
University of Genova

PhD Program in Bioengineering and Robotics

Fondazione Istituto Italiano di Tecnologia

Methods to improve the coping capacities

of whole-body controllers for

humanoid robots

by

Marie Charbonneau

Thesis submitted for the degree of Doctor of Philosophy (31◦ cycle)

March 2019

Francesco Nori, Fondazione Istituto Italiano di Tecnologia Supervisor

Daniele Pucci, Fondazione Istituto Italiano di Tecnologia Supervisor

Giorgio Cannata, University of Genova Head of the PhD program

Thesis Jury:

Adrea Del Prete, Max Planck Institute for Intelligent Systems External examiner

Michael Mistry, University of Edinburgh External examiner

Department of Informatics, Bioengineering, Robotics and Systems Engineering

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university.

This dissertation is my own work and contains nothing which is the outcome of work

done in collaboration with others, except as specified in the text and Acknowledgements.

This dissertation contains fewer than 65,000 words including appendices, bibliography,

footnotes, tables and equations and has fewer than 150 figures.

Marie Charbonneau

March 2019

Acknowledgements

The work of this thesis has received funding from the Marie Sklodowska-Curie Action

European Training Network SECURE funded by the European Commission (grant

agreement No.642667), as well as the European Union’s Horizon 2020 research and

innovation program project An.Dy (grant agreement No. 731540), in collaboration

between the Dynamic Interaction and Control (DIC) laboratory of the iCub Facility,

Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy and the LARSEN Team

of INRIA Nancy - Grand Est, Villers-lès-Nancy, France.

First of all, thanks to Francesco Nori who made it possible for me to join the

Dynamic Interaction Control lab at IIT, and Daniele Pucci for his supervision and

getting me started with whole-body control. They both granted me the opportunity to

learn, to work with the iCub, and to build collaborations beyond the lab, for instance

with researchers from INRIA Nancy and Sapienza University of Rome.

Sincere acknowledgements are extended to the reviewers, Drs. Andrea Del Prete

and Michael Mistry, who have freely given of their time and expertise.

I would like to sincerely thank Serena Ivaldi for receiving me in her team at INRIA,

providing me with patient explanations, as well as the support and resources I needed.

Through Serena, I got to collaborate with Valerio Modugno and Luigi Penco, who, on

top of being great coworkers, have been precious sources of positivity. Their optimism

turned out to be precisely what I needed in order to push my work further.

Many thanks also to my colleagues (both in IIT and INRIA) for the fruitful

exchanges during the last few years. Many thanks to Francisco Andrade, Brice

Clement, Stefano Dafarra, Augusto Francisco, Nuno Guedelha, Dorian Goepp, Joan

Kangro and especially Gabriele Nava and Luigi Penco for lending a hand when doing

experiments with the robot, and also for the cheerfulness. Thanks to Julien Jenvrin for

fixing the robot when I would break it, and reminding me to keep smiling. Heartfelt

thanks also to Aiko Dinale, who consistently took care to bake cakes which I could

iii

eat, when she brought some to the lab. Finally, Silvio Traversaro has been a model on

mastering deeply a field of work, and even though being always so busy, remaining

incredibly available for clear, complete explanations and help when needed.

This thesis was characterized by a certain degree of mobility. I would like to thank all

those who provided me with a place to work and write at one point or another, including

Professor Giuseppe Oriolo at Sapienza University of Rome, Professors Alexandre Bergel

and Jocelyn Simmonds at the University of Chile, and Dr. Andreea Radulescu, who

lent me a corner of her dining table and also checked on my sanity during the writing.

Special mentions go to Augusto Francisco, Nico Huebel and Naveen Kuppuswamy,

for the deep discussions we had on thorny subjects I encountered during my PhD,

helping me to gain a clearer viewpoint.

Many thanks to my friends and close ones, for the caring support and reminding

me of the importance of small things, helping to fix my headaches, taking care of my

stomach, and bringing me ice cream on deadline nights. Although in the past I had

generally overcome challenges by myself, for this work, my parents did help me with

impactful advice that I am deeply grateful for.

Finally, I would like to extend special thanks to those who have supported me in

harder times during the past three years. Without providing specific names here, if you

suspect that this may be for you, even just a little, then be assured that it indeed is.

Abstract

Current applications for humanoid robotics require autonomy in an environment specif-

ically adapted to humans, and safe coexistence with people. Whole-body control is

promising in this sense, having shown to successfully achieve locomotion and manipu-

lation tasks. However, robustness remains an issue: whole-body controllers can still

hardly cope with unexpected disturbances, with changes in working conditions, or

with performing a variety of tasks, without human intervention. In this thesis, we

explore how whole-body control approaches can be designed to address these issues.

Based on whole-body control, contributions have been developed along three main

axes: joint limit avoidance, automatic parameter tuning, and generalizing whole-body

motions achieved by a controller. We first establish a whole-body torque-controller

for the iCub, based on the stack-of-tasks approach and proposed feedback control

laws in SE(3). From there, we develop a novel, theoretically guaranteed joint limit

avoidance technique for torque-control, through a parametrization of the feasible joint

space. This technique allows the robot to remain compliant, while resisting external

perturbations that push joints closer to their limits, as demonstrated with experiments

in simulation and with the real robot. Then, we focus on the issue of automatically

tuning parameters of the controller, in order to improve its behavior across different

situations. We show that our approach for learning task priorities, combining domain

randomization and carefully selected fitness functions, allows the successful transfer of

results between platforms subjected to different working conditions. Following these

results, we then propose a controller which allows for generic, complex whole-body

motions through real-time teleoperation. This approach is notably verified on the robot

to follow generic movements of the teleoperator while in double support, as well as to

follow the teleoperator’s upper-body movements while walking with footsteps adapted

from the teleoperator’s footsteps. The approaches proposed in this thesis therefore

improve the capability of whole-body controllers to cope with external disturbances,

different working conditions and generic whole-body motions.

Table of contents

List of figures ix

List of tables xii

1 Introduction 1

1.1 Motivation . 4

1.2 Related work . 5

1.2.1 Whole-body motion control of humanoid robots 5

1.2.2 Tuning of motion controllers . 8

1.2.3 Joint limit avoidance of torque-controllers 10

1.2.4 Whole-body teleoperation . 12

1.3 Contributions . 14

1.4 Notation . 16

1.5 Thesis outline . 17

2 Optimization-based whole-body torque-control for humanoid robots 18

2.1 Modelling of floating-base systems . 19

2.2 Optimization-based whole-body torque-control framework 21

2.2.1 Control input . 22

2.2.2 Stack-of-tasks for whole-body torque-control 23

2.2.3 Stabilization of tasks . 25

Table of contents vi

2.2.4 Whole-body control optimization problem 32

2.3 Implementation of optimization-based whole-body torque-controllers . . 33

2.3.1 Implementation of a strict tasks controller 34

2.3.2 Implementation of the soft tasks controller #1 36

2.3.3 Implementation of the soft tasks controller #2 39

2.4 Application to walking in place . 42

2.4.1 Walking in place with the soft tasks controller #1 42

2.4.2 Walking in place with the soft tasks controller #2 50

2.4.3 Discussion . 53

2.5 Conclusion . 55

3 Joint limit avoidance for torque-control 57

3.1 Modelling of fixed-base systems . 58

3.2 Classical torque-control techniques for fixed-base systems 59

3.3 Joint space parametrization . 59

3.4 Joint space control with joint limit avoidance 61

3.4.1 Joint limit avoidance for fixed-base systems 62

3.4.2 Joint limit avoidance within a whole-body torque-controller . . . 65

3.5 Implementation for a fixed-base manipulator 65

3.5.1 Application of joint limit avoidance for the iCub leg 65

3.5.2 Discussion . 73

3.6 Implementation within a whole-body torque-controller 74

3.6.1 Optimization-based controller 74

3.6.2 Application to walking in place 75

3.6.3 Discussion . 79

3.7 Conclusion . 80

4 Survey on parameter tuning for QP-based controllers 81

Table of contents vii

4.1 Description of the survey . 83

4.2 Results of the survey . 84

4.3 Conclusion . 98

5 Learning task priorities of whole-body controllers 99

5.1 Constrained stochastic optimization . 101

5.2 Framework for learning task priorities 107

5.3 Implementation for whole-body torque-control 110

5.3.1 Control problem formulation . 110

5.3.2 Constraints on stochastic optimization 111

5.3.3 Fitness . 111

5.3.4 Randomized conditions . 112

5.4 Application to learning task priorities for walking in place 113

5.4.1 Training with the tethered iCub model 114

5.4.2 Testing with the tethered iCub model 115

5.4.3 Testing with the backpacked iCub model 116

5.4.4 Discussion . 122

5.5 Conclusion . 123

6 Teleoperation of generic whole-body motions 126

6.1 Whole-body velocity-control framework for teleoperation 129

6.1.1 Retargeting module . 129

6.1.2 Finite state machine . 134

6.1.3 Stack-of-tasks for whole-body velocity-control 136

6.1.4 QP controller . 139

6.2 Applications of the whole-body teleoperation framework 141

6.2.1 Application to walking . 142

6.2.2 Application to whole-body teleoperation 146

Table of contents viii

6.3 Conclusion . 151

7 Conclusion 154

7.1 Whole-body balancing torque-control 154

7.2 Joint limit avoidance . 155

7.3 Tuning parameters of whole-body controllers 155

7.4 Whole-body control for generic motions 156

7.5 Closing remarks . 157

References 158

Appendix A Additional material for the soft tasks controller #1 169

A.1 Finite state machine for the soft tasks controller #1 169

A.2 Parameter values for the implementation in simulation 174

A.3 Parameter values for the implementation on the iCub 180

Appendix B Additional material for the soft tasks controller #2 186

B.1 Finite state machine for the soft tasks controller #2 186

B.2 Parameter values for the implementation in simulation 189

Appendix C Additional material for joint limit avoidance 192

C.1 Proof of lemma 3 . 192

Appendix D Additional material for the survey on QP controllers 194

D.1 Invitation to participate to the survey on QP-based controllers 195

D.2 Questionnaire of the survey on tuning of QP-based controllers 196

D.3 Answers to open-ended questions . 203

List of figures

1.1 Examples of state of the art humanoid robots 2

1.2 Two different models of the iCub . 3

1.3 Typical whole-body control architecture 6

1.4 Control architecture used for whole-body control in this thesis 16

2.1 Overview of the proposed method . 22

2.2 Frames considered in the control framework 24

2.3 Finite state machine for soft tasks controller #1 38

2.4 Finite state machine for soft tasks controller #2 41

2.5 Snapshots of walking in place with the soft tasks controller #1 46

2.6 Position task trajectories for 1 stride, simulation experiments 47

2.7 Position task trajectories for 1 stride, real-world experiments 48

2.8 Orientation task errors for 1 stride, real-world experiments 49

2.9 Evolution of contact forces for 1 stride, real-world experiments 49

2.10 Evolution of joint torques for 1 stride, real-world experiments 49

2.11 Evolution of joint torques for 1 stride, soft tasks controller #2 51

2.12 Evolution of contact forces, soft tasks controller #2 52

2.13 Snapshots of walking in place with the soft tasks controller #2 52

2.14 Position task trajectories for 1 stride, soft tasks controller #2 53

3.1 iCub leg setup used for the experiments 66

List of figures x

3.2 Hip and knee joint trajectories and torque for experiment 1 68

3.3 Hip and knee joint trajectories and torque for experiment 2 70

3.4 Pictures of experiment 3 . 71

3.5 Hip joint trajectories and torques for experiment 3 72

3.6 Overview of the whole-body controller with joint limit avoidance 74

3.7 Behavior achieved under increasing external perturbations 77

3.8 CoM, elbow and shoulder trajectories 78

4.1 Demographic profile of the 35 respondents 92

4.2 Types of robots used with QP controllers by the respondents 93

4.3 Use and formulation of QP controllers by the respondents 93

4.4 Respondents’ evaluation of the importance of tuning parameters 94

4.5 Time spent tuning parameters of QP controllers 95

4.6 Use of tools for tuning . 95

4.7 Respondents’ evaluation of how tedious tuning is 96

4.8 Importance of easing parameter tuning, according to respondents . . . 96

4.9 Respondents’ interest in eventual tools for tuning 96

5.1 Different iCub models performing the same whole-body motion 101

5.2 Effect of reducing the variance of the offspring distribution 104

5.3 Overview of the proposed method for learning task priorities 108

5.4 Typical ZMP trajectories obtained with the tethered iCub 117

5.5 Typical CoM and feet trajectories obtained for 6 strides 118

5.6 Typical base velocities obtained with the tethered iCub 119

5.7 Typical ground reaction at the right foot of the tethered iCub 119

5.8 Typical joint torques obtained with the tethered iCub 120

6.1 Typical whole-body control architecture 126

List of figures xi

6.2 Control architecture used for whole-body teleoperation 127

6.3 Retargeting of human whole-body movements on the robot 128

6.4 Overview of the proposed method for whole-body teleoperation 130

6.5 Mapping between motion capture and robot joints 131

6.6 Hierarchical finite state machine for whole-body teleoperation 134

6.7 Snapshots of walking experiment 1 . 144

6.8 Snapshots of walking experiment 2 . 144

6.9 Snapshots of walking experiment 3 . 145

6.10 Teleoperation experiment 1: results of retargeting on the real robot . . 147

6.11 Snapshots of teleoperation experiment 1 148

6.12 Feet motions achieved in simulated teleoperation experiments 1 and 2 . 148

6.13 Snapshots of teleoperation experiment 2 149

6.14 Snapshots of teleoperation experiment 3 151

D.1 Survey page 1 . 196

D.2 Survey page 2 . 197

D.3 Survey page 3 . 198

D.4 Survey page 4, part 1 . 199

D.5 Survey page 4, part 2 . 200

D.6 Survey page 4, part 3 . 201

D.7 Survey page 5 . 202

List of tables

3.1 Joint limits of the iCub . 77

3.2 Forces applied on the right hand of the robot 77

4.3 References and links to source code indicated by respondents 97

5.1 Randomized set of conditions j . 113

5.2 Summary of performed experiments and achieved results 121

6.1 Task weights used with the whole-body teloperation controller 141

6.2 Parameters of the finite state machine 142

A.1 Parameters for the stabilization of contact tasks 174

A.2 Task weights of the soft tasks controller #1 for the simulated robot . . 174

A.3 Parameters of the finite state machine 175

A.4 Proportional feedback gains for Cartesian tasks 176

A.5 Proportional feedback gains for the postural task 177

A.6 User-defined displacement of the Cartesian tasks for a stepping motion 178

A.7 User-defined joint positions for the postural task 179

A.8 Parameters for the stabilization of contact tasks 180

A.9 Task weights of the soft tasks controller #1 for the real robot 180

A.10 Parameters of the finite state machine 181

A.11 Proportional feedback gains for Cartesian tasks 182

List of tables xiii

A.12 Proportional feedback gains for the postural task 183

A.13 User-defined displacement of the Cartesian tasks for a stepping motion 184

A.14 User-defined joint positions for the postural task 185

B.1 Parameters for the stabilization of contact tasks 189

B.2 Parameters of the finite state machine 190

B.3 Task weights of the soft tasks controller #2 for the simulated robot . . 190

B.4 Proportional and derivative feedback gains for Cartesian tasks 191

B.5 Proportional and derivative feedback gains for the postural task 191

Chapter 1

Introduction

Research in humanoid robotics has seen massive advances in recent years, having

received significant attention both from society and the research sector. Humanoid

robots are expected to be highly involved in many unprecedented applications over the

next decades, and to strongly impact everyday life. They shall find a place not only

in research laboratories, but at home, in the workplace, as well as in environments

unsuitable for humans. In any application, we anticipate humanoid robots to have the

ability to autonomously function in the real-world, safely interacting with complex

dynamic environments and coexisting with its inhabitants.

Having said that, at this date, the capabilities of current robots are generally limited

to basic tasks in controlled environments, for which physical interactions are restricted

to the task being performed. For example, lifting and carrying objects, as well as

dynamic walking have been achieved, albeit not exactly reproducing the autonomy

with which humans can perform these actions. Much research is still required, in order

to reach capacities approaching those of humans, with humanoid robots.

Related research problems then span over several different fields, such as (but not

limited to) perception, motion control, motion planning, manipulation, cognition, as

well as human-robot interaction, in order to deal with the real-world.

A significant number of outstanding humanoid robots have been developed thus far

for research purposes, each one designed with the intention of tackling one or several of

the research problems mentioned above. Without naming them all, famous state of the

art examples include the Atlas robot [Boston Dynamics, 2018], which was developed

for highly dynamic locomotion, as well as lifting and carrying objects. HRP series

2

robots [Kawada Industries, 2018] are designed to collaborate with humans, allowing

for advanced research on motion control and manipulation. Darwin-OP [Robotis Co.,

2018] is a small humanoid robot that allows research on motion control, planning and

perception. Nao [SoftBank Robotics, 2018] is another small humanoid robot that offers

similar capabilities, while being designed to interact with people. Each of them is

illustrated in figure 1.1.

Figure 1.1 Examples of state of the art humanoid robots. From left to right: Boston
Dynamic Atlas, Robotis Darwin-OP, SoftBank Robotics Nao, Kawada Industries HRP-4

Another noteworthy robot is the iCub [Metta et al., 2008], a child-sized humanoid

robot developed at the iCub Facility of the Fondazione Istituto Italiano di Tecnologia.

It is designed as a research platform for robotics, AI and cognitive science, which makes

it a prime choice for carrying out research across many different fields, allowing to

tackle each of the different research problems related to humanoid robotics mentioned

above and more. It is notably used as the main robotic platform for the experiments

carried out in this thesis, and for this reason deserves a more extensive description.

The iCub features a very high degree of mobility with its 53 degrees-of-freedom

(DOFs), including 9 DOFs in each hand and 3 for the eyes. A total of 32 DOFs

can be accounted for, to control the motion of the head, torso, arms and legs. Each

of these DOFs is actuated with brushless DC electric motors, with harmonic drive

transmission [Parmiggiani et al., 2012]. As such, these actuators are suitable for

position-, velocity- and torque-control.

Beyond cameras in the eyes and microphones, the iCub also exhibits advanced

sensing capabilities. Forces exchanged between the robot and the environment can be

evaluated through the estimation of internal joint torques and external wrenches [Fu-

3

magalli et al., 2010; Traversaro et al., 2015]. This is made possible with a set of six-axis

force-torque (F/T) sensors installed in each arm, leg and foot of the robot. In order to

determine the location and distribution of contact forces applied on the robot, most of

the body of the iCub is covered with tactile sensors enclosed within a fabric artificial

“skin”. Also, an inertial measurement unit is installed in the head of the robot, equipped

with magnetometer, accelerometer and gyroscope. This equipment provides inertial

sensing, useful for calibration of the robot [Guedelha et al., 2016]. Additional sensors

such as accelerometers and gyroscopes are distributed within its body.

Figure 1.2 Two different models of the iCub. On the left: with wired power supply through
the back. On the right: with a battery pack on the back (power supply can still be provided
by a connection on the battery pack).

Thus, the iCub is highly suitable for complex tasks involving its entire body, such

as walking. The development of control methods for achieving such motions, in a way

which is safe for interaction with the real-world, and allows for an increased autonomy

of the robot, are investigated in this thesis.

The motivations leading to the work presented in this thesis are described in the

next section. An overview of the related work, in section 1.2, then allows to gain an

understanding of the current state of the art, giving grounds for the contributions

we propose in section 1.3. Finally, before moving from this chapter to the core of

the thesis, notation is introduced, as well as an outline of the thesis, describing the

organization of the remaining chapters.

1.1 Motivation 4

1.1 Motivation

Robotic applications which are currently envisioned require not only that robots

function autonomously in an environment specifically adapted to human capabilities,

but also that robots safely coexist with humans.

Nevertheless, the design of useful, efficient and safe motion controllers for humanoid

platforms is highly challenging, especially for applications involving interaction with

the environment. As a matter of fact, physical interactions have a significant influence

on the stability and balance of a humanoid robot. Furthermore, a great number of

issues can stem from the complexity of the system and its control framework, in order

to generate physically consistent behaviors. The development of robust compliant

balancing controllers is therefore required.

In this respect, whole-body control is a promising research direction, aiming to

define rules on robot motion that guarantee the execution of tasks involving the entire

body of redundant, floating-base robots subjected to interactions with the environment.

So far, whole-body controllers have shown to successfully achieve motion control of

humanoid robots. In addition, whole-body torque-controllers can offer compliance and

allow the control of physical interactions with the environment [Ott et al., 2011; Saab

et al., 2013].

This thesis focuses on developing control methods for humanoid robots, within the

frame of whole-body control. Although locomotion and manipulation tasks have shown

to be successfully achieved using this approach, whole-body controllers can still hardly

cope with unexpected disturbances, with performing a variety of tasks (as opposed

to achieving a single task), or with changes in working conditions, without human

intervention. In order to achieve a higher level of autonomy, developing controllers for

robustness as we define it below, appears to be fundamental.

Definition 1 In this thesis, we use the word robustness to indicate the ability

of a controller to cope with perturbations, different tasks or changes in working

conditions.

It is considered an equivalent of coping capacities, the ability of a system to

respond to and recover from the effects of stress or perturbations that have the

potential to alter the function of the system. This expression is used in the title, to

avoid any confusion of the term robustness in readers from different fields.

1.2 Related work 5

In this thesis, we explore how whole-body control approaches can be made more

robust, to safely achieve complex motions of a humanoid robot. The controllers devel-

oped here shall be based on the concept of the stack-of-tasks [Mansard et al., 2009],

which provides a hierarchical framework adapted for whole-body control, attempting

the simultaneous stabilization of several elementary tasks. While it allows for flexibility

in the definition of a controller, it also requires a certain amount of tuning, in a

context where the controller is also sensitive to perturbations, as well as imprecisions

in the model, estimation and measurements. As a result, transferring results from

simulation to a real-world platform can be challenging. These issues can be addressed

by developing methods to automatically tune controller parameters and to increase

the robustness of controllers.

1.2 Related work

The field of humanoid robotics has seen impressive developments recently, although

this section will concentrate only on a few chosen areas. More precisely, this thesis is

rooted in whole-body motion control of humanoid robots, and branches off towards the

subjects of joint limit avoidance, parameter tuning and teleoperation, in the search for

measures which may increase the robustness of controllers. The following subsections

shall review relevant literature on each of these subjects.

1.2.1 Whole-body motion control of humanoid robots

Whole-body control has been the subject of extensive research so far, and various

types of controllers have been investigated specifically for biped robots. Fixed-base

controllers considering a robot as a manipulator attached to the ground, either passivity-

based [Hyon et al., 2007], bio-inspired [Heremans et al., 2016] or momentum-based

[Ott et al., 2011], have shown to ensure stable behavior. However, in order to achieve

higher mobility, modeling a robot as a floating-base system, in which no link is fixed

with respect to an inertial frame, is generally more relevant.

Typically, the whole-body control problem is tackled following a control architecture

such as discussed in [Romualdi et al., 2018]. It has been adapted here in figure 1.3,

where it shows to be particularly targeted for walking. Given a desired task for the

robot, reference trajectories of the robot are optimized, for example desired footsteps

1.2 Related work 6

Trajectory
optimization

Simplified
model
control

Whole-body
optimization-
based control

robot

User-defined
motions

desired footsteps,
DCM/ZMP

desired CoM, ZMP,
DCM trajectories

control
input

Figure 1.3 Typical whole-body control architecture for humanoid robots

are computed using a footstep planner. Taking the footsteps as input, kinematically

feasible trajectories of the robot are computed, using a simplified robot model such

as the linear inverted pendulum model, and optionally calling on the use of model

predictive or receding horizon controllers. Finally, a whole-body controller based on

optimization ensures the tracking of the computed trajectories on the robot.

A highly effective solution to the whole-body control problem is to decompose

a complex behavior into several elementary tasks, typically framed as a stack-of-

tasks [Ivaldi et al., 2016; Mansard et al., 2009]. The controller is then aiming at the

achievement of elementary control objectives organized in a hierarchical structure.

In such a framework, some kind of prioritization among tasks must be provided,

generally either a “strict” or a “soft” task hierarchy. With strict prioritization strategies

(such as a traditional stack-of-tasks), a fixed task hierarchy is assured by geometrical

conditions such as a null space task projector [Nava et al., 2016; Saab et al., 2013], or

by the use of optimization strategies to compute control actions [Dafarra et al., 2018].

Conversely, prioritization in a soft task hierarchy (based on a weighted combination of

tasks), can be achieved by assigning each task a weight defining its relative importance

[Otani et al., 2018; Salini et al., 2011]. Since it involves concurrently solving a certain

number of tasks on end-effectors, joints or relevant body parts, at each control step,

the whole-body control problem is most often formulated as an optimization problem.

Quadratic programming (QP), the optimization problem of finding a vector

that minimizes a quadratic function subject to bounds, linear equality, and inequality

constraints, has shown to be advantageous in terms of flexibility, robustness and

speed. For this reason, QP is often used to solve whole-body control optimization

problems [Dafarra et al., 2018; Kuindersma et al., 2014; Nava et al., 2016; Otani et al.,

2018; Righetti and Schaal, 2012].

From there, when compliance and physical interactions matter (e.g. safe human-

robot physical interaction), torque-control, in opposition to position-control, is usually

preferred. However, achieving precise motions with torque-control can be more chal-

lenging than with, for example, position-control. By extension, so is the problem

1.2 Related work 7

of achieving whole-body motions that are robust and compliant to interaction with

the environment. For this purpose, suitable methods need to be developed in order

to ensure balance and stability of the robot, ensuring not only that the robot keeps

balance when external forces are applied, but also that it softly yields under forces,

allowing for safer physical interaction.

Stability of a floating-base, torque-controlled humanoid robot is then typically en-

sured with momentum-based control strategies integrated within a stack-of-tasks [Her-

zog et al., 2014; Nava et al., 2016; Pucci et al., 2016b; Stephens and Atkeson, 2010],

enabling the stabilization of desired center of mass (CoM) and contact wrenches.

Control objectives are generally formulated into optimization problems, to be solved

recursively for each layer of the hierarchy and requiring the projection of low-priority

task Jacobians in the null-space of higher-priority task Jacobians. Such strategies have

shown to allow specific motions to be achieved, through the definition of additional

Cartesian or postural tasks. In [Lee and Goswami, 2012] for example, desired CoM

and feet trajectories are taken into account for walking.

In the case of humanoid robots, the generation of a centroidal momentum often

relies on applying a torque about the center of mass, for instance by swinging the arms

or bending quickly at the hips [Stephens and Atkeson, 2010]. Although such behavior

may enable a robot to maintain balance, the quick motions may not be ideal when

interacting with humans. Moreover, joint limits of humanoid robots impose restrictions

on movement. As a result, a desired angular momentum can typically be generated

for short periods only, which may leave something to be desired, for example when

subjected to continuous pushes. Alternate formulations of whole-body controllers may

then be needed.

