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Abstract
We investigate an ultracold and dilute Bose gas by taking into account afinite-range two-body
interaction. The coupling constants of the resulting Lagrangian density are related tomeasurable
scattering parameters by following the effective-field-theory approach. A perturbative scheme is then
developed up to theGaussian level, where both quantum and thermal fluctuations are crucially
affected byfinite-range corrections. In particular, the relation between spontaneous symmetry
breaking and the onset of superfluidity is emphasized by recovering the renowned Landau’s equation
for the superfluid density in terms of the condensate one.

1. Introduction

Since the seminal investigation on liquid heliumbyKamerlinghOnnes, the research on low-temperature
physics has been focused on the understanding and engineering of superfluid states ofmatter [1]. Nowadays,
superfluids and superconductingmaterials are at the core of a new technological revolution centered around the
development of quantumdevices [2–4].

From a theoretical point of view, an enormous effort has been devoted tofinally provide amicroscopic
theory accounting for the transition between a normal state and a superfluid one, where dissipationlessflow
occurs. This research oscillated between the necessity of statisticalmechanics to identify generalmechanisms
leading to supertransport and the interests of condensedmatter theorists andmaterial scientists on peculiar
setupswith unique properties. Concerningmetallic superconductors, the theoretical investigation reached one
of its peakswith the BCS theory and its consequent refinements [5, 6].

Moving to the superfluid side, liquid helium remains for decades the only efficient platform to probe the
markers of superfluid behavior, like the absence of viscous forces and the vorticity quantization [7, 8]. The
formulation of amicroscopic theory for the superfluid phase of liquid heliumproves to be an exceptionally
demanding task.Up to now, a reliable picture can be achieved via ab initio numerical simulations such as path-
integralMonte Carlo algorithms [9]. Indeed, liquid heliumhas to be classified as a strongly-correlated system,
due to the experimental values at play for density and interaction strength. In this situation, even identifying a
smallness parameter is non trivial, preventing the effective implementation of a perturbative expansion [10].

The two-fluid phenomenological approach by Landau [11, 12] has beenmuchmore fruitful, enabling the
derivation of a self-consistent hydrodynamic theory over few crucial assumptions. Remarkably, the original
formulation of Landau did not rely upon an atomic point of view and,moreover, did not invoke any symmetry
breaking related to themodern characterization of phase transitions [13].

Since the pioneering guess of London in 1938 [14, 15], it has been a common approach to interpret the
superfluid transition in terms of Bose–Einstein condensation, where amacroscopic fraction of helium atoms
can be described by amacroscopic wavefunction. Unfortunately, analytical result can be obtained only in the
weakly-interacting limit, which does not hold up to the experimental values for helium. Applied to helium, the
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resulting picture is only qualitative since, for instance, it does not evenmanage to capture the peculiar rotonic
minimumof the excitation spectrum.

In 1995, the experimental realization of a Bose–Einstein condensates [13] changed the scenario in a crucial
way: for thefirst time, the predictions of the Bogoliubov theory [16] have been checked in actual weakly-
interacting quantum gases. At the same time, within afield-theory approach, it is possible to recover the Landau
main resultsmoving fromamicroscopic Lagrangian for ultracold atoms.

The several successful theoretical studies based on the Bogoliubov frameworkmove from the crucial
assumption that the true atom–atom interaction can be replaced by a contact (i.e. zero-range) pseudopotential
whose strength is given by the s-wave scattering length as [17, 18]. The resulting thermodynamics is universal
since there is no dependence on the potential shape, with only as playing a relevant role. The same point can be
made for transport quantities as the superfluid fraction.Despite themany achievements of this strategy, current
experiments deal with higher density setups, reduced dimensionalities andmore complex interactions [19, 20].
Thus, it is pressing to extend the usual two-body zero-range framework in order to capturemore realistic and
interesting experimental regimes.Within a functional integration formalism, atoms are represented by a
bosonicfieldwhose dynamics is governed by amicroscopic interacting Lagrangian density. The coupling
constants of the finite-range theory can be determined in terms of the s-wave scattering parameters, namely as
and the corresponding effective range re. In [21–24], thefinite-range thermodynamics is derived up to the
Gaussian level for a three-dimensional uniformBose gas, while the non-trivial case of two spatial dimensions is
addressed in [25, 26]. Infigure 1we report a visual summary of themajor analytical approaches tomodeling
bosonic quantum gases.

