.

We proceed now to estimate the integrals on L ∩ T(Q̂). Observe that in the hy-
perbolic metric the diameter of T(Q̂k), where Qk is any dyadic cube, is bounded
from above and below by constants depending only on M and n. In particu-
lar, T(Q̂) can be covered by k balls Bi of center wi and radius ρδ(wi), where
k depends on ρ and on n. Fix ρ0 = ρ0(α) so that each such hyperbolic ball is
covered by a bounded number of cones. Now condition (∗) implies that for any
w ∈ L∩ T(Q̂),

|u(w)−u(wQ)| ≤
k∑
i=1

osc(u, Bi)

≤
k∑
i=1

ϕ
(∫

(1+η)Bi
(|∇u|2 + |u∆u|)r 1−n

Bi dm
)1/2

.

Observe that one can assume that δ(wi) is comparable to δ(w) for all w ∈
(1+ η)Bi. Thus for some constant c = c(ρ0) > 1 and for any w ∈ L∩ T(Q̂),

(3.3) |u(w)−u(wQ)| Ü ϕ(ca).

Also, g(z) Ü 1 and |∂~ng| ' y−n0 on L∩ T(Q̂) by the estimates related to Green’s
function in Theorem 2.1, therefore∫

L∩T(Q̂)
(u−u(wQ))2|∂~ng|dσ Üϕ2(ca)(3.4)

and
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L∩T(Q̂)

∂~n(u−u(wQ))2g dσ
∣∣∣∣

Ü ϕ(ca)
∫
L∩T(Q̂)

|∇u|dσ

≤ ϕ(ca)|σ(L∩ T(Q̂))|1/2
(∫

L∩T(Q̂)
|∇u|2 dσ

)1/2

Ü aϕ(ca).

(3.5)

Note that the last inequality is a consequence of (3.1).
Next we estimate the right hand side term in (3.2). Consider g∗ the Green’s

function for the domain D ∪ (⋃ Q̂j) with pole at the point p0. Then by the
maximum principle, g∗ ≥ g in D. Thus, changing the order of integration and
using the left inequality in Theorem 2.1(c), one has∫

R

(
|∇u|2 + |u−u(wQ)| |∆u|)g dm(3.6)

≤
∫
R
(|∇u|2 + |u−u(ωQ)| |∆u|)g∗ dm

Ü
∫
Q

(∫
Γα(x)∩R(|∇u|

2 + |u−u(wQ)| |∆u|)δ1−n dm
)
dω∗(x),

where ω∗(E) = ω(GE,p0,D) and GE is the graph of ∂D above E. Let N ≥ A.
The argument below will indicate how large A must be chosen.

To estimate the last integral in (3.6) we will first assume that |u(wQ)| ≥
2Nϕ(ca) and consider the general case afterwards. So, let us assume that |u(wQ)|
≥ 2Nϕ(ca). Since, by construction, |u(w)−u(wQ)| ≤ Nϕ(ca) in R, we get
for all w ∈ R, |u(w) − u(wQ)| ≤ |u(w)|. The last integral in (3.6) is then
bounded by ∫

Q
(S2
αu)(x)dω∗(x) ≤ a2.

Therefore, going back to (3.2) and using (3.4) and (3.5), we obtain∫
∂D∩∂R

(u−u(wQ))2∂~ng dσ Ü a2 + aϕ(ca)+ϕ2(ca).

The cubes Qj are chosen so that |u(w) − u(wQ)| > Nϕ(ca) for some w ∈
T(Q̂j). Since the oscillation on hyperbolic balls is controlled by ϕ(ca), arguing
as above we get that for all w ∈ T(Q̂j)
(3.7) |u(w)−u(wQ)| > (N − c0)ϕ(ca),

where c0 = c0(ρ0, α,M,n). We deduce then that

(3.8) ((N − c0)ϕ(ca))2
∑
j
ω∗(Qj) Ü a2 + aϕ(ca)+ϕ2(ca).
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So, if N > 2c0, ∑
j
ω∗(Qj) Ü 1

N2 .

Now we use Theorem 2.1(b) withQ∗ = Q and E = ⋃j Qj . Thus, since `(Q) = 1,
we get (∑

j
`(Qj)n

)β = ∣∣∣⋃
j
Qj
∣∣∣β Üω∗

(⋃
j
Qj
)
Ü 1
N2 .

Taking roots and using the assumption `(Q) = 1, this ends the proof in the case
|u(wQ)| ≥ 2Nϕ(ca).

Assume now that |u(wQ)| ≤ 2Nϕ(ca). If Nϕ(ca)/4 ≤ |u(wQ)| ≤
2Nϕ(ca), replace N by N/8 and apply the previous argument. If Nϕ(ca) >
4|u(wQ)| we consider an intermediate family of cubes. Denote by {Q(1)` } the
maximal dyadic cubes contained in Q satisfying

sup
w∈T(ÅQ(1)` )

|u(w)−u(wQ)| ≥ Nϕ(ca)2
.

Because of the maximality of Q(1)` , if we denote by w̃` the point wQ, where Q is
the smallest dyadic cube which properly contains Q(1)` , we have

|u(w̃`)−u(wQ)| < Nϕ(ca)2
.

Since w̃` and wQ(1)`
are at some fixed hyperbolic distance, the same argument as

before gives:

(3.9)
(
N
2
+ c1

)
ϕ(ca) ≥ |u(wQ(1)` )−u(wQ)| ≥

(
N
2
− c0

)
ϕ(ca).

Hence,

|u(wQ(1)` )| ≥
(
N
4
− c0

)
ϕ(ca)

and we can apply the previous case, that is, for each Q(1)` , choose the maximal
dyadic cubes {Q(2)k } contained in Q(1)` such that

sup
T(ÅQ(2)k )

|u(w)−u(wQ(1)j )| >
(
N
4
− c0

)
ϕ(ca)

2
.
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So, proceeding as before we obtain

1
(`(Q(1)` ))n

∑
Q(2)k ⊂Q(1)`

(`(Q(2)k ))
n Ü ε(N).

Finally, note that if w ∈ Q̂ \⋃kÅQ(2)k , because of the left inequality in (3.9) and
the maximality of {Q(2)k },

|u(w)−u(wQ)| ≤
(
N
4
− c0

)
ϕ(ca)

2
+
(
N
2
+ c1

)
ϕ(ca)+N

4
ϕ(ca) ≤ Nϕ(ca)

if N is big enough. Hence
⋃
j Qj ⊂ ∪Q(2)k and the proof is completed. ❐

Next, we shall prove a good-λ inequality between the distribution functions
of the non-tangential maximal function Nβu and the area function Sαu, where u
is a function having ϕ-controlled oscillation in an unbounded Lipschitz domainΩ ⊂ Rn+1+ (with Lipschitz constant M). This type of a distribution inequality
will lead to an Lp-inequality comparing both quantities, to a certain Law of the
Iterated Logarithm and to a version of Fatou’s Theorem in this setting.