For instance, a framework enabling sequences of dynamic tasks for a floating-base

torque-controlled humanoid robot has been developed in [Salini et al., 2011], using

a soft hierarchy of Cartesian and postural tasks. In this particular implementation,

an impedance controller is used to induce a desired behavior with respect to contacts

with the environment, while a controller based on the approximation of the zero

moment point is used to perform balancing and walking tasks. Ultimately, with this

method, important discontinuities are introduced when switching between states, for

which coping methods have to be proposed. Also, while stack-of-tasks hierarchization

strategies are shown to allow for flexibility in view of achieving tasks, defining the

priorities of each task can be considered a complex problem.

1.2 Related work 8

1.2.2 Tuning of motion controllers

When working with controllers based on a stack-of-tasks, the priorities of tasks are

usually designed a priori by experts, then manually tuned to adjust the task ordering,

timing, transitions, etc. However, this can be a relatively tedious operation, depending

on the complexity of the system and the tasks.

As a matter of fact, coordination of multiple tasks for whole-body control of

floating-base platforms can be particularly hard when it involves keeping balance and

navigating an environment, while fulfilling other desired activities such as torso and

upper limb movements for manipulation or obstacle avoidance. The level of complexity

that characterizes some humanoid application scenarios can deeply hinder the experts’

capability to provide an effective solution for the multi-task coordination problem.

A recent line of research seeks to tackle the issue, aiming to automatically learn

whole-body task priorities, while satisfying a problem’s constraints [Dehio et al., 2015;

Ha and Liu, 2016; Modugno et al., 2016a; Su et al., 2018]. For instance in [Dehio

et al., 2015], task coefficients are learned for controlling a single arm, allowing the

transfer of acquired knowledge to different tasks. In this work however, the balance of

the humanoid platform is ignored. In [Ha and Liu, 2016], an evolutionary algorithm,

using parametrized motor skills to learn policies, achieves task generalization.Then,

in [Modugno et al., 2016a; Su et al., 2018], task priorities guaranteeing the non violation

of system constraints are learned for bimanual motions.

Since these methods require several repetitions of the same experiments (rollouts)

in order to find a viable solution, a feasible way to speed up the tuning process

of whole-body controllers is to optimize parameters through learning, in simulation.

This approach is particularly advantageous, since the random exploration used by

learning algorithms could bring disastrous results if used directly on the hardware,

and the considerable number of iterations required to find an optimal solution can be

problematic if performed on the real robot. For these reasons, training is preferably

performed in simulation. However, inherent differences between simulated and real

robots can render an optimal solution untransferrable from one to the other. Researchers

usually refer to this issue as the reality gap problem, which needs to be accounted

for, in order to achieve automatic parameter tuning.

Solutions to this problem have recently been addressed by trial-and-error algorithms

[Cully et al., 2015; Spitz et al., 2017]. In [Cully et al., 2015], prior knowledge from

1.2 Related work 9

simulated robot behaviors is exploited to find acceptable behaviors on the real robot,

in few trials. In [Spitz et al., 2017], a trial-and-error learning algorithm is used to

encourage exploration of the task space of the QP controller, allowing adaptation to

inaccurate models, also in few trials.

Since QP solvers often allow for constraints relaxation, strict constraints satisfaction

is not always ensured by the frameworks presented above, even though such a guarantee

could potentially allow for a better generalization of learned solutions. In [Modugno

et al., 2016a], strict constraints fulfillment is guaranteed by the use of a constrained

extension of (1+1)CMA-ES [Arnold and Hansen, 2012]. Nonetheless, transferring

acquired knowledge from simulation to the real robot (closely similar to its simulation),

have not shown to fully achieve the desired behavior. This result implies that constraints

satisfaction is beneficial, but not enough to achieve transferability: solutions which are

robust rather than optimal are needed, in order to achieve a better generalization.

As a way to achieve this, [Del Prete and Mansard, 2016] have proposed to improve

the robustness of task space inverse dynamics by modeling uncertainties in the joint

torques of humanoid robots.

Looking for robust solutions is also central to transfer learning and domain

adaptation, which seek to exploit previously acquired knowledge to allow a model

trained in one task or domain to be re-purposed on a second related one [Pan and

Yang, 2010]. It can for instance take the shape of learning from simulation. In fact,

data gathering can be significantly simplified when performing a learning procedure in

simulation, but there is no guarantee that the acquired knowledge will be effective in

the real world. For example, optimal control and movement primitives are combined

in [Clever et al., 2017] to find solutions which can be easily deployed on the real robot,

but they strongly rely on the accuracy of the simulated model in order to ensure the

transferability of solutions. In [Silvério et al., 2018], operational and configuration

space control task priorities are learned from suitable robot configurations provided by

an expert, given possible task hierarchies. This approach allows the transfer of results

between different robots models in simulation, but relies on significant input from an

expert when several tasks are involved.

Automatic tuning of floating-base, whole-body controllers, allowing an easier transfer

of results, is therefore still an open issue.

1.2 Related work 10

Furthermore, in the case of torque-controllers, even optimally adjusted parameters

may not ensure constraints on joint limits to be satisfied at all times. In case of

external perturbations, for instance, joint limits may not be successfully avoided, and

this problem therefore remains to be addressed.

1.2.3 Joint limit avoidance of torque-controllers

Nonlinear control of unconstrained fully-actuated manipulators is no longer a theoreti-

cally challenging problem for the control community. Algorithms based on position-,

velocity-, and torque-control have long been analysed with back-stepping and feedback

linearization tools, and have proved to be effective in numerous applications, e.g. [Isen-

berg et al., 2010; Luo et al., 2013; Mason et al., 2014]. The control problem associated

with robotic manipulators, however, rapidly becomes challenging when motion and

actuation constraints must be satisfied.

As a matter of fact, the problem of ensuring joint limit avoidance is not new to the

robotics community. For instance, a variety of methods have been developed for avoiding

joint limits in path planning, such as weighted least norm solutions [Chan and Dubey,

1995], damped least square solution of inverse kinematics [Na et al., 2008], Lyapunov-

based methods [Chen and Guo, 2006], neural networks [Assal et al., 2005; Zhang et al.,

2003], or using a time-varying weight matrix in the inverse kinematics [Kermorgant

and Chaumette, 2011]. Nonetheless, generating reference trajectories that satisfy the

physical limits does not imply that the joint positions will evolve within these limits.

In the case of redundant manipulators, on-line joint limit avoidance may be at-

tempted by using the stack-of-tasks approach. In fact, the control objective associated

with redundant manipulators is usually the stabilisation of the robot end-effector, and

the solutions associated with this task may not be unique.

One can exploit redundancy by defining a secondary low-priority task, in charge

of keeping the joints away from limits and acting onto the null space of the main

task [Fiacco and Luca, 2013; Fukumoto et al., 2004; Jamone et al., 2013]. One of the

main drawbacks of this approach is that there is no theoretical guarantee that the

joint evolutions always belong to the feasible domain. Also, the two-layer prioritization

may lead to undesired robot behavior, due to the projection onto the null space of the

control action in charge of ensuring joint limit avoidance.

1.2 Related work 11

Among the most widely used methods for joint limit avoidance of redundant

manipulators is the gradient projection-based technique [Chen and Liu, 2002; Ito et al.,

2010; Liegeois, 1977; Marey and Chaumette, 2010]. This approach defines a criterion,

such as a function maximizing the distance between joint positions and their limits.

The gradient of this function is then projected onto the null space projection matrix

of the Jacobian, allowing to move the joints away from limits without affecting the

end-effector position. This method has a few drawbacks, as it does not guarantee

minimization of the criterion for each individual joint, and additional coefficients need

to be used to properly tune the self-motion magnitude.

Control approaches based on a barrier function [Ngo and Mahony, 2006; Prajna

and Jadbabaie, 2004; Tee et al., 2009; Wieland and Allgöwer, 2007] may also allow

for joint limit avoidance of redundant position-controlled manipulators, as proposed

in [Atawnih et al., 2016].

Instead, [Prete, 2018] presents an algorithm to estimate bounds on joint accelerations,

that, if respected, ensure that joint position, velocity and torque limits can be avoided

in future joint trajectories of a torque-controlled manipulator.

In humanoid whole-body motion control, unilateral virtual springs and spring-

dampers have been implemented around joint limits to generate torques repelling from

the bounds [Dietrich et al., 2011; Moro et al., 2013]. Another possibility for humanoid

robots is to solve whole-body motion as an optimization problem with inequality

constraints corresponding to joint limits [Feng et al., 2014; Herzog et al., 2014; Hopkins

et al., 2015; Tassa et al., 2014]. In all of these works, however, the theoretical guarantee

of the stability and convergence properties associated with the evolution of the system

is still missing.

Furthermore, in the case of robots co-existing and collaborating with humans, it

is not only important to produce motions which avoid joint limits, but controllers

that can actually avoid joint limits while coping with perturbations, such as unknown

external forces applied on the robot.

What can also be highly beneficial for human-robot collaboration, is to produce

motions of a humanoid robot which are easily understandable to humans. For this

purpose, controllers that allow to keep balance while producing human-like whole-body

motions also need to be investigated.

1.2 Related work 12

1.2.4 Whole-body teleoperation

To this day, the design of efficient and safe controllers for humanoid robots remains

challenging [Ivaldi et al., 2016], especially for applications involving locomotion and

manipulation, as well as interaction with the environment [Kuindersma et al., 2016]

and with human partners [Otani et al., 2018; Romano et al., 2018].

As mentioned above, the whole-body control problem is most often formulated as

QP [Otani et al., 2018]. It involves concurrently solving a certain number of tasks on

end-effectors, joints or relevant body parts, at each control step. Therefore, one has

to specify the target trajectories to be performed for each task. The design of such

trajectories is often time-consuming. In many situations, for instance when complex

manipulations and locomotions are involved, trajectories are manually tuned by an

expert [Norton et al., 2017], or may be optimized offline [Modugno et al., 2017].

However, in the case of robots co-existing and collaborating with humans, it is not

only important to produce motions which are feasible and efficient, but they should

also be legible, i.e., easily understandable for the people working with the robot

[Dragan et al., 2013]. This requirement is particularly important for humanoid robots,

and can be translated into producing human-like motions, either by design, through

optimization, or by resorting to whole-body human imitation [Ott et al., 2008].

The latter solution consists in reproducing the motion of a human operator onto

the robot. Such techniques, known as motion retargeting (or teleoperation, in the

real-time case) could then be used to demonstrate human-like movements to the robot,

as a way to achieve complex behaviors such as loco-manipulation and collaborative

policies. The ability to retarget complex human movements in real-time by imitating

the operator has countless applications, ranging from enabling human demonstrations

for complex tasks (eliminating the manual tuning or expert tuning problem), to enabling

remote control of robots in dangerous, extreme or disaster response scenarios.

Several motion retargeting approaches proposed in the literature are implemented

offline, allowing to retarget challenging multi-contact motions that affect the distribution

of the weight of the robot. For instance, [Yamane and Nakamura, 2003] propose a filter

that converts motion capture data into feasible joint trajectories for a human figure,

provided a list of constraints. This approach allows for successful contact switching,

but involves extensive parameter tuning for each desired behavior of the robot. In later

work [Yamane and Hodgins, 2009], a framework combining a balance controller and a

1.2 Related work 13

controller tracking joint angles from motion capture data, has shown to allow offline

whole-body motion retargeting onto a humanoid robot in double support conditions,

but again requiring careful parameter tuning.

Instead, in [Ayusawa and Yoshida, 2017], an optimization problem is defined in

order to find optimal generalized coordinates and properties of a human model and of

a robot model, under constraints that ensure balance and limitations in the movement

of the robot. This method is demonstrated for retargeting whole-body motions from

offline motion capture in double support conditions. In [Kanajar et al., 2017; Otani

and Bouyarmane, 2017], QP frameworks are used for retargeting complex motions such

as climbing over an obstacle or box lifting. In these works, multi-contact motions are

retargeted offline onto the robot, given the pre-processed sequence of contact events.

Notably, the offline formulation makes it possible to process and clean up the

motion capture data, as well as to specifically tune the retargeted robot trajectories

[Fava et al., 2016; Otani and Bouyarmane, 2017; Yamane and Hodgins, 2009; Yamane

and Nakamura, 2003], as a way to fit the demonstrated motions more closely. However,

such facilitations cannot be used in real-time. For this reason, walking represents one

of the most highly challenging multi-contact motions to have been addressed so far in

the teleoperation scenario.

Therefore, first teleoperation works have been concerned only with upper-body

movements [Brygo et al., 2014; Dariush et al., 2009; Fritsche et al., 2015; Shin and Kim,

2010]. Whole-body movements then started to be included in teleoperation frameworks,

with joysticks being used to control walking and end effector motions, such as in [Sian

et al., 2002; Stilman et al., 2008]. Motion capture systems, having the potential to

allow for more complex motions, have then been used for teleoperation. For example,

[Koenemann et al., 2014] proposes a method based on a simplified model of the human,

to allow the retargeting of transitions between double and single stance phases onto

the NAO robot. In [Elobaid et al., 2018], joy-pads are used to teleoperate the arms of

the iCub robot. Furthermore, the walking of the robot is teleoperated separately (but

not simultaneously) with an immersive scenario using a virtual reality headset and a

walking platform. Instead, in [Hu et al., 2014], the authors teleoperate exclusively the

walking onto TORO, considering the human footsteps and leg joints configuration.

However, in such frameworks, few parts of the robot body are directly taken into

consideration for the retargeting, in contrast to whole-body retargeting. Typically,

the position of the end effectors (EE) of the human operator are properly scaled to

1.3 Contributions 14

match the dimensions of robot links, then retargeted onto the robot by using an inverse

kinematics (IK) formulation which generates feasible configurations within joints limits.

Indeed in the literature, work addressing whole-body motion retargeting is generally

based on the consideration that human motions are assigned locally and indepen-

dently. Hence, the retargeting of leg motions, which is more involved with balance,

is treated separately from upper-body motion retargeting, which is more involved

with manipulation tasks. For instance, tracking leg motions may be neglected, in

order to use the lower-body specifically for keeping balance, as in [Ott et al., 2008],

where the teleoperation problem is split between retargeting the position of human

motion capture markers on the upper-body joints, while a separate balancing algorithm

controls the lower-body (legs and hips). This concept is also applied in [Kim et al.,

2013], in order to separately retarget upper-body motions and walking.

In these works, the classical motion retargeting approaches are not applicable to

the robot body parts which are the most involved in a dynamic movement, e.g. legs

and feet, particularly when footsteps and contact transitions are involved. For this

reason, so far, the teleoperation of upper-body manipulation tasks has generally been

dissociated from challenging lower-body motions such as walking.

Conversely, real-time teleoperation of whole-body movements is achieved in [Ishiguro

et al., 2017, 2018; Penco et al., 2018]. In [Ishiguro et al., 2017, 2018], reference joint

trajectories are computed from EE motion capture data, using IK and a stabilizer to

ensure balance. As noted by the authors however, IK can limit the achievement of

movements approaching human speed. In [Penco et al., 2018] instead, a retargeting

framework using a dynamic filter and a QP-based controller is proposed, in order to

maintain balance while retargeting whole-body motions, but this method has been

verified only for double support conditions.

1.3 Contributions

In response to the gaps in the literature evidenced in section 1.2, the present thesis

offers the contributions introduced in the following paragraphs.

Contributions are tested using an optimization-based whole-body control framework,

developed as the base of this work. The framework established in this thesis is

formulated to be readily available for eventual dynamic locomotion tasks, and is rather

1.3 Contributions 15

standard with respect to state of the art whole-body controllers. In spite of that,

it notably has the modest contribution of defining control laws in SE(3), which

circumvent the singularities typically introduced by Euler parameters in the control of

orientation tasks. It is used in [Dafarra et al., 2018], as part of a control architecture

developed for torque-controlled walking.

We then investigate a joint limit avoidance approach which can cope with

external perturbations, and for which convergence and stability can be theoretically

proven. A novel solution is proposed in the form of feedback control laws based on a

parametrization of the feasible joint space, as published in [Charbonneau et al., 2016].

Following this work, we dive into the subject of tuning for controllers based on

quadratic programming. Since information on the subject is currently limited in the

literature, we have collected data regarding the effort generally spent tuning

QP-based controllers through a survey distributed to researchers working in related

fields. This information brings to light an interest of the community in the development

of tools for tuning QP-based controllers.

As a response, tuning methods which allow for an easier deployment of controllers,

and for transferability of the results achieved in simulation, are proposed. They

consist in a framework developed for automatically learning task priorities while

encouraging a higher robustness of the controller towards external perturbations and

different working conditions, as published in [Charbonneau et al., 2018].

Finally, a whole-body control framework for teleoperation is proposed, in

order to allow simultaneous upper-body and lower-body movements. A controller is

developed to ensure robustness to generic reference trajectories, allowing the robot

to keep balance while performing whole-body movements retargeted from a human

operator to the robot. This work has been submitted for publication at a peer reviewed

international conference as [Charbonneau et al., 2019].

Note that for our purpose, in this thesis we simplify the architecture of figure 1.3,

concentrating on the last block, as shown in figure 1.4.

1.4 Notation 16

Whole-body

optimization-

based control

robot

User-defined

motions

control

input

Figure 1.4 The control architecture used for whole-body control in this thesis. The user
defines trajectories for the robot (e.g. feet, CoM, joint trajectories), which are directly used
by the whole-body optimization-based controller to compute the control input (e.g. contact
forces and joint torques) that allows the robot to achieve the desired motion.

1.4 Notation

The following notation is used throughout the thesis.

• The set of real numbers is denoted by R.

• 1n ∈ Rn×n denotes the identity matrix of dimension n.

• 0n×m ∈ Rn×m is the zero matrix of dimension n×m.

• The · operator denotes the inner product of vectors in R3.

• The transpose operator is denoted by (·)⊤.

• The hat operator denoted by (·)∧ is the skew-symmetric operator associated with

the cross product in R3.

• The vee operator denoted by (·)∨ is the inverse of the (·)∧ operation, transforming

a skew-symmetric matrix in R3×3 into a vector in R3.

• The skew(·) operator extracts the skew-symmetric matrix skew(A) = 1
2
(A−A⊤)

for any matrix A ∈ R3.

• The tr(·) operator denotes the trace operator over square matrices.

• The Euclidean norm of a vector of coordinates v ∈ Rn is denoted by ♣v♣.

• Given a time function f(t) ∈ Rn, its first- and second-order time derivatives are

denoted by ḟ(t) and f̈(t), respectively.

• ARB ∈ SO(3) and ATB ∈ SE(3) denote the rotation and transformation matrices

which transform a vector expressed in the B frame into a vector expressed in the

A frame.

1.5 Thesis outline 17

• The Moore-Penrose pseudoinverse is denoted by (·)†.

• The tilde operator denoted by (̃·) denotes the expression (·)− (·)d, i.e. the

difference between the value of a variable (·) and its desired value (·)d.

1.5 Thesis outline

The remaining of the thesis is organized as follows.

Chapter 2 introduces whole-body control frameworks for torque-controlled humanoid

robots, based on quadratic programming. The controllers are based on the stack-of-

tasks approach, with an emphasis on Cartesian and postural tasks. This chapter serves

as the foundation of the thesis, on top of which the rest of the chapters are built.

Then, chapter 3 introduces novel control laws to ensure joint limit avoidance,

adapted for torque-control. These control laws are based on parametrization of the

feasible joint space, making joint limit avoidance an intrisic property of the controller.

The proposed approach is shown to be successfully applied to the control of a fixed-base

manipulator, as well as the whole-body control of a humanoid robot.

Following the observation that tuning takes an important role in the development of

our whole-body controllers, a survey on the subject of parameter tuning for QP-based

controllers has been developed in order to investigate if this is a general issue in the

community. Chapter 4 presents the survey and its results, which encourage us to

propose, in chapter 5, a new automatic tuning method for adjusting task priorities

of whole-body controllers. We demonstrate the effectiveness of the approach by

transferring results between different robot models, without re-tuning parameters.

Next, building on the results obtained in the previous chapter, chapter 6 presents

a whole-body control framework targeting the achievement of generic whole-body

trajectories. A retargeting module is proposed, in order to define robot trajectories

from human motions. When coupled to a finite state machine to define center of mass

and feet trajectories, the proposed method is shown to allow the achievement of generic

footsteps, as well as simultaneous real-time upper-body teleoperation and walking of

the robot.

Finally, chapter 7 wraps up the thesis and provides some closing remarks.

Chapter 2

Optimization-based whole-body

torque-control for humanoid robots

As this thesis is concerned with developing whole-body control methods to increase

the autonomy of humanoid robots and their capacity to safely interact with people

and the environment, the present chapter introduces the foundation on which the rest

of the thesis is built.

Section 2.1 first acts as a recall on the modeling of floating-base robots for whole-

body control. Section 2.2 then lays out a general framework for optimization-based

whole-body torque-control of humanoid robots. It is based on the stack-of-tasks

approach, and formulated to be readily available for eventual dynamic locomotion

tasks. While recalling techniques for task stabilization, the formulation of a control

policy in SE(3) is notably proposed, as an alternative to the typical control policies

which rely on Euler parametrization for orientation tasks.

Defined as an optimization problem, the controller can be solved through QP in

order to obtain control inputs for the robot. Cost functions are defined such that a

single optimization problem is solved, for all tasks of the stack-of-tasks. Therefore,

with this formulation, there is no need to solve lower-priority tasks projected onto the

null-space of higher priority tasks through a series of optimization problems.

With this framework, various formulations of the control problem may be defined,

using different combinations of tasks and hierarchization strategies. Two main ways to

define hierarchies between tasks can be defined: (i) “strict” prioritization, which takes

higher priority tasks as constraints to lower priority tasks, and (ii) “soft” prioritization,

2.1 Modelling of floating-base systems 19

for which a weight is attributed to each task according to its priority, allowing to

achieve a tradeoff between tasks. From there, strict and soft priorization strategies of

the different tasks can be combined together, in order to formulate the control problem.

Furthermore, various definitions of a finite state machine used with the controller and

the associated parameters may also be chosen, according to the application.

A few main iterations of this framework are presented in section 2.3, defined with

different tasks, finite state machine and parameters. Discussing their differences allows

to explore how changes may affect the results achieved with the control framework, as

presented in section 2.4. The whole-body control framework has been implemented for

the iCub, allowing to experimentally validate its performance.

2.1 Modelling of floating-base systems

For the purpose of whole-body control, it is assumed that the robot is a multibody

system composed of n + 1 rigid bodies, called links, connected by n joints with 1 DOF

each. If one of the links has a constant pose with respect to an inertial frame I, then

this fixed link is referred to as the base, and the multibody system is considered as

fixed-base. However, if none of the links has an a priori constant pose with respect

to the inertial frame I, the system is considered free-floating, or floating-base. In this

case, the system is subjected to contact constraints, and it can be modelled as follows.

The configuration space of the robot can be characterized by the position and

orientation of a frame attached to a link of the robot (called base frame B) and the

joint configurations. Thus, the configuration space is defined by

Q = R3×SO(3)×Rn (2.1)

An element of Q is then a triplet

q = (IpB, IRB, s) (2.2)

where (IpB, IRB) denotes the origin and orientation of the base frame expressed in

the inertial frame, and s denotes the joint angles.

2.1 Modelling of floating-base systems 20

It is possible to define an operation associated with the set Q such that this set is

a group. Given two elements q and ρ of the configuration space, the set Q is a group

under the following operation.

q ·ρ = (pq +pρ,RqRρ, sq + sρ) (2.3)

Furthermore, one easily shows that Q is a Lie group. Then, the velocity of

the multibody system can be characterized by the algebra V of Q defined by V =

R3×R3×Rn. An element of V is then a triplet

ν = (I ṗB, IωB, ṡ) = (vB, ṡ) (2.4)

where IωB is the angular velocity of the base frame expressed with respect to the

inertial frame, i.e. IṘB = S(IωB)IRB.

We also assume that the robot is interacting with the environment, exchanging nc

distinct wrenches1. The application of the Euler-Poincaré formalism [Marsden and

Ratiu, 2010, chapter 13.5] to the multibody system yields the following equations of

motion:

M(q)ν̇ +h(q,ν) = ζτ +
nC
∑

k=1

J⊤
ck

fk (2.5)

where M ∈ Rn+6×n+6 is the mass matrix, h ∈ Rn+6 is the bias vector of Coriolis and

gravity terms, τ ∈Rn is a vector representing the actuation joint torques, ζ = (0n×6,1n)⊤

is a selector matrix, and fk ∈ R6 denotes the k-th external wrench applied by the

environment on the robot. We assume that the application point of the external wrench

is associated with a frame Ck, attached to the link on which the wrench acts, and has

its z axis pointing in the direction of the normal of the contact plane. The external

wrench fk is expressed in a frame which has the same orientation as the inertial frame,

and has its origin in Ck, i.e. the application point of the external wrench fk.

The Jacobian Jck
= Jck

(q) is the map between the robot velocity ν and the linear

and angular velocities IvCk
:= (I ṗCk

, IωCk
) of the frame Ck, i.e. IvCk

= Jck
(q)ν.

1As an abuse of notation, we define as wrench a quantity that is not the dual of a twist.

2.2 Optimization-based whole-body torque-control framework 21

The Jacobian has the following structure:

JCk
(q) =

[

JbCk
(q) JjCk

(q)
]

∈ R6×n+6 (2.5a)

JbCk
(q) =





13 −S(IpCk
−I pB)

03×3 13



 ∈ R6×6 (2.5b)

Lastly, it is assumed that holonomic constraints act on system (2.5). These

constraints are of the form c(q) = 0 and may represent, for instance, a frame having

a constant pose with respect to the inertial frame. In the case where this frame

corresponds to the location at which a contact occurs on a link, we represent the

holonomic constraint as:

JCk
(q)ν̇ + J̇Ck

(q,ν)ν = 0 (2.6)

2.2 Optimization-based whole-body torque-control

framework for floating-base systems

A general framework for optimization-based whole-body control may be defined as

in figure 2.1, where a state machine defines desired robot trajectories, in accordance

with a user-defined stack-of-tasks. Using these trajectories, feedback control policies

compute desired accelerations of the robot. The whole-body torque-control problem is

then formulated as an optimization problem based on the stack-of-tasks. It is solved in

the form of a QP, to obtain a control input for the robot.

In order to describe in detail the whole-body torque-control problem, the following

subsections first define the control input for the robot and elementary tasks to be

performed by the robot as a stack-of-tasks. An optimization problem is then defined

in order to compute the control input that stabilizes the desired tasks.

2.2 Optimization-based whole-body torque-control framework 22

Finite

state

machine

Feedback

control

policy

Optimization-

based

controller robot

desired task

trajectories

reference task

accelerations u

robot trajectories

sec. 2.2.3 sec. 2.2.4

Figure 2.1 Overview of the proposed method. A whole-body controller computes the control
input achieving a combination of task trajectories as defined in the finite state machine.