A similar analysis concerning the superfluid properties of a finite-range theory is stillmissing and it is the
main subject of this work. By adopting a functional integration point of view as in [23, 25], we are going to show
that both condensate and superfluid depletion aremodified by thefinite-range character of the two-body
interaction.Moreover, they are not independent from each other but the familiar Landau equation for the
superfluid density can be formulated in terms of the condensate one.

The paper is organized as follows: in the next sectionwe discuss the Landau two-fluidmodel from a field-
theory perspectivemoving from amicroscopic Langrangian density. The key point consists in properly
accounting the different response of normal and superfluid components to aGalilean boost [27]. Technically,
this corresponds to performing a phase twist on the order parameter [28, 29], which has to be considered
throughout thewhole perturbative expansion. By following this scheme, wewill derive a Landau-like equation
relating superfluid and condensate density. Our calculation are carried on in a generic dimensionD, simplifying
the application of dimensional regularization to heal theUV-divergent zero-point energy.We then specify to the
casesD=3 andD=2.

Figure 1. Flowchart diagram showing some the key theoretical developments related to our analysis of three- and two-dimensional
Bose gases with a finite-range interaction potential.
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2. Two-fluidmodel of a superfluid

The thermodynamic properties of a physical system can be described calculating the grand canonical partition
function  , which is related to the grand potentialΩ by

1
ln . 1

b
W = - ( ) ( )

Weconsider a uniformD-dimensional Bose gas of identical cold atoms described by the complex scalarfield
r ,y t
( ).We calculate the grand canonical partition function  as the functional integral

, e , 2
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  ò y y= - y y
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is the Euclidean action andβ=1/(kBT), with kB the Boltzmann constant andT the absolute temperature.We
introduce the non-relativistic Lagrangian
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whereμ is the chemical potential andV r r- ¢
 (∣ ∣) is the generic interaction between bosons, assuming it is

dependent only on the relative distance r r- ¢
 ∣ ∣.

In the context of the two-fluidmodel of a superfluid [11, 12]wedescribe thefluid behavior of the system as
composed by amixture of a normal component and a superfluid component. In particular, we consider the
normal part as afluid currentmovingwith velocity v


with respect to the laboratory frame of reference.Working

with imaginary time, we describe thismotion by substituting the time derivative in the Lagrangian (4)with the
Lagrangian fluid derivative

vi . 5¶  ¶ - t t
 

· ( )

Moreover, since the superfluid part does not exchangemomentumwith the normal part, we impose a superfluid
current with a phase twist of the bosonic field [28]
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Substituting these expressions in the Lagrangian (4)we obtain

r
m

v v r

r r V r r r

,
2

i ,

1

2
d , , , 7

e s

D

2 2

2 2






ò

y t m y t

y t y t

= ¶ -


- + - - 

+ ¢ ¢ - ¢

t
    

   

⎛
⎝⎜

⎞
⎠⎟¯ ( ) ( ) · ( ) ( )

∣ ( )∣ (∣ ∣) ∣ ( )∣ ( )

wherewe define the effective chemical potentialμe as [27]

mv v v
1

2
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Considering that in the condensed phase the U 1( ) global symmetry is spontaneously brokenwe use the bosonic
field parametrization

r r, , , 90y t y h t= +
 ( ) ( ) ( )

where r ,h t
( ) is the complex field describing the fluctuation around the uniform field configurationψ0, which

represents the order parameter of the condensate phase transition. Substituting the parametrization (9) in the
action (3) and keeping only quadratic terms in the fluctuation field r ,h t

( )we obtain the homogeneous system
action
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andwe calculate theGaussian action in the Fourier space as [30]
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where k k , nw=


