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A B S T R A C T

In recent years, continuous improvements have been made in weather forecasting and flood prediction with
great benefit from Early Warning Systems (EWSs). Despite the continuous quest for innovation from the sci-
entific and user communities, EWSs remain based mostly on hazard forecast, and the information on possible
consequences and potential impacts is generally missing.

In this work, a methodology for quantitative real-time impact assessment for flash floods is presented. The
methodology uses a multi-model ensemble approach and considers soil moisture uncertainty. Moreover, the
flood forecasting chain, which normally provides only the discharge probability of exceeding a given threshold,
is extended to include a fully 2D hydraulic model and a damage estimation model to quantitatively assess
impacts in terms of economic losses and the people involved.

The procedure was tested on recent flood events occurring in Genoa in northwestern Italy. This paper dis-
cusses the potential challenges and opportunities offered by this approach in the decision-making workflow in an
operational context.

1. Introduction

Despite continuous improvements in weather forecasting and flood
prediction, floods still cause multiple casualties and significant damage
to properties and infrastructures every year with adverse economic
consequences for communities that can persist for many years. This
trend may worsen in the future, if we consider the effects of climate
change and urbanization. According to a recent study of the European
Environment Agency (EEA, 2016), annual flood losses can be expected
to increase fivefold by 2050 and up to 17-fold by 2080.

Rarely, hydro-meteorological forecasts are connected to quantita-
tive potential impact estimates (economic losses and people involved),
since hydro-meteorological forecasts are generally devoted to predic-
tion of possible flood magnitudes (Silvestro et al., 2011; Gourley et al.,
2014, 2017; Naulin et al., 2013; Versini et al., 2014). As a consequence,
decisions from the authorities responsible for civil protection/emer-
gency management are based on the experience accumulated by the
forecasters using their technological systems, while actions to safeguard
population and assets are often determined by their subjective per-
ception of the local risk conditions. While there is a realization of what
the weather might be, there is frequently a lack of understanding of
what the weather might do (WMO, 2015).

To improve Early Warning Systems (EWSs), a paradigm to shift from
hazard to impact forecasts is needed. Recent studies proposed meth-
odologies for rapid impact assessment and estimation of damage se-
verity (Schroeder et al., 2016; Cole et al., 2016; Sai et al., 2018) or
direct estimation of the number of impacted buildings (Le Bihan et al.,
2016; Le Bihan et al., 2017). The economic dimension, when addressed,
is often computed at a coarse resolution (Dottori et al., 2017), in-
compatible with flash-flood impact assessment needs.

The present approach goes one step further by computing direct
economic damage and impact on the population at a building scale,
which will ultimately result in better contingency planning (reasonable
worst-case and most likely outcomes). The decision-making process will
be facilitated and put under a cost-benefit perspective (e.g., economic
losses of the predicted event may be quantitatively compared to the cost
of mitigation measures). This approach would also improve the objec-
tive evaluation of responsibilities of forecasters and decision makers in
the EWS context. Additionally, impact forecasts can contribute to a
common situational awareness and a better acceptance of mitigation
countermeasures by the general public.

The enhancement process of an Early Warning System relies, on one
hand, on improving the quality of hazard forecasts by quantifying
major sources of uncertainty and, on the other hand, on extending the
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modelling chain to quantitatively assess potential losses.
These two principles have been applied to improve the Flash Flood

Early Warning System for the city of Genoa, which recently suffered the
consequences of two devastating flash floods in 2011 and 2014 (Fiori
et al., 2014, 2017, Silvestro et al., 2012).

Many modelling experiments based on forecasting chains (Davolio
et al., 2015, Hally et al., 2015; Davolio et al., 2017) have been con-
ducted in recent years to evaluate the amount of hydrometeorological
uncertainty in the prediction of the flash floods that hit the Ligurian
region on the northwest side of Italy (hereafter the Liguria region). One
of the most recent studies (Parodi et al., 2017) was supported by the use
of a prototype Distributed Computing Infrastructure (DCI) developed
under the EU-funded projects DRIHM (Distributed Research Infra-
structure for Hydro-Meteorology, www.drihm.eu) and DRIHM2US
(Distributed Research Infrastructure for Hydro-Meteorology to US,
www.drihm2 µs.eu) for studying high impact weather events (HIWEs)
with a special focus on floods and flash-flood events.

Based on the experience mentioned above, this work addresses three
main topics. The first topic is the evaluation of possible added value of
high-resolution numerical weather prediction systems (NWPSs) as input
for streamflow forecasts on a study area characterized by a small basin
struck by flash-flood events (Davolio et al., 2015; Fiori et al., 2017). The
second is understanding how the uncertainties in the initial soil
moisture conditions of the hydrological model can affect the forecast
performance (Silvestro and Rebora, 2014). The third is extending the
typical flood forecasting chain (rainfall-discharge-water levels) to
quantitatively include exposure and vulnerability factors and under-
standing how the first two topics interact and affect the forecast in
terms of impacts. The analysis of flood events based on stream flow only
predicts the probability of overtopping but does not provide quantita-
tive information on the affected population and properties (Molinari
and Handmer, 2011; Sättele, 2016). The formulation of impact sce-
narios is necessary to better understand the consequences of a forecast
event, and then to apply mitigation measures in real time as foreseen in
emergency plans.

Hazard predictions expressed as probabilistic maps of flood water
depth and velocity are thus translated into impact predictions, such as
the probability of exceeding a given economic loss or the probability
that a certain number of people can be affected by the flood.

2. Materials and methods

2.1. Study area and case studies

Bisagno is a basin located in northwestern Italy in the Liguria
Region. The drainage area is small (approximately 98 km2), and the
elevations of the catchment range between 0 and 1100m above sea
level, so the environment changes from mountainous to coastal with
high slopes (Fig. 1) in few kilometres; the mean catchment elevation is
approximately 370m. Bisagno is mainly covered by forests and brushes,
but with a high level of urbanization along the last 10 km of the riv-
erbed, which is characterized by a high concentration of inhabited
areas, industries and other infrastructure highly prone to the risk of
flooding because the city developed along the Bisagno River bed from
the outlet to the inland during the last century. Furthermore, along the
last 1.5 km, the river flows underneath a heavily urbanized area, and
the maximum discharge under the conditions of free surface flow is
approximately 700m3/s (which corresponds to a return period
T < 30 y). Streamflow values larger than the latter threshold cause a
sudden reduction of the maximum discharge carried under the cover
and the flow overbanking.