2.2.1 Control input

With floating base systems, the trajectory of the base must be accounted for, as well

as the exchange of forces between the robot and the environment. In particular, the

robot can generally exchange only pressure and friction forces with the environment.

Also, since the base is free to move around, not all degrees of freedom of a floating-base

system may be fully controlled, which makes it an underactuated system. The 6 DOFs

associated to the base pose therefore are not directly controllable, but controlling the

contact forces exchanged with the environment allow to stabilize the motion of the

floating base.

The problem of whole-body torque-control is generally achieved through inverse

dynamics computations, and it can be set in different ways, e.g. finding the joint

torques τ that are consistent with desired ground reaction forces fc, or finding the τ

and fc that are consistent with the desired robot acceleration ν̇. In other words, for

the latter case, one seeks to control the right hand side of equation (2.5).

Therefore, the control input u, composed of joint torques and contact forces, may

be defined as follows.

u =





τ

fc



 (2.7)

where fc ∈ R6nc is a stacked vector of contact wrenches, of which the associated

contact Jacobian Jc is stacked in the same way. With this definition, the system

dynamics of equation (2.5) can be reformulated as the following.

M(q)ν̇ +h = Bu (2.8)

2.2 Optimization-based whole-body torque-control framework 23

where

B =
[

ζ J⊤
c

]

(2.9)

The control input u which achieves a desired motion of the robot is however not

unique, and to deal with this redundancy, one may be concerned with defining a certain

number of quantitites, or tasks, related to the movement of the robot.

2.2.2 Stack-of-tasks for whole-body torque-control of a hu-

manoid robot

For realizing whole-body motions, a number of elementary quantities related to the

movement of the robot need to be controlled. The realization, or stabilization, of each

one of these quantities shall be referred to as a task.

For example, a Cartesian task would concern the movement of a frame attached to

the robot, while a postural task the movement of joints of the robot. Additionally, a

contact task would concern the forces applied at contact points with the environment,

in order to ensure that a contact remains fixed through the use of Coulomb fiction

cones. Thus, a stack-of-tasks represents the hierarchy of tasks which the robot must

achieve simultaneously.

For the particular case of humanoid robots, the following examples of tasks can

be proposed. The movement of the CoM ideally needs to be stabilized in order to

keep balance, while moving the feet allows to perform walking motions. Furthermore,

in order to prevent the feet from slipping on the ground, it may be important to

keep the contact forces exchanged with the environment within the associated contact

constraints.

However, these few tasks are not sufficient to define the movement of all DOFs

composing the robot, as the upper-body also needs to be taken into account. For

instance, when walking, the body may need to be kept upright and facing in the

walking direction. Also, redundancy of the robot needs to be accounted for. Indeed,

while a redundant robot may be able to achieve desired movements of an end effector

through different trajectories of the joints, some trajectories may be more desirable

than others. A postural task may be used in order to encourage the generation of more

desirable trajectories, and minimizing the effort extended by the robot may allow to

produce more regular movements.

2.2 Optimization-based whole-body torque-control framework 24

Note however that of the control input, only joint torques are to be minimized.

Indeed, as explained in [Romano et al., 2017] minimizing contact wrenches would have

the undesirable effect of enforcing an almost constant vertical force at the contacts,

independently of the center of mass position.

This list of simple tasks can be formalized as a stack-of-tasks, for instance with the

following list of objectives:

– Stabilize the contact of the feet with the ground

– Stabilize the center of mass position pCoM ∈ R3

– Stabilize the left foot pose TLfoot ∈ SE(3)

– Stabilize the right foot pose TRfoot ∈ SE(3)

– Stabilize the orientation of a frame on the upper-body Rub ∈ SO(3)

– Track joint positions (postural task) s

– Minimize joint torques τ

Figure 2.2 illustrates the position on the iCub of each of the four frames concerned

by the Cartesian tasks: CoM, feet and a frame on the upper-body. In this case, the

upper-body frame is chosen on the root link, but it could just as well be on the torso

or the head.

Figure 2.2 Frames considered in the control framework of section 2.3.2: a for the center of
mass position, b for the root link orientation, c for the left foot pose and d for the right foot
pose; c also shows the x-y-z convention.

2.2 Optimization-based whole-body torque-control framework 25

Other combinations of tasks can eventually be used in order to control whole-body

movements through a stack-of-tasks. For example, if one is interested in having a more

precise control of the hands, stabilization of the hand poses can be used as well.

Nonetheless, recall that the configuration space of the robot evolves in a group of

dimension1 n+6. Hence, besides pathological cases, when the system is subject to a set

of holonomic constraints of dimension k, the configuration space shrinks into a space

of dimension n + 6−k. Similarly, when the combined tasks amount to a dimension

larger than n + 6, it may not be possible to achieve all of the desired task motions

simultaneously.

2.2.3 Stabilization of tasks

Given a certain number of Cartesian, postural and contact tasks for a controller, each

of them needs to be stabilized in some way. It can be done for instance as detailed in

the following paragraphs.

Stabilization of Cartesian tasks

In order to stabilize a Cartesian task, i.e. the pose, position or orientation of a frame

T attached to the robot, the velocity vT of this frame can be computed from the

associated Jacobian JT and the robot velocity ν with the following expression.

vT = JT ν (2.10)

Deriving this expression with respect to time yields the acceleration of the frame

associated to the task:

v̇T = J̇T ν +JT ν̇ (2.11)

In view of equation (2.8) and (2.11), task frame accelerations v̇T can be formulated

as a function of the control input u:

v̇T (u) = J̇T ν +JT M−1(Bu−h) (2.12)

1We refer here to the dimension of the associated algebra V as introduced in section 2.1

2.2 Optimization-based whole-body torque-control framework 26

Stabilization of a frame associated to a Cartesian task may then be attempted by

minimizing the error on its acceleration ˜̇vT (u), given a feedback term v̇∗
T , as follows.

˜̇vT (u) = v̇T (u)− v̇∗
T (2.13)

Typically, the feedback term v̇∗
T is composed of reference linear accelerations

obtained with a proportional-derivative (PD) feedback control policy, and reference

angular accelerations obtained through Euler parametrization.

Here, instead, we propose to compute reference accelerations with a proportional-

derivative feedback control policy in SE(3). What is particular in this method is

the computation of reference angular accelerations as proposed in [Olfati-Saber, 2001,

section 5.11.6, p.173], which has the advantage to avoid the creation of artificial

singularities caused by the use of Euler parametrization. This is a novel application of

such a control policy, in the field of humanoid robotics.

The following paragraphs describe the proposed policies for stabilizing a desired posi-

tion and orientation (pd,Rd) of a frame B, given its configuration (p,R) := (IpB, IRB).

The position and orientation problems are treated separately, in order to define

desired linear and angular accelerations (p̈∗, ω̇∗) := (I p̈∗
B, I ω̇∗

B). As such, control of a

frame in SE(3) can be attempted using the control laws (2.15) and (2.26) yielding the

desired frame acceleration as follows:

v̇∗ =





p̈∗

ω̇∗



 (2.14)

Stabilization of a desired position

The desired linear acceleration is computed using the following PD feedback control

policy:

p̈∗ = p̈d−KPl
(p−pd)−KDl

(ṗ− ṗd) (2.15)

where KPl
> 0 and KDl

> 0 are the linear proportional and derivative gains, and the

subscript d indicates desired values.

2.2 Optimization-based whole-body torque-control framework 27

Stabilization of a desired orientation

The problem of stabilizing a desired orientation R ∈ SO(3), on the other hand,

may not be straightforward. For instance, the topology of SO(3) forbids the design of

smooth controllers that globally asymptotically stabilize a reference orientation [Bhat

and Bernstein, 2000]. In consequence, quasi-global asymptotic stability is commonly

guaranteed by orientation controllers.

As a way to achieve it, the distance between a desired attitude Rd and the current

R can be measured using the following function.

δ(R,Rd) =
1

2
tr(13−RR⊤

d) (2.16)

It has been shown in [Olfati-Saber, 2001, section 5.11.6] to be equivalent, up to

a constant multiplicative factor, to the Euclidean distance measured using a 3D

orthonormal basis.

Note that as discussed in [Olfati-Saber, 2001, section 5.11.6], the rotation θ around

a unit vector k can be expressed using Rodrigues’ formula as follows.

R(K,θ) = 13 + sinθk∧ +(1− cosθ)k∧2 (2.17)

As a result,
1

2
tr(13−R(K,θ)) = 1− cosθ ≤ 2 (2.18)

Thus, 1
2
tr(13−R) : SO(3)→ [0,2].

Furthermore, letting ωd = (R⊤
d Ṙd)

∨, an important property of δ(R,Rd) is that the

time derivative of δ(R,Rd) yields the following expression.

δ̇(R,Rd) = skew(RR⊤
d) · (Bω − Bωd) (2.19)

As a result, the following lemma is proposed in [Olfati-Saber, 2001, section 5.11.6].

Lemma 1 The state feedback law

ω = ωd− c0skew(R⊤
d R)∨ (2.20)

2.2 Optimization-based whole-body torque-control framework 28

where c0 > 0, (almost) globally asymptotically stabilizes the equilibrium δ = 0 of

δ̇ = skew(R⊤
d R)∨ · (ω−ωd) (2.21)

for all δ(0) ̸= 2.

The proof considers the closed-loop system

δ̇ =−c0

∣

∣

∣skew(R⊤
d R)∨

∣

∣

∣

2
(2.22)

where δ̇ < 0 for δ > 0. Then, in order to show that skew(R⊤
d R)∨ = 0 implies δ = 0,

one must have that R⊤
d R is a symmetric matrix. In this case, SO(3) allows for two

possibilities of symmetric matrices, as can be deducted from Rodrigues’ formula: 13,

and 13 + 2k∧2, with k ∈ R3 an arbitrary vector. R⊤
d R = 13 means that δ(R,Rd) = 0,

while R⊤
d R = 13 +2K∧2 means that δ(R,Rd) = 2. The assumption that δ(0) ̸= 2 allows

to avoid having more than a single equilibrium point, by making R⊤
d R = 13 the only

acceptable solution for skew(R⊤
d R)∨ = 0, which implies R = Rd, making δ = 0 the

only invariant equilibrium that proves (almost) global asymptotic stability of δ = 0 for

δ(0) < 2.

Stabilizing the orientation of a frame can then be achieved through the following

lemma, obtained from [Olfati-Saber, 2001, section 5.11.6].

Lemma 2 Consider the following orientation dynamics:










Ṙ = ω∧R

ω̇ = ω̇∗
(2.23)

where ω̇∗ ∈ R3 is considered as control input. Assume that the control objective is the

asymptotic stabilization of a desired attitude (Rd(t), ωd(t)) ∈ SO(3)×R3.

Let the term λ be defined as follows

λ = K0ωskew(R⊤
d R)∨ (2.24)

which yields the following time derivative.

λ̇ = K0ωskew(R⊤
d RBω∧ − Bω∧

dR⊤
d R)∨ (2.25)

2.2 Optimization-based whole-body torque-control framework 29

Then,
Bωd = R⊤

d ωd (2.26a)

Bω̇∗ = −K0ωK1ωskew(R⊤
d R)∨

−K1ω(Bω − Bωd)

− λ̇

(2.26b)

ω̇∗ = R Bω̇∗ + ω̇d (2.26c)

renders the equilibrium point (R,ω) = (Rd,ωd) quasi-globally stable, for all δ(0) ̸= 2.

K0ω > 0 and K1ω > 0 are gains of the rotational control laws.

The rotational control laws proposed above have been proven in [Olfati-Saber, 2001,

section 5.11.6] for (almost) global exponential stability, using Lyapunov analysis based

on the following candidate Lyapunov function.

V = 2K0ωK1ωδ(R,Rd)+
1

2

∣

∣

∣

Bω−λ
∣

∣

∣

2
> 0 (2.27)

Its time derivative yields the following result, using the closed-loop dynamics of the

system.

V̇ = 2K0ωK1ωskew(RR⊤
d) · (Bω − Bωd)+(Bω−λ) · (Bω̇− λ̇) (2.28a)

=−K1ω

∣

∣

∣(Bω − Bωd)
∣

∣

∣

2−2K0ωK1ω

∣

∣

∣skew(R⊤
d R)∨

∣

∣

∣

2
(2.28b)

The term “(almost)” is therefore used due to the fact that V̇ < 0 for (R,ω) ̸= (Rd,ωd).

Note that, as explained for lemma 1, the control policy assumes δ(0) ̸= 2.

Stabilization of postural tasks

In order to stabilize a postural task, the process is similar to the one presented for

Cartesian tasks in section 2.2.3. In view of equation (2.8), one can obtain s̈(u), a

formulation of the joint accelerations s̈ as a function of the control input u:

s̈(u) = ζ⊤
[

M−1(Bu−h)
]

(2.29)

2.2 Optimization-based whole-body torque-control framework 30

Stabilization of the postural task may then be attempted by minimizing the error on

the joint accelerations ˜̈s(u), given a feedback term s̈∗.

˜̈s(u) = s̈(u)− s̈∗ (2.30)

Typically, the feedback term s̈∗ consists in reference accelerations obtained with a PD

feedback control policy.

s̈∗ = s̈d−KDs(ṡ− ṡd)−KPs(s− sd) (2.31)

where the subscript d indicates desired values, and KPs , KDs are feedback gain matrices

with different gain values for each joint. Alternatively, s̈∗ can eventually be obtained

through inverse kinematics by taking into account Cartesian tasks.

Stabilization of contact tasks

In order to stabilize a contact, forces exchanged between the robot and the environment

at the contact must be constrained in some way, for example as proposed in [Caron

et al., 2015].

First, in order for the contact to exist, the normal component of the reaction force

fkz (e.g. along the z−axis, when considering the contact plane to be on the x− y

plane) should remain positive, or larger than a threshold value fkzmin
> 0).

fkz > fkzmin
(2.32)

Then, in order to prevent slipping of the robot on the contact surface, the tangential

component of the ground reaction force fkt
(e.g. the norm of the forces along the x−

and y−axes) should not be larger than fkz multiplied by the Coulomb static friction

coefficient associated to the contact surfaces µc:

♣fkt
♣< µcfkz (2.33)

The projection of the constraint (2.33) on the contact plane shows that the tangential

forces must remain within a circle of radius µcfkz . Thus, the total reaction force, when

considered along the x−, y− and z−axes, is constrained within the shape of a cone,

which explains why it is usually described as the “friction cone”. In order to make

2.2 Optimization-based whole-body torque-control framework 31

its computation easier, the circular shape can be approximated with straight lines

intersecting in a given number nv of vertices, and nv constraints are then defined (one

for each vertex).

To prevent also slipping due to torsion, the torsional friction about the z−axis,

given a static torsional friction coefficient µt, is also considered with the following

constraint.

−µtfkz < τz < µtfkz (2.34)

Note that this constraint neglects the torsional effect of forces and moments acting

along and about the x− and y−axes over the surface of the support polygon. A

formulation of the constraint on τz considering those can be found in [Caron et al.,

2015]. Nonetheless, in this work we prefer to use the approximation of equation (2.34),

as it only relies on the precise estimation of fkz .

Additionally, in order to ensure stationary contacts, the center of pressure (CoP)

needs to remain within the support polygon. Constraints on the position of the CoP

can then be expressed as a linear inequality, given the expression of the reaction force

at the zero moment point.

−dx <
τy
fkz

< dx (2.35a)

−dy <
τx
fkz

< dy (2.35b)

where the reaction force is assumed to be measured in the middle of the contact, and

the contact is a rectangle of dimensions 2dx×2dy.

Rearranging the equations (2.32) to (2.35) and combining them together, the contact

constraints can the be formulated as linear inequality constraints of the following form.

Cu≤ b (2.36)

Note that besides the inequality constraint of equation (2.36), a rigid contact with

the environment should keep a constant pose of the frame attached to the robot at

the location where contact occurs, with respect to the inertial frame. This can be

represented as the holonomic constraint of equation (2.6), and can be achieved by

tracking the frame acceleration to zero, as described in section 2.2.3.

2.2 Optimization-based whole-body torque-control framework 32

2.2.4 Whole-body control optimization problem

The complexity of floating-base systems, such as humanoid robots, often makes it

easier to solve inverse dynamics through optimization. In particular, the whole-body

control problem shows to be well posed for quadratic programming [Escande et al.,

2010; Righetti et al., 2013; Righetti and Schaal, 2012]. In this case, a QP solver is

used as a block box which, given a quadratic objective function with linear equality

and inequality functions, returns the optimal control input. The whole-body control

problem formulation is then often of the shape described in [Del Prete and Mansard,

2016]:
u∗ = argmin

u
♣Xu−x♣2 (2.37a)

subject to Dequ+deq = 0 (2.37b)

Du+d≤ 0 (2.37c)

where the cost function represents the squared error on the task accelerations, which

for torque-controllers is generally defined to stabilize centroidal momentum dynamics,

Cartesian or postural tasks [Herzog et al., 2014; Lee and Goswami, 2012; Nava et al.,

2016; Salini et al., 2011; Stephens and Atkeson, 2010]. The equality constraint defined

by Deq and deq can be used to represent the system dynamics (2.5) and contact

acceleration constraints (2.6). The inequality constraints defined by D and d can be

used, among other things, to define joint limits or contact constraints.

The optimized quantity u, for its part, may be defined from different combinations of

the robot acceleration, joint torques and contact forces, depending on the formulation

of the control problem. For instance, assuming that any control objective can be

expressed as a linear combination of ν̇, fc and τ , one can define u = (ν̇, fc, τ) [Del Prete

and Mansard, 2016]. As proposed in [Herzog et al., 2016; Pucci et al., 2016a], the

system dynamics (2.5) can be decomposed in such a way as to decouple joint and

base frame accelerations, allowing to express joint torques τ as a linear combination of

joint accelerations s̈ and contact forces fc. It results that, for increased computational

efficiency, the optimization problem can be solved in terms of u = (ν̇, fc).

In a similar fashion, the robot acceleration ν̇ can be obtained as a linear combination

of τ and fc, under the assumption that M is well posed, by reorganizing equation (2.8)

as follows.

ν̇ = M−1(Bu−h) (2.38)

2.3 Implementation of optimization-based whole-body torque-controllers 33

Task accelerations can then be formulated in function of τ and fc, as shown in

equations (2.11) and (2.29). This formulation therefore integrates system dynamics

into the objective function of the optimization problem, which then does not require

the use of constraints representing system dynamics. Such a procedure then makes

it advantageous to obtain desired joint torques directly from the solution of the

optimization problem, formulated in terms of u =
[

τ⊤ f⊤
c

]⊤
.

From there, algebraic manipulation allows to reformulate the problem (2.37) as QP:

u∗ = argmin
u

1

2
u⊤Hu+u⊤g (2.39a)

subject to b≤ Au≤ b̄ (2.39b)

where the Hessian matrix H is symmetric and positive definite and g is the gradient

vector. A is the constraint matrix, with b and b̄ the associated lower and upper

constraint vectors.

In order to define the controller as an optimization problem, a hierarchy of tasks

needs to be defined. The interest of the stack-of-tasks approach is that it allows the

definition of various hierarchization strategies, which may be a combination of “strict”

and “soft” task priorities. Section 2.3 shall explore the development of different tasks

and hierarchization strategies for the framework we just defined, while section 2.4

compares the results they can achieve.

2.3 Implementation of optimization-based whole-

body torque-controllers

The flexibility offered by the framework defined in section 2.2 allows to define a

controller using several different configurations (i.e. different tasks, task hierarchy,

finite state machine and controller parameters), in order to achieve a desired behavior

of the robot. Therefore, through an iterative process, we have defined a series of

whole-body torque-controllers for the iCub. The following subsections discuss three

main implementations of the controller.

2.3 Implementation of optimization-based whole-body torque-controllers 34

1. Contact and Cartesian tasks are strictly hierarchized with respect to other tasks.

2. A soft tasks hierarchy is defined between Cartesian and postural tasks, while the

contact task keeps a strict higher priority. A finite state machine consisting of 11

states is defined for stepping motions.

3. A soft tasks hierarchy, similar to the one in the second implementation, is defined,

but with different tasks, and a new state machine is defined with only 5 states

for stepping motions.

The results achieved with each of these controllers can then be confronted, allowing

to gain some insight on the formulation of controllers based on the proposed framework.

2.3.1 Implementation of a strict tasks controller

A first implementation of a whole-body controller is presented in this subsection. It is

based on a stack-of-tasks, including Cartesian, postural and contact tasks.

The controller is used to stabilize the contact of the feet on the ground, the position

of the center of mass, the orientation of a frame attached to the pelvis, as well as

the position and orientation of the feet frames, while a low-priority postural task

provides reference positions for each joint of the robot. Additional tasks are defined

for the regularization of the joint torques, and their rate of change. Joint torques and

contact forces allowing to stabilize tasks are obtained through quadratic programming

optimization, and fed to the robot as control input.

Stack-of-tasks

The stack-of-tasks used for this controller is defined from the following tasks:

– Stabilize the contact of the feet with the ground

– Stabilize the center of mass position pCoM ∈ R3

– Stabilize the left foot pose Tleft ∈ SE(3)

– Stabilize the right foot pose Tright ∈ SE(3)

– Stabilize the root link (pelvis) orientation Rroot ∈ SO(3)

2.3 Implementation of optimization-based whole-body torque-controllers 35

– Track joint positions (postural task) s

– Minimize joint torques τ

– Keep the rate of change of joint torques smaller than τ̇max ∈ R

The last item on the list (keep the rate of change of joint torques smaller than

a given threshold) was added in order to ensure a measure of continuity in the joint

torques.

Optimization problem formulation

The initial implementation of this stack-of-tasks considers a formulation with strict

tasks priorities. The Cartesian tasks are all given the highest priority together with

contact tasks, by being set as constraints to the control optimization problem. The

postural task, for its part, is used in the objective function of the controller, along

with regularization on joint torques. Applying the formulation of (2.37), we define the

controller as follows.

u∗ = argmin
u

1

2

∣

∣

∣

˜̈s(u)
∣

∣

∣

2
+λτ τ(u) (2.40a)

subject to Cu≤ b (2.40b)

Υ̇∗ = Υ̇(u) (2.40c)

(ζτu−1− τ̇maxts)≤ ζτu≤ (ζτu−1 + τ̇maxts) (2.40d)

where λτ is a parameter that controls the importance of the regularization on τ , in

order to encourage solutions with lower torque amplitudes.

The accelerations associated to Cartesian tasks on the CoM, root link, left foot and

right foot are stacked together into Υ̇, defined as follows.

Υ̇ =

















v̇CoM

v̇root

v̇left

v̇right

















(2.41)

2.3 Implementation of optimization-based whole-body torque-controllers 36

The torque continuity constraint of equation (2.40d) constrains the rate of change of

torque values, by ensuring that the difference between optimized torques τ(u) = ζτu

and torques applied at the previous time step τ−1 is smaller than a threshold, for all

joints. In this equation, ts is the time step duration, τ̇max is the maximum desired

torque rate of change, and ζτ =
[

1n,0n×6

]

is a selector matrix.

During early experimentation, this formulation of the Cartesian tasks as constraints

has turned out to produce a relatively stiff behavior of the robot, which is not so

advantageous for stability. In fact, in the present context, tasks may have relative

priorities, such that allowing a trade-off between weighted tasks may improve results.

For this reason, results achieved with this strict tasks controller will not be shown.

Instead, efforts have been re-directed towards a soft task formulation, as shall be

presented in the following section.

2.3.2 Implementation of the soft tasks controller #1

A second whole-body controller is presented in this section. It is based on the same

stack-of-tasks as the controller of subsection 2.3.1: the controller is used to stabilize the

contact of the feet on the ground, the position of the center of mass, the orientation

of a frame attached to the pelvis, as well as the position and orientation of the feet

frames, while a low-priority postural task provides reference positions for each joint of

the robot. Additional tasks are defined for the regularization of the joint torques, and

their rate of change. Joint torques and contact forces allowing to stabilize tasks are

obtained through QP optimization, and fed to the robot as control input.

Stack-of-tasks

The stack-of-tasks used for this controller is again defined from the following tasks:

– Stabilize the contact of the feet with the ground

– Stabilize the center of mass position pCoM ∈ R3

– Stabilize the left foot pose Tleft ∈ SE(3)

– Stabilize the right foot pose Tright ∈ SE(3)

– Stabilize the root link (pelvis) orientation Rroot ∈ SO(3)

2.3 Implementation of optimization-based whole-body torque-controllers 37

– Track joint positions (postural task) s

– Minimize joint torques τ

– Keep the rate of change of joint torques smaller than τ̇max ∈ R

In this new formulation, contact stabilization remains to be achieved with inequality

constraints, as well as keeping the rate of change of joint within limits. For the rest of

the tasks, each one is attributed a priority within the following set of task weights.

w = ¶wΥ,ws,wτ♢ (2.42)

where the terms wΥ, ws,wτ ∈ R refer to weights associated to the Cartesian tasks

(CoM, left foot, right foot and root link), postural task and joint torque regularization,

respectively.

Optimization problem formulation

The control problem is formulated with soft task priorities, by using a weighted sum of

task errors in the cost function:

u∗ = argmin
u

wΥ

∣

∣

∣Υ̇(u)− Υ̇∗
∣

∣

∣

2
+ws ♣s̈(u)− s̈∗♣2 +wτ τ(u) (2.43a)

subject to Cu≤ b (2.43b)

(ζτu−1− τ̇maxts)≤ ζτu≤ (ζτu−1 + τ̇maxts) (2.43c)

In this formulation, wΥ, ws, wτ are the weights associated to Cartesian, postural

and effort minimization tasks, respectively. Since task tracking is of high priority in the

case of the balancing controller, wΥ shall be attributed the highest value. Furthermore,

task weights are kept at constant values over time.

The optimization problem obtained in equation (2.43) can easily be transformed

into a QP formulation of the form of equation (2.39). The Hessian matrix H and

gradient vector g can be obtained from equations (2.9), (2.12), (2.29) and the previously

formulated optimization of equation (2.43). The constraint matrix A is then obtained

from C in the contact constraints (2.43b), with upper bound b, and no specific lower

bound. Note that the size of contact constraints are adjusted each time step, depending

on the number of feet which are currently in contact with the ground.

2.3 Implementation of optimization-based whole-body torque-controllers 38

Finite state machine

A finite state machine is used, in order to define desired setpoints for Cartesian and

postural tasks, in function of the state of the robot. It is also used for gain scheduling,

outputting PD gains used in the computation of feedback control policies for the

Cartesian and postural tasks. To define its output, the finite state machine takes as

input some user-defined positions and PD gains for the Cartesian and postural tasks,

for each state.

In this case, the state machine has been applied to a scenario in which the robot

performs the whole-body motion of stepping in place, and is divided into 11 states for

this purpose, as illustrated in figure 2.3. The formulation of the state machine, desired

trajectories defined for each task and state, as well as transitions between states, are

described in detail in appendix A.