( ) are theD+1wavevectors, n
n2


w = p

b
are the bosonicMatsubara frequencies and
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Performing the functional integration of theGaussian action (11)we obtain the partition function (2) and the
grand potential (1). In particular, wefind that the grand potentialΩ is the sumof two contributions
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is theGaussian contribution to the grand potential, where
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is the excitation spectrumof the Bose gas. TheHugenholtz–Pines theorem is guaranteed imposing the saddle
point condition∂Ω/∂ψ0=0, for which the excitation spectrumbecomes gapless and the chemical potential
reads

g . 18e 0 0
2m y= ( )

Moreover, we identify the condensate density as n0 0
2y= . Notice that, within theGaussian approximation of the

action, the excitation spectrumdoes not contain the anomalous density, which is instead included by adopting
the next-next-to-leadingHartree–Fock–Bogoliubov scheme [31–33]. The initial assumption that the real space
interaction depends only on the distance between bosons implies that the interaction potential is left unchanged
by a reflection of themomenta:V k V k= -

 
˜ ( ) ˜ ( ). Due to this property we are able to perform the summation

overMatsubara frequenciesωn in theGaussian grand potential (16) [27, 34], obtaining the grand potentialΩ in
the form
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whereΩ0 is given by equation (15)
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is the zero-temperature Gaussian contribution, written as the sumof noninteracting elementary excitationswith
spectrum Ek 0
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is thefinite-temperature Gaussian contribution. The beyond-mean-fieldGaussian equation of statewith finite-
range interaction has been analyzed in previous papers [21, 23, 25]. For the sake of completeness we report the
main results in the appendix.

We now calculate the superfluid density ns of the systemwith a self-consistent approach, employing the
Gaussian grand potential (19). In particular, wewill identify ns from the calculation of the totalmomentum
density 


of the fluid, which is obtained as follows
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wherewe take the derivative of the grand potential with respect to the velocity v-

first and thenwe substitute the

meanfield value of the chemical potential ge 0 0
2m y= .Wefind that themomentumdensity 


is given by
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where, since the grand potential (19) is given by the sumof three sum contributions, the three terms of the
momentumdensity 
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are defined accordingly. In particular, wefind
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TheGaussian thermal contribution g
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to themomentumdensity (23) ismore involved:
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Assuming that the difference between the velocity v

of the normal fluid and the velocity vs


of the superfluid is

small, we can expand the exponential and, taking into account that some terms are zero for symmetry reasons,
we obtain
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Notice that, in the thermodynamic limit LD  ¥, the normalfluid density (30) is fully consistent with the
familiar Landau result [12]. In conclusion, putting together the contributions (24), (25) and (28)we rewrite the
momentumdensity 


as
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In the square bracket we identify the number density n(n0,T), expressed as a function of the condensate number
density n0 and the temperatureT as follows [27]
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We remark that we take the derivative of the grand potential with respect to the chemical potentialfirst and then
we substitute themeanfield value of the chemical potentialμe=g0ψ0

2, with the identification for the condensate
density n0 0

2y= . This procedure can be justified considering that the same procedure is implemented to
calculate the condensate fraction of a noninteracting Bose gas [35].With this identification, we express the
momentumdensity 


as
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Finally, we identify the superfluid density ns as
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which allows us to express themomentumdensity 

as the sumof themomentumdensity n mvs s
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superfluid part of the fluid and themomentumdensity n n T mv,n 0
( ) of the normal part of the fluid, namely
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Weemphasize that equation (34) constitutes themain result of this paper, since it highlights the non-trivial
relationship between the superfluid density ns, the condensate density n0 and the temperatureT. This resultmay
be regarded as the explicit formulation, at aGaussian level, of the Josephson relation [36].

Notice that our number density (32) and the superfluid fraction (34) are equivalent to the result obtained
with Beliaev diagrammatic technique in reference [37] if we approximate n0≈n in equations (26), (29) and (30)
andwe consider the zero-range interactionV k g0=


˜ ( ) . In the following sectionwe implement the superfluid

density calculation for bosonswith finite-range interaction in three- and two- dimensional systems.