Theorem 3.2. Let Ω be an unbounded Lipschitz domain with Lipschitz con-
stant M. Let u ∈ C2(Ω) be a function having ϕ-controlled oscillation in Ω for an
increasing function ϕ satisfying

lim inf
λ→∞

ϕ(λ)
λ

> 0.

Fix α and β such that 0 < α < β < 1/M. Then there exist constants c0, c1 and c2
depending only on (α,β,M,n,ϕ) such that, for any λ ≥ 1 and any γ > c0, one has

∣∣{x ∈ Rn : (Nαu)(x) > γλ, (Sβu)(x) < ϕ−1(λ)}∣∣
≤ c1e−c2γ

∣∣{x ∈ Rn : (Nαu)(x) > λ}
∣∣.

Proof. Fix λ > 1. We may assume that the set {x ∈ Rn : (Nαu)(x) > λ}
has a finite measure. Let ε0 > 0 be a small positive number, to be fixed later. Let
Q be a maximal dyadic cube such that

|{x ∈ Q : (Nαu)(x) > λ}| ≥ ε0|Q|.

It is then enough to show that

(3.10) |{x ∈ Q : (Nαu)(x) > λ, (Sβu)(x) < ϕ−1(λ)}| ≤ c1e−c2γ|Q|.
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Also, observe that, by maximality, on the parent of Q, call it Q̃, we have the
inequality

|{x ∈ Q̃ : (Nαu)(x) > λ}| ≤ ε0|Q̃|.
Hence, if ε0 = ε0(n,M) is chosen sufficiently small, the inequality |u(w)| < λ
holds for every point w ∈ T( ̂̃Q). Now choose w ∈ T( ̂̃Q) such that Q ⊂ Qw .
Since the volumes of Q and Qω are comparable, replacing Q by Qw in (3.10) if
necessary, it can be assumed that |u(wQ)| < λ.

So the proof consists on showing (3.10) under the additional assumption that
|u(wQ)| ≤ λ.

We will mainly follow the proof in Lemma 3.1, instead of directly applying
its conclusions.

Define the set E = {x ∈ Q : (Sβu)(x) ≤ ϕ−1(λ)} and the Lipschitz domainΩ′ = ⋃x∈E Γβ′(x), where β′ is chosen so that α < β′ < β. Then Ω′ is a Lipschitz
domain contained in Ω with Lipschitz constant 1/β′, and we have (Sβu)(x) ≤
ϕ−1(λ) for all x ∈ E. Hence the area function of u (in Ω′) is bounded by a fixed
multiple ofϕ−1(λ) at the points of (∂Ω′)∩E. A technical difficulty arises because
we do not know such estimate in the whole ∂Ω′. In the harmonic setting, it holds
(see Lemma 4.2.9 in [2]), but this lemma does not seem to hold in our situation.

We consider now the dyadic decomposition of Q with respect to the domainΩ′. Denote the dyadic cubes inΩ′ by {Q̂′}. SinceQ was chosen to be big enough,
we can assume as well that |u| ≤ λ on T(Q̂′). The idea is to run a stopping time
process in Ω′.

We are essentially in the setting of Lemma 3.1 with Ω′ replacing Ω, except
for the fact that the condition (Sβu)(x) < ϕ−1(λ) involves the distance to ∂Ω
which could be quite different from the one to ∂Ω′. This will create some technical
difficulties that can be solved by adapting the proof of Lemma 3.1 to this situation.

Proceeding as in Lemma 3.1, consider the maximal dyadic cubes (with respect
to Ω′) {Q′j} ⊂ Q satisfying

sup
w∈T(Q̂′j)

|u(w)| ≥ C0λ

for some constant C0 to be chosen later. Define the corresponding regionsD′ and
R′ and apply Green’s formula to u2 and g′ (Green’s function in D′). Hence

(3.11)
∫
∂R′
u2 dω′ −

∫
∂R′
(∂~nu2)g′ dσ =

∫
R′
(|∇u|2 +u∆u)g′ dm.

Since δ(w) = dist(w, ∂Ω) and δ′(w) = dist(w, ∂Ω′) for w ∈ Ω′, do not need
to be comparable, we need to consider a new Green’s function to estimate this last
integral. Let gβ(·) be Green’s function in Ωβ = ⋃

x∈E Γβ(x) with the same pole
as g′. Note that Ωβ ⊃ Ω′, so by the maximum principle, gβ(w) ≥ g′(w) for all
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w ∈ R′. Therefore

(3.12)
∫
R′
(|∇u|2 + |u∆u|)g′ dm ≤

∫
R′
(|∇u|2 + |u∆u|)gβ dm.

The point now is that, for pointsw ∈ R′, δβ(w) = dist(w, ∂Ωβ) is compara-
ble to δ(w) = dist(w, ∂Ω), with constants depending on (β, β′, n). So changing
the order of integration as in Lemma 3.1 we can bound (3.12) by∫

Q

(∫
Γβ(x)∩R′

(|∇u|2 + |u∆u|)δ1−n
β dm

)
dω∗

β .

Recall that (Sβu)(x) ≤ ϕ−1(λ) if x ∈ E. Since δ(w) is comparable to
δβ(w) for w ∈ R′, we deduce that∫

Γβ(x)∩R′
(|∇u|2 + |u∆u|)δ1−n

β dm Üϕ−1(λ)2, x ∈ E.

To estimate the corresponding integral for points in Q \ E, we use an argument
in [22], which uses the different apertures α < β′ < β, (x0, t0) = P ∈ ∂Ωβ and
x ∈ E such that P is in the closure of Γβ(x). Since P ∉ Ωβ, the vertical cone (in
the negative direction) of aperture β with vertex at P ,

{(x, t) : |x − x0| < β|t − t0|, t < t0},

does not meet Ωβ. Therefore, since β′ < β, the distances dist(P,Ω′), dist(x,Ω′)
are comparable. Hence if w ∈ Γβ(P)∩Ω′ ⊃ Γβ(P)∩R′, δβ(w) is comparable to
|w − x|. Hence∫

Γβ(P)∩R′
(|∇u|2 + |u∆u|)δ1−n

β dm Ü (S2
βu)(x) ≤ϕ−1(λ)2.

Therefore ∫
Q

(∫
Γβ(x)∩R′

(|∇u|2 + |u∆u|)δ1−n
β dm

)
dω∗

β Ü (ϕ−1(λ))2.(3.13)

The rest of the argument is exactly the same as in Lemma 3.1. Just note that
the oscillations of u on tops of the cubes Q′ will be controlled by the oscillation
on hyperbolic balls in Ω′. The quantity that controls such oscillations depends
on the euclidean radius of the balls. That might be very small compared to the
distance of the ball to ∂Ω. So, we need to consider some bigger balls that will
help us control the oscillation in the smaller ones. Let B be a hyperbolic ball inΩ′, that is, B = B(w0, ρ0δ′(w0)) ⊂ Ω′, where ρ0 < 1

2 . Define B̃ to be the ball
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B̃ = B(w0, ρ0δβ(w0)). Then obviously B̃ ⊃ B and the euclidean radius of B̃ is
comparable to δ(w) for all w ∈ B̃. Fix ρ0 = ρ0(β) so that (1+ η)B̃ ⊂ Γβ(x) for
some x ∈ E. Then condition (∗) gives

osc(u, B) ≤ osc(u, B̃) ≤ϕ
(∫

(1+η)B̃
(|∇u|2 + |u∆u|)r 1−n

B̃
dm

)1/2
,

and the same argument which leads to (3.3) implies that

osc(u, B) ≤ϕ(cϕ−1(λ)) Ü λ

for some c = c(β,β′, n). This is where the assumption ϕ(2t) < Cϕ(t) is used.
Next, since lim infλ→∞ϕ(λ)/λ = cϕ > 0, we can choose c1 such that

c1ϕ(cϕ−1(λ)) > cϕϕ−1(λ).