Liguria is monitored through a meteo-hydrological network named
OMIRL–“Osservatorio Meteo-Idrologico della Regione Liguria” as de-
scribed in Silvestro et al. (2015a). This network is the official network
of the Liguria Region, which contributes to the Italian micro-meteor-
ological network operationally used by the Italian Civil Protection

Department (Molini et al., 2009). The stations furnish measurements
with a time step of 5–10min. There are approximately 200 rain gauges
over the region with an average density of 1 rain gauge/40 km2; the
network also has stations with other sensors (temperature, radiation,
wind, air humidity, etc.), but in these cases, the densities are lower than
the rain gauge density. The instruments are professional tipping bucket
gauges with 0.2mm accuracy, maximum error with an intensity of
300mm/h of approximately 2%, and they satisfy all the WMO re-
commendations and are regularly maintained by the regional techni-
cians.

The Bisagno basin is particularly well-instrumented: the rain-gauge
network density is approximately 1 rain gauge/10 km2.

A water level station named Passerella Firpo is located near the
beginning of the cover and has an upstream area of approximately
93 km2; level data can be used together with an available stage-dis-
charge curve to estimate observed streamflow.

Three extreme rainfall events are considered for the presented
analysis based on the following reasons:

1. Two events caused inundation with severe damages, while the third
event caused a streamflow that was very close to the flooding level
(Table 1).

2. These events exhibited the typical thermodynamic and kinematic
features related to the occurrence of V-shaped back-building
Mesoscale Convective Systems in the Liguria sea area (Rebora et al.,
2013, Silvestro et al., 2015, Fiori et al., 2014, 2017; Lagasio et al.,
2017);

3. The results of the operational forecasting chain applied to these case
studies are available to verify the quality of the new approach.

2.2. Impact-flood forecast modelling chain

The impact forecast modelling chain hereinafter proposed to extend
the typical flood forecasting chain (Hally et al., 2015) that furnishes
results in terms of streamflow, by adding one module for hazard spa-
tialization (flooded areas expressed in terms of water depth and velo-
city) and one for damage computation.

As shown in Fig. 2, the final modelling chain is formed by several
modelling blocks: meteorological multi-models at global and limited
area scale, a stochastic downscaling model, a fully distributed hydro-
logical model, a fully 2D hydraulic model and a damage model.

2.2.1. NWPS: benchmark and high-resolution models
The numerical weather prediction system (NWPS) used in the study

consists of three different non-hydrostatic models: HARMONIE-AROME
model, MOLOCH and WRF-AWR model.

The HIRLAM–ALADIN Research on Mesoscale Operational NWP in
Euromed (HARMONIE) model is a convection-permitting model de-
veloped by Météo-France and ALADIN. This model is generally nested
in the European Centre for Medium-Range Weather Forecasts (ECMWF)
global model, and it uses the same non-hydrostatic (NH) dynamic core
as AROME-France. Bengtsson et al. (2017) describe the model setup and
its similarities- differences with respect to the AROME-France model:
with respect to the shortwave (SW) radiation parameterization, the
Morcrette radiation scheme with an improved cloud liquid optical
property scheme (Nielsen et al., 2014) is implemented. The micro-
physics scheme used is a one-moment bulk scheme, which uses a three-
class ice parameterization (ICE3) while a new turbulence scheme,
HARMONIE with RACMO Turbulence (HARATU), is available. No
parameterization is employed for deep convection, while a so-called
eddy diffusivity mass-flux (EDMF) parameterization is used for shallow
convection. The cycle 40 h1.1 of the HARMONIE-AROME is used for
this study with 2.5 km grid spacing and 65 vertical model levels ex-
tending up to 10 hPa.

MOLOCH is a fully compressible, convection-permitting model
(Morrison and Pinto, 2006; Davolio et al., 2015) developed at the
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Institute of Atmospheric Sciences and Climate of the Italian National
Research Council (CNR-ISAC) and is operationally combined with the
BOLAM model from which it receives hourly lateral boundary in-
formation (www.isac.cnr.it/dinamica/projects/forecasts). The model
settings for radiation, turbulence and microphysics schemes used here
are those of Davolio et al. (2015). The MOLOCH operational config-
uration (until the year 2017) has a grid spacing of 2.3 km and 50 ver-
tical levels. It is operational at the Functional Centre for Meteo-Hy-
drological of the Liguria Region, which is the institution in charge of
making flood forecasting on the study area. For this reason, it is con-
sidered as the main Benchmark in this study. This choice was done to
make a comparison between what the forecaster had as information

Fig. 1. Study area. In light blue, the wa-
tershed of the Bisagno Basin. Green points
are the rain gauges, red lines represent the
regional boundaries while grey lines are the
main stream lines. Bottom left panel shows
the zoom on the city of Genoa in the area
where inundation frequently occurs and the
Passerella Firpo level gauge. An example of
the inundation map is also reported (event
on 09/10/2014). (For interpretation of the
references to colour in this figure legend, the
reader is referred to the web version of this
article.)

Table 1
Main characteristics of the three events considered. Max rainfall 24 h and Max
rainfall 1 h are the maximum accumulated rainfall for 24 and 1 h, respectively,
measured by a gauge located in the catchment. Peak flow is the maximum
observed streamflow measured through the level gauge of Passerella Firpo.

Event Max rainfall
24 h [mm]

Max rainfall
1 h [mm]

Duration
[hours]

Peak flow
[m3s−1]

04/11/2011 550 142 13 830
09/10/2014 400 130 8 1150
14/09/2015 258 73 6 610

Fig. 2. Conceptual scheme of the damage forecast probabilistic modelling chain.
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before the event and what the forecaster would have had if the system
analysed in this work had been available.