3. Superfluid density of bosonswithfinite-range interaction

In order to obtain explicit formulas for the superfluid density ns, in this sectionwe shall implement equation (34)
in the three- and in the two- dimensional Bose gas, considering the explicit formof the interactionV r

( ). The
usual approximation to study aweakly-interacting Bose gas of ultracold atoms is constituted by the zero-range
interactionV r g r0 d=

 ( ) ( ), which in the Fourier space gives

V k g . 360=

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Herewe improve this approximation, considering the finite-range effective interaction
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which is obtained adding to the zero-range interaction strength g0 thefirst nonzero correction in the gradient
expansion of the real interaction potentialV r r- ¢

 (∣ ∣), namely g k2
2, wherewe define
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In the three-dimensional case, the values of the couplings g0 and g2 are determinedwith the scattering theory in
terms of the s-wave scattering length as and the effective range re as follows [23]
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In the two-dimensional casewe choose the zero-range interaction coupling g0 according to [38] andwe derive
the coupling g2 from the definition of the characteristic range R g g2 2 0= ∣ ∣ discussed in [25], obtaining
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Wenow explicitly implement the superfluid density ns calculation for thefinite-range effective interaction
(37). According to equation (34), ns is obtained by subtracting the normal density nn(n0,T) from the number
density n(n0,T).Wefirst calculate the number density n(n0,T), which is given as the sumof the three
contributions of equation (32). Thefirst contribution is the condensate density n0. The second contribution is
the zero-temperature Gaussian contribution to the normal density, namely
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Notice that the excitation spectrumEk(n0) reproduces the familiar Bogoliubov spectrum if the zero-range
interaction is restored by putting g2=0. Since f n

g
0

0( )( ) is ultraviolet divergent, wewill regularize it using

dimensional regularization [39, 40]. In particular, we obtain an adimensional integral using the integration
variable t k g n mg n, 42 2

2 0 0 0 l= ( ) ( ), thenwe extend the spatial dimensionD to the complex value
D e= - .We remark that this additional step is needed because the dimensional regularization procedure is

not always able to heal the ultraviolet divergence of the integrals [35]. After the integration, we obtain f n
g

0
0( )( ) in

the form
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whereB(x, y) is the Euler Beta function andκ is an ultraviolet cutoff wavevector introduced for dimensional
reasons.

The third term in the number density of equation (32) is thefinite-temperature Gaussian contribution
f n

g
T

0( )( ) , which, unlike the zero-temperature one, is convergent. However, this integral can be calculated

analitically only in the low-temperature regime, where it is useful to introduce the integration variable x=β
Ek(n0). Doing so in equation (29) inwhich thefinite-range interaction (37) is substituted, we get

f n
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x e
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l
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( )
( ) ( )

( )

Before substituting the spatial dimensionD to calculate explicitly the number density contributions obtained in
the previous equations, let us also calculate the normal density n n T,n 0( ), which is given by equation (30)where
thefinite-range interaction (37) is substituted. In analogywith thefinite-temperature density contribution
f n

g
T

0( )( ) , the normal density n n T,n 0( ) can be calculated analytically only in the low-temperature regime: as

beforewe introduce the integration variable x=βEk(n0), obtaining

n n T
S

mD
x

k

x
x k x

e

e
,

2
d

d

d 1
, 47n
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D

D
x

x0

2
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2


ò

b
p

=
-

+¥
+( )

( )
( ) ( )

( )
( )

where k(x) is given again by equation (46).We now calculate explicitly the number density n(n0,T) and the
superfluid density ns(n0,T) inD=3 and inD=2

3.1.D=3
As a preliminar result for the superfluid density ns, we employ equation (32) to calculate the density n n T,0( ) of
bosonswithfinite-range interaction. InD=3, the zero-temperature Gaussian contribution f n

g
0

0( )( ) is

regularized simply by themeans of dimensional regularization, therefore we put ε=0 into the equation (44). In
the limit of small g2 we get

f n
mg n m

g n
1

3
1

12
. 48

g
0

0 2
0 0

2

3 2

2 2 0
 p

= -⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥( ) ( )( )

This result allows us to calculate the zero-temperature number density n(n0,T=0) as the sumof the condensate
density n0 and the zero-temperature density contribution f n

g
0

0( )( ) . In particular, we substitute explicitly the

expressions of the couplings g0 and g2 as given by equation (39), obtaining n(n0,T=0) as a function of the three-
dimensional s-wave scattering length as and the effective range re:

n n T n n a
r

a
n a, 0 1

8

3
64 49s

e

s
s0 0 0

3 1 2
0

3 3 2

p
p= = + -

⎡
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⎤
⎦⎥( ) ( ) ( ) ( )

which differs from the result of [22] by a factor 2 in thefinite-range correction. Infigure 2we compare ourfinite-
range condensate fraction n n0 (black dotted–dashed line) obtained from the numerical solution of
equation (49)with the zero-range result (blue solid line) obtained putting re=0 and the classical result of
Bogoliubov (red dashed line) [16].

Let us also calculate thefinite-temperature contribution f n
g

T
0( )( ) inD=3, given by the integration of

equation (45) in the low-temperature regime

f n
k T

n g

m k T g n

n g
o k T

12
1

,

20
. 50

g
T

0
B

2

0 0
1 2 2

3 2 2
B

2
2 0

0 0
2 B

5



p l
= - +⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( ) ( )

( )
( ) ( )( )

Thefinite-temperature number density n(n0,T), according to equation (32), is given by the sumof the
condensate density n0 and theGaussian density contributions of equations (48) and (50)
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Wealso rewrite the general formof n(n0,T) in terms of the three-dimensional gas parameter nas
3 and the

effective range re, employing the explicit formof the couplings g0 and g2 given by equation (39), namely
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This equation can be used to express the condensate fraction n0/n explicitly in the veryweakly-interacting
regime inwhich a r, 0s e  , where one can approximate in the second and third subleading terms the condensate
density n0 with the density n, since the phenomenon of quantumdepletion is absent in the noninteracting zero-
temperature limit and these terms are finer corrections with respect to the first.We obtain

n
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·
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wherewe have rescaled the temperature in terms ofT n mk2 3 2BEC
2 2 3

B
2 3p z= ( ) ( ( ) ) for noninteracting

bosons, and ζ(x) is the Riemann zeta function.We emphasize that, atT=0 and for a zero-range interaction for
which re=0, the Bogoliubov result for the condensate quantumdepletion is reproduced [16]. Finally, we
calculate the normal density nn of equation (47) substitutingD=3 and considering the low-temperature
regime, inwhichwe get

n
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The superfluid density ns for a systemof bosons interacting with thefinite-range interaction is obtained
substituting equations (49), (50) and (54) in equation (34), namely
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As for the condensate fraction, we obtain an explicit expression of the superfluid fraction ns/n in the very
weakly-interacting limit inwhich one can approximate the condensate density n0 with the number density n in
the subleading terms, rewriting the previous equation as

Figure 2.Zero-temperature condensate fraction n0/n as a function of the gas parameter nas
3 inD=3.Herewe represent thefinite-

range condensate fraction (black dotted–dashed line) for the effective range value r a 10e s = - in comparisonwith the result for
zero-range interaction (blue solid line) and the Bogoliubov’s result (red dashed line). Notice that, with aweak dependence on the
choice of re, thefinite-range correction becomes relevant for values of the gas parameter nas

3 greater than 10−3.
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wherewe substitute also the expressions for g0 and g2 of equation (39). Notice that, while the superfluid fraction
ns/n=1 at zero temperature, the condensate fraction is n n 10 < due to the quantumdepletion.Obviously,
equation (56) is reliable only in the deepT/TBEC=1 regime but,more generally, onemust consider the full
solution of equation (47).

Infigure 3we report the superfluid fraction ns/n as a function of the scaled temperatureT/TBEC for three
values of the ratio re/as at fixed gas parameter nas

3 by numerically solving equation (47). Figure 3 shows that a
positive re/as slightly enhances the superfluid fractionwhile the opposite occurs for negative values.