10 Left foot

touchdown

11 Transition to

initial position

2 Transition

to left foot

3 Left foot

support

4 Preparing

for right foot

touchdown

5 Right foot

touchdown

6 Transition to

initial position

7 Transition

to right foot

8 Right foot

support

9 Preparing

for left foot

touchdown

1 Balancing

on two feet

Figure 2.3 States of the finite state machine introduced in section 2.3.2 for generating
walking in place motion

2.3 Implementation of optimization-based whole-body torque-controllers 39

2.3.3 Implementation of the soft tasks controller #2

Following the definition of the controller presented in subsection 2.3.2, a new, modified

version of the controller has been developed in order to improve its ease of use.

The most important differences are the following:

• The orientation task is applied to the neck frame instead of the root link frame,

which allows a higher compliance of the hips and torso. This is helpful for

absorbing the impact at foot touchdown, by dissipating energy through hips and

torso motion.

• Cartesian tasks are defined for swing foot and stance foot, instead of left and

right feet. This allows to take into account variations in task priorities depending

on the phase of walking: the pose of the foot when it is on the ground may not

need to be tracked with the same priority as when performing a step1.

• Each Cartesian task is given a specific weight, which allows to prioritize Cartesian

tasks with respect to each other. For instance, the neck frame orientation task

may not need to be achieved with the same priority as the CoM task.

• The use of the postural task is limited to stabilizing redundant degrees of freedom;

desired joint positions are not defined for each state anymore, but represent the

initial posture of the robot.

• The torque continuity constraint is discarded, since its use was not beneficial

when switching contact conditions.

• The state machine is simplified to 5 states, taking advantage of the symmetry of

the stepping motion. Conditions on the postural task are removed, a maximal

state duration is set to prevent that the robot remains stuck in a state, and a

significantly smaller number of user-defined parameters is required.

• Gains used by the feedback control policies are equal across all states.

The modified whole-body control framework is then used to stabilize the position

of the center of mass, the pose of frames attached to the swing and stance feet, as

well as the orientation of a frame attached to the neck, while a postural task allows to

1Recall that in the formulation of the controller, the pose of each foot is tracked at all times,
allowing to move the foot as desired when in swing phase, and to ensure rigid contact by keeping the
foot in place when in stance phase.

2.3 Implementation of optimization-based whole-body torque-controllers 40

stabilize the motion. Joint torques and contact forces are again obtained through QP

optimization, and sent to the robot as control input.

Stack-of-tasks

The stack-of-tasks used for this controller is defined from the following tasks:

– Stabilize the contact of the feet with the ground

– Stabilize the center of mass position pCoM ∈ R3

– Stabilize the stance foot pose Tstance ∈ SE(3)

– Stabilize the swing foot pose Tswing ∈ SE(3)

– Stabilize the neck orientation Rneck ∈ SO(3)

– Track joint positions (postural task) s

– Minimize joint torques τ

Contact stabilization is achieved with inequality constraints, as presented in section

2.2.3. For the rest, soft tasks are used as prioritization scheme. For this purpose, each

task is attributed a priority within the following set of task weights.

w = ¶wCoM ,wstance,wswing,wneck,ws,wτ♢ (2.44)

where the terms wCoM ,wstance,wswing,wneck ∈ R refer to weights associated to the

CoM, stance foot, swing foot and neck Cartesian tasks, and ws,wτ ∈ R to the weights

associated to the postural task and joint torque regularization, respectively.

Optimization problem formulation

The control problem is formulated as the following optimization problem.

u∗ = argmin
u

wτ ♣τ(u)♣2 +ws

∣

∣

∣

˜̈s(u)
∣

∣

∣

2
+
∑

T

wT

∣

∣

∣

˜̇vT (u)
∣

∣

∣

2
(2.45a)

subject to Cu≤ b (2.45b)

where the cost function (2.45a) is computed as the weighted sum of all task objectives,

in which T ∈ ¶CoM,stance,swing,neck♢ refers to Cartesian tasks on CoM, feet and

2.3 Implementation of optimization-based whole-body torque-controllers 41

neck. The constraint equation (2.45b) ensures that the contact forces remain within

the associated contact constraints.

Reorganizing the terms in the cost function, one can easily verify that it has the

form of a QP problem following the same procedure as in 2.3.2.

Finite state machine

A finite state machine is used in order to output desired setpoints for Cartesian tasks,

in function of the state of the robot. To define its output, the finite state machine

takes as input some user-defined positions for the Cartesian tasks.

The state machine is applied to a scenario in which the robot performs the whole-

body motion of stepping in place, and is divided into 5 states for this purpose, as

illustrated in figure 2.4. The formulation of the state machine, desired trajectories

defined for each task and state, as well as transitions between states are described in

detail in appendix B.

Note that with this state machine, the purpose of the postural task is solely to

stabilize redundant degrees of freedom, and desired joint positions are simply defined

as the initial posture of the robot. In order to encourage that the reference postural

task accelerations input to the controller are consistent with reference Cartesian task

accelerations, we attempt to take into account feedback terms on Cartesian tasks v̇∗
T

into the computation of the postural feedback term s̈∗, as exposed in appendix B.

2 Move CoM

above the

stance foot

3 Stance foot

balancing

4 Prepare for

foot touchdown

5 Two feet

balancing

1 Initial balancing on two feet

Figure 2.4 States of the finite state machine defined in section 2.3.3 for generating a
stepping motion

2.4 Application to walking in place 42

2.4 Application to walking in place

The controllers presented in section 2.3 have been implemented in Matlab/Simulink

using WBToolbox [Romano et al., 2017], and the open-source software package

qpOASES [Ferreau et al., 2014] is used for QP solving. Each implemented controller

runs in real-time, generating joint torque commands every hundredth of a second, such

that the time step duration ts = 0.01 s. Tests have been performed in simulation and

real-world experiments with the iCub, using 23 DOFs on legs, arms and torso.

To validate the effectiveness of the proposed method, each controller is applied

to a scenario in which the robot performs a stepping motion, as if walking in place:

balancing on two feet, then repeatedly switching between double and single support by

lifting one foot, placing it back on the ground, and repeating with the other foot.

The next subsections present the experiments performed with soft tasks controllers

#1 and #2.

2.4.1 Walking in place with the soft tasks controller #1

Experiments with the soft tasks controller #1 have been conducted both in simulation,

and with the real robot. In these experiments, the foot is lifted 5 cm above the ground,

and then the foot is kept in its lifted position for a duration of 5 seconds in simulation

experiments, and 15 seconds in real world experiments.

In total, the following number of parameters need to be adjusted for the controller:

- 4 parameters for the stabilization of contact tasks

- 3 task weights

- 11 parameters of the finite state machine

- 18 proportional gains of Cartesian tasks, for each of the 11 states of the finite

state machine (in total over all states: 198)

- 18 derivative gains of Cartesian tasks, for each of the 11 states of the finite state

machine (in total over all states: 198)

- 23 proportional gains of the postural task, for each of the 11 states of the finite

state machine (in total over all states: 253)

2.4 Application to walking in place 43

- 23 derivative gains of the postural task, for each of the 11 states of the finite

state machine (in total over all states: 253)

- 6 displacement values for the Cartesian tasks (movement of the CoM and feet),

over 8 states of the finite state machine (in total: 48)

- 23 joint position values for the postural task, over 8 states of the finite state

machine (in total: 184)

This list amounts to a total of 1152 parameters which may be tuned for the

controller. Fortunately, all derivative gains can be set as a fixed value with respect to

the proportional gains (twice the squareroot of the corresponding proportional gain

for simulation experiments, or 0 for real-world experiments), allowing to reduce the

number of parameters that are actively tuned to 699. Furthermore, symmetry could

be accounted for in simulation experiments, futher reducing the number of parameters

to 485. However, for real-world experiments, the robot needs adjustments which are

not always symmetric.

Parameters of the controller which allow to successfully achieve the desired motion

have been obtained through manual tuning. They are set as described in appendix A,

where task weight values are provided, as well as parameters used with the finite state

machine, proportional and derivative gains defined for Cartesian and postural tasks of

the controller, and desired Cartesian and postural task values.

Note that different values are used between simulation experiments and real-world

experiments, as a separate tuning process needs to be performed on the robot. In

particular, the leg joint positions for the postural task have been adjusted, in order

to ensure that the knee joint remains away from its limit, and that the ankle of the

support foot is in a position which improves balance. Also, proportional and derivative

gains have been adjusted in function of the results obtained when experimenting with

the robot: postural gains have been increased. On the other hand, derivative gains

have been decreased, due to the damping effects already present on the robot. Finally,

thresholds and displacements used in the finite state machine have been adjusted.

The robot behavior achieved in simulation is illustrated in figure 2.5a: the robot

begins in double support, then transitions to single support on the left foot, before

lifting the right foot and lowering it back to the ground and repeating the same process

on the other side. It can be noted that the root link and feet remain horizontal, as

required by the orientation tasks. The robot can repeat the process of lifting one foot

2.4 Application to walking in place 44

after the other practically indefinitely, without loss of balance: it has been validated in

simulation for a minimum of 75 continuous cycles. However, the results presented here

are limited to showing the first cycle.

The trajectories obtained in simulation for the center of mass and feet are shown in

figure 2.6. The error on the center of mass is generally kept below 0.01 m at all times,

but it can be observed that the tracking error is higher along the z-axis. As for the feet

tasks, the tracking error is higher, being contained below 0.03 m before it is stabilized.

These lesser tracking precisions are likely due to the combination of a few factors.

Firstly, since gains associated to the CoM task are given significantly higher values

compared to the other tasks, its tracking tends to be more precise. Secondly, recall

that all Cartesian tasks are attributed the same priority, while desired trajectories of

the CoM, feet, root link and joints are defined independently. However, on the robot,

these trajectories are in fact not independent, each one potentially affecting the others.

For example, at foot liftoff, task trajectories are defined in order to lift the swing foot

up, while the CoM position, stance foot pose and root link orientation remain the

same. Nonetheless, lifting the left foot up would have the effect of moving the CoM

up. Desired joint trajectories that are not exactly aligned with the foot lifting motion

will also cause tracking errors. In order to minimize task tracking errors, the controller

will then seek to achieve a trade-off between all tasks, allowing increased errors on the

conflicting tasks.

As illustrated in figure 2.5b, the walking in place motion has also been achieved

with the real robot. Contrarily to simulation experiments, only two consecutive strides

have been performed with the robot: it could successfully lift its left foot and then

its right, twice. Trajectories obtained for the center of mass and feet are shown for

one stride in figure 2.7. The error on the center of mass has generally been kept below

0.02 m in each direction at all times, with the error on the x-axis being the largest.

Again, feet tasks have been provided lower PD gains than the CoM. As a result, the

foot is first moved of about 0.1 m forward (due to the hip bending faster than the

knee) before being brought back by the bending knee. At foot touchdown, each foot is

brought back to its initial position with an error below 0.02 m.

The error obtained on the orientation tasks for one stride is shown in figure 2.8,

where the error eR is represented with

eR =
∣

∣

∣RR⊤
d −1

∣

∣

∣ (2.46)

2.4 Application to walking in place 45

The obtained graphs show that the orientation error of the lifted feet is stabilized. The

root orientation error is also stabilized, although it seems to increase for the second

footstep; there may be a correlation with the increase of the CoM position error.

Exploiting embedded force-torque sensors in the legs of the robot allows to estimate

contact forces [Traversaro, 2017; Traversaro et al., 2015]. Each leg can be virtually cut

into an independant subsystem, at the location of the force-torque sensor. The position

and velocity of the subsystem can then be measured or estimated from accelerometers,

gyroscopes and joint encoders. We assume the contact position to be known, and the

subsystem to be subject to the force measured by the force-torque sensor and a resultant

external contact force. This allows to compute external forces through a classical

recursive Newton-Euler algorithm over the subsystem, given its dynamics in the form

of equation (2.5). The forward step of the recursive Newton-Euler algorithm also allows

to obtain the position, velocity and acceleration of the links of the subsystem.

In turn, joint torques applied on the robot can be estimated as follows. A parametric

representation of the system dynamics (2.5) is defined, such that torques are obtained

as a linear function of a known set of parameters and a regressor matrix, that can

be computed from the subsystem link positions, velocities and accelerations obtained

above, as detailed in [Traversaro, 2017; Traversaro et al., 2015].

This allows us to show, in figure 2.9, the vertical component of the estimated

resulting contact forces at the feet. At the moment of contact switching, although

the magnitude of the forces vary rather rapidly, the forces do not show discontinuities

which can not be handled by the robot. Furthermore, we have noted that at the

moment of contact switching, small variations of conditions seem to cause variations in

the solution of the controller. The use of the postural task then shows to be helpful in

enforcing repeatability of the robot behavior.

The noise observed in the measured contact forces however do not appear to be

discontinuities arising from the formulation of the controller. When tested in simulation,

the desired contact wrenches computed by the QP solver show to be continuous, with

minimal noise; the difference between measured and desired contact forces is contained

within 50 N at most, except at contact switching. In this case, the error does not

surpass half of the robot weight, and can be explained by the fact that the impact of

the foot with the ground is not explicitly anticipated by the controller.

2.4 Application to walking in place 46

Control torques obtained from the QP solver are directly applied to the robot.

They are shown in figure 2.10 for the joints which are most critical for balancing: the

hips and ankles. The graphs show that torques are contained within a feasible range,

and they are relatively smooth, apart from the peaks which can be observed at foot

liftoff and touchdown.

(a) Simulation experiments

(b) Real-world experiments

Figure 2.5 Walking in place motion achieved with the soft tasks controller #1 in
simulation and real-world experiments: lifting one foot, then the other.

2.4 Application to walking in place 47

(a) Center of mass (CoM) position

(b) Left foot position

(c) Right foot position

Figure 2.6 Evolution of position tasks for a sample of 1 stride, achieved in simulation with
the soft tasks controller #1. Position values are given with respect to a world frame of
which the x, y and z axes correspond respectively to the sagittal, frontal and vertical axes.
Achieved trajectories are shown in blue, while the desired ones are shown in red.

2.4 Application to walking in place 48

(a) Center of mass (CoM) position

(b) Left foot position

(c) Right foot position

Figure 2.7 Evolution of position tasks for 1 stride performed in real-world experiments
with the soft tasks controller #1. Position values are given with respect to a world frame
of which the x, y and z axes correspond respectively to the sagittal, frontal and vertical axes.
Achieved trajectories are shown in blue, while the desired ones are shown in red.

2.4 Application to walking in place 49

(a) Root link (b) Left foot (c) Right foot

Figure 2.8 Evolution of orientation task errors for 1 stride performed in real-world experi-
ments with the soft tasks controller #1.

(a) Left foot (b) Right foot

Figure 2.9 Evolution of estimated vertical contact forces on robot feet, for 1 stride with
the soft tasks controller #1.

(a) Torques about hip and ankle pitch axis (b) Torques about the hip and ankle roll axis

Figure 2.10 Evolution of estimated joint torques for 1 stride with the soft tasks controller
#1 , on the left and right hip and ankle joints. Torques on the pitch and roll axes of these
joints are critical for keeping balance in the performed experiment.

2.4 Application to walking in place 50

2.4.2 Walking in place with the soft tasks controller #2

Experiments with the soft tasks controller #2 have been conducted in simulation.

Differences in the implementations of the finite state machines between controllers #1

and #2 account for slight differences in the experiments that have been performed.

With the soft tasks controller #2, the foot is lifted 2.5 cm above the ground, and

it is brought back down to the ground once it has reached its desired position (or a

maximum time of 6 seconds had been spent on the task).

In total, the following number of parameters need to be adjusted for the controller:

- 4 parameters for the stabilization of contact tasks

- 6 task weights

- 8 parameters of the finite state machine

- 18 proportional gains of Cartesian tasks

- 13 proportional gains of the postural task

This list amounts to a total of 49 parameters which may be tuned for the controller.

Derivative gains are all automatically set as twice the squareroot of the corresponding

proportional gain, which amounts to a significant reduction in the number of parameters

to adjust. Eventually, if tests on the robot show that we cannot count on the symmetry

of the robot and the desired movement, 10 additional parameters may be needed to

account for non symmetric proportional gains for the Cartesian and postural tasks.

Parameters of the controller which allow to successfully achieve the desired motion

have been obtained through manual tuning. They are set as described in appendix B,

which provides task weights, proportional and derivative gains defined for Cartesian

and postural tasks of the controller, as well as parameters used with the finite state

machine.

Control torques obtained from the quadratic programming solver are directly applied

to the simulated robot. They are shown in figure 2.11 for the joints which are most

critical for balancing: the hips and ankles. The graphs show that torques are contained

within a feasible range, and they are relatively smooth, apart from the peaks which

can be observed at foot liftoff and touchdown.

As shown in figure 2.12, contact forces obtained from the QP solver show to be

relatively continuous and the measured contact forces show to follow closely the desired

2.4 Application to walking in place 51

values, with an error contained below 20 N at most, except at contact switching (which

shows that the impact of the foot with the ground is not anticipated by the controller).

The robot behavior achieved in simulation is illustrated in figure 2.13: the robot

begins in double support, then transitions to single support on the right foot, before

lifting the left foot and lowering it back to the ground and repeating the same process

on the other side. The robot can repeat the process of lifting one foot after the other

practically indefinitely, without loss of balance: it has been validated in simulation for

a minimum of 50 continuous cycles. However, the results presented here are limited to

showing the first cycle.

The trajectories obtained in simulation for the CoM and feet are shown in figure

2.14. The error on the CoM has been kept below 0.01 m at all times. As for the feet

tasks, the largest measured error is of 0.04 m on the vertical axis, at the moment when

the desired foot position is brought back on the ground. However, it is interesting

to note that the desired vertical foot position does not reach the setpoint of 0.025 m.

This is most likely due to the smoothing of the trajectory, and may be looked into, in

a future iteration.

Tuning parameters would eventually allow to transfer results to the real robot.

(a) Torques about hip and ankle pitch axis (b) Torques about hip and ankle roll axis

Figure 2.11 Evolution of joint torques measured in simulation for 1 stride achieved with
the soft tasks controller #2, on the left and right hip and ankle joints.

2.4 Application to walking in place 52

(a) Contact forces obtained from the QP solver

(b) Estimated contact forces

Figure 2.12 Evolution of contact forces on robot feet, either obtained from the QP solver
or as estimated from sensor measurements, for 1 stride with the soft tasks controller #2.

Figure 2.13 Walking in place motion achieved with the soft tasks controller #2 in
simulation experiments: lifting the left foot, then the right foot.

2.4 Application to walking in place 53

(a) Center of mass (CoM) position

(b) Left foot position

(c) Right foot position

Figure 2.14 Evolution of position tasks for 1 stride of the simulated robot, achieved with
the soft tasks controller #2. Position values are given with respect to a world frame of
which the x, y and z axes correspond respectively to the sagittal, frontal and vertical axes.
Achieved trajectories are shown in blue, while the desired ones are shown in red.

2.4.3 Discussion

Results show that the soft tasks controllers #1 and #2 can achieve balancing and

contact switching with a torque-controlled, free-floating robot such as the iCub.

With the soft tasks controller #1, simulation results show that desired trajectories

are closely followed. However, further work and experiments would be needed in

order to improve the results obtained with the robot. It is highly likely that further

parameter tuning would help achieve a behavior of the robot closer to the one obtained

2.4 Application to walking in place 54

in simulation. Furthermore, the robot used for experiments was new at the time

the experiments have been conducted, and it probably needed further calibration

and validation before achieving optimal results. For instance, we noticed that the

performance of the robot may have been limited by issues related to the calibration of

low-level torque-controllers, as well as the estimation of the CoM position, base pose,

contact forces and joint torques.

Experiments performed with the soft tasks controller #1 show that the controller

has a few drawbacks. For instance, it can get stuck in a state, when threshold conditions

of the finite state machine are not getting met. We also found that the constraint

on the rate of change of joint torques can be counterproductive for keeping balance,

when dealing with switches in contact conditions. Since the rate of change of the

contact forces themselves is not constrained in a similar way, then the joint torques may

not always counterbalance the contact forces fast enough, compromising equilibrium

and smoothness of robot trajectories. Furthermore, the controller assumes that input

Cartesian postural task trajectories are feasible, and coherent with other tasks of the

controller, which possibly limits the capacities of the controller. Measures to ensure

coherence between tasks may eventually be beneficial. Finally, the soft tasks controller

#1 requires a lot of parameters to be tuned. As a result, adjusting and testing the

controller is significantly tedious.

The development of the soft tasks controller #2 allowed for improvements related to

the issues mentioned in the previous paragraph, and to simplify the implementation of

the controller, without compromising the results. It again allows to achieve balancing

and contact switching of a floating-base robot, and the stepping behavior achieved

with the simulated robot is similar as that obtained with the soft tasks controller #1.

However, when compared, results show that the movement of the robot achieved

with the soft tasks controller #2 is faster: it takes about 14 s to achieve one stride,

rather than 60 s with the soft tasks controller #1. Trajectories achieved with the soft

tasks controller #2 on the simulated robot are also generally smoother, with smooth

transitions of contact conditions. Finally, although the number of parameters has

been drastically lowered in this second controller, it still requires a certain number of

parameters to be tuned again for transferring results to the real robot.

2.5 Conclusion 55

2.5 Conclusion

In summary, this chapter has presented methods for developing whole-body torque-

controllers, suitable for achieving a walking motion. Several iterations of a controller

have been presented, showing how it can be simplified and improved, in order to achieve

equivalent results, more easily.

Additional improvements may still be applied on the soft tasks controller #2 for a

subsequent iteration. For instance, task weights have been kept constant in the scope

of this work, but adapting weights over time, depending on the sequence of actions of

the robot, could eventually be explored, in order to improve the global behavior of the

robot [Liu et al., 2015; Modugno et al., 2016b].

The improvements from the soft tasks controller #1 (presented in section 2.3.2) to

the soft tasks controller #2 (presented in section 2.3.3) allow for an easier implementa-

tion, while achieving similar results in simulation. However, it turns out that they do

not quite solve the problem of transferring results from simulation to the real robot.

Several directions can be taken, in order to tackle this issue. First of all, it is highly

possible that the challenges encountered when performing tests on the real robot are

related to issues with force/torque sensors and estimation of the state of the robot.

Further investigation on this subject could potentially make a significant impact on

the results. However, this is not the focus of the present thesis.

Another possibility is to investigate ways to improve the robustness of the controller.

One thing which has been noticed to be problematic when performing tests on the

robot, is when a joint limit is reached. In the specific case of the iCub, safety measures

implemented on the firmware of the robot take over, such that the joint becomes

position-controlled and the torque-controller has no influence on this joint anymore.

This is an important feature for the integrity of the robot, but it does not solve the fact

that the torque-controller itself should avoid joint limits. In consequence, a method

ensuring joint limit avoidance of torque-controllers may be developed. Chapter 3

shall focus on this subject, with the development of a joint limit avoiding method for

torque-control, which is robust to external perturbations.

From another perspective, one may want to tackle directly the problem of the reality

gap, which limits the transfer of results between simulation and real-world experiments.

Notably, tuning the parameters of the controller shows to have an important impact

2.5 Conclusion 56

on the results, but generally, it is done manually and separately for each platform on

which experiments are performed (i.e. for each simulation model and for each robot),

as shown in chapter 4. This procedure can quickly become tedious if many parameters

are involved. One way then to approach this problem could be to develop methods

that automatically adjust the parameters of the controller in a robust way, such that

the results can be more easily transferred between platforms, as presented in chapter 5.

Finally, one may also be interested in verifying that the whole-body controller

is robust to different desired movements, such that given a set of parameters, the

controller can achieve various movements. For instance, the controller presented here

is specialized for the application of stepping in place, but it is likely that the controller

will need to be adjusted again, when attempting walking movements. Chapter 6 is

therefore investigating in this direction, by proposing a single framework for handling

generic whole-body trajectories.

Chapter 3

Joint limit avoidance for

torque-control

The whole-body torque-controllers presented in chapter 2 have shown to be effective in

controlling the whole-body motion of a robot. However, they do not address motion

constraints, such as ensuring joint limit avoidance.

When using position-control, joint limit avoidance can be achieved with constraints

on joint positions. However, this method may be unsatisfying in the case of torque-

control, as there is no theoretical guarantee that joints will be kept away from limits.

Indeed, the inherent compliance achieved with torque-control makes it possible for

joint limits to be reached in case of external perturbations.

The present chapter therefore proposes a solution in the form of a nonlinear control

algorithm to ensure joint limit avoidance of a torque-controlled manipulator, which

can then be applied to a whole-body torque-controller.

Joint limit avoidance is achieved by ensuring that the evolution of the joints always

remains within the associated physical bounds. The essence of the proposed control

algorithm is to parametrize the feasible joint space in terms of exogenous states, and

then the control of these states allows for the achievement of joint limit avoidance.

Stability and convergence, when the desired joint trajectories are feasible, are shown

by means of an analysis based on Lyapunov theory.

The proposed method therefore defines nonlinear position feedback terms which

can be used as a substitution of classical position correction terms when a desired

3.1 Modelling of fixed-base systems 58

joint trajectory must be followed. The proposed control laws are reminiscent of those

obtained by applying barrier function-based control approaches [Ngo and Mahony,

2006; Prajna and Jadbabaie, 2004; Tee et al., 2009; Wieland and Allgöwer, 2007], but

they are derived from a different perspective.

Thanks to its formulation, our method can be applied to either fixed-base manipu-

lators, or floating-base robots. For this reason, sections 3.1 and 3.2 first introduce the

modelling of fixed-base robots, as well as a classical torque-controller for such a system,

whereas the modelling of floating-base robots and whole-body torque-control were al-

ready presented in chapter 2. Then, the following sections describe the parametrization

we propose, and the derivation of control laws for joint limit avoidance. The proposed

methods are validated experimentally, first being implemented for the control of two

DOFs on the torque-controlled iCub, and then within a whole-body torque-controller.

3.1 Modelling of fixed-base systems

The robot is assumed to be a multibody system composed of n + 1 rigid bodies, called

links, connected by n joints with 1 DOF each. If one of the links has a constant pose

with respect to an inertial frame I, then this fixed link is referred to as the base,

and the multibody system is considered as fixed-base. The configuration space of a

fixed-base mechanical system can then be characterized by its generalized coordinates,

e.g. the joint configurations in the case of a manipulator.

The Lagrangian derivation of the equations of motion of a robotic manipulator with

n degrees of freedom yields a model of the following form [Siciliano and Khatib, 2007]:

M(s)s̈+C(s, ṡ)ṡ+G(s) = τ (3.1)

where s ∈Rn is the vector of generalized coordinates of the mechanical system, M(s) ∈
Rn×n, C(s, q̇)∈Rn×n and G(s)∈Rn are the inertia matrix, Coriolis matrix and gravity

torques, respectively, and τ is the vector of input torques. The following properties of

model (3.1) are assumed [Siciliano and Khatib, 2007]:

Property 1 The inertia matrix M is bounded and symmetric positive definite for any s.