The Advanced Research Weather Research and Forecasting (WRF,
version 3.7) model is a fully compressible regional atmospheric model,
with terrain following the hydrostatic pressure vertical coordinate. The
WRF setup implemented here starts from the modelling results in
Lagasio et al. (2017): two nested domains with, respectively, 5 km and
1 km grid spacings are used with the total numbers of vertical levels of
50 over the 20-km atmosphere depth. Explicit treatment of convection
is adopted while four different types of microphysics are used for each
case: the WRF single-moment six-class scheme (WSM6) (Hong and Lim,
2006), Thompson (Thompson et al., 2008), WRF double moment 6-class
scheme (Lim et al., 2010), hereafter WDM16, and Morrison's double-
moment six-class scheme (Morrison and Pinto, 2005, 2006). All the
analyses presented hereafter refer to the innermost domain at 1 km grid
spacing.

The global operational ECMWF-IFS NWP model (Simmons et al.,
1989) with 0.125° of grid spacing valid at 0000 UTC of the same day of
each event is used to initialize the three meteorological models.

2.2.2. From meteorological to hydrological forecast: rainfall downscaling
and hydrological models

The hydrological modelling suite adopted in this study is described
in detail in Silvestro et al. (2015a) and Silvestro et al. (2016), and it
consists of a rainfall downscaling model, RainFARM (Rebora et al.,
2006a, 2006b), and a hydrological model, Continuum (Silvestro et al.,
2013). RainFARM is a rainfall downscaling algorithm that produces an
ensemble of rainfall scenarios that maintain some characteristics of the
rainfall prediction derived by an NWPS (Laiolo et al., 2014) and can
mimic the small-scale variability of precipitation needed to correctly
force the hydrological model. The volume of precipitation predicted by
the NWPS is preserved by RainFARM, together with the spatial and
temporal structure at space and time scales that are considered reliable
(Sr, tr) following the approach described in Siccardi et al. (2005), but
each precipitation scenario reproduces a small spatial-temporal varia-
bility that is present in a real rainfall field and that can be observed, for
example, with meteorological radar as shown in Rebora et al. (2006b).

The spatial-temporal Fourier spectrum of the rainfall field follows
the functional form:

̂ ∝ +
− −g k k ω k k ω( , , ) ( )X y X y

α β2 2 2 /2 (1)

kx and ky are the spatial wavenumbers of the× and y directions, ω the
temporal wavenumber (frequency), and α and β represent two para-
meters of the model that are estimated from the power spectrum of
rainfall forecast through the NWPS.

In this application, the reliable spatial and time scales (Sr, tr) are
assumed 10*Δx km (where Δx is the horizontal resolution of the NWPS
considered) and 6 h based on the experience of Rebora et al. (2006b),
Brussolo et al. (2008) and Davolio et al. (2015), and considering that a
meteorological model, due to numerical diffusion, is generally not re-
liable at scales smaller than six to four times its resolution (Patterson
and Orszag, 1971). Therefore, RainFARM is constrained to keep the
spatial and temporal patterns at these latter scales. The final down-
scaled rainfall fields have a spatial resolution of 1 km and a time re-
solution of 60min.

The rainfall scenarios built with RainFARM are used to feed
Continuum, which is a distributed hydrological model based on a geo-
morphologic approach (Giannoni et al., 2005). Continuum combines
semi-empirical and physically based modules, and it can work in a
continuous way; all the main physical processes that describe the hy-
drological cycle are modelled (i.e., surface and sub-surface flow, deep
flow, infiltration, evapotranspiration, vegetation interception, snow
melting and accumulation). A detailed description of the model can be
found in Silvestro et al. (2013, 2015b).

A Digital Elevation Model (DEM) is used to represent the catchment

morphology, and the flow directions are estimated calculating the di-
rections of maximum slope. Each cell of the model drainage network is
classified as hillslope or channel using a morphologic filter defined by
the expression

=A·S Ck (2)

where

• A is the contributing area upstream of each cell [L2],

• S is the local slope [–],

• k and C are quantities that describe the geomorphology of the basin
(Giannoni et al., 2000), and they are generally constant.

Infiltration process and subsurface flow (Gabellani et al., 2008) are
modelled using a scheme based on a layer of reservoirs that represents
the root-zone (Silvestro et al., 2013) and include a modification of the
Horton algorithm (Bauer, 1974; Diskin and Nazimov, 1994). The en-
ergy balance is computed using the “force restore equation” approx-
imation (Dickinson, 1988) that allows us to estimate as explicit output
variables the soil surface temperature and the evapotranspiration.

The surface flow on hillslope cells is modelled using a linear re-
servoir scheme while flow on channel cells exploits the kinematic wave
approach (Wooding, 1965; Todini and Ciarapica, 2001).

Continuum requires calibration for six parameters, generally carried
out at the basin scale: two for the surface flow (uh and uc), two for the
sub-surface flow (ct and cf) and two for deep flow and water-table
(VWmax and Rf) processes. Table 2 reports a brief description of the
parameters.

For the current application, the same implementation of Davolio
et al. (2017) is used. The model was implemented with a spatial re-
solution of 0.005 deg (approximately 480m) based on the Shuttle
Radar Topographic Mission (SRTM) DEM and the use of a CORINE Land
Cover (http://www.sinanet.isprambiente.it/it/progetti/corine-land-
cover-1). The temporal resolution used in all the experiments is
60min. In Davolio et al. (2017), a parameter calibration that focussed
on the flood reproduction was also employed. In this application, the
hydrological simulations always start in the coincidence of the date of
initialization of the NWPS as shown in Table 3.

2.2.3. Accounting for soil moisture initial condition uncertainty
The considered hydrological model is distributed and continuous.

Therefore, it is possible to produce an initial moisture condition at the
beginning of each event that is derived by the physical processes si-
mulated inside the model (infiltration, gravity percolation, evapo-
transpiration); to accomplish this, we carried out a run of the model
starting from 01/01/2011 until 12/12/2015 fed by observations. The
approach mentioned above should allow the reproduction of a realistic
soil moisture pattern, or at least a soil moisture estimation compatible
with the model structure when the model is well calibrated. In any case,
it is well known (Zappa et al., 2011; Silvestro and Rebora, 2014; Laiolo
et al., 2016) that sometimes the modelled soil moisture can be highly
different from the real soil moisture, depending on a number of factors,

Table 2
Summary of the model parameters that need calibration with their brief de-
scription.