So the statement (3.8) (with a =ϕ−1(λ), N = C0) becomes

((C0 − c0)λ)2
∑
j
ω∗′(Q′j) Ü (c2

1c
−2 + c1c−1 + 1)λ2ω∗′(Q).

Choosing C0 big enough, the proof of Lemma 3.1 gives:

∑
j
(`(Q′j))

n <
`(Q)n

2
.

Changing the notation now, we set Q′j = Q(1)j . For each j, we repeat the

construction, that is, we consider {Q(2)i }, the collection of the maximal dyadic
subcubes (with respect to Ω′) of Q(1)j satisfying

sup
T(ÅQ(2)i )

|u(w)−u(wQ(1)j )| ≥ C0λ.

Repeating the same process n0 times, where n0 = n0(γ) will be chosen later, we
obtain nested families {Q(k)j }j of pairwise disjoint dyadic cubes in Q satisfying

⋃
j
Q(k+1)
j ⊂

⋃
j
Q(k)j ,

∑
j

(
`(Q(k+1)

j )
)n ≤ 1

2

∑
j

(
`(Qkj )

)n
,

for any k = 1, . . . , n0. Moreover, the same argument as in (3.9) yields

(C0 + c0)λ ≥ |u(wQ(k+1)
j
)−u(wQ(k)j )| ≥ (C0 − c0)λ
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and by the maximality of the families {Q(n)j : j}, we have that

|u(w)−u(wQ(k)j )| ≤ C0λ,

whenever w ∈ ÅQ(k)i \⋃j ̂Q(k+1)
j . Thus, if n0 ' γ/C0, then one has{

x ∈ E : sup
w∈Γα(x) |u(w)| > γλ

}
⊆
⋃
CQ(n0)

j ,

where C is a constant depending on α, n, M. For n0 ' [γ/C0], we can then
deduce∣∣{x ∈ Q : sup

w∈Γα(x)
∣∣u(w)∣∣ > γλ, (Sβu)(x) < ϕ−1(λ)}∣∣

≤ c1e−c2γ
∣∣{x ∈ Q : sup

w∈Γα(x)
∣∣u(w)∣∣ > λ}∣∣,

which concludes the proof. ❐

Remark. Assume that the function u satisfies condition (∗) for a function ϕ
such that

ϕ(t) ≥ ct, 0 < t <∞,
for a fixed constant c > 0. Then, the conclusion of Theorem 3.2 holds for any
λ > lim sup|w|→∞u(w).

Once this type of distributional inequalities is established, standard arguments
lead to the following Lp-inequalities for functions u that vanish at infinity.

Theorem 3.3. Under the notation of Theorem 3.2, assume that

lim
‖(x,y)‖→∞

u(x,y) = 0.

Then for 0 < p < ∞ and 0 < α < β there exists a constant C = C(p,α,β,n,M,ϕ),
such that

‖Nαu‖Lp(∂Ω) ≤ C‖ϕ(Sβu)‖Lp(∂Ω).
We can also obtain a Law of the Iterated Logarithm in this setting, but some

technical difficulties arise because no version of Lemma 4.2.9 in [2] seems to hold
in our setting.

Theorem 3.4. Under the hypothesis of Theorem 3.2, and assuming that
(Nα,1,∞u)(0) <∞, there exists a constant C = C(M,n,α,β,ϕ) such that

lim
t→0

sup
(Nαu)(x, t)

ϕ((Sβu)(x, t)) log log(ϕ((Sβu)(x, t)))
< C

at almost every point x ∈ {x ∈ Rn : (Sβu)(x) = ∞}.
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Proof. It is enough to show the result for points x ∈ Q, where Q is any
sufficiently large cube in Rn. We may assume that there exist x ∈ Q and t > 0
such that (Sβu)(x, t) <∞. Given x ∈ Q, consider the set

ηk(x) = inf
{
t > 0 : (Sβu)(x, t) < ϕ−1(2k)

}
and the domains Ωk(α) = ⋃Γα(x,ηk(x)), Ωk(β′) = ⋃Γβ′(x, ηk(x)), where
α < β′ < β. Observe that Ωk(α), Ωk(β′) are Lipschitz domains with Lipschitz
constant depending only on α, β, M, ϕ, but not on k. We will apply the proof of
Theorem 3.2 in the domain Ω′k. The main difficulty is that we only know that

Sβ′(P) Üϕ−1(2k),

at points P ∈ ∂Ωk(β′) of the form P = (x, ηk(x)). As before, it is worth men-
tioning that the analogue of Lemma 4.2.9 in [2] does not seem to hold in our
situation. However, observe that for any point P ∈ ∂Ωk(β′)
(3.14)

∫
Γβ′ (P)∩Ωk(α)

(
|∇u(w)|2 + |u(w)∆u(w)|) |w − P |1−n dm(w)

Üϕ−1(2k).

Actually, if P is of the form P = (x, ηk(x)), we already know it. For general
P = (x0, t0) ∈ ∂Ωk(β′) let Q = (x, ηk(x)) such that P is in the closure ofΓβ′(Q). Since P = (x0, t0) ∈ ∂Ωk(β′), the vertical cone (in the negative direc-
tion), {(x, t) : |x−x0| < β′(t0−t)}, does not contain any point ofΩk(β′). Since
α < β′, if w ∈ Γβ′(P)∩Ωk(α), |w − P | is comparable to |w −Q|. Therefore

∫
Γβ′ (P)∩Ωk(α)

(
|∇u(w)|2 + |u(w)∆u(w)|) |w − P |1−n dm(w)

Ü
∫
Γβ′ (Q)

(
|∇u(w)|2 + |u(w)∆u(w)|) |w −Q|1−n dm(w) Üϕ−1(λ)2.

Hence, (3.13) holds.
Observe that, if we would know that (Sβ′u)(P) Ü ϕ−1(2k) for any point

P ∈ ∂Ωk(β′), we could directly apply Theorem 3.2 to obtain

(3.15) |{x ∈ Q : (Nαu)(x,ηk(x)) > γk2k}| ≤ C1e−C2γk|Q|.