Property 2 The matrix Ṁ −2C is skew-symmetric.

3.2 Classical torque-control techniques for fixed-base systems 59

3.2 Classical torque-control techniques for fixed-base

systems

Let sd(t) ∈ Rn denote a twice differentiable time function representing the desired

trajectory for the joint configurations s. Throughout the chapter, we assume that:

Assumption 1 The reference trajectory sd(t) is such that its first and second order

time derivatives are well-defined and bounded ∀t ∈ R+.

The control objective is then defined as the asymptotic stabilization of the tracking

error s̃ to zero, with s̃ defined as follows.

s̃ = s− sd (3.2)

To achieve this objective, classical control laws can be applied. For instance, passivity-

based controllers are known to work robustly against modelling and actuation errors

[Siciliano et al., 2008, ch. 8.5.1 p. 328], and the associated law is written as below.

τ = M(s)s̈d+C(s, ṡ)ṡd+G(s)−KP s̃−KD
˙̃s (3.3)

with KP and KD two symmetric, positive definite matrices representing proportional

and derivative control gains. Applying control law (3.3) to system (3.1) results in

bounded trajectories of the closed-loop dynamics and convergence of the tracking error

to zero, for any initial condition (s, ṡ)(0).

3.3 Joint space parametrization

We propose a joint limit avoidance method based on a parametrization of the joint

space, as explained in the following paragraphs.

Let smin, smax ∈Rn denote the vectors defining the minimum and maximum values

of the joint coordinates s. We define the feasible space S for the joint coordinates as:

S := ¶s ∈ Rn : smini
< si < smaxi

∀i = 1, · · · ,n♢. (3.4)

3.3 Joint space parametrization 60

The control objective is then the global asymptotic stabilization of the tracking

error (3.2) to zero, while ensuring that

s(t) ∈ S ∀ t ≥ 0 (3.5)

To ensure that the variable s always belongs to S, one may parametrize the feasible

configuration space. Let ξ ∈ Rn denote an exogenous variable. Then, we propose here

to consider the following parametrization of the space S:

s(ξ) := δ tanh(ξ)+s0 (3.6)

with

s0 :=
smax+ smin

2
(3.7)

δ := diag
(

smax− smin
2

)

(3.8)

where diag(·) : Rn → Rn×n is the operator that, given a vector x∈Rn, returns a diago-

nal matrix having on the diagonal the elements of the vector x, and tanh(ξ) : Rn → Rn.

As a consequence of the hyperbolic function nature, one clearly has that

s(ξ) ∈ S ∀ ξ ∈ Rn (3.9)

We now make the following assumption.

Assumption 2 Each joint coordinate si possesses a free motion domain different from

zero, i.e.

smaxi
− smini

> 0 ∀ i = 1, · · · , n (3.10)

and the reference trajectory sd(t) is feasible, i.e.

sd(t) ∈ S t ≥ 0 (3.11)

As a consequence of the above assumption, one can evaluate the desired trajectory

ξd(t) for the variable ξ via equation (3.6), i.e.

ξd(t) := tanh−1

(

sd(t)− s0

δ

)

(3.12)

3.4 Joint space control with joint limit avoidance 61

and define the tracking error as

ξ̃ := ξ− ξd (3.13)

The main idea presented in this chapter is to conceive feedback control laws

for the asymptotic stabilization of ξ̃ to zero, which, relying on the nature of the

parametrization (3.6), would imply that s(t) ∈ S ∀t≥ 0.

Now, it is observed that the relationship (3.6) can be viewed as a change of variable

ξ→ s. So, the equation of motion (3.1) can be written in terms of ξ. To this purpose,

note that

ṡ = J(ξ)ξ̇ (3.13a)

s̈ = J(ξ)ξ̈ + J̇(ξ, ξ̇)ξ̇ (3.13b)

with J ∈ Rn a diagonal matrix of which the i−th element is given by

Ji(ξ) = δi(1− tanh2(ξi)), (3.14)

and

δi =
smaxi

− smini

2
(3.15)

It is important to observe that if Assumption 2 holds, which implies that δi ̸= 0 ∀i,
then

det(J(ξ)) ̸= 0 ∀ξ ∈ Rn. (3.16)

3.4 Joint space control with joint limit avoidance

Taking advantage of the parametrization defined in section 3.3, the next subsections

present and discuss control laws for stabilizing a desired joint trajectory sd(t) ∈ S ∀t
that ensure joint limit avoidance. They are first derived for fixed-base systems, and

then generalized for floating-base systems.

3.4 Joint space control with joint limit avoidance 62

3.4.1 Joint limit avoidance for fixed-base systems

As long as the joint configurations belong to S, the equations of motion (3.1) can be

written as

Mξ(ξ)ξ̈ +Cξ(ξ, ξ̇)ξ̇ +Gξ(ξ) = τξ (3.17)

with

Mξ(ξ) = JT (ξ)MJ(ξ) (3.17a)

Cξ(ξ, ξ̇) = JT (ξ)(MJ̇(ξ, ξ̇)+CJ(ξ)) (3.17b)

Gξ(ξ) = JT (ξ)G (3.17c)

τξ = JT (ξ)τ (3.17d)

Observe that the matrix J(ξ) is bounded for any ξ. Then, it is straightforward to

verify the following two properties of model (3.17), which reflect properties 1 and 2 of

model (3.1) as introduced in section 3.1.

Property 3 The inertia matrix Mξ is bounded and symmetric positive definite for any ξ.

Property 4 The matrix Ṁξ−2Cξ is skew-symmetric.

Let us then remark an important fact. Once the system dynamics (3.1) is trans-

formed into the form (3.17), any controller ensuring that the variable ξ is bounded

would also imply that the joint trajectories belong to the feasible joint space S. For

instance, the computed-torque-like control strategy of equation (3.3) can be applied

assuming τξ as control input. This would ensure that ξ is bounded and, in turn, that

s(t) ∈ S ∀ t.

Extending the passivity-based control strategy (3.3) to system (3.17) requires some

close attention. The major technical difficulties reside in the fact that the variable

change ξ→ s is not one-to-one for any s ∈ Rn, in the sense that if s is outside the

feasible joint space, then ∄ ξ such that s = s(ξ). This implies that the matrix Mξ

tends to zero when joint trajectories approach their limits. The extension, however, is

presented in the next lemma.

3.4 Joint space control with joint limit avoidance 63

Lemma 3 Assume that Property 1 and Assumption 1 hold. Apply to system (3.1) the

following control law:

τξ = Mξ ξ̈d+Cξ(ξ, ξ̇)ξ̇d+Gξ(ξ)−KP ξ̃−KD
˙̃ξ. (3.18)

Then, the following results hold.

1. The equilibrium point
(

ξ̃, ˙̃ξ
)

= (0,0) of the closed-loop dynamics (3.17)-(3.18) is

globally asymptotically stable;

2. If s(0) ∈ S, then s(t) ∈ S ∀ t≥ 0.

Proof is given in appendix C. The control law (3.18) ensures that the joint evolutions

s(t) belong to the feasible space S for any time t, provided that the initial condition

s(0) belongs to this space.

The proof of this law exploits the passivity of the system dynamics expressed by

Properties 3 and 4, and it must deal with the additional technicality that the mass

matrix Mξ tends to zero when the joint evolutions get closer to the joint limits. Observe

the similarity between the control laws (3.18) and (3.3). All these similarities constitute

the interest of the proposed parametrization (3.6).

The control torques τ can be directly evaluated from (3.18) and (3.17), that is

τ = MJ(ξ)ξ̈d+
(

MJ̇(ξ, ξ̇)+CJ(ξ)
)

ξ̇d+G−J−1(ξ)KP ξ̃−J−1(ξ)KD
˙̃ξ. (3.19)

Therefore, note that the similarities between the control laws (3.19) and (3.3) increase

when the reference trajectory is a set point, i.e. ξ̇d = ξ̈d = 0, which implies that

τ = G−J−1(ξ)KP ξ̃−J−1(ξ)KDJ−1(ξ)ṡ (3.20)

J(ξ) being positive definite, one can choose the following control gains without com-

promising stability and convergence.

KP = J(ξ)K ′
P (3.21)

KD = J(ξ)K ′
DJ(ξ) (3.22)

where K ′
P > 0 and K ′

D > 0

3.4 Joint space control with joint limit avoidance 64

Then, in the case of set points, the main difference between classical control

algorithms and the proposed control solutions resides in the feedback position terms:

τ = G(s)−K ′
P ξ̃−K ′

Dṡ, (3.23)

although theoretical guarantee of the stability and convergence of the control law (3.23)

is missing at this point.

Equation (3.23) suggests that given the classical control scheme (3.3), joint limit

avoidance can be attempted by substituting the feedback correction term

−Kps̃ (3.24)

with either

−J−1(ξ)KP ξ̃ (3.25)

or

−KP ξ̃, (3.26)

since the associated control laws can be shown to ensure joint limit avoidance. This is

a general procedure that may be attempted any time joint limits must be taken into

account, and the control laws contain feedback position terms.

Remark The implementation on a real platform of the control law (3.23) requires

close attention since it involves singularities of the variable ξ. These singularities

may cause high-value for the torque input. Then, we suggest to use properly defined

saturation functions to avoid explosions of the variable ξ depending on the torque limits

of the underlying platform. Simulations and experiments we carried out, however,

tend to show that the feedback correction terms (3.26) do not cause sharp, disruptive

variations of the control variable τ , and we thus suggest the use of (3.26) over the

other presented control laws.

3.5 Implementation for a fixed-base manipulator 65

3.4.2 Joint limit avoidance within a whole-body

torque-controller

The control laws proposed in section 3.4.1 can be integrated within a whole-body torque-

controller. In this case, reference accelerations for postural tasks are not computed

with a classical PD control law, but may instead be obtained through the proposed

feedback control policy of equation 3.25:

s̈∗ = s̈d−J(ξ)−1Kpξ̃−J(ξ)−1KdJ(ξ)−1 ˜̇s (3.27)

3.5 Implementation for a fixed-base manipulator

The proposed control law (3.18) can be directly applied to the control of a fixed-base

manipulator. For this purpose, the leg of the iCub can be considered as such: fixing

the root link (pelvis) to a pole allows it to serve as a fixed base.

The following subsection therefore exposes how the method proposed in subsection

3.4.1 has been validated, with experiments using the leg of the iCub.

3.5.1 Application of joint limit avoidance for a torque-

controlled iCub leg

The proposed control law (3.18) was developed in Matlab/Simulink using WBToolbox

[Romano et al., 2017], and can be used either for a simulated or a real robot. In this

case, real-world experiments have been performed with the iCub, using its leg as a

2-DOF manipulator, in order to verify the convergence and stability properties of the

approach. Experiments have also allowed to observe the compliance and robustness

obtained with the proposed control law.

The 2-DOF manipulator is composed of rotational joints at the hip (joint 1) and

knee (joint 2) pitch: it is illustrated in figure 3.1. Joints are bounded within limits set

to [−30,85] degrees for the hip and [−100,0] degrees for the knee, such that

smin =





−30

−100





3.5 Implementation for a fixed-base manipulator 66

smax =





85

0





Joint torques obtained from the control laws for the hip and knee pitch are stabilized

by a low-level joint torque-controller. All other joints of the robot are kept fixed with

a position controller. As discussed in the remark at the end of section 3.4, to avoid

singularity issues, saturation has been defined for the variable ξ at a value of 100.

Figure 3.1 iCub leg setup used for the experiments. The red circles identify the hip and
knee joints, while the white marks indicate joint limits. The green arrow shows the external
force applied in Experiment 3.

Note that a small approximation in the control laws has been made, due to

limitations of the WBToolbox software: it allows for the evaluation of bias forces G(s)

and C(s, ṡ)ṡ acting on each joint. However, it does not allow for the computation of the

term C(s, ṡ). As a solution, C(s, ṡd) and C(s,Jξ̇d) are used in (3.3) and (3.19). The

impact of this approximation is minor, since joint velocities used in the experiments

are small, C is kept to a low value and the tracking errors s̃ and ξ̃ are kept small.

We have performed three different experiments:

3.5 Implementation for a fixed-base manipulator 67

1. Validate that the proposed control law allows to prevent overpassing joint limits

due to overshoot, by moving the leg to a constant desired position.

2. Verify the effectiveness of the method in tracking time-varying sinusoidal joint

reference positions.

3. Assess the robustness and compliance achieved with the proposed control law,

by subjecting the robot to unknown external perturbations.

The following subsections expose each of these experiments, before discussing the

results.

Experiment 1 - constant reference position

The first experiment is set with initial position and velocity

s(0) =





−14

−60





ṡ(0) =





0

0





where positions are expressed in degrees. The task then consists in reaching a constant

joint reference position

sd =





−18.5

−10.0





The proportional and derivative gain matrices Kp and Kd are chosen as diagonal

matrices with stiffness and damping values of

Kp =





20 0

0 10





Kd =





0 0

0 0





Damping gains are zero, since the motors of the robot already provide damping.

Figure 3.2 shows the evolution of the joint positions and control torques obtained

during the experiment. Overshoot causes the knee joint to overpass its limit when

3.5 Implementation for a fixed-base manipulator 68

using the classical passivity-based law (3.3), while the knee joint remains within limits

when using the proposed control law (3.19).

Note that the iCub platform is equipped with a low-level torque-control loop in

charge of stabilizing any desired joint [Fumagalli et al., 2012, 2010]; it compensates

for friction effects, but with some imperfections, and some viscous friction remains

present. The fact that the tracking error does not converge to zero is thus mainly due

to imperfect tracking of this low-level loop and to unmodeled friction effects.

0 1 2 3 4 5

t (s)

-40

-20

0

20

40

60

80

100

H
ip

 j
o
in

t
p
o
s
it
io

n
 (

d
e
g
re

e
s
)

Minimum joint limit

Maximum joint limit

Joint position, classical control law

Joint position, proposed control law

Joint reference

0 1 2 3 4 5

t (s)

-100

-80

-60

-40

-20

0

20

K
n
e
e
 j
o
in

t
p
o
s
it
io

n
 (

d
e
g
re

e
s
)

Minimum joint limit

Maximum joint limit

Joint position, classical control law

Joint position, proposed control law

Joint reference

0 1 2 3 4 5

t (s)

-10

-8

-6

-4

-2

0

2

4

T
o
rq

u
e
 a

p
p
lie

d
 a

t
h
ip

 j
o
in

t
(N

m
) Classical control law

Proposed control law

0 1 2 3 4 5

t (s)

-10

-8

-6

-4

-2

0

2

4

T
o
rq

u
e
 a

p
p
lie

d
 a

t
k
n
e
e
 j
o
in

t
(N

m
)

Classical control law

Proposed control law

Figure 3.2 Hip and knee joint trajectories and torque, resulting from Experiment 1,
presented in section 3.5.1.

3.5 Implementation for a fixed-base manipulator 69

Experiment 2 - sinusoidal reference position

The second experiment performed consists in tracking time-varying sinusoidal joint

reference positions of the form

sd(t) =
δ

r
sin(ωt+ρ)+s0 (3.28)

Parameters of (3.28) are set to the following for the hip joint.

r = 1.1

ω = 0.25

ρ = 0

For the knee joint, the following parameters are instead used.

r = 1.1

ω = 0.65

ρ = −π/2

Once again, initial conditions are set as

s(0) =





−14

−60





ṡ(0) =





0

0





The proportional and derivative gain matrices Kp and Kd are chosen as diagonal

matrices, as follows.

Kp =





68 0

0 17





Kd =





0 0

0 0





The evolution of the joint positions and torques are shown in figure 3.3. Results

are very similar between both control laws tested. However, it can be observed that

3.5 Implementation for a fixed-base manipulator 70

with classical control law (3.3), the knee joint limit is exceeded at times 7 s, 11.5 s and

19 s. On the other hand, with the proposed control law (3.19), the joint trajectories

are kept within joint limits throughout the experiment.

0 2 4 6 8 10 12 14 16 18 20

t (s)

-40

-20

0

20

40

60

80

100

H
ip

 j
o
in

t
p
o
s
it
io

n
 (

d
e
g
re

e
s
)

0 2 4 6 8 10 12 14 16 18 20

t (s)

-100

-80

-60

-40

-20

0

20

K
n
e
e
 j
o
in

t
p
o
s
it
io

n
 (

d
e
g
re

e
s
)

0 2 4 6 8 10 12 14 16 18 20

t (s)

-10

-5

0

5

10

15

T
o
rq

u
e
 a

p
p
lie

d
 a

t
h
ip

 j
o
in

t
(N

m
)

0 2 4 6 8 10 12 14 16 18 20

t (s)

-10

-5

0

5

10

15
T

o
rq

u
e
 a

p
p
lie

d
 a

t
k
n
e
e
 j
o
in

t
(N

m
)

Figure 3.3 Hip and knee joint trajectories and torques, resulting from Experiment 2,
presented in section 3.5.1. Refer to figure 3.2 for legend: green lines are used for the reference
joint trajectories, blue lines denote results of classical control law and black lines results of
proposed control law.

Experiment 3 - robustness to external perturbations

In the third and last experiment presented here, the initial position and velocity are

set as

s(0) =





−14

−60





ṡ(0) =





0

0





The task then consists in tracking a constant joint reference position

sd =





80

−60





3.5 Implementation for a fixed-base manipulator 71

The proportional and derivative gain matrices Kp and Kd are chosen as the following

diagonal matrices.

Kp =





68 0

0 17





Kd =





0 0

0 0





External forces are then applied on the foot of the robot through physical interaction

with a human. The experimenter is exerting pushing forces on the heel of the foot,

with increasing strength. These applied forces are equivalent to applying an upward

vertical force on the leg. As a result, the knee extends and the hip opens upward,

moving both joints towards their limits. The positions reached by the robot are shown

in figure 3.4, as well as the process of applying forces.

Figure 3.5 shows the evolution of the hip joint position and control torque, as well

as the estimated vertical force applied on the foot during the experiment. Contact

forces and joint torques are estimated using the force-torque sensor present in the leg

of the robot, following a procedure based on a recursive Newton-Euler algorithm, as

exposed in section 2.4.1.

Using the classical control law (3.3), when a force of 50 N is applied, it is sufficient

to move the hip position over its limit. On the other hand, when using the proposed

control law (3.19), the robot remains compliant to the applied external forces, but a

larger force of 160 N needs to be applied in order to overpass the hip joint limit. Indeed,

when a joint is near its limit, it could be noticed that its movement towards the limit

is stiffer, but the robot remains compliant to the forces applied by the experimenter.

(a) Stabilized position (b) Pushing the foot (c) Hitting joint limits

Figure 3.4 Pictures taken while performing Experiment 3.

3.5 Implementation for a fixed-base manipulator 72

0 10 20 30 40

t (s)

-40

-20

0

20

40

60

80

100

H
ip

 j
o

in
t

p
o

s
it
io

n
 (

d
e

g
re

e
s
)

Minimum joint limit

Maximum joint limit

Joint position, classical control law

Joint reference

0 10 20 30 40 50 60

t (s)

-40

-20

0

20

40

60

80

100

H
ip

 j
o

in
t

p
o

s
it
io

n
 (

d
e

g
re

e
s
)

Minimum joint limit

Maximum joint limit

Joint position, proposed control law

Joint reference

0 10 20 30 40

t (s)

-20

-15

-10

-5

0

5

10

15

T
o

rq
u

e
 a

p
p

lie
d

 a
t

h
ip

 j
o

in
t

(N
m

)

0 10 20 30 40 50 60

t (s)

-20

-15

-10

-5

0

5

10

15

T
o

rq
u

e
 a

p
p

lie
d

 a
t

h
ip

 j
o

in
t

(N
m

)

0 10 20 30 40

t (s)

0

30

60

90

120

150

180

E
x
te

rn
a

l
fo

rc
e

 a
p

p
lie

d
 a

t
fo

o
t

(k
N

)

0 10 20 30 40 50 60

t (s)

0

30

60

90

120

150

180

E
x
te

rn
a

l
fo

rc
e

 a
p

p
lie

d
 a

t
fo

o
t

(k
N

)

Figure 3.5 Hip joint trajectories and estimated joint torques, as well as estimated external
forces applied on the foot, for the Experiment 3 presented in 3.5.1. On the left: results
obtained with classical control law. On the right: results obtained with the proposed control
law.

3.5 Implementation for a fixed-base manipulator 73

3.5.2 Discussion

The proposed approach has been validated for a torque-controlled fixed-base manipula-

tor: it allows the asymptotic stabilization and convergence of a joint reference trajectory,

while ensuring that the joint positions remain within their associated feasible range.

Stability and convergence of the tracking error have been shown by analysis based on

Lyapunov theory, in appendix C. Then, the approach has been verified experimentally

by torque-controlling 2 DOFs on the leg of the iCub. When compared with a classical

passivity-based control law, the proposed approach shows higher robustness to external

perturbations, without loss of compliance. In experiments, the controlled robot can

resist, without overpassing joint limits, to the application of external forces 3 times

larger than when controlled with a classical passivity-based control law.

The control law (3.19) shows to effectively generate torques that keep a joint away

from its limits, partly due to the marked increase of the parameter ξ when nearing

a joint limit. However, it is also partly due to the marked increase in the value of

the term J(ξ)−1 premultiplying the feedback gains in equation (3.19). The latter

has the effect to increase the stiffness of the robot when nearing joint limits, further

contributing to their avoidance.

In our experience, when torque-controlling the iCub, we have noticed that using high

feedback gains produces a shaky behavior of the robot. The experiments performed

to validate the proposed approach have shown to cause variations in gains sharp or

disruptive enough as to partially create such a behavior only in a particular case: when

a joint that is already kept close to a limit (e.g. through its desired position) is pushed

further towards it. It may then be appropriate to ensure that desired joint positions

are generally kept at a safe distance from joint limits, or to use a saturation function

in order to limit this effect.

In essence, the approach consists in a change of variables, which makes it general

enough to be applied to any torque-controlled robot subject to joint limits. It can

therefore be advantageous to extend and implement this approach for whole-body

torque-control.

3.6 Implementation within a whole-body torque-controller 74

3.6 Implementation of joint limit avoidance within

a whole-body torque-controller

In order to verify the proposed approach for a whole-body torque-controller, we

introduce the feedback control policy of equation (3.27) into an optimization-based

controller. Figure 3.6 shows an overview of the approach we use for this purpose.

To validate the approach, the soft tasks controller #2 of chapter 2 is applied to the

same stepping in place scenario, but in this case, external perturbations are applied

to the robot in the shape of forces which may cause a joint limit to be violated. The

following subsections shall provide a reminder of the implementation of the controller,

before describing its application to testing the proposed method.

Finite

state

machine

Parametrized

feedback

control policy

Feedback

control

policy

optimization-

based

controller robot

desired postural

task trajectories

desired Cartesian

task trajectories

reference postural

task accelerations

reference Cartesian

task accelerations

u

robot trajectories

Figure 3.6 Overview of the proposed method for whole-body control with joint limit
avoidance. A whole-body controller computes the control input achieving a combination of
tasks as defined in the finite state machine.

3.6.1 Optimization-based controller

The controller used here is the same as the soft tasks controller #2 described in section

2.3.3. It defines an optimization problem, minimizing a weighted sum of squared

errors on Cartesian task accelerations (CoM position, neck frame orientation, swing

and stance feet pose), the squared error on postural task acceleration, and squared

joint torques. The contact of the feet with the ground is stabilized with inequality

constraints on the optimization problem. A control input, consisting of joint torques

and contact forces, is obtained by solving this optimization problem.

3.6 Implementation within a whole-body torque-controller 75

For Cartesian tasks, the error on acceleration ˜̇vT (u) is obtained with

˜̇vT (u) = v̇T (u)− v̇∗
T (3.29)

in which the feedback term v̇∗
T is computed with a proportional-derivative feedback

control policy in SE(3).

On the other hand, for the implementation of joint limit avoidance, the error on

the postural task ˜̈s(u) is obtained with

˜̈s(u) = s̈(u)− s̈∗ (3.30)

in which the feedback term s̈∗ is computed following the feedback control policy of

equation 3.27.

The postural task is used to stabilize the motion by minimizing joint displacements

from the initial pose of the robot, or user-defined desired joint positions. For Cartesian

tasks instead, desired setpoints are obtained from a finite state machine. It is the same

as the one introduced in section 2.3.3: it is composed of 5 states, defined in order to

achieve a walking motion. The formulation of the state machine, desired trajectories

defined for each task and state, as well as transitions between states are described in

detail in appendix B.

3.6.2 Application of joint limit avoidance when walking in

place

The controller described above is applied to the problem of walking in place, when

subjected to external perturbations. The subsequent paragraphs discuss the conducted

experiments and results achieved with the proposed method.

Experimental setup

The controller has been implemented in Matlab/Simulink using WBToolbox [Romano

et al., 2017], and can be used either for a simulated or a real robot, although the

experiment presented here has only been performed in simulation. Also, the open-

source software package qpOASES [Ferreau et al., 2014] is used for solving the QP

3.6 Implementation within a whole-body torque-controller 76

control problem. This framework allows the implemented controllers to run in real-time,

generating joint torque commands for the robot every hundredth of a second.

Experiments are performed on the iCub using 23 DOFs on legs, arms and torso,

in order to validate empirically that the method described above allows for joint

limit avoidance within a whole-body torque-controller. Table 3.1 lists the joint limits

implemented on the iCub.

Parameters of the controller are defined in appendix B, with one exception: the

reference position of the right arm is adjusted as follows. The elbow is extended along

the body, to keep it only slightly bent at an angle of 22.5 deg (closer to its lower limit)

as shown in the first image of figure 3.7.

Note that the initial and reference joint positions are all within their feasible range

of motion. Note also that, as mentioned in remark 3, the value of ξ is saturated to

tanh−1(0.99), by allowing a maximal value of 0.99 to the expression s−s0

δ . This specific

value has been attributed arbitrarily, and it could easily be adjusted to allow even

more precise joint limit avoidance.

Then, external perturbations are applied with a certain number of pushing forces

on the right hand of the robot, at different times during the experiment, as exposed

in table 3.2. The interval of 5 seconds between the application of each push shows to

be sufficient for the robot to recover from the previous perturbation. The application

of these particular forces has for effect to push the right arm backwards, moving the

elbow joint towards its lower limit.

Experimental results

Results achieved with the proposed feedback control law (3.27) are then compared

with results achieved when using the classical PD feedback control law as recalled here:

s̈∗ = s̈d−Kps̃−Kd
˜̇s.

The robot behavior achieved in simulation, with and without joint limit avoidance,

is illustrated in figure 3.7. In both cases, the robot succeeds in performing the

desired stepping motion, but with slightly different reactions to external perturbations.

Differences are evidenced in figure 3.8, where CoM trajectories are shown, as well as

those of the joints that are more affected by the applied perturbations: elbow pitch,

shoulder pitch and roll.