Parameter Description

uh [s−1] Flow motion coefficient in hillslopes
uc [m0.5s−1] Friction coefficient in channels
cf [–] Defines the infiltration capacity at saturation
ct [–] Defines the mean field capacity
Rf [–] Related to anisotropy between the vertical and horizontal

saturated conductivity and to soil porosity
VWmax [mm] Maximum water capacity of the aquifer in the whole investigated

area
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e.g., i) ability of the model to reproduce the physical phenomena in a
particular simulation time window; ii) reliability of the parameteriza-
tion in that particular simulation period; and iii) reliability in the for-
cing data used to drive the model (some variables such as solar radia-
tion or wind are often poorly sampled by the ground gauge network).

A wrong soil moisture initial condition can thus cause over- or
under-estimation of the streamflow prediction; the over- or under-es-
timation can be evaluated in a post event analysis, but it is a-priori
unknown.

In the presented analysis, the uncertainty related to the hydrological
model parameters was neglected essentially for two reasons. On one
side, we used a hydrological model calibrated to reproduce high flows
with good performance in reproducing these latter (Davolio et al.;
2017). On the other side, various studies (Mascaro et al., 2010; Zappa
et al., 2011) indicated that parameter uncertainty is generally of lower
magnitude with respect to uncertainties related to the rainfall forecast
and to the initial wetting conditions, especially for small catchments
with a flash-flood regime.

To introduce the impact of soil moisture uncertainty, we generated
a set of K soil moisture initial conditions starting from the one modelled
with the observed meteorological variables. Being Continuum, a con-
tinuous distributed model, produces the modelled state variables for
each time step of the run made with observations as input. In the case of
soil moisture, it is a two-dimensional field with the same spatial re-
solution as the model implementation (in this case, 0.005 deg).

The mean soil moisture at basin scale (with a value between 0 and

1) can easily be estimated as the mean of the values in the single pixels
(here after MSo).

Once the MSo is estimated, to account for possible modelling errors,
the set of K soil moisture initial condition is generated with the fol-
lowing steps:

1. The kth mean soil moisture initial condition MSk is extracted from a
uniform distribution in the range [MSo-dMS, MSo+dMS], where
dMS is set to 0.4; this is an arbitrary value based on previous ana-
lysis and on the comparison with satellite estimation (Laiolo et al.,
2016; Cenci et al., 2016) and means that we assumed that the
maximum variability of the model soil moisture around MSo is 40%
of the soil moisture maximum range [0; 1].

2. The ratio:

=dRatioSM MSk
MSo (3)

is estimated and used to re-scale the soil moisture map, allowing us to
change the mean soil moisture at the basin scale, preserving the soil
moisture pattern. In this way, it is assumed that the spatial pattern is
generally well reproduced by the model

The K soil moisture initial conditions can be combined with the M
forecast rainfall fields generated with RainFARM and used to trigger the
Continuum model to produce MxK streamflow scenarios.

The perturbations applied to the original soil moisture field affect
the internal coherence of the state variables, specifically those related
to the energy balance, but this has no important consequences on the
results on the time horizon of the forecast (2–3 days). The energy bal-
ance negligibly affects the mass balance during such small periods.

2.2.4. Hydraulic modelling, damages and potential affected population
scenarios

The 2D hydraulic model used in this work is TELEMAC 2D, which
belongs to the TELEMAC-MASCARET (http://www.opentelemac.org/)
suite of models to be used for hydraulic modelling applications.

Table 3
Time of peak flow and time of initialization of NWPS and hydrological model
for each one of the 3 events.

Time to Peak Flow (UTC) Initialization of NWPS and Hydrological Model

04/11/2011 13:00 03/11/2011 00:00
09/10/2014 22:00 09/10/2014 00:00
14/09/2015: 01:00 13/09/2015: 00:00

Fig. 3. Scheme that reproduces the system to link pre-processing data with the flow forecast of a particular event. N synthetic streamflow scenarios are used to
produce a library of damage scenarios. During the forecast, each of the M streamflow scenarios is compared with the N synthetic scenarios to estimate the related
damage.
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TELEMAC 2D is based on the solution of the Saint-Venant equations on
a grid of triangular elements, using as numerical schemes the finite-
element or finite-volume methods. The ability to model both permanent
and transient conditions allows a number of operational and research
applications.

In this application, the same setup shown in Silvestro et al. (2016)
was used. The hydraulic model was calibrated to model historical
flooding accurately, with a special focus on the one that occurred on
09/10/2014. For this event, the large availability of field measurements
allowed a good estimation of the magnitude of the flood in terms of
both water level and extent. The model demonstrated the ability to
reproduce post-event field measurements. The results and further de-
tails of the calibration process are presented in detail in Silvestro et al.
(2016).

Direct economic loss computation was done by using the RASOR
(Rapid Analysis and Spatialization of Risk) platform (Rudari and the
RASOR Team, 2015; Koudogbo et al., 2014) that allows scenario-based
impact analysis across different hazards. With respect to floods, the
direct economic loss estimation method is based on stage-damage
curves, which provide percentage expected loss based on flood depth.
Flood damage curves are associated with buildings, according to their
flood-relevant features such as occupancy (building usage), height,

number of floors above and below the ground and split-level presence.
Percentage losses are then multiplied by replacement costs to obtain the
economic loss for each building.

This study uses the same damage model configuration described in
Silvestro et al. (2016) to compute direct damage to building structure
and content. In that study, damage model validation was possible,
thanks to the damage data gathered in the aftermath of the 09/10/2014
event: over 3000 citizen claims served as a benchmark for the building-
scale damage assessment performed through the RASOR platform. The
modelling chain produced the estimate of the total damage with a
percentage error of approximately 5%. Damage to vehicles, water and
electric systems and transport infrastructure was not considered in the
present study.