To deduce (3.15) from (3.14), we follow the proof of Theorem 3.2. We apply
Green’s formula to the functions u2 and g′ in a subdomainR′ of Ωk(α). Here g′
is Green’s function of a convenient subdomain of Ωk(α). As in the proof of The-
orem 3.2, the key estimate (3.13) follows easily from (3.14). These considerations



Distributional Inequalities for Non-harmonic Functions 211

accomplish the first step in the proof of Theorem 3.2. Successive steps run in the
same way as in Theorem 3.2.

Choose γk = (2 logk)/c2. Then
∑
k e−c2γk < ∞, and the Borel-Cantelli

lemma implies that almost all x ∈ Q are, at most, in a finite number of the sets
{x ∈ Q : Nα,ηk(x),∞u(x) > γk2k}. So, for almost all x ∈ Q, Nα,ηk(x),∞u(x) ≤
γk2k, eventually, that is, there exists an integer k0 that may depend on x, such
that for all k ≥ k0, we have Nα,ηk(x),∞u(x) ≤ γk2k. Consider such points x
which in addition satisfy (Sβu)(x) = ∞. For these points ηk(x) → 0 as k → ∞.
So, for any t < ηk0(x), choosing k such that ηk+1(x) < t < ηk(x), we get

ϕ−1(2k) < (Sβ,t,∞u)(x) < ϕ−1(2k+1)

and

(Nα,t,∞u)(x) < (Nα,ηk+1(x),∞u)(x) < γk+12k+1.

Thus, 2k < ϕ((Sβ,t,∞u)(x)) and

(Nα,t,∞u)(x) < cϕ(Sβ,t,∞u(x)) log logϕ((Sβ,t,∞u)(x)),

as we wanted to prove. ❐

We end this section applying these techniques to obtain a Fatou-type result.

Theorem 3.5. Under the hypotheses of Theorem 3.2 and assuming that
(Nα,1,∞u)(0) <∞, for almost all x ∈ {x ∈ Rn : (Sβu)(x) < ∞}, one has

(i) (Nαu)(x) <∞.
(ii) The function u has a finite non-tangential limit, that is, limw→(x,φ(x)) u(w)

exists, where the limit is taken when w ∈ Γα(x), w → (x,φ(x)), 0 < α <
1/M.

Proof. It is quite easy to deduce (i) from Theorem 3.2 and a standard point
of density argument, therefore we omit its proof. Assume now that (ii) does not
hold. Since (Nαu)(x) is finite a.e. x ∈ {x : Sβu(x) < ∞}, there must exist
δ > 0 and a set

E ⊂ {x ∈ Rn : (Nαu)(x) <∞, (Sβu)(x) <∞},

with |E| > 0, such that for any x ∈ E,

(3.16) limu(w)− limu(w) > δ,

where the limits are taken when w tends to (x,φ(x)), w ∈ Γα(x). Choose
ε > 0. Then a point of density argument provides a dyadic cube Q ⊂ Rn, and a
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set F ⊂ Q such that |F|/|Q| > 3
4 , and for all x ∈ F , (Sβ,0,`(Q))(x) < ε and (3.16)

holds. Consider the Lipschitz domains

Ω′ = ⋃
x∈F

Γα(x) ⊂ Ω = ⋃
x∈F

Γβ(x).
As before, we only know that the area function of u is bounded (by ⊂ ε) at points
P ∈ ∂Ω of the form P = x ∈ F . If we knew that, for any point in ∂Ω, then,
applying Lemma 3.1 to Ω∩ Ω̂, we would get a contradiction, sinceϕ(0) = 0 and
the constant ε can be taken arbitrarily small. As before, to overcome this difficulty
we will take profit of the two different angles α < β. Arguing as in the proof of
Theorem 3.2, one obtains that for any P ∈ ∂Ω,∫

Γβ(P)∩Ω′∩Q̂
(
|∇u(w)|2 + |u(w)∆u(w)|) |w − P |1−n dm(w) Ü ε.

Now, one can apply the proof of Lemma 3.1 to obtain a contradiction. ❐

4. CONTROL OF THE AREA FUNCTION BY
THE NON-TANGENTIAL MAXIMAL FUNCTION

Let f ≥ 0 be a measurable function in Ω. If 0 < ε < 1/
√

1+M2, we introduce
another function f]ε by setting

f]ε (z,y) =
∫
Bε(z,y)

f ,

where Bε(z,y) = B((z,y), ε(y−φ(z))) for (z,y) ∈ Ω. Note that, since ε <
1/
√

1+M2, Bε(z,y) ⊂ Ω if (z,y) ∈ Ω. The following two technical results are
elementary.

Proposition 4.1. Let 0 < α < 1/M, 0 < ε < 1/
√

1+M2.
(1) If (z,y) ∈ Γα(x), then:

y −φ(z) ' y −φ(x),
with comparison constants depending on M and α.

(2) If (z′, y ′) ∈ Bε(z,y) and (z,y) ∈ Γα(x), then
(i) y ′ −φ(x) ' y −φ(x),

(ii) y ′ −φ(z′) ' y −φ(z),
(iii) |y −y ′| Ü y −φ(x),
(iv) |z′ − x| Ü y −φ(x),

with comparison constants depending on M, α and ε.

The following lemma relates the truncated area functions of f , f]ε defined in
Section 2.
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Lemma 4.2. Let 0 < α < 1/M, and h > 0. Then there exists ε0 = ε0(α,M)
such that if 0 < ε < ε0, one can find α± and h± such that

(i) C−1Aα−,0,h−(f
]
ε ) ≤Aα,0,h(f ) ≤ CAα+,0,h+(f

]
ε ),

(ii) C−1Aα,h+,∞(f
]
ε ) ≤ Aα,h,∞ ≤ CAα+,h−,∞(f

]
ε ),

where α− < α < α+, h− < h < h+, and C are all positive constants depending on
M, α and ε.

In particular, C−1Aα−(f
]
ε ) ≤Aα(f ) ≤ CAα+(f

]
ε ).

Proof. We will only prove (i), the proof of (ii) being similar. We start with
the right hand side. If δ = δ(ε,M) is conveniently chosen, then, by Proposition
4.1 and Fubini’s Theorem:∫
Γα,0,h(x) f (z,y)(y −φ(x))

1−n dzdy

≤ C
∫
Γα,0,h(x)

∫
Rn+1+

f(z,y)(y ′ −φ(x))1−n 1
|Bδ(z,y)|

× χBδ(z,y)(z′, y ′)dz′ dy ′ dzdy

≤ C
∫
Γα+,0,h+ (x)

∫
Rn+1+

(y ′ −φ(x))1−n χBε(z′,y′)(z,y)|Bε(z′, y ′)| f(z,y)dzdy dz
′ dy ′

≤ C
∫
Γα+,0,h+ (x)(y

′ −φ(x))1−n
∫
Bε(z′,y′)

f (z,y)dzdy dz′ dy ′

= C
∫
Γα+,0,h+ (x)(y

′ −φ(x))1−nf]ε (z′, y ′)dz′ dy ′,

where C is some positive constant depending only on M, α, ε. For the left-hand
side, we also get:∫