3.2.D=2
Herewe formally follow the same pathwe have introduced in the three-dimensional case, obtaining the number
density n at zero-temperature and employing it to calculate the superfluid density ns. In the two-dimensional
case we calculate the regularized zero-temperature density contribution f n

g
0

0( )( ) from equation (44)where

D=2 is substituted.Notice that f n
g

0
0( )( ) is obtained as a sumof the two terms inside the square bracket of (44):

while thefirst term isfinite, the divergence of the second term is healed by performing a Taylor expansion
around ò=0 and deleting the o 1-( ) divergence [41, 42]. The regularized zero-temperature density
contribution reads
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wherewe identify the ultraviolet energy scale ò0 as
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If thefinite-range interaction strength g2, as we suppose, constitutes a small correction of the zero-range term g0,
one can expand the previous equation for small values of the adimensional parameter g nm2

2 02
, thus
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In this limit, the zero-temperature density n n T, 00 =( ) reads
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In analogywith the three-dimensional case, we derive an explicit—but approximated—formula for the zero-
temperature condensate fraction n0/n inD=2 considering the veryweakly-interacting regime inwhich
g g, 00 2  . As before, in this regimewe can approximate n n n0

2
0» in the third termof equation (60) and

Figure 3. Superfluid fraction ns/n inD=3 for the gas parameter value na 10s
3 4= - , obtained as the numerical integral of

equation (47). The zero-range interaction result is reported as the red dashed line, while thefinite-range corrections are reported as the
solid blue line (for re/as=102) and the black dotted–dashed line (for r a 10e s

2= - ).
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n0≈n inside the logarithm, since it is a subleading termwith respect to the first one. Let us come back to ε0, by
choosing the cutoff asκ=2π/as. Then, by taking g0 and g2 as in equation (40), we obtain the approximated
condensate fraction n0/n as a function of the two-dimensional gas parameter nas

2 and the characteristic rangeR,
namely

n
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Notice that the zero-range interaction result by Schick for the condensate fraction n0/n [43] is easily reproduced
by settingR=0.Working outside the veryweakly-interacting limit, one can also obtain the zero-temperature
condensate fraction from the numerical solution of equation (60).We report it as the black dotted–dashed line
infigure 4, in comparisonwith our zero-range result (blue solid line) and the result by Schick (red dashed line),
which is reproduced in theweakly-interacting regime inwhich na 1s

3  .
Finally, following the three-dimensional case, wemaywant to calculate also the finite-temperature density

contribution f n
g

T
0( )( ) . However, substitutingD=2 in equation (45)wefind that

f n
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x
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d
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g
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2 0 òp
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-

+¥
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is infrared divergent, therefore cannot be regularizedwith dimensional regularization. This result is indeed
correct and reflects the absence of Bose–Einstein condensation atfinite-temperature in two-dimensional
systems [44], as already pointed out in [45].

The two-dimensional normal density n n T, 0n 0 =( ) of bosonswith finite-range interaction is obtained
from the integration of equation (47), inwhichwe expand the integrand in the low-temperature limit, namely
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Since the thermal contribution to the density f n
g

T
0( )( ) is divergent inD=2, we cannot express the superfluid

density ns as a function of the condensate density n0 at afinite temperatureT. Thereforewe employ the zero-
temperature number density of equation (60) to obtain the condensate density in the implicit form
n n n T, 00 0= =( ), namely as a function of the density n. In this waywe calculate the superfluid density
substituting equation (63) into equation (34)

n n
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64s 2
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whichwe expect to provide a reliable approximation in the low-temperature regime, remembering that—
outside it—our approachwould in any case be incorrect due to the Berezinski–Kosterlitz–Thouless
transition [46].

Finally, we calculate an approximated expression of the superfluid fraction ns/n in the veryweakly-
interacting regimewhere g g, 00 2  , inwhichwe can approximate the condensate density inside equation (64)