The RASOR platform was also used recently to quantify monetary
flood risk mitigation benefits for the city of Florence (Arrighi et al.,
2018).

Potential impacts on population were assessed considering that
safety of people can be compromised when exposed to flows that exceed
their ability to remain standing and/or traverse a waterway.

Over the last four decades, numerous laboratory-based experimental
study regimes (Abt et al., 1989; Karvonen et al., 2000; Jonkman and
Penning-Rowsell, 2008; Jonkman et al., 2009; Xia et al., 2014) and

Fig. 4. Example of rainfall downscaling event on 09/10/2014, NWPS: WRF – WSM6. Al panels refers to accumulated rainfall on 24 h between 09/10/2014 00:00
UTC and 10/10/2014 00:00 UTC. Panel a) shows the original rainfall field forecast with WRF-WSM6 and b) shows an example of a downscaled scenario. Panel c)
average precipitation accumulated on a box with dimension 2*Sr. Panel d) average precipitation accumulated on the Bisagno Catchment.
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conceptual models (Love, 1987; Lind et al., 2004; Milanesi et al., 2015,
Arrighi et al., 2017) have been developed to define the limits of stability
within differing flows.

The most common criterion to classify hazard zones is based on
different values of the product between the water level H and the water
speed U.

In this work, four hazard zones (very high, high, moderate, low
flood hazard) were classified considering the thresholds identified by
Cox et al. (2010), which consider the instability of adults (“high hazard
zone”) and children (“moderate hazard zone”). These zones are iden-
tified by values of the product (H·U) > 0.8 m2s−1 (“high hazard zone”)
and 0.4 m2s−1< (H·U) < 0.8 m2s−1 (“moderate hazard zone”), com-
bined with another condition, independent from the flow velocity,
which accounts for the risk of drowning: maximum admissible water
depth of 1.2 m for adults and 0.5m for children. Jonkman et al. (2009),
by analysing the loss of life caused by the flooding of New Orleans after
Hurricane Katrina, classified a zone with high mortality probability
(breach zone) when (H·U) > 5 m2s−1. Based on this threshold an
“extreme hazard zone” was added. The resulting four flood hazard
zones can be ranked as follows:

- “extreme hazard zone” when (H·U) > 5 m2s−1

- “high hazard zone” when (H≤ 1.2 m and 0.8 m2s−1< (H·U)≤ 5
m2s−1) or (H > 1.2m and (H·U) < 5 m2s−1)

- “moderate hazard zone” when (H < 0.5m and 0.4
m2s−1< (H·U)≤ 0. 8 m2s−1) or (0.5 m < H < 1.2m and

(H·U)≤ 0. 8 m2s−1)
- “low hazard zone” when h < 0.5m and 0 m2s−1< (H·U)≤ 0. 4
m2s−1.

2.3. Real-time forecast of damage and population affected

The rigorous method to carry out the damage forecast should be to
insert into the flood forecast chain the two ingredients shown in Section
2.2.4: hydraulic modelling and damage estimation. For each streamflow
scenario, or at least for all those scenarios that overcome a certain
threshold, the hazard map and the damage map should be evaluated
using the available models. However, the extended simulation chain
that includes damage models would imply an additional amount of
computational time and resources, which may delay in time the forecast
availability.

The study area is characterized by the fact that the part of the riv-
erbed where the flooding starts is well known: the inlet of the covered
channel at approximately 2 km inland from the sea outlet is the most
important point where flooding and inundation often begin. This con-
dition is certainly specific, but similar situations are not so unusual in
an environment made by small catchments that pass through highly
urbanized areas, where such structures as bridges and culverts often
cause hydraulic backwater effects.

In this context, we propose an approximate approach that allows
substantial saving of computational time, providing reasonable damage
estimation in a quick time, also in a probabilistic perspective when

Fig. 5. Results of the flood forecast chain fed with different NWPS for the three considered events. Y-axis reports the peak flow. Panels on the left show the box plot of
a single NWPS, while panels on the right report the multi-model ensemble obtained considering all the realizations equi-probable. Blue diamond is the peak flow
obtained with the hydrological model fed with observations, black circle is the observed peak flow, red× is the deterministic forecast obtained without downscaling
of the precipitation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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multiple streamflow scenarios need to be investigated.
A set of N streamflow scenarios was built using synthetic rainfall

events as input to the hydrological model. Hyetographs were built
following the approach of Boni et al. (2007): they are studied to have a
small increment of a discharge peak between the ith and the ith+ 1
scenario around the flooding threshold. Then, the increment increases
as the severity of the event increases (Fig. 3).

Each streamflow scenario, with defined peak flow and flooding
volume, was used as input for the hydraulic model and the damage
model. In this way, a library of damage scenarios was built, and the
library relates each peak flow and flooding volume to a damage esti-
mate. This library of preconfigured scenarios is used together with the
hydro-meteorological chain to produce probabilistic damage forecast as
follows (Fig. 3).

1. Generation of M streamflow scenarios with the probabilistic flood
forecast chain.

2. Estimation of peak flow Qp and flooding volume Vf for each ith
scenario that overcomes the flooding threshold.

3. Comparison of Qp and Vf with those available in the set of N pre-
defined streamflow scenarios. Generally, we will have two com-
parable scenarios: the first with a similar Qp and the second Vf.

4. Estimation of two damage scenarios (related to Qp and Vf) for each
ith streamflow scenario that overcomes the flooding threshold.
Applying this conservative principle, the larger damage is con-
sidered.

5. Build the forecast probabilistic distribution curve of damage.

Relative to the population affected, the previous procedure is ap-
plied to identify the scenario, except that the variable to be considered
is the affected population instead of economic loss. In other words, step
5 will be replaced by the following:

5bis. Build the forecast probabilistic distribution curve of affected
population.

Fig. 3

3. Results

Results are presented referring to the outlet section of Passerella
Firpo, where streamflow observations are available. The comparison is
carried out referring to the observed peaks, the peaks generated with
the hydrological model fed with observations and the peaks obtained by
the forecast. The timing of the peak of each ensemble member is not
considered. The aggregation scale of NWPS-QPF is 6 h, which is larger
than the order of magnitude of the study catchment response time
(approximately 2–3 h). The time pattern of each downscaled ensemble
member is generated by RainFARM.