Γα−,0,h− (x) f
]
ε (z,y)(y −φ(x))1−n dzdy

≤
∫
Γα−,0,h− (x)

∫
Bε(z,y)

f (z′, y ′)
(y −φ(x))1−n
|Bε(z,y)| dz′ dy ′ dzdy

≤ C
∫
Γα,0,h(x) f (z

′, y ′)(y ′ −φ(x))1−n dz′ dy ′. ❐

Now, if f ≥ 0 is measurable in Ω, Q ⊂ Rn is a cube of side length ` and
x ∈ Q, consider the truncated cones Γα,0,`(x), Γα,`,∞(x) and the corresponding
area functions (Aα,0,`f )(x), (Aα,`,∞f)(x) associated to f . The following two
results were proved in the harmonic setting by Bañuelos and Moore [3].
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Lemma 4.3. Assume that f ≥ 0 is measurable in Ω and satisfies the uniform
estimate

f(z,y) ≤ A
(y −φ(z))2

for some A > 0 and any (z,y) ∈ Ω. Then if Q ⊂ Rn is a cube of side length `,
0 < α < 1/M and Aα,`,∞(f ) is as above, we have

|A2
α,`,∞(f )(x1)−A2

α,`,∞(f )(x2)| ≤ C

for any x1, x2 ∈ Q, where C is a constant depending only on M, α, A, n.

Proof. Take `′ = 2M
√
n`. An elementary commutation shows that

A2
α,`′,∞(f )(x)−A2

α,`,∞(f )(x) ≤ C = C(M,n,α,A)

for any x ∈ Rn. Therefore, it is enough to prove the lemma with `′ instead of `.
Now,

∣∣∣Aα,`′,∞(f )(x1)−A2
α,`′,∞2(f )(x2)

∣∣∣
≤
∫
Γα,`′,∞(x1)

f (z,y)|(y −ϕ(x1))1−n − (y −ϕ(x2))1−n|dzdy

+
∫
Γα,`′,∞(x1)∆Γα,`′ ,∞ f(z,y)|y −ϕ(x2)|1−n dzdy = (I)+ (II).

We claim that (I) and (II) are bounded by some constant C = C(M,n,α,A). To
estimate (I), note that, from the choice of `′ it follows,

1
2
≤ y −ϕ(x2)
y −ϕ(x1)

≤ 3
2

whenever (z,y) ∈ Γα,`′,∞(x1). Then

∣∣∣(y −ϕ(x1))1−n − (y −ϕ(x2))1−n
∣∣∣ ≤ C(M,n)` 1

(y −ϕ(x1))n
,

so, by Proposition 4.1, (1):

(I) ≤
∫
Γα,`′,∞(x1)

A
(y −ϕ(z))2

C`
(y −ϕ(x1))n

dzdy

≤ `C(M,n,α,A)
∫
Γα,`′,∞(x1)

dz dy
(y −ϕ(x1))n+2 ≤ C(M,n,α,A).
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To estimate (II), note that

σn
{
z ∈ Rn : (z,y) ∈ Γα,`′,∞(x1)∆Γα,`′,∞(x2)

}
≤ C(M,n,α)`(y −ϕ(x2))n−1

where σn is the Lebesgue measure in Rn. As in [3], this last inequality, together
with Fubini’s Theorem, gives (II) ≤ C(M,n,α,A). ❐

Now, for a cube Q ⊂ Rn, centered at x0 ∈ Rn and of side length `, denote
by Q∗ the cube also centered at x0 with side length 4`, and let g, ω be Green’s
function and the harmonic measure in Q̂∗, with respect to pQ∗ = (x0,φ(x0) +
`/2). We follow the notation introduced in Section 2, that is, for E ⊂ Q∗,
ω∗(E) =ω(GE,pQ∗ , Q̂∗), where GE = {(x,φ(x)) : x ∈ E}.

The following lemma is a standard consequence of Fubini’s Theorem, Theo-
rem 2.1 (c) and the elementary estimates in Proposition 4.1.

Lemma 4.4. For any f ≥ 0 measurable in Ω, one has

∫
Q
(A2

α,0,`f )(x)dω
∗(x) ≤ C

∫
Q̂∗
f(z,y)g(z,y)dz dy,

where C is a constant depending on α, M and n.

In what follows, we will be interested in the class of functions u ∈ C2(Ω) that
satisfy

(∗∗) |u∆u| ≤ θ|∇u|2 in Ω,
for some θ, 0 < θ < 1. As mentioned in the introduction, if 0 ≤ t ≤ s ≤ +∞, we
will define

(Aα,t,su)(x) =
(∫

Γα,t,s(x) |∇u(z,y)|
2(y −φ(x))1−n dzdy

)1/2
.

The following lemma is a Caccioppoli inequality for this class. This is where our
assumption 0 < θ < 1 gets used.

Lemma 4.5. Suppose that u ∈ C2(Ω) satisfies (∗∗) for some θ, 0 < θ < 1.
Then, for each (x,y) ∈ Ω and any ε, 0 < ε < 1/4

√
1+M2, one has

∫
B
|∇u|2 ≤ C

r 2

∫
2B
u2,

where r = ε(y−φ(x)), B = B((x,y), r), 2B = B((x,y),2r) and C only depends
on n, θ.
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Proof. The proof goes as in the usual Caccioppoli inequality. Fix B and let
ϕ ∈ C∞0 (2B) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on B and ‖∆ϕ‖∞ ≤ Cr−2, where C
only depends on n. Then by Green’s formula applied to u2, ϕ in 2B∫

2B
ϕ∆u2 =

∫
2B
u2∆ϕ.

So

2(1− θ)
∫
B
|∇u|2 ≤ 2(1− θ)

∫
2B
ϕ|∇u|2

≤ 2
∫

2B
ϕ(|∇u|2 +u∆u)

=
∫

2B
u2∆ϕ ≤ C

r 2

∫
2B
u2. ❐

Corollary 4.6. Suppose that u ∈ C2(Ω) satisfies (∗∗) and |u| ≤ 1 inΩ. Then,
for any cube Q ⊂ Rn of side length `,∫

Q
(A2

α,0,`u)(x)dω
∗(x) ≤ C

where C depends on M, n, α and θ, the constant in (∗∗).

Proof. We use the notation of Lemma 4.4. By Green’s Theorem,∫
Q̂∗
g∆u2 =

∫
∂Q̂∗
(u2 −u2(pQ∗))dw∗ ≤ 2.

Since ∆u2 = 2(|∇u|2 +u∆u) ≥ 2(1− θ)|∇u|2, it follows:∫
Q̂∗
|∇u|2g ≤ 1

1− θ

and the conclusion follows from Lemma 4.4, applied to f ≡ |∇u|2. ❐

If u ∈ C2(Ω), f = |∇u|2 and 0 < ε < 1/
√

1+M2, we remind that f]ε
denotes the density introduced at the beginning of this section.