Figure 4.Condensate fraction n0/n for bosons inD=2 atT=0, reported as a function of the gas parameter nas
2. The blue solid line

is the condensate fraction for bosonswith zero-range interaction (Z-R), obtained from the numerical solution of equation (60)with
R=0. The black dotted–dashed line is the condensate fraction for bosonswithfinite-range interaction (FR) given by equation (60)
with a characteristic rangeR value given byR=2as and a ultraviolet cutoffκ=2π /as. The red dashed line is the analytical formula of
Schick [43], i.e. Equation (61)withR=0. The inset highlights the small differences between our theoretical scheme and the Schick
one in theweakly-interacting regime.
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as n n T n, 00 = »( ) . In the context of this approximation, we also substitute in equation (64) the explicit form
of the parameterλ(g2, n0) of equation (43).Moreover, we remember that the two-dimensional interaction
strengths g0 and g2 are given by equation (40), obtained in terms of the s-wave scattering length as and the
characteristic rangeR of the interatomic potential with the scattering theory. The approximated superfluid
fraction n ns reads

n
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wherewe rescale the result in terms of the temperatureT n mk2
B* = ( ) of quantumdegeneracy.

4. Conclusions

Wehave used finite-temperature one-loop functional integration to reproduce the densitymomentum
equation of the two-fluidmodel. An analytical relationship between the density n and the condensate density n0
has been obtained at zero-temperature and in the low-temperature limit. This result has been used to express the
low-temperature superfluid density ns as a function of n0 andT for bosonswithfinite-range interaction, which
can be regarded as an explicit implementation of the Josephson relation.We analyze thoroughly theD=3 and
D=2 case, but our approach could be applied also inD=1, wherewe expect to reproduce the Lieb–Liniger
theory except in the strong coupling regime [47].

We expect that our theory ismeaningful under the conditions of diluteness of the bosonic gas, for which
na 1s

D  and nr 1e
D  .Moreover, finite-temperature resultsmust be considered in the limit k T g n 1B 0 ( ) ,

for which themean thermal energy ismuch lower than the gas healing length. Ourfinite-range corrections to the
condensate fraction n0/n and to the superfluid fraction ns/n can be detected inD=3 in the regime as/re�1
and inD=2 for as/R�1 but notwhere they aremuch lower than 1. In that case, the higher order termswhich
we are neglecting in the gradient expansion of the interaction potential (37) become relevant. Notice that, in
D=3 and inD=2, thesemay represent different regimes. In fact, while the effective range value re can be
tuned by themeans of a Feshbach resonance, the characteristic rangeR isfixed, being essentially a geometric
property of the real two-body interaction potential between the atoms. Indeed, we expect thatR is proportional
to theVan derWaals radius of the atoms and it can be numerically computed, following its definition, using a
model two-body potentialV r

( ).
An extension of this work consists in the numerical calculation of the thermal integrals f n

g
T

0( )( ) and

n n T,n 0( ) outside the zero-temperature limit inD=2, whichwe have considered for obtaining analytical
results. In any case, we expect that our predictions fail to describe the superfluid fraction of the two-dimensional
Bose gas at sufficiently high temperature, due to the occurrence of the BKT transition. In this case it is needed a
profound rethinking of our approach, including explicitly in the bosonic field parametrization the contribution
of vortex configurations of the phase field, which cause the BKT topological phase transion.
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Appendix

In this appendix, we calculate the zero-temperature Gaussian grand potential per unit of volume LD0W( ) , which
is given by equations (15) and (20) inwhich themeanfield condition equation (18) is substituted, namely
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whereλ is defined in equation (43). Performing dimensional regularization of the ultraviolet divergence
accordingly to the superfluid density calculation, we obtain the regularized zero-temperature Gaussian grand
potential Lg

D0W( )
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In the three-dimensional case, it is sufficient to substitute the dimensionD=3 and put 0e = in equation (67),
to get the regularized zero-temperature Gaussian grand potential as
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which reproduces a previously known result [23]. InD=2we expand equation (67) and retain only o(ε0) terms,
thenwe identify the energy cutoff ò0 as

m

4

exp 1
69

g g

mg

0

2 2

4 , e
2

2 0
3 2

0






p k

g
=

+ -
p l m( ) ( )

( )

to get the zero-temperature Gaussian grand potential
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This equation of state corrects the one obtained in [25]: hereλ (g2,μe/g0) appears also inside the logarithm.
Moreover, it is important to stress that, in the case of zero-range interaction,Mora andCastin [48]were able to
extend equation (70) by including a beyond-Gaussian term. This next-next-to-leading extension in the finite-
range case is highly non trivial and it surely deserves a separate detailed investigation.
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