3.6 Implementation within a whole-body torque-controller 77

Table 3.1 Implemented joint limits of the iCub, in degrees

Torso Shoulder Elbow Hip Knee Ankle

pitch roll yaw pitch roll yaw pitch pitch roll yaw pitch pitch roll

qmax 50 30 70 10 160.8 80 106 85 80 70 0 30 20

qmin -50 -30 -20 -95.5 0 -37 15 -30 -12 -70 -100 -30 -20

Table 3.2 Forces applied on the right hand of the robot

time (s) force (N) duration (s)

5 [15 0 0] 1

10 [20 0 0] 1

15 [−15 0 0] 1

20 [−20 0 0] 1

Forces are expressed with respect to world coordinates: the x-axis points forward.

(a) With the classical feedback control policy

(b) With the proposed feedback control policy

Figure 3.7 Behavior of the robot achieved when subjected to 4 increasing external pertur-
bations (of 15, 20, -15 and -20 N, respectively) in simulation experiments: with the classical
controller, compared with the proposed controller.

3.6 Implementation within a whole-body torque-controller 78

(a) Center of mass (CoM) position

(b) Right elbow and shoulder joint positions

(c) Right elbow and shoulder joint velocities

(d) Right elbow and shoulder joint measured torques

Figure 3.8 Evolution of CoM position as well as right elbow and shoulder joint positions,
velocities and torques achieved during experiments with the simulated robot. CoM position
values are given with respect to a world frame of which the x− and y− axes point respectively
to the front and to the left of the robot. These graphs allow to compare results achieved with
a classical controller and the proposed one. As depicted in the legend, reference positions,
results achieved with the classical and proposed controller, lower and upper limits of the
elbow joint are shown with different colored lines.

3.6 Implementation within a whole-body torque-controller 79

3.6.3 Discussion

The proposed approach has been validated with a whole-body torque-controller.

Achieved results show stabilization and convergence of joint reference trajectories,

while ensuring that the joint positions remain within their associated feasible range.

Using the classical feedback control law, we observe that when a force of −15 N is

applied for 1 second on the hand, it is sufficient to move the elbow position over its

limit. On the other hand, when using the proposed feedback control law (3.27), the

robot remains compliant to the applied external forces, but a larger disturbance needs

to be applied in order to force the elbow joint to its limit. However, note that even

though the elbow is stiffer near its limit, the robot remains compliant to the applied

forces. Hence, with the proposed approach, the robot can resist, without overpassing

joint limits, to the application of external forces, contrary to a classical feedback control

law, and this, without loss of compliance.

As for the CoM, results show that when forces are applied on the hand, the robot is

destabilized more or less equally with both control laws compared. Thus, the proposed

feedback control law does not appear to affect the ability of the whole-body controller

to stabilize the robot.

Joint evolutions show that, when a disturbance that does not threaten to move

a joint to its limit, both control laws generate similar joint trajectories. However,

when the applied disturbance moves the elbow and shoulder pitch joints closer to

limits, different behaviors are obtained. With the classical feedback control law, joint

trajectories show large displacements of the elbow and shoulder pitch joints at a higher

velocity, and the elbow joint limit is surpassed. On the other hand, with the proposed

control law, displacements of the elbow and shoulder pitch joints are contained to

prevent hitting a joint limit. Joints are moving at a fraction of the velocity displayed

with the classical feedback control law. It can be observed that moving the shoulder

roll is used as a way to absorb the larger disturbance.

In consequence, recovery from disturbances shows to be smoother with the proposed

approach. Results indicate that the proposed approach allows to increase the robustness

of a controller towards external disturbances such as unknown forces applied on the

robot. Furthermore, while avoiding joint limits, the proposed control law also appears

to reduce the velocity of the robot in reaction to external disturbances, thus making it

safer for interaction with humans.

3.7 Conclusion 80

3.7 Conclusion

In summary, this chapter has presented new control laws for joint limit avoidance in

torque-control. The proposed approach has been implemented for a fixed-base system,

as well as within a whole-body controller. Results achieved with the fixed-base system,

using the leg of the iCub, demonstrate the effectiveness of the approach for joint limit

avoidance. Similarly, results achieved in simulation with the whole-body controller show

that the approach successfully allows to avoid joint limits, thus increasing robustness

in response to external perturbations.

The effectiveness of the method as it has been presented here relies on the shape of

the hyperbolic tangent function. As such, additional parameters could be introduced

into the parametrization, in order to adjust its specific shape. For instance, a scaling

coefficient inside the hyperbolic tangent would allow to modulate how fast the function

approaches infinity. By extension, it shall affect how close to joint limits do repulsive

torques become effective. Furthermore, similar functions such as a sigmoid or arctangent

could eventually be compared for their effectiveness and associated properties. A similar

parametrization strategy could also be implemented, in order to contain joint motion

within velocity limits.

Future works shall moreover include further testing of the joint limit avoiding

feedback control policy. Due to time constraints, experiments on the real robot remain

to be performed with the whole-body controller. The main limiting factor for the

achievement of real-world experiments is the effort which needs to be spent adjusting

the controller, in order to transfer results from simulation to the robot.

Developing methods to automatically adjust parameters of the controller would

be helpful in this case, and possibly also for many more researchers, if the problem

of parameter tuning is a general issue across projects involving QP-based controllers.

Therefore, chapter 4 will assess the importance of this issue, from the experience

of researchers working with similar controllers, as a first step before developing an

automatic tuning method, which shall be presented in chapter 5.

Chapter 4

Survey on parameter tuning for

QP-based controllers

In chapter 2, we have developed methods for whole-body torque-control. In this, the

alliance of stack-of-tasks approaches and QP solvers have shown to be effective tools,

simplifying the development of a controller.

Our general approach can be summarized as follows. The robot is modeled as

a floating-base manipulator, with acceleration constraints at the contact of the feet

with the ground. A stack-of-tasks is defined with the CoM position, feet pose, upper-

body orientation and joint positions, allowing to track their acceleration. Reference

accelerations, for their part, are computed using a proportional-derivative (PD) control

strategy, given desired positions. The controller then relies on quadratic programming

optimization to compute the joint torques and contact forces required for achieving

the desired motions. The QP is formulated with strict and soft tasks, minimizing

a weighted sum of task errors and a regularization term on the joint torques, given

constraints on the strict priority tasks as well as feet/ground contact and support

polygon. In addition to the desired trajectory of each task, variables of the controller

include the priority or weights associated to each task, as well as PD gains used for

computing reference accelerations.

Results achieved with our methods show that in simulation, the robot follows

trajectories with enough precision to be able to walk in place practically indefinitely.

However, on the real robot, although it succeeds in performing a walking in place

motion, trajectories are followed with increasing errors and movements are slower.

82

The discrepancy between simulation and real world experiments has then been

reported to be mostly related to the estimation of joint torques and floating base pose,

which contribute to limiting the performance of the torque-controller.

Nonetheless, it can be observed that with a stack-of-tasks/QP-based controller,

the number of parameters used to define desired trajectories, controller gains, as well

as weights of tasks can rapidly increase with the complexity of the controller (e.g.

number of tasks, number of states in the finite state machine, complexity of whole-body

movements...). These parameters notably need to be specifically adjusted for a given

robot platform, in order to achieve desired behaviors. Due to this fact, deployment on a

real robot is not ensured to be straightforward. Indeed, when passing from experiments

in simulation to the real-world robot, success or failure may highly depend on proper

tuning of parameters, and not only on precise estimation of the state of the robot.

Considering that tuning is a significant part of a controller’s success, given more

precise tuning, a controller can be improved to achieve more impressive results.

Nonetheless, a number which so far has not generally appeared on paper is the

time spent on tuning parameters of a controller. Indeed, it shows to be a significantly

non-trivial task on its own, contributing to making the passage from simulation to

experiments on the robot a challenge.

From anecdotal evidence, at the moment of writing this thesis, it does not seem so

rare to find that, in the development of a new experiment with whole-body control,

tuning of parameters is achieved over the course of several weeks, and is done by hand.

This tuning may then additionally need to be corrected for any change in conditions

or platform. As a result, parameter tuning can be considered a straining and thankless

task, if one does not have the intuition for it. And when parameter tuning becomes

tedious, effective tools would come in handy.

Therefore, it seems worth opening a discussion on the subject of parameter tuning,

and investigating solutions to alleviate the difficulty of this task. At the moment of

writing, only few papers have been published on the subject of parameter tuning for a

humanoid robot [Modugno et al., 2017, 2016b; Pucci et al., 2016a]. Notably, a tool

for automatic gain tuning of a whole-body torque-controller has been investigated in

[Pucci et al., 2016a], but the solution calls for relatively large computations, which

may not always be affordable for real-time applications.

4.1 Description of the survey 83

Before delving deeper into this subject, we propose to interrogate the community

working with similar controllers, to assess whether this is a problem which actually

needs to be addressed.

In order to evaluate the interest of the community in the eventual development of

solutions for the tuning of QP-based controllers, we prepared an anonymous online sur-

vey. The target population for this survey is therefore researchers who have experience

in developing QP-based controllers. We can obtain a sample of this population through

the users of related, well-established mailing lists in the European and worldwide scene

[euRobotics, 2018; GdR-Robotique, 2018; robotics worldwide, 2018].

4.1 Description of the survey

The survey has been prepared in the form of a self-administered questionnaire using

Google Forms, a free online software for building surveys. It was then distributed to

respondents by email through the above-mentioned mailing lists. The email displayed

in appendix D has been sent to each mailing list on June 13th, 2018.

The survey includes open-ended, close-ended and discrete questions, as well as

rating scales. It is reproduced in its entirety in appendix D.

No particular screening procedures have been used, but we have informed respon-

dents of the subject of the survey. In the email, we specifically invite those who have at

any point worked with controllers based on quadratic programming (QP), to participate

in the survey.

The survey questionnaire contains 5 pages.

1. The first page contains an introduction to the questionnaire, as well as the

first question: “Are you using or have you been using QP controllers?”. If

the given answer is “yes”, the questionnaire moves on to questions regarding

QP controllers. Otherwise, questions on QP controllers are skipped and only

demographic information (on page 5) is collected.

2. The second page defines the type of robot with which respondents have worked.

3. The third page aims to precise in which ways QP controllers have been used

and defined by the respondents, and optionnally allows participants to indicate

4.2 Results of the survey 84

references in relation to the QP controller(s) they work(ed) with, or links to their

source code.

4. The fourth page of the questionnaire contains the core of the questions related

to QP controller tuning, meant to gather information from the experience of the

respondents.

• A first set of 3 questions assesses how important the respondents think

it is to tune some specific parameters, if there are additional (unlisted)

parameters which they think important to tune, and allows comments on

the subject.

• A second set of 3 questions assesses how much time the respondents spend

tuning the same specific parameters as in the previous set of questions, if

there is an additional (unlisted) parameter which they spend time and effort

tuning, and allows comments on the subject.

• Then, a series of questions assesses whether participants have developed or

use tools or techniques for making tuning easier, if they find tuning tedious

and if they think tools would be needed in that sense.

• Finally, two open-ended questions allow respondents to share further infor-

mation of feedback from their experience.

5. The fifth and final page collects demographic information about the respondents.

4.2 Results of the survey

Data has been collected from 35 volunteer respondents. Note that although the present

section reports the answers collected for the open-ended questions, the entirety of the

free text answers are also provided in appendix D.

Information about the demographic profile of respondents is shown in figure 4.1.

We may have sent reminders in order to increase the total number of respondents, but

since the use of QP-based controllers is a rather precise field, we did not expect a large

number of participants. The objective of the survey being to get an idea of the current

situation, the number of responses was amply sufficient.

Out of the 35 respondents, 29 indicated that they are or have been using QP-based

controllers and filled the related questions.

4.2 Results of the survey 85

Most respondents (69%) have indicated to be working with a robot manipulator,

while 37.9% have developed QP controllers with a humanoid robot. All the types of

robots with which the respondents have worked are shown in figure 4.2.

Results shown in figure 4.3 indicate that in general, respondents do not limit their

use of QP controllers to a single problem, nor do they always define them with the

same kind of task prioritization scheme. References and links to source code shared by

the respondents are compiled in table 4.3.

In average, answers show that tuning of gains, trajectories, task priorities and

constraints are considered significantly important (5/7). On the other hand, respondents

are in average neutral about the tuning of parameters that are intrinsic to a controller

(e.g. threshold values) or external (e.g. contact properties), but the neutrality could

also arise from the fact that the terms “intrinsic” and “external” are not extremely

well defined. These findings are shown in figure 4.4. In addition, some participants

pointed out that the following are also important to tune:

• regularization terms

• regularization parameters (e.g. tolerances, saturations...)

• sampling rate of the trajectory

As for additional comments, some participants had different insights on the subject

of trajectories, commenting:

“Trajectories should not be tuned but should be the outcome!”

“I don’t consider “desired task trajectories” as part of QP tuning, but rather

as part of motion planning/MPC.”

Responses on how participants evaluate the time spent tuning parameters are

shown in figure 4.5. Controller gains and task priorities are tuned by the large majority

of respondents (93% and 97%, respectively), and their tuning time can reach up to

a month. Other parameters of the list (task trajectories, constraints, intrinsic and

external parameters) are less likely to be tuned within the development of a new

QP controller. However, tuning task trajectories turns out to be comparatively time

consuming, with 21% of respondents indicating that they may spend over 6 months on

the task.

4.2 Results of the survey 86

Several respondents have provided additional comments regarding the question on

time spent tuning parameters of QP controllers:

“What took the longest in terms of getting all of these things implemented

was when you see some undesired behavior (like a foot bouncing off the

ground on touch down) it can be difficult to figure out which part of the

system to fix. It could be the foot trajectory, the trajectory following due

to low gains, the trajectory following due to a bad damping estimate that

gets fed in through inverse dynamics, maybe the objective weighting is too

low, maybe we are switching from swing to stance too early/late. While

this framework is incredibly flexible and useful it does inherently couple

everything together so it can be difficult to tease things apart.”

“The crucial parts are to get the constraints right. And that changes with

every task. However, if done smartly, they can be (partly) reused. Some

parameters follow iterations (eg contact properties), and they can be short

(weeks or months for modifying a manipulator’s end effector) or long (up

to a year or longer for building a new robot). Many parameters are also

dependent, so changing e.g. the compliance of the actuator triggers changes

in other parameters. Therefore, most are continuously evolving and good

sets vary from task to task.”

“It can be really fast on some mono robot manipulation scenario but can be

really tedious for multi robot scenario.”

“Tuning time can vary extremely depending of the scenario.”

“I assumed a person is working on the robot every day, full time.”

As shown in figure 4.6, when asked whether they had developed or are using tools

or techniques for easing the tuning process, most people (72%) replied that they do

not. One respondent however commented

“We are just getting around to defining performance metrics such that you

can quantify improvement while tuning... but currently it is all based on

trying it on the robot and see how it looks.”

4.2 Results of the survey 87

Among those who do use or have developed tools, the following were mentioned:

• “see [Lober, 2017]”

• “We developed tools on top of RVIZ to graphically tune controller gain and tasks

trajectory”

• “Basic zero-pole graphs or simulated time plots while tuning the low-level (PID)

gains”

• “We are learning a mix of the controller -so best case, its parameters require no

tuning- and the task Jacobian which takes care of some of the other parameters”

• “Mismatch Learning”

The last comment on mismatch learning probably refers to something similar to

[Koryakovskiy et al., 2018]. These comments show that out of the people who have

developed tools, some are used for helping manual tuning, while others use a learning

method to perform at least part of the tuning.

Answers show that while 21% of respondents evaluate parameter tuning moderately

tedious, 62% identify it as positively tedious (and none indicated that it was not

tedious), as shown in figure 4.7. The following comments have been collected, as to

the reason for their evaluation on a scale of 1 (not tedious) to 7 (highly tedious):

1: No evaluation.

2: “Once you work with it a while it certainly gets easier.”

3: “Parameters should have a physical meaning and should therefore be easy to

tune. If that is not the case, your model is bullshit. Of course, it is not always

easy to find the actual numbers for the physical parameters, but at least you

can apply common sense to their ranges.”

“QP controller can be really tedious to tune if you use it with bad trajectory

planning and try to play with tasks weights and gains to overcome this issue.”

“I usually find that tuning only the scale-of-order is enough to get a first set

of working QP settings (this applies to both PD gain and weight tunings).”

4: No comments.

5: “Trial and error tuning is too long and often tuning one parameter will affect

other tuned parameters.”

4.2 Results of the survey 88

6: “A complex dynamical system may have too many parameters to tune, the

possible combinations are endless and the combined effect of all parameters is

not easy to predict.”

“Sometimes work for the configuration of the robot used during tuning, then

fails for a different robot configuration”

7: “Application specific and mostly heuristic”

“Time spent tuning is unpredictable and always more than code development”

Comments from those who find tuning to be positively tedious (above 4), bring

attention to the fact that complex systems may require the tuning of many parameters

which possibly do not act indepently from each other, and which may produce different

results with different robot configurations and different applications. As a result, a

trial and error tuning procedure becomes time consuming and tedious, when one needs

to (i) try many combinations of parameters, and (ii) repeat the tuning process for each

change in working conditions of the controller.

Comments from the respondents who don’t find tuning particularly tedious show

that they have an approach to tuning in which the effect of each parameter is clearly

defined, trajectory planning is well posed, or in which the accumulation of experience

allows to build intuition for tuning. The first two approaches (clear definition of

parameters, and ensuring suitable trajectories) are worth investigating, while the third

one (building experience) unfortunately does not help tuning for those who do not

yet have much experience or just lack the kind of intuition needed. Additionnally,

simplifying the system, minimizing the number of parameters, and developing a tuning

technique which is not simply relying on manual trial and error, could possibly ease

the problems reported above.

Similarly as in the previous question, when asked to evaluate the importance of

making parameter tuning less tedious, 17% of respondents are neutral, and 65% rate it

as positively important, as shown in figure 4.8. The following comments have been

collected, as to the reason for their evaluation on a scale of 1 (not important) to 7

(crucial):

1: “I think the main problem with parameter tuning is not that it might be tedious.

The main problem is that one never knows when the current tuning is good

enough.”

4.2 Results of the survey 89

2: No comment.

3: “In our work the QP part was the most robust. Compared to the contact

planning part it was really easy.”

4: “I see potential in there.”

5: No comment.

6: “It is tedious because it often takes a huge amount of time. If less tedious =

less time, then I think it is really important.”

“Easier implementation on industrial robots.”

“It’s never tuned correctly and/or for all applications.”

7: “Save time and make QP’s useful for production systems.”

“No one wants to tune parameters every time with a new platform.”

According to these comments, the interest of easing tuning lies in the possibility of

saving time and making QP controllers more accessible to industrial contexts, as well

as more easily successful across platforms and applications, and defining criteria on

what is a satisfying tuning.

Furthermore, as shown in figure 4.9, when asked about their interest in an eventual

tool for tuning QP controllers, 83% of respondents indicate to be more than moderately

interested, by giving a score ≥ 5 on a scale of 1 (not interested) to 7 (very interested).

Respondents have expressed what they think of as an ideal tool with the following

comments:

“It should take as input parameters that have a clear and predictable effect

on the robot, then map these parameters to the ones that people usually

tune, whose effect is neither clear or predictable.”

“Easy to use, good GUI.”

“Automatically move the robot and find the best PID values.”

“The ideal tool would not need to any major adaptation on the part of the

controller itself.”

4.2 Results of the survey 90

“It should rely on a dynamic simulator and on some machine learning (better

if supervised learning, even if automatically supervised). The simulator

replays the experiment systematically and tunes the gain. Some manual

tuning will also be required on the real robot, but only at the end.”

“An easy to set-up tool that can be easily applied to different QP frameworks,

and auto-tune the parameters quickly+safely.”

“The tool needs a way to guess what I’m looking for in terms of whole-body

behavior. At first, I see two ways to do that:

1. The tool assumes the instantaneous QP cost function is the specifi-

cation. It then goes on to play a motion following my desired tasks,

and looks at the integral of this cost function over a given run. Then

changes QP parameters, and tries again for a different run. This way,

we know how to generate a dataset (parameters, costs); then we can

follow a data-driven approach (a.k.a. "learning")! Expected pro: user

can do something else while the computer is working. Expected con:

computation time may be prohibitive; only applies to PD-gain tuning

of a weighted QP.

2. The tool does not assume a specification; rather, it generates a tra-

jectory and asks me every time which one I find better. Expected pro:

applies to both PD-gain and weight tunings; specification is implicit.

Expected con: user spends brain time in the process, dataset will thus

be smaller.

These thoughts being sketched, the ideal tool in my opinion looks like this:

the user specifies all of its cost terms (for a weighted QP: the expressions

that are weighted; for a lexicographic QP: same across all layers), but not

weights nor PD gains. The tool will generate several trajectories for, say, at

most a week. As a final outcome, the user is presented with a cost-function

design GUI:

• Input: cost function, i.e. weights on each cost terms and/or lexico-

graphic separation between weighted layers.

• Output: recommended set of PD gains, and statistics over each cost

term: min/max/average/standard deviation of the cost value over a

trajectory.”

4.2 Results of the survey 91

These comments outline the following desired qualities for a tool:

- ease of use

- rapidity

- safety

- automatic

- standalone (does not need to interfere with the controller)

- applicable to various frameworks

Some kind of learning scheme may be implemented for the task, and the tuning

objectives may be specified by the user.

Finally, some further recommendations have been offered by a few participants, as

follows:

“I think having more robustness w.r.t. a change of task is important.

Usually, the hand-made tuning is really task-dependent.”

“A graphic "tutorial" on QP parameters could be useful for people getting

started with QP controllers”

“PD-gain tuning is not so hard. The problem is, the user does not really

know what she/he wants. Hence my hunch that the point is not helping

users tune their QPs, but helping QPs tune their users!”

“Refer to works on machine learning for transferring from simulation to

real robot.”

Some general comments to the survey have also been submitted, as follows:

“You should have included a “don’t know” answer to the question above (I

am not sure about all).”

“I don’t tune the parameters, Phd students do, so do not consider my

answers.”

4.2 Results of the survey 92

This last comment may indeed indicate that more experienced researchers have

a less focussed view on the subject of tuning. A deeper analysis could look for the

influence of years of experience on tediousness and interest ratings. The same could be

done to assess the influence of the type of robot or the specific use of QP controller on

answers. However, considering that the goal of the survey is to evaluate the interest

of the community in the eventual development of solutions for tuning QP controllers,

the analysis done so far appears to be sufficient. The answers received show a marked

interest in eventual tools for making the tuning of QP controllers easier.

Gender

29 4 2

Male Female Undisclosed

Years of experience in robotics

1 8 16 5 5

<1 1-3 4-7 8-10 >10

Field of work

Control 28

Machine learning 11

Planning 11

Software development 10

Modelling 8

Estimation 7

Identification 5

Mechanical design 4

Human-robot interaction 1

Answers to “Are you using or have you been using QP controllers?”

29 6

Yes No

Figure 4.1 Demographic profile of the 35 respondents: gender, years of experience in
robotics and related fields in which the respondents identified to be working

4.2 Results of the survey 93

Answers to “Which type of robot are you developing your

QP controller with?”

Manipulator 20

Humanoid robot 11

Wheeled mobile robot 4

Aerial robot 4

Non humanoid legged robot 2

Underwater robot 1

Continuum robot 1

Figure 4.2 Types of robots which respondents are developing QP controllers with (respon-
dents could select more than one type)

Answers to “In which way are you using QP controllers?”

Position control 17

Real-time trajectory generation 13

Inverse kinematics 13

Torque / force control 12

Inverse dynamics 10

Offline trajectory generation 9

Answers to “When multiple tasks are considered, various ways can be

used to define a QP. What is your approach in this sense?”

(A) Soft/weighted tasks 17

(B) Stack-of-tasks 12

(C) Constrain high priority tasks 11

(D) Single task 5

Figure 4.3 Use and formulation of QP controllers by the respondents (more than one
type could be selected). More precisely, with (A) Soft/weighted tasks, we mean that the
cost function is computed from a weighted sum of values associated to each task. With (B)
Stack-of-tasks, we refer to a cascade of QPs solved with the lowest priority task acting in the
nullspace of the highest priority tasks. With (C), we mean that high priority tasks are set
as constraints of the QP while low priority tasks are considered into the cost function. (D)
means that we only optimize over a single task.

4.2 Results of the survey 94

Answers to “In your experience, how important is it to tune the following

parameters associated to a QP controller?”

Constraints of the QP

2 3 4 4 7 9

Task weights/priorities

2 3 2 8 6 8

Gains of the controller

11 3 10 6 8

Desired task trajectories

1 2 1 2 11 5 7

External parameters associated to the tasks (e.g. contact properties)

1 6 4 8 4 3 3

Intrinsic parameters of the QP (e.g. thresholds)

4 4 5 4 4 5 3

1 (not important) 2 3 4 5 6 7 (crucial)

Figure 4.4 Respondents’ evaluation of the importance of tuning parameters, on a scale
of 1 (no important impact on results) to 7 (crucial for successful results). Numbers in the
graphs indicate the number of respondents who chose each category.

4.2 Results of the survey 95

Answers to “From your experience, and please be honest: how much time

and effort do you generally spend tuning the following parameters for a

new QP controller?”

Constraints of the QP

5 8 8 3 3 1 2

Task weights/priorities

1 10 10 4 1 4

Gains of the controller

2 8 9 6 11 3

Desired task trajectories

7 5 6 3 6 3

External parameters associated to the tasks (e.g. contact properties)

9 7 6 2 3 2

Intrinsic parameters of the QP (e.g. thresholds)

11 6 5 3 2 2

We de not tune those < 1 day < 1 week < 1 month

< 6 months > 6 months It is a continuous process

Figure 4.5 Time spent tuning parameters of QP controllers, according to respondents.
Numbers in the graphs indicate the number of respondents who chose each category.

Answers to “Have you developed or are you using any tools or techniques

for making the tuning process easier?”

8 21

Yes No

Figure 4.6 Use of tools for tuning

4.2 Results of the survey 96

Answers to “How tedious do you find parameter tuning to be?”

2 4 6 7 4 6

1 (not tedious) 2 3 4 5 6 7 (highly tedious)

Figure 4.7 Respondents’ evaluation of how tedious tuning is, on a scale of 1 (It is not
tedious, I find it rather enjoyable to tune parameters for QP controllers) to 7 (It is tedious
enough to make me dislike tuning parameters)

Answers to “How important do you think it is to make parameter tuning

less tedious?”

1 2 2 5 3 7 9

1 (not important) 2 3 4 5 6 7 (crucial)

Figure 4.8 Importance of easing parameter tuning, according to respondents, on a scale of
1 (not important) to 7 (crucial).

Answers to “How would you rate your interest in an eventual tool for the

tuning of your QP controller?”