Theorem 4.7. Let 0 < α < β < 1/M. Suppose that u ∈ C2(Ω) satisfies (∗∗)
with constant θ, that |u| ≤ 1 in Ω, and that Aβ,1,∞u(x0) < ∞ for some x0 ∈ Rn.
Then

(Aαf]ε )
2 ∈ BMO(Rn)

for some appropriate choice of ε = ε(α,β,M), and its BMO-norm only depends on
M, n, α, β, θ.
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Proof. Choose ε > 0 so that α ≤ β− with the notation of Lemma 4.2. IfQ is
any cube in Rn, centered at x0, with side length `, it follows by Lemma 4.3 that
(Aα,`,∞f

]
ε )(x) < ∞ for any x ∈ Q. On the other hand, (Aβ,0,`u)(x) < ∞ for

a.e. (ω∗) x ∈ Q, by Corollary 4.6, so (Aα,0,`f
]
ε )(x) < ∞ for a.e. (w∗)x ∈ Q.

Since Q is arbitrary, it follows that (Aαf
]
ε )(x) < ∞ for a.e. x ∈ Rn (recall

that the harmonic measure and the surface measure are mutually absolutely con-
tinuous on the boundary of any Lipschitz domain). Now as in [3] we show that
(Aαf

]
ε )2 ∈ BMO(Rn). Indeed, letQ be a cube in Rn of side length `. Corollary

4.6 gives

ω∗{x ∈ Q : (Aα,0,`f ]ε )2(x) > λ} ≤ C
ω∗(Q)
λ

.

Sinceω∗ satisfies the A∞-condition of Theorem 2.1, we deduce

|{x ∈ Q : (Aα,0,`f ]ε )
2(x) > λ}| ≤ C |Q|

λb
,

for some b > 0. On the other hand, Lemma 4.5 gives the necessary estimates for
the hypothesis of Lemma 4.3, with the function f] where f = |∇u|2. Actually,
the fact that the expressions in Lemma 4.5 are averages is the reason to introduce
] functions. Hence, applying Lemma 4.3,

|(Aα,`,∞f]ε )2(x)− (Aα,`,∞f]ε )2(y)| ≤ C1

for any x, y ∈ Q. Hence, if xQ is the center of Q, one has∣∣∣{x ∈ Q : |(Aαf]ε )2(x)− (Aα,`∞f]ε )2(xQ))| > λ
}∣∣∣ ≤ C|Q|

(λ− C1)b

and one deduces that (Aαf
]
ε )2 ∈ BMO(Rn). ❐

Now, the John-Nirenberg inequality gives the following result.

Corollary 4.8. Under the hypothesis of Theorem 4.7, for any cube Q ⊂ Rn there
exists a constant aQ such that∣∣∣{x ∈ Q :

∣∣(Aαf]ε )
2(x)− aQ

∣∣ > t}∣∣∣ ≤ C1e−C2t|Q|,

for every t > 0, where C1, C2 depend on M, n, α, β, θ. In particular,∣∣∣{x ∈ Q : (Aαf]ε )
2(x) > t

}∣∣∣ ≤ C1e−C2t|Q|,

provided t >
√

2aQ. Moreover,∣∣∣{x ∈ Q : (Aαf]ε )(x) > 2t
}∣∣∣ ≤ C1 exp(−C2t2)

∣∣∣{x ∈ Q : (Aαf]ε )(x) > t
}∣∣∣ .
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Constructing suitable Lipschitz domains, we will show that Theorem 4.7 leads
to good-λ inequalities relating the size of the area function and the non-tangential
maximal function.

The following theorem is a weak version of the corresponding result for har-
monic functions, which is Theorem 4 in [3], but it is enough for the applications
that follow. We will use the notation ΓΩα (x), AΩα , NΩ

α whenever we want to em-
phasize that we take cones with vertex at ∂Ω.

Theorem 4.9. Let 0 < α < β < 1/M. Assume u ∈ C2(Ω) satisfies (∗∗) with
constant θ, 0 < θ < 1. Then there exist constants C1, C2 > 0, 0 < C3 < 1 depending
only on M, n, α, β, θ such that for any t, λ > 0:

∣∣{x ∈ Rn : (Aαu)(x) ≥ tλ, (Nβu)(x) ≤ λ
}∣∣

≤ C1e−C2t2 ∣∣{x ∈ Rn : (Aβu)(x) > C3tλ
}∣∣ .

Proof. Suppose that |{x ∈ Rn : (Aβu)(x) > C3tλ}| < ∞. Since condition
(∗∗) also holds, with the same constant θ, if we replace u by u/λ, we can assume
that λ = 1. Define E = {x ∈ Rn : (NΩ

β u)(x) ≥ 1} and Ω′ = ⋃
x∈Ec ΓΩβ (x).

Then it is easy to see that there is a Lipschitz function ψ : Rn → R, with Lipschitz
constant at most 1/β such that Ω′ = {(x,y) : x ∈ Rn, y > ψ(x)} ⊂ Ω. Note
that |u| ≤ 1 in Ω′.

Fix ε > 0, depending only on α, β such that α+ ≤ (β−)− = γ (with the
notation of Lemma 4.2). Then, by Lemma 4.2, Corollary 4.8, and the facts that
AΩ′
β ≥AΩ

β and (AΩ′
α+f

]
ε )2 ∈ BMO(Rn), we have:

∣∣∣{x ∈ Rn : (AΩαu)(x) ≥ t, (NΩ
β u)(x) ≤ 1

}∣∣∣
=
∣∣∣{x ∈ Rn \ E : (AΩαu)(x) ≥ t

}∣∣∣
≤
∣∣∣{x ∈ Rn : (AΩ′α u)(x) ≥ t

}∣∣∣
≤
∣∣∣∣{x ∈ Rn : (AΩ′α+f]ε )(x) ≥ 1

C
t
}∣∣∣∣

≤ C1 exp{−C2t2}
∣∣∣∣{x ∈ Rn : (AΩ′

α+f
]
ε )(x) ≥

1
2C
t
}∣∣∣∣

≤ C1 exp{−C2t2}
∣∣∣∣{x ∈ Rn : (AΩ′

γ f
]
ε )(x) ≥

1
2C
t
}∣∣∣∣

≤ C1 exp{−C2t2}
∣∣∣∣{x ∈ Rn : (AΩ′β−u)(x) ≥ 1

2C2 t
}∣∣∣∣

≤ C1 exp{−C2t2}
∣∣∣∣{x ∈ Rn : (AΩβu)(x) ≥ 1

2C2 t
}∣∣∣∣ ,

where C is the constant in Lemma 4.2. ❐
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By means of the change of variables, (z, t)→ (z, t+φ(x)), which transforms
Rn+1+ into Ω, and the fact that y −φ(x) ≈ y −φ(z) whenever (z,y) ∈ ΓΩα (x),
one can show that for any f ≥ 0 measurable in Ω,∫

ΓΩα (x) f (z,y)(y −φ(x))
1−n dzdy ≈

∫
ΓΩα (x) f (z,y)(y −φ(z))

1−n dzdy

=
∫
|z−x|<αt

h(z, t)t1−n dt dz,

where h(z, t) = f(z, t+φ(z)). This shows that we can reduce ourselves to the
general setting considered in [10]. In particular, from Proposition 4 there, adapted
to our situation, we get ‖Aαu‖p ' ‖Aβu‖p whenever 0 < α < β < 1/M, where
the comparison constant only depends on α, β, p. This observation, together
with a well-known standard argument, shows that the weak form of Theorem 4.9
is enough to get the usual comparison of the Lp-norms of the area function and
the non-tangential maximal functions, as follows.