Section 3.1.1 focusses on the effects on the streamflow forecast
derived by the usage of available high resolution NWPS while in Section
3.1.2, the effects derived by the perturbation of the initial soil moisture
condition were introduced. Section 3.2 is instead dedicated to analyse
the results of the forecast in terms of impacts: damage and affected
population.

Fig. 6. Results of the flood forecast chain fed with different NWPS and perturbing the initial soil moisture condition for the three considered events. Y-axis reports the
peak flow. Panels on the left show the box plot of single NWPS, while panels on the right report the Multi-Model Ensemble obtained considering all realizations equi-
probable. Blue diamond is the peak flow obtained with the hydrological model fed with observations, black circle is the observed peak flow. In this case, both
uncertainties related to rainfall and soil moisture initial condition are considered. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

F. Silvestro, et al. Journal of Hydrology 572 (2019) 388–402

395



3.1. Hydrological probabilistic forecast

3.1.1. Assessment of high resolution NWPS
The three considered events (09/10/2014, 04/11/2011 and 14/09/

2015) are first re-forecast using the available high resolution NWPS
(hereafter HR-NWPS) and comparing the results with those obtained
using the operational implementation of the model MOLOCH.

Previous analysis showed that the number of scenarios in the
downscaling process of approximately 100 is normally sufficient to
investigate the variability of the rainfall field produced by the down-
scaling (Silvestro and Rebora, 2014). However, 400 downscaled rainfall
scenarios are used here. This choice was made to make the results still
comparable with what is presented in Section 3.1.2, where two sources
of uncertainty were considered: NWPS and soil moisture. In that case, a
larger value of M was necessary to describe the variability of the final
results adequately in terms of streamflow, when, for instance, super-
imposing two sources of uncertainties that can lead to contrasting di-
rections (e.g., a very critical rainfall scenario with a dry soil moisture
initial condition).

In this case, soil moisture initial conditions are fixed for each event
for all the scenarios: they are generated by the run of the hydrological
model using the rainfall observations as input.

The probabilistic hydro-meteorological chain accounts for the un-
certainties in the rainfall field through the downscaling model.

Fig. 4 helps in understanding how the downscaling algorithm
works. Panels a) and b) show the original rainfall field forecast with
WRF-WSM6 and an example of the downscaled scenario for the event
on 09/10/2014. Panel c) shows the average precipitation accumulated
on a box with dimension 2·Sr. Rainfall accumulation on tr is conserved,
and the value at times 6, 12, 18, 24 h is the same for all scenarios and
equal to the deterministic value (black dotted line). Panel d) shows the
average precipitation accumulated on the Bisagno catchment. In this
case, the total volume of the NWPS is not conserved, but we have
scenarios with larger or lower total accumulation. Panels in Fig. 5 show
the results for the three events in terms of box plot representation: on
the left column, each panel represents by box plots the probabilistic
forecast conditioned to the specific NWP (x-axis) in terms of peak flow
(m3/s). The blue diamond in each box represents the peak flow ob-
tained with the hydrological model fed with observations (hereafter SP)
while the black circle is the observed peak flow (hereafter OP). On the
right column, panels show the results of all the NWPS together in a
Multi-Model Ensemble logic where every single model is given the same
weight, so that each peak is considered equi-probable.

Analysing the results for the 09/10/2014 event, the use of HR-
NWPS leads in various cases to an improvement in the results with
respect to the benchmark considered, confirming the finding of Davolio
et al. (2015) and Parodi et al. (2017) that highlighted the benefit pro-
vided by increasing the horizontal spatial resolution of NWPS to predict

Fig. 7. Event occurred on 09/10/2014. Probability distribution of damage (estimated as sum of damage to structure and damage to content) and affected people. Top
panels report the damage distribution of the benchmark compared with those of Multi-Model Ensemble and Multi-Model Ensemble with Soil Moisture uncertainty.
Damages are reported in millions of euros. Bottom panels, like the top panels but for “Highly Affected People”, the latter is reported in thousands of people. The red
line indicates economic damage to buildings modelled with the RASOR platform and validated through citizen claims and municipal authority surveys (Silvestro
et al., 2016). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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these kinds of events. Looking at Fig. 5, the range of forecast peak flows
increases from a maximum of approximately 700–750m3/s provided by
the benchmark to values larger than 800m3/s and peaking up to
1000m3/s for the configuration WRF WSM6 model, which includes also
SP. WRF Morrison produces a forecast slightly better than benchmark,
only Harmonie and WRF WDM16 did not exhibit an improvement of
the forecast. SP and OP are still out of the prediction range in most of
the predicted scenarios, but the improvement is evident.

Additionally, for the cases of 04/11/2011 and 14/09/2015, there is
an improvement of the forecast for all WRF configurations where
WDM16 now appears to be one of the best configurations, while
HARMONIE provides predictions similar to the benchmark. The dis-
charge forecast driven by HARMONIE seems not to benefit the SM
variability, probably because rainfall patterns and volumes are too
different from those that actually occurred.

The deterministic forecast, obtained by feeding the hydrological
model directly with rainfall derived by NWPS, is generally poor, con-
firming the findings of Siccardi et al. (2005). The localization of the
forecast precipitation is known to get increasingly important when the
basin size decreases. The usage of high-resolution NWPS does not
guarantee the correct localization of precipitation, even if the total
volume of rainfall is satisfactorily predicted when considered at a larger
scale. As a consequence, the flood forecast at basin scale cannot be
properly addressed without rainfall downscaling on the study area
considered.