11 3 7 9 8

1 (no interest) 2 3 4 5 6 7 (very interested)

Figure 4.9 Respondents’ interest in eventual tools for tuning, on a scale of 1 (I am not
interested in using tools for that) to 7 (I am very excited to try it out!)

4.2 Results of the survey 97

Table 4.3 References and links to source code indicated by respondents

References to the software used

https://projects.coin-or.org/qpOASES

ORCA https://orca-controller.readthedocs.io/en/dev/

OpenSoT http://opensot.github.io/ (not publicly accessible anymore)

MC-RTC

The QP used on HRP4 at LIRMM montpellier

Controller developed by Joseph Salini (ISIR) for XDE

Links to reference documentation

https://hal.archives-ouvertes.fr/hal-01735462v1

http://www.roboticsproceedings.org/rss14/p54.pdf

https://ieeexplore.ieee.org/document/6482266/

https://hal.archives-ouvertes.fr/hal-01276931/document

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7433460

Links to source code

https://github.com/robotology/whole-body-controllers

https://github.com/kuka-isir/cart_opt_ctrl

https://github.com/jrl-umi3218/Tasks

https://github.com/semroco/giskard_core

https://github.com/semroco/giskardpy

https://github.com/robotology/walking-controllers/...

https://github.com/jrl-umi3218/Tasks/

qpOASES solver https://projects.coin-or.org/qpOASES
https://orca-controller.readthedocs.io/en/dev/
http://opensot.github.io/
https://hal.archives-ouvertes.fr/hal-01735462v1
http://www.roboticsproceedings.org/rss14/p54.pdf
https://ieeexplore.ieee.org/document/6482266/
https://hal.archives-ouvertes.fr/hal-01276931/document
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7433460
https://github.com/robotology/whole-body-controllers
https://github.com/kuka-isir/cart_opt_ctrl
https://github.com/jrl-umi3218/Tasks
https://github.com/semroco/giskard_core
https://github.com/semroco/giskardpy
https://github.com/robotology/walking-controllers/blob/master/modules/Walking_module/src/WalkingQPInverseKinematics_qpOASES.cpp
https://github.com/jrl-umi3218/Tasks/

4.3 Conclusion 98

4.3 Conclusion

In this chapter, the results of a survey on the subject of parameter tuning for QP-based

controllers have been presented. The answers received show that in general, signiĄcant

time is spent tuning parameters for controllers, and this activity is generally considered

tedious. Respondents also show a marked interest in eventual tools for making the

tuning of QP controllers easier.

In response to this interest, it appears highly appropriate to investigate novel

approaches for automatically tuning parameters such as task priorities or gains of a

controller.

Chapter 5

Learning task priorities of

whole-body controllers

The information gathered from the survey presented in chapter 4 exposes an interest

of the community, in making the deployment of whole-body controllers easier. This is

therefore the concern of the current chapter, aiming to deĄne methods general enough

to be applied to a wide range of optimization-based controllers.

In particular, data collected in chapter 4 shows that task priorities are generally

considered to have a signiĄcant impact on the results achieved with a QP-based

controller, but their tuning is rather tedious. There is therefore a marked interest in

developing methods which would make the adjustment of task priorities less tedious,

in order to save time and to make the implementation of controllers easier on different

platforms or with different applications. An automatic method for Ąnding the best

prioritization is eventually necessary for robots to reach true autonomy.

Indeed, task priorities are usually designed a priori by experts, then manually

tuned to adjust task ordering, timing, transitions, etc. It is a tedious operation which,

depending on the complexity of the system and the task, can take a notable portion of

a researcherŠs time, and can be particularly hard in the case of whole-body control of

Ćoating-base platforms. In particular, proper task priorities may not always be evident

at Ąrst sight, especially when several tasks are used, or when working conditions may

vary. In the case of whole-body control of Ćoating-base platforms, the coordination of

multiple tasks can be particularly hard, especially when it involves keeping balance,

while navigating the environment or fulĄlling additional activities such as upper limbs

100

and torso movements for manipulation. Another challenge with tuning parameters by

hand, is that quantiĄable metrics on performance, allowing to measure improvements

while doing the tuning, still need to be deĄned. As a result, one may have difficulty

discerning how changing a parameter affects the results, or even discerning when the

current tuning is good enough.

Works related to this issue have been introduced in section 1.2.1, where in particular,

the reality gap problem has been evidenced, and the need to achieve automatic

parameter tuning. To achieve adaptability of learned solutions to new scenarios, the

approaches presented in section 1.2.1 can beneĄt from domain randomization (DR)

[Tobin et al., 2017], which consists in randomizing some aspects of the simulation to

enrich the range of possible environments experienced by the learner. For example, in

[Antonova et al., 2017], robust policies for pivoting a tool held in the robotŠs gripper are

learned in simulation, given random friction and control delays, such that the learned

policies proved to be effective on the real robot as well.

The work presented in this chapter proposes to apply the idea of DR to whole-

body controllers. In this context, we want to ensure that balance is maintained while

performing a task, even if large differences exist between the learning domain and the

testing domain, for example as illustrated in Ągure 5.1. To achieve this result, the idea

is to combine a DR approach with Ątness functions promoting the robustness of the

learned controller. The developed method would then allow to learn, in simulation,

robust task priorities which achieve desired goals, while allowing to facilitate the

transfer of results from simulation to reality.

Since the proposed method relies on constrained stochastic optimization for learning

task priorities, section 5.1 Ąrst introduces this subject, before section 5.2 describes

the framework we developed. Its implementation for learning task priorities of a

whole-body torque-controller is then presented in section 5.3, and its application to a

stepping scenario is presented in section 5.4.

5.1 Constrained stochastic optimization 101

Figure 5.1 Different iCub models performing the same whole-body motion with several
tasks. In this context, task priorities adjusted to achieve desired goals on a first iCub model
may not allow to achieve the same results when used with different models, or when passing
from simulated to real robot. With the purpose to eventually ease the passage from simulated
to real-world robots, we propose to optimize the task priorities for robustness, in order to
allow their transfer from one robot model to a different one, without the need of re-tuning.

5.1 Constrained stochastic optimization

One of the most common problems in applied mathematics and related Ąelds is how

to Ąnd an approximate of an optimal solution for a function deĄned on a subset of

Ąnite dimensional space. For instance, such an optimization problem is fundamental

to many machine learning approaches. Stochastic optimization methods offer an

approach to solve this kind of problem, and have become widely used in the last decades.

More precisely, stochastic optimization refers to a collection of optimization methods

that employ randomness for minimizing or maximizing an objective function. The

randomness in these methods may be introduced in the formulation of the optimization

problem, using random objective functions or random constraints to the problem.

Alternatively, and as will be the main focus here, randomness may be introduced

into the search process of solving a problem. This allows to accelerate progress, can

enable to escape a local optimum during the search to a global optimum, and can make

the method less sensitive to modeling errors. For these reasons, this randomization

principle represents a simple and effective way to achieve good performance of a

stochastic optimization method, over many different problems. Methods which use

this principle include for example simulated annealing, random search, as well as

evolutionary algorithms such as genetic algorithms and evolution strategies. We will

concentrate on the latter.

5.1 Constrained stochastic optimization 102

Evolution Strategies (ES) are a class of black box optimization algorithms, con-

sisting in heuristic search procedures. The idea is the following. At every iteration of

the algorithm (called a ŞgenerationŤ), a population of individuals containing candi-

date solutions (called Şobjective vectorsŤ below) is perturbed (through mutation and

recombination of their parameters), and the objective function value of each individual

(called ŞĄtnessŤ) is evaluated. The individuals with the highest scores are selected and

recombined with new candidate solutions to form the population of the next generation.

Iterations are repeated until the optimization is considered done. Differences between

algorithms of this class generally consist in different representations of the population,

or different ways to perform mutation and recombination.

The most widely known evolution strategy is the covariance matrix adaptation

evolution strategy (CMA-ES) [Hansen and Ostermeier, 2001]. In this approach,

new candidate solutions are sampled from a multivariate normal distribution. The

effect of recombination is to select a new mean value for the distribution, while that

of a mutation is to add a random vector. Furthermore, a covariance matrix is used

to represent dependencies between variables of the distribution. The concept behind

CMA-ES is then to update the covariance matrix of the distribution.

Stochastic optimization is a whole Ąeld in itself, and could justify much more

than the space which it is allotted here. The present section provides a functional

explanation of the algorithm used in our work, but does not offer a deep explanation

of how it works, as this is not the focus of this chapter. For further understanding

directly related to this subject, the reader is encouraged to consult reference works

[Arnold and Hansen, 2012; Hansen and Ostermeier, 2001; Igel et al., 2006].

In the work presented in this chapter, the learning problem is cast as a black-box

constrained stochastic optimization. Given a Ątness function ϕ(w) : RnP → R (with

nP the number of parameters to optimize), sets of nIC inequality constraints and nEC

equality constraints h, g, the idea is to Ąnd an optimal solution w◦ ∈W ⊆ RnP to the

problem:

w◦ = argmax
w

ϕ(w) (5.1a)

subject to

gi(w)≤ 0 i = 1, . . . ,nIC (5.1b)

hi(w) = 0 i = 1, . . . ,nEC (5.1c)

5.1 Constrained stochastic optimization 103

As mentioned above, CMA-ES is a standard tool for solving black-box optimization

problems. Each generation of the algorithm creates offspring objective vectors from

the recombination of the objective vectors of the parent population, and mutation.

This mutation comes from a random vector distributed according to a multivariate

zero-mean Gaussian distribution N , of which the covariance matrix C is decomposed

into Cholesky factors A such that C = AA⊤. An important feature of evolution

strategies is that the covariance matrix is subject to adaptation: it is altered in order

to sample more often steps in the search space that promise higher progress [Igel et al.,

2006].

In particular, the CMA-ES algorithm has the advantage of having few parameters

to tune. Even though the classical CMA-ES algorithm was not originally designed to

solve constrained optimization problems, several variants which do handle constraints

can be found in the literature. For instance, variants of CMA-ES have been bench-

marked in [Modugno et al., 2016a], where (1+1)-CMA-ES with Covariance Constrained

Adaptation (CCA) [Arnold and Hansen, 2012] is shown as the most appropriate variant

for applications in robotics with several parameters and constraints. Therefore, we

adopt this variant here.

As described in [Arnold and Hansen, 2012], this particular algorithm considers the

constraints gi and hi, for which the normal vectors of constraint boundaries can be

approximated in the vicinity of the current candidate solution. Then, the variances of

the distribution N in the directions of the normal vectors are reduced, as illustrated in

Ągure 5.2. This is achieved by maintaining an exponentially fading record vi ∈ Rm,

m = nIC +nEC of steps that have violated a constraint and updating Cholesky factors

in function of it.

Furthermore, the algorithm requires that information about the successful iterations

be stored in a search path, or evolution path pc ∈ RnP .

5.1 Constrained stochastic optimization 104

(a) Original distribution (b) Reduced distribution

Figure 5.2 Effect of reducing the variance of the offspring distribution in the direction
of the normal vector of a linear constraint boundary. In these images, taken from [Arnold
and Hansen, 2012], the current candidate solution is marked with a black dot, the offspring
distribution is indicated by a dashed circle, and the constraint boundary is indicated with
a solid vertical line. While (a) shows the original distribution trespassing the constraint
boundary, (b) shows the distribution reduced in the normal direction of the constraint plane,
which allows it to remain within the feasible domain.

The state of the (1+1)-CMA-ES algorithm with CCA can be described by:

- the current candidate solution w and its objective function value ϕ(w)

- the Ąve most recent ancestors of the current candidate solution w−i and their

objective function value ϕ(w−i), where i = 1, ...5

- the global step size σ

- the success probability estimate Psucc

- the Cholesky factorization A

- the search path pc

- constraint vector vj

After initialization, each iteration of the algorithm updates the above quantities

with the following steps 1a to 1e:

0. Initialization. In this case, since we are applying the algorithm from [Arnold

and Hansen, 2012], the parameter values are as suggested in this work. One

may have a look at [Arnold and Hansen, 2012; Igel et al., 2006] for a detailed

5.1 Constrained stochastic optimization 105

explanation on the origin of the following values:

β =
0.1

nP +2
(5.2a)

c =
2

nP +2
(5.2b)

cc =
1

nP +2
(5.2c)

c−
cov = min

(

0.4
n1.6
P +1

,
1

2 ♣z♣2−1

)

(5.2d)

c+
cov =

2
n2
P +6

(5.2e)

cP =
1
12

(5.2f)

d = 1+
nP
2

(5.2g)

P target
succ =

2
11

(5.2h)

The following variables are then initialized:

A = 1nP ×nP
(5.3a)

pc = 0nP ×1 (5.3b)

Psucc = P target
succ (5.3c)

σ = 0.1 (5.3d)

vj = 0m×1 (5.3e)

(5.3f)

The maximum number of iterations maxiter also needs to be chosen.

Finally, the initial candidate w must be chosen as a feasible solution (i.e. a

solution which does not violate the constraints of the problem).

1. Iterations. Repeat the following steps, until terminating conditions have been

met or the maximum number of iterations maxiter has been reached.

(a) Generate offspring candidate solution w1 according to w1 = w+σAz, where

z is a nP -dimensional normally distributed random vector z∼N (0,I) with

unit covariance matrix and zero mean.

(b) Check for constraint violations, and update vj and A accordingly.

5.1 Constrained stochastic optimization 106

i. Check for inequality constraint violations: determine whether gi ≤ 0 for

i = 1, ...,nIC . If the jth constraint is violated, update constraint vector

vj and constraint violation information ✶vj
, with j = i, according to

vj ←











(1− cc)vj + ccAz if jth constraint violated

vj otherwise
(5.4)

✶vj
←











1 if jth constraint violated

0 otherwise
(5.5)

where the parameter cc ∈ (0,1) determines how quickly the information

present in the constraint vectors fades.

ii. Check for equality constraint violations: determine whether hi = 0 for

i = 1, ...,nEC . If the jth constraint is violated, update vj , ✶vj
according

to equations (5.4), (5.5) with j = nIC + i.

iii. If mv =
∑m
j=1✶vj

> 0 constraints were violated, update the Cholesky

factor of the covariance matrix according to

A←A− β

mv

m
∑

j=1

✶vj

vjwj
⊤

wj
⊤wj

(5.6)

where the parameter β controls the size of the updates, and wj = A−1vj .

iv. If mv > 0 constraints were violated, jump to 1e.

(c) Evaluate Ątness ϕ(w1), update the success ✶succ, success probability estimate

Psucc and global step size σ according to:

✶succ←











1 if ϕ(w1)≥ ϕ(w)

0 otherwise
(5.7)

Psucc← (1− cP)Psucc+ cP✶succ (5.8)

σ← exp(
1
d

Psucc−P target
succ

1−P target
succ

) (5.9)

where cP (0 < cP ≤ 1) is the learning rate, P target
succ is a target success rate, and

d is a damping parameter that controls the rate of the step size adaptation.

5.2 Framework for learning task priorities 107

(d) Update Cholesky factor of the covariance matrix

i. If ϕ(w1) ≥ ϕ(w), update current candidate w, search path pc and

Cholesky factor matrix A:

w←w1 (5.10)

pc← (1− c)pc +
√

c(2− c)Az (5.11)

A←
√

1− c+
covA+

√

1− c+
cov

♣w♣2







√

√

√

√1+
c+
cov ♣w♣2
1− c+

cov

−1





pcw⊤ (5.12)

where the constants c and ccov (0≤ ccov < c≤ 1) are the learning rates

for the search path and the Cholesky factor matrix, respectively.

ii. If ϕ(w1) < ϕ(w), and if ϕ(w1) < ϕ(w−5), update Cholesky factor matrix

A according to

A←
√

1− c−
covA+

√

1− c−
cov

♣z♣2







√

√

√

√1+
c−
cov ♣z♣2

1− c−
cov

−1





Azz⊤ (5.13)

(e) This iteration is completed. Go back to 1a.

At the end of the iterations, w contains the value of the optimized parameters,

which are then used as the solution of the algorithm.

5.2 Framework for learning task priorities

The method proposed for learning robust task priorities is outlined in Ągure 5.3. It

relies on two main parts:

(i) an optimization-based whole-body torque-controller, using soft (weighted) task

priorities to track desired task trajectories and send joint torque commands to

the robot.

(ii) a black-box constrained stochastic optimization procedure, that poses no restric-

tion on the structure of the learning problem, as described in section 5.1. It is

used to optimize task priorities: at the end of a rollout, the Ątness of the obtained

robot behavior is evaluated, and the optimization algorithm updates the task

weights.

5.2 Framework for learning task priorities 108

From there, the introduction of relevant randomized conditions under which the

robot performs experiments allows to take advantage of domain randomization. Fur-

thermore, the careful design of Ątness functions allows the algorithm to optimize task

priorities towards the desired goals.

w

Optimization-

based

controller

robot
u

s, ṡ

Ątness

ϕ(w)

stochastic

optimizationupdated weights

w∗ learning

controller

Randomized conditions j

Sec. 5.1

Figure 5.3 Overview of the proposed method. Given task priorities w, the QP-based
controller computes a control input u under a set of randomized conditions j (e.g. desired
trajectories, disturbances, noise). An outer learning loop allows the optimization of the task
priorities through the weights w associated to each task.

The following paragraphs add a few words about the controller, Ątness and ran-

domized conditions used with the proposed framework.

Control problem formulation

For the proposed approach, the whole-body control problem is deĄned from a stack-of-

tasks formed by a given number of tasks. Given soft tasks as prioritization scheme,

each task is attributed a priority within a set of task weights w. The control problem

is subjected to equality and inequality constraints, and can be formulated as an

optimization problem of the following shape, where the cost function represents the

weighted sum of squared task errors X̃i(u), given task weights wi for each task i.

u∗ = argmin
u

ntasks
∑

i=1

wi

∣

∣

∣X̃i(u)
∣

∣

∣

2
(5.14a)

subject to Dequ+deq = 0 (5.14b)

Du+d≤ 0 (5.14c)

5.2 Framework for learning task priorities 109

The problem (5.14) can be reformulated as QP:

u∗ = argmin
u

1
2

u⊤Hu+u⊤g (5.15a)

subject to b≤ Au≤ b̄ (5.15b)

In this formulation, the Hessian matrix H is symmetric and positive deĄnite and g

is the gradient vector. A is the constraint matrix, with b and b̄ the associated lower

and upper constraint vectors.

Fitness

As introduced in section 5.1, the Ątness is the value computed from the objective

function ϕ(w), as a way to evaluate the results achieved with the robot after a rollout,

given a set of task priorities w. The learning algorithm then seeks to maximize the

Ątness.

As a result, the formulation of the objective function has an important impact on

the optimization process, and should be deĄned with care. The objective function may

be chosen to reĆect properties of the desired results on the robot. For example, it

may attempt to favor performance of the controller on Cartesian or postural tasks by

computing the negative sum of squared errors on desired tasks. A higher balance of

the robot could for example be favored by computing the excursion of the zero moment

point (ZMP) with respect to the center of the support polygon. The objective function

can eventually be formulated from a combination of different desired properties.

Randomized conditions

To achieve robustness through domain randomization and enable the controller to

eventually cope with real-world data, the idea is to subject the robot to randomized

conditions during each training rollout. These conditions can include for example

randomized desired trajectories, disturbances, or noise on sensor signal. A given set of

these conditions constitute the set of conditions j (as shown in Ągure 5.3) under which

the controller has to perform.

5.3 Implementation for whole-body torque-control 110

5.3 Implementation for whole-body torque-control

The proposed method can be implemented for learning task priorities of a whole-body

torque-controller. For this purpose, the controller must Ąrst be deĄned, as well as the

objective function used to compute the Ątness, and the randomized conditions under

which the robot shall perform experiments.

5.3.1 Control problem formulation

The controller used for this purpose is the same as the soft tasks controller #2 described

in section 2.3.3. It deĄnes an optimization problem, minimizing a weighted sum of

squared errors on Cartesian task accelerations (CoM position, neck frame orientation,

swing and stance feet pose), the squared error on postural task acceleration, and

squared joint torques. The contact of the feet with the ground is stabilized with

inequality constraints on the optimization problem. A control input, consisting of joint

torques and contact forces, is obtained by solving this optimization problem through

QP optimization.

Each task of the controller is attributed a priority within the following set of task

weights.

w = ¶wCoM ,wstance,wswing,wneck,ws,wτ♢ (5.16)

where the terms wCoM ,wstance,wswing,wneck ∈ R refer to weights associated to the

CoM, stance foot, swing foot and neck Cartesian tasks, and ws,wτ ∈ R to the weights

associated to the postural task and joint torque regularization, respectively.

The controller is applied to the particular action of performing steps, i.e. performing

the following sequential movements for each step: move the CoM above the stance

foot, move the swing foot up by 0.025 m, move the swing foot back to its initial pose,

and move the CoM back to its initial position.

The passage from one movement to the next takes place when Cartesian task errors

are smaller than a threshold and contact forces are consistent with the desired motion,

or a maximum state duration has been reached. Over the course of a step, the desired

stance foot pose, neck orientation and posture remain at their initial value.

The Ąnite state machine deĄned in order to achieve this desired movement is the

same as described in section 2.3.3: it is divided into 5 states, and takes as input some

5.3 Implementation for whole-body torque-control 111

user-deĄned positions for the Cartesian tasks in order to output desired setpoints for

Cartesian tasks, in function of the state of the robot. The formulation of the state

machine, desired trajectories deĄned for each task and state, as well as transitions

between states are described in detail in appendix B.

5.3.2 Constraints on stochastic optimization

Inequality constraints to the learning problem are deĄned on joint position limits and

torque limits: they act as an extra safety built on top of the QP controller. Lower and

upper bounds on joint positions are obtained from the URDF Ąle of each iCub model,

while lower and upper torque limits of -60N and +60N are applied to all joints.

5.3.3 Fitness

In order to optimize task weights, the objective function used to compute the Ątness

must be deĄned. In our implementation, we compare three different objective functions.

The Ąrst one, ϕp, favors performance on the Cartesian tasks and less deployed effort.

The second one, ϕr, focuses on robustness, by favoring solutions with smaller excursion

of the ZMP position PZMP with respect to the center of the support polygon OSP .

The third objective function, ϕpr, is a combination of the Ąrst two.

ϕp =− 1
XTmax

tend
∑

t=0

∑

T

∣

∣

∣X̃T

∣

∣

∣

2− 0.0001
τmax

tend
∑

t=0

♣τ ♣2 (5.17a)

ϕr =− 1
PZMPmax

tend
∑

t=0

♣PZMP −OSP ♣2 (5.17b)

ϕpr =
1
2

(ϕp+ϕr) (5.17c)

XTmax , τmax and PZMPmax are normalization factors with the following values:

XTmax = 4ns (5.18a)

τmax = 2000ns (5.18b)

PZMPmax = 0.005ns (5.18c)

5.3 Implementation for whole-body torque-control 112

In the above, ns refers to the number of time samples between t = 0 and tend, the

duration of an experiment.

We deĄne the duration of an experiment as a Ąxed amount of time, subject to

early termination in cases where the robot has fallen or the QP controller could not

be successfully solved (which may happen when the weights being tested are far from

being optimal, and lead to a conĄguration in which the QP solver simply can not Ąnd

a solution). In these cases, a penalty of −1.5 is added to the Ątness in equation (5.17).

5.3.4 Randomized conditions

To achieve robustness through domain randomization and enable the controller to

eventually cope with real-world data, the robot is subjected to randomized conditions as

presented in table 5.1. A given set of these conditions constitutes the set of conditions j

(as shown in Ągure 5.3) under which the controller has to perform.

In particular, tests performed in simulation have shown that applying a force of

10 N on the chest for 1 second is sufficient to destabilize the robot when using unoptimal

weights. Thus, using such disturbances during learning can encourage the generation

of robust task priorities. As part of the randomized conditions, a random number of

wrenches of varying amplitude and direction are applied to the chest of the robot at

random times during simulation.

Moreover, with torque-control, it can happen that the gains used for the computation

of feedback terms on desired trajectories may not be rigorously tuned, estimation

errors of the Ćoating base pose may occur, and force-torque sensors may yield noisy

measurements. Therefore, under these circumstances, the robot may not perform the

desired motion with precision. However, it is desirable that the controller maintains

balance of the robot. For this reason, it has been deemed useful to randomize trajectories

of the CoM and feet, as a way to generate a motion of the robot which is different from

optimal trajectories. Furthermore, Gaussian noise on force-torque sensor measurements

and joint velocity signals are integrated into the randomized conditions.

5.4 Application to learning task priorities for walking in place 113

Table 5.1 Randomized set of conditions j

Randomized Condition (RC) in j Random value

1. Gaussian noise on F/T sensor signals On / Off

2. Appointed swing foot Left / Right

3. Direction in which swing foot is moved Front / Back

4. XCoMd
moved forward by δ (m)

{

δ ♣ δ ∈ R+, δ ≤ 0.02
}

5. nF external wrenches applied on chest ¶nF ♣ nF ∈ Z,nF ≤ 7♢
and for each wrench i:

at time tFi
(s, with 1e−2 precision)

{

tFi
♣ tFi
∈ R+, tFi

≤ 10
}

duration dFi
(s, with 1e−2 precision)

{

dFi
♣ dFi

∈ R+,dFi
≤ 1

}

direction (γFi
, θFi

,φFi
) (rad) ¶γFi

♣ γFi
∈ R,γFi

≤ 2π♢
¶θFi
♣ θFi
∈ R, θFi

≤ 2π♢
¶φFi

♣ φFi
∈ R,φFi

≤ 2π♢
force magnitude FFi

(N) ¶FFi
♣ FFi

∈ R,FFi
≤ 10♢

torque magnitude τFi
(Nm) ¶τFi

♣ τFi
∈ R, τFi

≤ 10♢
6. Gaussian noise on joint velocity signals On

7. Gaussian noise on F/T sensor signals On

5.4 Application to learning task priorities for

walking in place

In order to assess the effectiveness of the proposed method, it is applied to the problem

of learning task priorities of the whole-body torque-controller presented in section 5.3,

which allows the robot to perform a stepping motion. This application in particular

can be difficult to achieve when the robot model is inaccurate. Additionally, from the

point of view of learning task priorities, it may be considered challenging, due to the

changing contacts and conditions arising from the stepping motion.

Therefore, using the (1+1)-CMA-ES algorithm with CCA described in section 5.1,

task priorities are optimized in simulation, for the goals of making the iCub perform

steps, and showing that the method presented in this chapter allows to overcome issues

related to the transferability problem.

5.4 Application to learning task priorities for walking in place 114

Experiments are then performed with iCub simulations (using 23 DOFs on legs,

arms and torso), in order to validate empirically that the method described above is

capable of generating task priorities which (i) produce robust whole-body motions,

even when contacts due to physical interaction with the environment evolve in time,

and (ii) can cope with imperfections in the robot model, disturbances and noise.