Theorem 4.10. Let 0 < α < β < 1/M, and u ∈ C2(Ω) satisfying (∗∗) with
constant θ, 0 < θ < 1. Then, for 0 < p < ∞ there exists C = C(p,α,β,n,M,θ)
such that

‖Aαu‖Lp(Rn) ≤ C‖Nβu‖Lp(Rn),
whenever ‖Aαu‖Lp(Rn) <∞.

Theorem 4.11. Let u, α, β be as in Theorem 4.9. Assume that there is x0 ∈ Rn
and t0 > 0 such that (Aβ,t0,∞u)(x0) < ∞. Then there are positive constants C1, C2,
C3 depending on M, n, α, β, θ such that if Q ⊂ Rn is any cube centered at x0, there
is aQ > 0 such that, if λ > 0, t >

√
2C3aQ, then

|{x ∈ Q : (Aαu)(x) > tλ, (Nβu)(x) ≤ λ}| ≤ C1e−C2t2|Q|.

Proof. Assume λ = 1, as above. Since (Aβ,t0,∞u)(x0) < ∞, then for any
cubeQ of side ` centered at x0 we have (Aβ,`,∞f

]
ε )(x0) <∞, by Lemma 4.2 and

some appropriate choice of ε. (Here f]ε is the density associated to f = |∇u|2, as
above). Therefore, (AΩ′

α+f
]
ε )2 ∈ BMO(Rn) by Theorem 4.7 where, as before, let

E = {x ∈ Rn : NΩ
β u(x) ≥ 1} and Ω′ = ⋃

x∈EC ΓΩβ (x). Then, if ε > 0 is chosen
sufficiently small, one has∣∣{x ∈ Q : (Aαu)(x) > t, (Nβu)(x) ≤ 1

∣∣}∣∣
≤
∣∣∣{x ∈ EC ∩Q : (AΩαu)(x) > t

∣∣∣}∣∣∣
≤
∣∣∣{x ∈ Q : (AΩ′α u)(x) > t

∣∣∣}∣∣∣
≤
∣∣∣∣{x ∈ Q : (AΩ′

α+f
]
ε )(x) >

t
c

}∣∣∣∣ ≤ C1e−C2t2|Q|
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provided (t/c)2 ≥ 2aQ, where aQ is as in Corollary 4.8. ❐

As a consequence of Theorem 4.11 and Theorem 3.5, we get the corresponding
Calderón-type result in this context.

Theorem 4.12. Let 0 < α < 1/M, and u ∈ C2(Ω), satisfying (∗∗). Then, u
has finite non-tangential limit almost everywhere on the set

{x ∈ Rn : (Nαu)(x) <∞}.
As before, the good-λ inequality leads to a Law of the Iterated Logarithm.

Theorem 4.13. Letu ∈ C2(Ω), satisfying (∗∗) with a constant θ. Suppose that
there exists x0 ∈ Rn, 0 < β < 1/M and y0 > 0 such that (Aβ,y0,∞u)(x0) < ∞.
Then, for each α, 0 < α < β:

lim
t→0

(Aα,y,∞u)(x)

(Nβ,y,∞u)(x)
√

log log(Nβ,y,∞u)(x)
≤ C

a.e. x ∈ {x ∈ Rn : (Nβu)(x) = ∞}, where C = C(M,n,α,β, θ).
5. A SUFFICIENT CONDITION

This section is devoted to proving the following result.

Proposition 5.1. Let Ω be a Lipschitz domain in Rn+1+ . Let u ∈ C2(Ω) be such
that there exists a constant C > 0 for which

|u(w)∆u(w)| ≤ C|∇u(w)|2,
for all w ∈ Ω. Then u satisfies condition (∗) for ϕ(t) = At, where A = A(C) is a
constant depending on C.

The result still holds under more general assumptions on the domain Ω. Ob-
serve that the hypotheses in Proposition 5.1 imply that u2k is subharmonic if k is
sufficiently large. Hence, Proposition 5.1 easily follows from the following result.

Proposition 5.2. Let B be a ball in Rn and u ∈ C2(B). Assume that u2k is a
subharmonic function in B, for some positive integer k. Then,

osc
(
u,

1
10
B
)
≤ CrB

(∫
B
|∇u|2

)1/2
,

where C = C(n, k) is a constant.

Let us fix the notation. Given a ball B0 contained in B ⊂ Rn+1+ , and a
function u defined in B, rB0 will denote the euclidean radius of B0 and uB0 =
(1/|B0|)

∫
B0
u =

∫
B0

u. Fix 0 < η < 1, then we also defineA = rB0

(∫
B̃0

|∇u|2
)1/2

,

where B̃0 = (1+ η)B0 ⊂ B. Before proving Proposition 5.2, we need a lemma.
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Lemma 5.3. Assume u2 is a subharmonic function in the ball B ⊂ Rn and let
B0 be another ball such that B̃0 = (1+ η)B0 ⊂ B. Then, for any w ∈ B0, one has

|u2(w)− (uB0)
2| ≤ C(|uB0| +A)A,

where C = C(n,η) is a constant.

Proof. To simplify notation we set B = B0 and keep in mind that a certain
duplicate of B is contained in the domain where u2 is subharmonic. The lemma
will be a consequence of several estimates.

(i). |uB̃ −uB| Ü A.
One has

|uB̃ −uB| ≤
∫
B
|u−uB̃| Ü

∫
B̃
|u−uB̃| Ü rB̃

∫
B̃
|∇u| Ü rB̃

(∫
B̃
|∇u|2

)1/2
,

where the last two inequalities follow from Poincaré’s and Hölder’s inequalities.

(ii).
(∫

B̃
|u−uB|2

)1/2
Ü A.

To show (ii) we apply Poincaré’s inequality again and (i):

∫
B̃
|u−uB|2 ≤ 2

(∫
B̃
|u−uB̃|2

)
+ 2|uB̃ −uB|2 Ü r 2

B̃

∫
B̃
|∇u|2 +A2 ' A2.

(iii).
(∫

B̃
u2
)
Ü |uB|2 +A2.