In all the study cases, the box plots include the SP and OB only for a
reduced number of scenarios, so the expected exceedance probability is

generally low. This finding is reasonable and a direct consequence of
what was presented by Siccardi et al. (2005) and Silvestro et al. (2011),
mainly due to the following causes: i) even when NWPSs make a good
prediction of the precipitation volume, in most cases they do not de-
scribe the correct spatial and time patterns and/or the rainfall locali-
zation; ii) since Bisagno is a small catchment, the reliable aggregation
spatial and time scales in the downscaling process (10–20 km and 6 h in
this application) are comparable or larger than its size (∼1000.5 km)
and typical response time (∼2–3 h). Consequently, only a limited
number of scenarios combine rainfall volumes in spatial and the time
structures that result in critical parameters for the study catchment.
Silvestro et al. (2015a) demonstrated that, even using as input the
observed rainfall field, if the aggregation scale increases, then the ob-
served peak is predicted with a decreasing probability. In the present
application, we downscale the NWPS rainfall prediction so it is man-
datory to use an aggregation spatial scale that is similar to or larger
than the Bisagno basin size because of theoretical motivations
(Patterson and Orszag, 1971; Siccardi et al., 2005). As a final con-
sideration, we can thus state that the fact of having the observed and
simulated peaks in the tail of the predicted peak distribution in most of
the presented cases can apparently be considered a poor result, but it
must be read accounting for the aforementioned considerations.

Additionally, using a given and predefined HR-NWPS is evidently
not sufficient to have a systematic benefit, while the effective strategy
for the three considered events seems to use different HR-NWPS or the
same HR-NWPS with different physical parameterizations, namely, the
use of a multi-model approach. A single model may work well in a

Fig. 8. Same as Fig. 7 for the event that occurred on 04/11/2011.
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subset of events but might have bad performance on other case studies
(WRF WDM16 works well on 04/11/2011 but not on 09/10/2014). The
multi-model approach allows exploring the epistemic uncertainties as-
sociated with small scale processes phenomena, which have a great
impact on very concentrated and intense rainfall events, causing flash
floods.

3.1.2. Assessment of high resolution NWPS and soil moisture uncertainties
As mentioned in the previous section, the differences between SP

and OP can be caused by a number of error sources, where initial soil
moisture conditions can often drive large errors in streamflow simula-
tions.

In this section, the results of the hydro-meteorological chain ac-
counting for soil moisture initial condition uncertainties (HR-NWPS-
SM) are shown. Each downscaled scenario is coupled with an initial soil
moisture realization estimated as explained in paragraph 2.2.3. Similar
to the previous experiment, the number of rainfall-downscaled sce-
narios is M=400.

Analysing the event that occurred on 09/10/2014 (Fig. 6), it is in-
teresting that the Box (25–75 percentile) in some cases is similar to the
HR-NWPS case and in some others, HR-NWPS-SM even leads to smaller
values of the 75% percentile (wrf WSM6). On the other side, super-
imposing the two sources of uncertainty allows us to increase the
maximum values, thus capturing the SP in the box plot forecast, and in
some infrequent cases, peaks are close to OP. The tail of the forecast
peak distribution is in fact extended. On the other side, it must be
highlighted that the variability of peaks introduced by different NWPSs

and by rainfall downscaling is larger than the peak due to soil moisture
perturbations.

A similar effect can be noticed also for the other two events (Fig. 6).

3.2. Probabilistic impact forecast: economic losses and people affected

The conversion from streamflow scenarios into damage scenarios
and people affected enables the decision maker an in-depth impact
analysis of those events that cause some flooding. This transformation
involves strong non-linearity, as it depends on urban morphology,
which affects flooding dynamics, extension and magnitude. Since the
damage is strongly affected by the threshold effect caused by the
overbanking level, the results are shown in terms of cumulative dis-
tribution that allows a better readability with respect to the box plot
representation used in Section 3.1.

Fig. 7 reports distribution of “economic damage” (considering da-
mage to both structure and content) and “highly affected people” dis-
tributions for the event on 09/10/2014. The graphs indicate the effects
of introducing of the Multi-Model Ensemble approach and those de-
rived from the soil moisture initial condition variability.

The variable “highly affected people” is obtained considering the
number of people who reside in high and very high-risk areas, i.e.,
where flow conditions (water depth and velocity) cause instability to
people (see paragraph 2.2.4).

The probability of damage > 0 is approximately 2% (Multi-Model
Ensemble) or 1% (Multi-Model Ensemble and Soil Moisture un-
certainty). A similar behaviour comes up for the probability of people

Fig. 9. Same as Fig. 7 for the event that occurred on 14/09/2015.

F. Silvestro, et al. Journal of Hydrology 572 (2019) 388–402

398



affected.
Fig. 7 also shows that the Multi-Model includes the estimated real

event, which was estimated at approximately 100 Mil. Euro (red point,
Silvestro et al., 2016). This occurs even if the observed peak is not in-
cluded in the forecast. The reason is that the library of scenarios in-
cludes at least one streamflow scenario with peak lower than the ob-
served peak but with a similar overtopping volume, thus leading to a
similar damage scenario.

In the 04/11/2011 event (Fig. 8), the estimated damage is ap-
proximately 45M euro. This value is estimated without considering the
contribution of a small tributary-induced flooding since it is out of the
target area of this work but caused a large amount of damage during
this event (see Silvestro et al. (2012)). The forecast done using only the
operational model (benchmark) defines this scenario as extremely in-
frequent (probability < 1%) while in the Multi-Model Ensemble da-
mage distribution, it has a probability of approximately 2% and in the
Multi-Model Ensemble with Soil Moisture uncertainty, the probability
increases between 2% and 5%.

The case of 14/09/2015 has some interesting features (Fig. 9). The
streamflow reached a value of approximately 600m3/s. No inundation
occurred, but Bisagno Creek was close to overbanking. The probability
of damage and people affected larger than zero was negligible in both
the Multi-Model and Model Ensemble with Soil Moisture damage dis-
tributions (< 1%). However, it must be admitted that, for the reasons
explained in Sections 3.1.1 and 3.1.2, the predicted probabilities of
damage > 0 are generally low for all the events. As a consequence, in
an operational perspective, it could be not easy to interpret the forecast
of 14/09/2015 differently with respect the other two events. The
modelling chain considers that the flooding is possible even with very
low probability, which could be interpreted as a false alarm.