We simply write ∫
B̃
u2 ≤ 2

(∫
B̃
(u−uB)2

)
+ 2(uB)2

and apply (ii).
Let us now estimate |u2(w) − (uB)2|. Since u2 is subharmonic, for any

w ∈ B, we have

u2(w)− (uB)2 ≤
∫
B(w)

u2 − (uB)2,

where B(w) ⊂ B̃ is a ball centered at w of radius comparable to the radius of B.
Hence

|u2(w)− (uB)2| Ü
∫
B̃
|u2 − (uB)2|

≤
(∫

B̃
(u−uB)2

)1/2(∫
B̃
(u+uB)2

)1/2
= (I)(II).
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By (ii), I Ü A. Also by (iii)

(II)2 ≤ 2
(∫

B̃
u2
)
+ 2(u2

B) Ü (uB)2 +A2 ≤ (|uB| +A)2. ❐

Proof of Proposition 5.2. Assume first that u2 is subharmonic in B. To sim-
plify notation we rename 1

10B to be B and keep in mind that a certain duplicate
of B is contained in the domain where u2 is subharmonic. Then, by the previous
lemma, for any w ∈ B, one has

(5.1) |u2(w)− (uB)2| Ü (|uB| +A)A.

Suppose uB > 0, otherwise we would apply the same argument to the function
(−u). Let k0 = oscB(u). Then either (uB + k0/2) = u(w) for some w ∈ B or
(uB − k0/2) = u(w) for some w ∈ B. Our purpose is to show that k0 Ü A. In
the first case, by (5.1) we get

∣∣∣∣(uB + k0

2

)2
− (uB)2

∣∣∣∣ Ü (|uB| +A)A,
and therefore k0 Ü A as we wanted to show. The second case is harder, and we
will need to consider several subcases. By (5.1)

(5.2)
∣∣∣∣(uB − k0

2

)2
− (uB)2

∣∣∣∣ = k0

∣∣∣∣uB − k0

4

∣∣∣∣ Ü (|uB| +A)A.
Suppose first that uB > k0/2. Then |uB − k0/4| ≥ uB/2 and (5.2) implies

k0uB Ü (uB +A)A,

and therefore k0 Ü A. Assume next that uB ≤ k0/8. Then |uB − k0/4| > k0/8,
and by (5.2)

k2
0 Ü (|uB| +A)A ≤

(
k0

8
+A

)
A.

So we deduce k0 Ü A. Finally, if k0/8 ≤ uB ≤ k0/2, we will apply (5.1) to some
point w such that u(w) = uB − k0/8. Then (5.2) becomes in this case

∣∣∣∣(uB − k0

8

)2
−u2

B

∣∣∣∣ = k0

∣∣∣∣k0

16
−uB

∣∣∣∣ Ü (|uB| +A)A,
and the previous argument holds as well.
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To prove the proposition in the general case, we proceed in a similar way.
Assume that u2k is subharmonic. The first step is to show an inequality similar to
(5.1). As before, since u2k is subharmonic, for anyω ∈ B we have

u2k(ω)− (uB)2k ≤
∫
B(ω)

u2k − (uB)2k,

where B(ω) ⊂ B̃ is a ball centered at ω of radius comparable to the radius
of B. By estimate (ii) in the proof of Lemma 5.3, the expansion am − bm =
(a − b)(am−1 + am−2b + · · · + bm−1), and Hölder’s inequality, we get for any
w ∈ B

|u2k(w)− (uB)2k| ≤
∫
B̃
|u2k − (uB)2k|

≤
(∫

B̃
|u−uB|2

)1/2(∫
B̃

( 2k∑
j=1

|u|2k−j|uB|j−1
)2
)1/2

Ü A
2k∑
j=1

|uB|j−1
(∫

B̃
|u|2(2k−j)

)1/2
.

Since u2k is subharmonic,

sup
B̃

|u| ≤
(∫

2B̃
u2k

)1/2k
,

and thus (∫
B̃
u4k

)1/4k
≤
(∫

2B̃
u2k

)1/2k
.

As a consequence of a result of Iwaniec and Nolder ([15], see also [4, Lemma
1.4]), this reverse Hölder inequality improves to(∫

B̃
u4k

)1/4k
Ü
(∫

4B̃
|u|

)
.

Using this and Hölder’s inequality, we get that(∫
B̃
|u|2(2k−j)

)1/2
≤ Ck,j

(∫
4B̃
|u|

)2k−j
.

Arguing as in Lemma 5.3, we get∫
2B̃
|u| ≤

(∫
2B̃
|u−u2B̃|

)
+ |u2B̃ −uB| + |uB|

≤ rB
(∫

2B̃
|∇u|2

)1/2
+A+ |uB|.
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Thus

|u2k(w)− (uB)2k| Ü A
2k∑
j=1

|uB|j−1(A+ |uB|)2k−j(5.3)

Ü A(|uB| +A+ |uB|)2k−1

Ü A(|uB| +A)2k−1.

We can proceed now as in the case whereu2 was subharmonic. So, we suppose
as before that uB > 0, and we let k0 = oscB(u). Then either (uB+k0/2) = u(w)
for some w ∈ B or (uB − k0/2) = u(w) for some w ∈ B. We will use the
following elementary estimate:

x2k −y2k = (x −y)(x2k−1 + x2k−2y + · · · +y2k−1) Ý (x −y)(x +y)2k−1.

So, in the first case by (5.3), we get

(
uB + k0

2

)2k
− (uB)2k Ü A(uB +A)2k−1,

and by the observation above we can conclude

k0(uB + k0)2k−1 Ü A(uB +A)2k−1,

which implies k0 Ü A. In the second case, we will consider subcases as before.
Assume first that uB > k0, then uB − k0/2 ≥ uB/2 and by (5.3) and the previous
observation

k0u2k−1
B ≤ u2k

B −
(
uB − k0

2

)2k
Ü A(uB +A)2k−1

and therefore k0 Ü A. Next, assume uB < k0/8. Then k0/2 − uB > 3k0/8 and
(5.3) gives

k2k
0 Ü

(
k0

2
−uB

)2k
−u2k

B ≤ A(uB +A)2k−1,

which implies k0 Ü A. Finally assume k0/8 < uB < k0. Then we apply the same
argument to a point w ∈ B such that u(w) = uB − k0/16 and we get

∣∣∣∣(uB − k0

16

)2

−u2
B

∣∣∣∣ Ü A(uB +A)2k−1.

Since uB > k0/8, we obtain as before k0 Ü A. ❐
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[14] M.J. GONZÁLEZ & P. KOSKELA, Radial growth of solutions to the Poisson equation, Complex

Variables Theory Appl. 46 (2001), 59-72.
[15] T. IWANIEC & C. NOLDER, Hardy-Littlewood inequality for quasiregular mappings in certain

domains in Rn, Ann. Acad. Ser. A I Math. 10 (1985), 267-282.
[16] M. KANEKO, Estimates of the area integrals by the non-tangential maximal functions, Tohoku

Math. J. 39 (1987), 589-596.
[17] C. KENIG, Harmonic Analysis techniques for second order elliptic boundary value problems, CBMS

83 (1994) Amer. Math. Soc.
[18] J. LLORENTE, Boundary values of harmonic Bloch functions in Lipschitz domains: a martingale

approach, Potential Anal. 9 (1998), 229-260.
[19] N.G. MAKAROV, Probability methods in conformal mappings, I, II, LOMI Preprints, USSR

Acad. Sci. Steklov Math. Inst. Leningrad, 1988.
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