Analysing the three events in terms of damage, we can conclude that
using HR-NWPS seems not sufficient to improve the predictions in the
sense that using a unique NWPS with a high resolution does not guar-
antee that prediction is always and systematically improved.

The results of the forecast chain in terms of impacts confirm, as
already shown in Section 3.1, that the multi-model approach seems the
most effective strategy to account for meteorological uncertainty in-
stead of using a single model, even if it has a high resolution and a
detailed description of the atmospheric processes (i.e., non-hydrostatic,
convective permitting). In addition, the results in Figs. 7–9 highlight
how the threshold effects introduced by overbanking level affect the
damage distribution. Probability of damage is null for all the stream-
flow scenarios lower than overbanking and then suddenly increases; the
probability of damages is always low in the studied events but the
magnitude of damage can be huge.

All the considerations presented are valid for the three analysed
events that are important case studies (Rebora et al., 2013; Davolio
et al., 2017). The test of the complete forecast chain should be con-
tinued over a longer period of time, which possibly includes more ex-
treme events, to confirm and generalize the present findings. In other
cases, the system may lead to worse results, in particular increasing the
false alarms since it accounts for different sources of uncertainties. This
kind of verification was not possible because of unavailability of data.
Moreover, we believe that a deeper verification would need a specific
study, and this is beyond the scope of this study.

4. Conclusions

In this work, a methodology for quantitative real-time impact as-
sessment was presented. The methodology, based on a multi-

Fig. 10. Distribution of discharge peaks (left panel) and distribution of economic damage to structure and content (right panel). On the second line, a zoom of the
distribution tails: small increase in discharge peak can lead to a significant increase in economic losses (blue segments in both panels), while considerable increase in
discharge peak may not result in increase of losses (red segment in both panels). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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meteorological model approach, also considers soil moisture un-
certainty and extends the flood forecasting chain to include the quan-
titative real-time impact assessment in terms of economic losses and
affected people. From the analysis of the performances, some inter-
esting and, in our opinion, crucial consideration arose.

Using a multi-model approach that involves different HR-NWPSs
improves the hydro-meteorological forecast of the three considered
events, confirming the work of Parodi et al. (2017) but also confirming
the need for introducing a rainfall downscaling model (Davolio et al.,
2015). The benefit of a multi-model approach appears evident, espe-
cially considering that there is not a model or a particular model con-
figuration that always performs evidently better than the others. The
multi-model approach tries to explore the errors and uncertainties
(even if in a partial and coarse way) in meteorological forecasting,
while high resolution seems fundamental to capture those very con-
centrated and intense rainfall events that affect the study area. As dis-
cussed in Section 3, the observed event (peak flow) lies always in the
tail of the predicted distribution. As a consequence, forecasters and
decision makers would have trouble in result interpretation, and they
are expected to read results in light of good theoretical preparedness on
hydro-meteorological topics.

Accounting for soil moisture initial condition uncertainties helps to
improve the results, especially in the 09/10/2014 event, where the
methodology increased the probability of success in flood forecasting
by increasing the spread of the forecast. To enhance the benefit of su-
perimposing the soil moisture uncertainty in the system, one probably
needs to increase the number of the scenario members, increasing the
demand on computation.

Results in terms of streamflow prediction appear to be promising,
but the availability of data for three events only did not allow a full and
extensive validation of the benefit related to the multi-model approach
and to the introduction of the soil moisture uncertainty. Specifically, it
was not possible to investigate the occurrence of false alarms.
Moreover, the adopted scheme for perturbing the soil moisture initial
condition is based on a soil status derived by long term simulation. For
the sake of clarity, the method does not allow consideration of space
and time errors of the hydrological model. Thus, as a consequence, it
could fail to properly account for the uncertainty in some situations.

Second, the proposed methodology underlines the importance of the
availability of an impact forecast. The transition from streamflow
forecast to impact forecast in terms of economic damages and affected
people increases the amount of available information for the decision-
making process. Considering only the discharge peak distribution
(Fig. 10, left panel), the decision maker cannot obtain precise in-
formation on the flood impact after overtopping. When comparing the
distribution of discharge peaks (Fig. 10, left panel) to the related dis-
tribution of economic damage to structure and content (Fig. 10, right
panel), a strong non-linearity in this conversion is found, as expected. A
small increase in discharge peak can lead to a significant increase in
losses, as highlighted by the blue segment, and vice versa, considerable
increase in discharge peak may result in a minor increase in losses (red
segment). The reason for this behaviour can be explained easily, con-
sidering that the dynamics of the inundation strongly depend on urban
morphology, and the discharge peak is not the only influencing para-
meter, but the shape of the hydrograph and the inundation volume also
play an important role.

Economic loss distribution can be compared with reference
thresholds such as the cost of warning civil protection staff and popu-
lation, availability of emergency funds or a portion of city GDP con-
sidered critical for city economy. The decision maker can read from the
graph the probability to exceed one of these economic thresholds.

A crucial point of the work presented is related to the estimation of
impacts and damages caused by the flash floods, since the flash floods
are essential to calibrate and validate the models. In this application,
we used field measurements as well citizen claims of the damages
suffered. The post flash-flood surveys have a key role as evidenced in

some studies that emphasized the usefulness of data and information
derived from post-event analysis (Marchi et al., 2009; Marchi et al.,
2010).

A possible future extension and application of this methodology
may consider a regional approach. Given 1) the size of the watershed of
the Ligurian coast, 2) the uncertainty in predicting the location of the
meteorological event, and 3) warning messages are issued for a
homogeneous “warning area” and not for a single site, it would be
possible to compute impact losses for all watersheds belonging to the
same warning area. Then, a decision criterion may compare the prob-
ability of having losses with the cost of activation for the whole warning
area. This probability can be substantially higher with respect to the
one computed in a single site, while the cost of warning messages and
activation for the warning area may increase more smoothly (some
costs of single site activation are the same for the warning area acti-
vation).

In any case, a decision-making process that includes impact forecast
(economic loss, affected population) instead of hazard parameters
(discharge) alone would require a substantial modification of current
Early Warning Systems setup and related standard operating proce-
dures, which may delay its adoption by decision makers.
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