In order to verify that the method also allows to overcome the transferability

problem, experiments are conducted on two different robot models, which shall be

termed tethered and backpacked. These are two distinct models of the iCub with

different inertial properties: the Ąrst one functions with a tethered power supply, and

the second one with a battery pack on the back, as shown in Ągure 5.1.

Experiments are conducted in three parts:

1. Training is performed with the tethered iCub model, in order to obtain optimized

task weights. During training, the robot is subjected to a set of randomized

conditions as deĄned in subsection 5.3.4. The stochastic optimization is also

subjected to constraints as deĄned in subsection 5.3.2.

2. Testing on the tethered iCub model allows to assess the success achieved with

the optimized task weights.

3. Testing is performed with the backpacked iCub model, under a different set of

randomized conditions, allowing to conĄrm if the optimized task priorities also

help the transfer of results between different platforms.

Over these experiments, three different objective functions are tested, as deĄned in

subsection 5.3.3.

Note that over all experiments, the proportional-derivative gains used to compute

reference accelerations associated to Cartesian and postural tasks are kept constant.

The following subsections describe the experiments in more detail, along with the

achieved results.

5.4.1 Training with the tethered iCub model

As mentioned above, training is performed with the tethered iCub model. The task

used for the optimization is to perform 1 step, as described in section 5.3.1. The

simulation is limited to 10 seconds, allowing the robot to perform one step and shift

5.4 Application to learning task priorities for walking in place 115

its weight to the side in order to start a second one, making sure that the robot has

remained stable after foot touchdown.

Since task priorities are relative to each other, wCoM is attributed a Ąxed value of

1. The remaining task priorities are attributed bounds as shown in the bottom of table

5.2. Furthermore, the weight values

w0 = ¶1, 1, 1, 0.1, 1e−3, 1e−4♢

obtained by hand have been veriĄed to allow the tethered iCub model to successfully

perform the desired stepping motion, and are therefore used as a starting point.

Four learning experiments have been performed:

• one for each of the three Ątness functions from equation (5.17) with DR, where,

to encourage the generation of robust task priorities through DR, the robot is

subjected to the randomized conditions 1 to 5 (see table 5.1), for each learning

iteration performed when optimizing task weights.

• one for ϕpr, without the use of DR. In this case, randomized conditions are

disabled. This additional experiment allows to assess the contribution of DR.

Optimized task priorities are obtained by performing 200 iterations of (1+1)-CMA-

ES, as introduced in section 5.1, applied to the control framework, with an initial

exploration rate of 0.1. Furthermore, each learning experiment has been repeated 10

times, allowing to assess the repeatability of the procedure.

Results have shown that 200 iterations are sufficient to achieve strong convergence.

Weights obtained with each of the Ątness functions in equation (5.17) are shown in

table 5.2.

5.4.2 Testing with the tethered iCub model

In order to validate the robustness achieved with the optimized weights, each set of

them has been tested on the same iCub model as the one used for training, but not

subjected to randomized conditions. The testing scenario in this case is to achieve 6

consecutive steps.

Typical ZMP, CoM and feet trajectories achieved using each Ątness function are

shown in Ągures 5.4 and 5.5. Typical estimated base velocities, ground contact wrenches

5.4 Application to learning task priorities for walking in place 116

and joint torques are also shown in Ągures 5.6, 5.7 and 5.8. These values are estimated

using the force-torque sensors present in the legs of the robot, following a procedure

based on a recursive Newton-Euler algorithm, as introduced in section 2.4.1.

Also, considering a successful experiment as being one where the robot succeeds in

performing 6 consecutive steps, the success rates achieved with the optimized weights

from each Ątness function are shown in table 5.2: weights optimized with ϕp, ϕr and

ϕpr and DR achieved success rates of 50%, 70% and 100%, respectively. On the other

hand, weights optimized with ϕpr and no DR showed a lower success rate of 80%.

5.4.3 Testing with the backpacked iCub model

In order to create conditions similar to performing experiments on the real robot, we

have tested the optimized weights on a different platform, using the backpacked iCub

model. It is subjected to randomized conditions 5 to 7 (see table 5.1). For the rest,

this robot uses the same parameters as the tethered iCub in the experiments of section

5.4.2, and the testing scenario is also to achieve 6 consecutive steps.

Successful CoM and feet trajectories obtained with initial weights w0, and weights

optimized with ϕr, ϕpr using DR, and ϕpr not using DR, are shown in Ągure 5.5.

As could be expected, due to the addition of noise, ZMP trajectories turned out to

be highly noisy and are therefore not shown. The success rates achieved with the

optimized weights from each Ątness function are shown in table 5.2.

These results show that intial weights w0 do not allow the robot to perform more

than a couple of steps, and weights optimized with ϕp, ϕr and ϕpr and DR achieve

success rates of 0%, 50% and 100%, respectively. On the other hand, weights optimized

with ϕpr without DR yield a success rate of 20%.

Therefore, weights obtained with ϕpr allow for a higher robustness of the controller,

when tested on a different platform than the one used for learning. Additionally, the

rate of success achieved with DR shows to be signiĄcantly higher than without DR,

demonstrating that DR did have a measurable impact on the achieved robustness.

5.4 Application to learning task priorities for walking in place 117

Figure 5.4 Typical ZMP trajectories obtained for 6 steps performed with the tethered
iCub model. From left to right: given initial weights w0, and weights optimized with ϕp, ϕr,
ϕpr. Each color (blue, red or yellow) denotes the use of a different set of optimized weights,
while purple lines mark the bounds of the support polygon. The x, y and z axes correspond
respectively to the sagittal, frontal and vertical axes.

5.4 Application to learning task priorities for walking in place 118

(a) tethered model

(b) backpacked model

Figure 5.5 Typical CoM and feet trajectories obtained for 6 strides (a) performed with the
tethered iCub model, given initial weights w0, and weights optimized using DR with ϕp, ϕr,
ϕpr, and (b) performed with the backpacked iCub model, given initial weights w0 or weights
optimized using DR with ϕr, ϕpr, and weights optimized with ϕpr but without the use of
DR (results obtained with ϕp are not shown in this case, since they were not successful in
achieving 6 strides). Each color denotes the use of a different set of optimized weights. The
x, y and z axes correspond respectively to the sagittal, frontal and vertical axes.

5.4 Application to learning task priorities for walking in place 119

(a) linear base velocities

(b) angular base velocities

Figure 5.6 Typical base velocities obtained for 6 strides performed with the tethered iCub
model, given initial weights w0, and weights optimized using DR with ϕp, ϕr, ϕpr. The peaks
shown in these graphs are the highest for linear velocities obtained with initial weights, for
which they reach up to 1.7m/s. The x, y and z axes correspond respectively to the sagittal,
frontal and vertical axes.

(a) ground reaction forces

(b) ground reaction torques

Figure 5.7 Typical ground reaction wrenches estimated on the right foot, obtained for
6 strides performed with the tethered iCub model, given initial weights w0, and weights
optimized using DR with ϕp, ϕr, ϕpr. Note that the left foot shows the same pattern.

5.4 Application to learning task priorities for walking in place 120

(a) torso

(b) right arm

(c) right hip and knee

(d) right ankle

Figure 5.8 Typical estimated joint torques at the torso, right arm and right leg, obtained
for 6 strides performed with the tethered iCub model, given initial weights w0, and weights
optimized using DR with ϕp, ϕr, ϕpr. Note that the left arm and leg show the same pattern
as the right ones.

5.4
A

pplication
to

learning
task

priorities
for

w
alking

in
place

1
2

1

Table 5.2 Summary of performed experiments and achieved results

Scenario Training Testing 1 Testing 2

Robot tethered tethered backpacked

Task 1 step 6 steps 6 steps

RC 1, 2, 3, 4, 5 - 5, 6, 7

Fitness # DR wCoM wstance wswing wneck ws wτ success success

hand tuning 1 No 1 1 1 1 1e−3 1e−4 1/1 0/1

ϕp 10 Yes 1 0.2±0.3 1.1±1.2 (1±3)e−3 0.5±0.3 (2±5)e−5 5/10 0/10

ϕr 10 Yes 1 1.6±1.2 1.8±1.0 0.1±0.1 (4±7)e−3 1e−10 7/10 5/10

ϕpr 10 Yes 1 0.9±1.3 2.4±1.1 0.6±1.2 1e−6 1e−10 10/10 10/10

ϕpr 10 No 1 1.0±0.3 0.1±0.3 0.2±0.1 1e−6 (4±5)e−6 8/10 2/10

weights lower bounds: 1 1e−4 1e−4 1e−10 1e−6 1e−10

weights upper bounds: 1 10 10 10 10 0.1

This table presents the experiments that have been performed, in summary form. Training and testing have been performed
with different robot models and stepping tasks, as well as under different randomized conditions (RC) as deĄned in table 5.1.
The column Ş#Ť gives the number of training experiments performed given each Ątness function, while only 1 set of manually
tuned gains is used. In the column ŞDRŤ, ŞYesŤ means that the randomized conditions deĄned at the top of the table have
been used for domain randomization while training; ŞNoŤ means that they have been disabled. The ŞsuccessŤ columns report

success rates achieved when testing the sets of trained weights.

5.4 Application to learning task priorities for walking in place 122

5.4.4 Discussion

In summary, the proposed method generates task priorities for successful whole-body

control of different robot models, in 200 learning iterations. It has been demonstrated

by performing training on a Ąrst model of the iCub robot, then testing on a different

model equipped with a battery pack on its back and subjected to diverse working

conditions.

Results achieved with ϕp, a Ątness function favoring task performance, are likely

limited by overĄtting on the model used for learning and did not allow much robustness

with respect to disturbances. On the other hand, optimizing for robustness with

ϕr allowed higher chances of success when changing conditions, or robot model, by

encouraging smaller ground reaction forces and the generation of angular momentum

through the torso and arms, as shown in Ągures 5.7 and 5.8. However, ϕr might have

neglected the fulĄllment of tasks, which are used for keeping balance. Instead, using ϕpr,

a Ątness function combining robustness and performance, allowed to obtain sensible

optimized task priorities, achieving superior results compared to the two previous

Ątness functions, and signiĄcantly better than the previously hand tuned solution w0.

With ϕpr, the swing foot placement, crucial for stability at touchdown, is given high

importance, while the neck orientation task a lesser one. This allows for compliance

to external forces, which thus facilitates recovery from external perturbations and

contact switching. As for the postural task, its allotted low priority allows it to be

used as regularization (just as joint torques), instead of competing with Cartesian

tasks. Such a solution is interesting, as it may not have been a priori self-evident to

an expert deĄning task priorities. However, this seems sensible: the postural task can

be considered to compete with the CoM and feet tasks, while the orientation task, if

too strong, may not facilitate the recovery from external perturbations and contact

switching.

Furthermore, the ranges over which sets of optimized weights are obtained show

that the problem has multiple local minima. Therefore, although task priorities require

proper tuning, the controller is not highly sensitive to a single precise adjustment of

task weights. Nevertheless, considering that the search space can span values across

1e−10 to 10, it could actually be appropriate to adapt the search algorithm, such

that it Ąrst searches on a log scale to identify an appropriate range of values, before

performing a Ąner search within that range.

5.5 Conclusion 123

Eventually, in order to further improve performance when using a different robot

model or moving on to experiments on the real robot, one may be interested in

performing another round of optimization on the task priorities, for example exploiting

data-efficient learning methods, as done in [Spitz et al., 2017]. Furthermore, the

controller used in this work, as presented in section 5.3.1, can be considered as low-level.

As such, the addition of a higher level controller or motion planner, such as done in

[Dafarra et al., 2018] with model predictive control, would allow higher stability in

order to achieve a complete walking motion.

Nonetheless, the robustness achieved with the proposed method is promising and

has the potential to allow higher success when passing from simulation to real-world

experiments. The exploration of different DR conditions may eventually be considered,

such as randomizing values associated to the dynamics of the system, control delay, or

measurement noise amplitude and delay, which could potentially be more consistent

with the differences constituting the reality gap.

Regarding the speciĄc methods used here, note that previous related work [Modugno

et al., 2016b] has provided a framework that could directly be adapted to verify that

learning task priorities, with the alliance of domain randomization and appropriate

Ątness functions, can help with transferring results. Different learning approaches could

then be used with the same idea, for achieving related results. For example, policy

learning could also be used in the same context, to Ąnd the parameters that allow to

achieve certain behaviors of the robot, under randomized conditions or parameters of

the cost function. Considering that policy learning has been shown to learn new, similar

behaviors in few experiments starting from previously learned behaviors [Bischoff et al.,

2014], it could be used for a second round of optimization when attempting to transfer

results on the real robot, or in order to expand the walking in place motion to walking

forward.

5.5 Conclusion

In this chapter, a novel approach for automatically tuning task priorities of a controller

has been proposed, based on stochastic optimization and domain randomization.

Results achieved with a carefully designed Ątness function have allowed to transfer

results between robot models subjected to different working conditions, without the

need to re-tune task priorities.

5.5 Conclusion 124

This achievement, not having to re-tune task priorities between platforms and for

changing conditions, amounts to beneĄcial time and effort saving during the deployment

of a controller.

Regarding task priorities, they can be crucial in the case where external perturba-

tions happen, in prioritizing balance over following precise trajectories or minimizing

the effort spent by the robot. However, isolated tasks of a whole-body controller may,

in some contexts, be seen as conĆicting with each other.

For example, in the whole-body controller used in this chapter for validating our

approach, tasks are deĄned such that the robot moves, but also such that its effort is

minimized. These two actions conĆict with each other in some sense, and a tradeoff is

achieved through the use of task priorities. Therefore, this provides a partial explanation

as to why task priorities have an important impact on the achieved behavior of the

robot.

Our controller also uses a postural task on all joints, whereas the position of the

center of mass and feet, combined with the minimization of joint torques, may be

sufficient to deĄne the movement of the lower-body. From this perspective, in addition

to tuning parameters, maybe it is worth to reformulate the whole-body control problem

to avoid this kind of conĆict. We may also ponder whether the formulation of whole-

body controllers, such as the one used in this chapter, is the best one. Could it be

possible that tuning be so tedious due to the way tasks and parameters are posed, and

could a different formulation help in this sense?

A new version of the controller, following the information gained here, shall eventu-

ally be implemented. For example, since the postural task is prioritized as regularization,

one can conclude that it did not have a signiĄcant effect on the generation of motion.

However, using the postural task as regularization does not allow a precise control

of the arms, which may be beneĄcial in case of disturbances directed to the arms. A

possible solution would be to partition the postural task between upper-body and

lower-body.

Nonetheless, one may argue that the black-box constrained stochastic optimization

does not volunteer deep insight. At this point, we can offer plausible speculations as

to why the algorithm obtained the weight values it obtained, but a deeper analysis of

how task priorities affect the robustness of the system may help gain further scientiĄc

insight.

5.5 Conclusion 125

Coming back to the issue of tuning whole-body torque-controller parameters,

proportional-derivative gains used for the computation of feedback terms also require

notable tuning. Also, just as for task priorities, their proper adjustment is crucial for

the realization of successful experiments on the real robot. Since the method presented

above does not address their tuning, manual adjustment of controller gains still needs

to be performed for experiments on the real robot. This fact limits further experiments

aiming to assess the beneĄts of the presented method on bridging the reality gap. As

a solution, the extension of the proposed method to additional parameters such as

feedback gains should be examined.

On a different note, while the optimized task priorities have shown to allow the

transfer of results between platforms for the same whole-body motion, it would also be

highly interesting to verify that, given well adjusted parameters, a single controller

allows to produce a range of different whole-body motions. This question shall be the

subject of the next chapter, where we deĄne a teleoperation framework that allows to

produce generic whole-body motions through human imitation.

Chapter 6

Teleoperation of generic

whole-body motions

In general, an elaborate control architecture, such as the one of Ągure 6.1, is used

to generate reference trajectories for the whole-body control of a humanoid robot.

Two architectural layers are employed (trajectory optimization and simpliĄed model

control), in order to generate feasible trajectories for the robot, from a given desired

motion. Notably, the process may require offline computations in view of achieving

real-time whole-body control. For instance, during trajectory optimization, desired

feet and ZMP trajectories may be obtained with an offline planner.

Trajectory
optimization

SimpliĄed
model
control

Whole-body
optimization-
based control

robot

User-deĄned
motions

desired footsteps,
DCM/ZMP

desired CoM, ZMP,
DCM trajectories

control
input

Figure 6.1 Typical whole-body control architecture for humanoid robots, adapted from
[Romualdi et al., 2018]

This approach is extremely useful for achieving impressive results, but it may lead

controllers to be specialized for speciĄc movements of the robot. Our main interest in

this chapter is to investigate ways that a controller can be developed for robustness to

more generic reference trajectories.

In order to achieve a higher Ćexibility in the generation of whole-body movements,

we propose to eliminate the need for trajectory optimization and simpliĄed model

control, by instead obtaining generic and feasible trajectories for a humanoid robot

through human imitation by teleoperation, as shown in Ągure 6.2.

127

Whole-body
optimization-
based control

robot

Teleoperated
motions

control
input

Figure 6.2 The control architecture used for whole-body control in this chapter. Trajectories
for the robot are obtained from teleoperation of a human operator. They are then directly
used by the whole-body optimization-based controller to compute the control input (contact
forces and joint torques) for the robot to achieve these trajectories.

On the subject of teleoperation, the classical motion retargeting approaches are

generally not applicable to the robot body parts that are the most involved in a dynamic

movement, e.g. legs and feet, particularly when footsteps and contact transitions are

involved. For this reason, challenging lower-body motions such as walking are generally

dissociated from the teleoperation of upper-body manipulation tasks. Associating

these two is therefore a highly interesting motivation for developing a controller that is

robust to a variety of whole-body motions.

In this chapter, we address the retargeting in real-time of generic whole-body human

motions, acquired by a wearable motion capture suit, onto a humanoid robot. For this

purpose, we propose a generic teleoperation framework that can handle a variety of

whole-body motions demonstrated by a human operator, and then generate appropriate

motions for the humanoid robot.

The whole-body optimization-based controller for the robot is then based on the

quadratic programming formalism, allowing to take into consideration a variety of

retargeting tasks, without violating robot constraints. We have developed a stack-

of-tasks for this purpose, building on observations gained from chapter 5. This

stack-of-tasks is then applied to a whole-body velocity-controller designed to keep

balance, given input generic reference trajectories.

The reason why a velocity-controller is used here instead of a torque-controller, as

in the previous works, is mainly due to the adoption of OpenSoT [Hoffman et al., 2018,

2017; Rocchi et al., 2015] as library to develop the controller. OpenSoT in this case offers

easy compatibility with the teleoperation module Ąrst developed in [Penco et al., 2018],

which shows to be highly efficient for real-time whole-body teleoperation of a humanoid

robot. As additional perks, OpenSoT offers faster compilation and development of

a controller when compared with a controller developed in Matlab/Simulink, as well

as real-time safety. At the moment the presented work has been developed, only the

velocity-control library of OpenSoT was apt for whole-body movements with time-

128

evolving contact conditions, but it has the advantage of not requiring extensive tuning

of PD gains, making it easier to transfer results from simulation to real-world.

Our approach differs from existing work by the Ćexibility it allows. It takes into

consideration various complex whole-body movements involving simultaneous lower-

body and upper-body movements, such as (but not limited to) squatting or walking

while waving the arms. More than only involving EE position retargeting, our method

considers also speciĄc tasks for the head, torso, waist and each arm of the robot,

providing a complete and human-like teleoperation performance, as illustrated for

example in Ągure 6.3. Nonetheless, the methods used in [Ishiguro et al., 2017, 2018;

Penco et al., 2018] are not incompatible with the framework proposed in this paper.

For instance, a stabilizer or dynamic Ąlter can easily and advantageously be integrated

into our framework.

Figure 6.3 Retargeting of human whole-body movements on the robot: moving the arms
while walking (on the left) and squatting (on the right).

Section 6.1 introduces the framework developed for this work, including the retar-

geting method for teleoperation and the optimization-based whole-body controller used

for this approach. It has been implemented for the iCub and applied to the problem

of retargeting upper-body movements onto the robot, while walking. The capacity of

the framework in handling generic motions is evaluated in section 6.2, where several

experiments are performed with the iCub, involving whole-body movements such as

squatting and walking, simultaneously with upper-body movements.

6.1 Whole-body velocity-control framework for teleoperation 129

6.1 Whole-body velocity-control framework for

teleoperation of humanoid robots

In this section, a framework for whole-body velocity-control is deĄned, in order to

achieve whole-body actions, such as walking while allowing for generic upper-body

movements. The structure is similar to the controllers used in the previous chapters, but

includes a retargeting module that produces reference trajectories for the upper-body

(torso, arms and head).

An overview of the proposed framework is illustrated in Ągure 6.4, where trajectories

of a human are retargeted, in real-time, into corresponding movements for the robot.

A Ąnite state machine is used in parallel, for deĄning Cartesian trajectories, such as

CoM and feet trajectories when walking. The outputs of the retargeting module and

Ąnite state machine are used by an optimization-based whole-body controller in order

to compute a control input which allows the robot to achieve the desired motion. The

controller is formulated as a QP problem, and uses the stack-of-tasks approach.

The following subsections present the control framework and its components in

detail. The retargeting module and Ąnite state machine are Ąrst deĄned in subsections

6.1.1 and 6.1.2. Subsection 6.1.3 then deĄnes the stack-of-tasks to be used by the QP

controller, described in subsection 6.1.4 as an optimization problem.

As a matter of fact, an important advantage of the proposed framework lies in

the Ćexibility it allows in its detailed implementation, which means that it can easily

be adapted to different robots and applications. Because the aim is to expose the

framework, some components may use basic or state of the art methods that do not

require being veriĄed for validity themselves, but the adaptability of the framework

makes them easy to upgrade.

6.1.1 Retargeting module

The Ąrst step for a motion retargeting technique is to capture the evolution of the

human operatorŠs movements. For this purpose, state of the art motion capture cameras

and wearable sensors allow high-Ądelity, high-frequency tracking of human motion.

Once human posture data is acquired from the motion capture system, it can be

mapped to feasible corresponding values for the robot.

6.1 Whole-body velocity-control framework for teleoperation 130

human

motion
capture

retargeting
module

Ąnite state
machine

QP-based
whole-body
controller robot

human
trajectories

joint angles,
CoM and

EE positions

footsteps

postural
task values

Cartesian
task values

u

robot trajectories

Sec. 6.1.1

Sec. 6.1.2

Sec. 6.1.4

Figure 6.4 Overview of the proposed method. Human motion is measured and retargeted
in real-time to the robot, while a finite state machine provides feasible Cartesian task values
(e.g. CoM and feet trajectories when walking is detected). A whole-body controller computes
the control input achieving desired trajectories on the robot.

Body dimensions, mass distribution and motion constraints may greatly differ

between a robot and a human operator. As a result, a robot must generally walk in

a different way than a human, which can affect the global position of its head and

hands (for example, the robot may produce a more exaggerated pendulum movement).

Retargeting Cartesian tasks is therefore not always straightforward, and for this reason

we use postural tasks for the upper-body instead.

In the proposed approach, upper-body joint positions are measured and grouped

into subcategories: head, torso, left arm and right arm. As for measurements relating

to the lower-body, the ground projection of the center of mass, the height of the waist

and the position of the feet are measured, but it would be straightforward to include

also leg joint position measurements.

The retargeting method used here has a few advantages. For one, it does not assume

the initial body orientations of the human operator and robot to match precisely. Also,

the only human/robot ratio required is for the waist height.

Mapping and retargeting joint positions

The motion capture human model considered here comes from the motion capture

software used in this work (XSens MVN [Xsens, 2017]): it is composed of spherical

joints, most of which can easily be assigned to the corresponding robot joints on the

arms and legs.

6.1 Whole-body velocity-control framework for teleoperation 131

However, unlike on a human body, the robot torso is a rigid link controlled with

3 DOFs, which makes mapping joints related to the torso less intuitive. Therefore,

an approximate mapping is performed, considering the motion capture joints most

involved in the torso motion to be the ones placed on the vertebrae going from the

second lowest lumbar vertebra up to the thoracic vertebra at the level of the breastbone.

The rotation of each DOF of the robot torso is approximated by computing the sum

of the corresponding rotations on these joints. Sanity tests performed in simulation

allowed to conĄrm the validity of the mapping reported in Ągure 6.5.

Figure 6.5 Mapping between motion capture and iCub joints. Our motion capture model,
here, is the one of the XSens MVN system.

6.1 Whole-body velocity-control framework for teleoperation 132

Then, this mapping allows to retarget the variation of joint positions with respect

to the starting posture, according to

∆siH = siH − s0H
(6.1)

∆siR = s0R
+∆siH (6.2)

where s is the vector of current joint positions, ∆s is the vector of joint variations

with respect to the initial posture, the indices 0 and i refer to measurements at initial

time and at time i, and the subindices H and R indicate measurements on human and

robot, respectively.

Retargeting lower-body movements

Due to important differences between human and robot inertial properties and physical

constraints, stable balancing and walking may not be achieved on the robot simply by

retargeting joint movements. Therefore, in order to ensure stable walking of the robot,

as well as whole-body movements, we deĄne CoM and feet motions as follows.

Since mass distribution can be signiĄcantly different between human and robot,

the CoM of the robot may be in a different location on the body as compared to a

human1. For this reason, retargeting vertical CoM movement might cause the motion

of the robot to differ signiĄcantly from that of the human (e.g. bending the torso over,

rather than bending the knees).

As a solution, we choose to control the height of the robot CoM through the

variation of waist height ∆zwaist, obtained for the teleoperator as follows.

∆zwaistiH = zwaistiH − zwaist0H
(6.3)

In this case, mapping can be achieved using the ratio of robot/human waist height

measured at a resting position (i.e. standing with straight arms along the body).

∆zwaistiR =
zwaist0,R

zwaist0,H

∆zwaistiH (6.4)

1For instance, with the iCub, the CoM is situated higher on the chest. The robot CoM may be in
a different location in other humanoid robots.

6.1 Whole-body velocity-control framework for teleoperation 133

The height of the robot waist at each time instant can then be computed as:

zwaistiR = zwaist0R
+∆zwaistiR (6.5)

Then, we propose to use a Ąnite state machine (such as described in subsection

6.1.2), in order to generate CoM ground projection and feet trajectories that are

appropriate for different types of contacts, or actions to be performed.

Measurements of the teleoperatorŠs movements can then be used for detecting the

type of action to perform. For example in our implementation, measuring a vertical

and horizontal displacement of one of the teleoperatorŠs feet over a certain threshold

is used to detect walking. From there, the number of footsteps can be counted with

every time a foot is brought back to the ground.

Our approach to walking is then to retarget footstep length, and have the robot

perform an equal number of steps as the teleoperator. In view of achieving a performance

that is closer to the humanŠs, we choose not to use the teleoperation for activating

an offline walking pattern generator (as done for example in [Elobaid et al., 2018;

Kim et al., 2013]). Due to this, the robot will keep walking until the right number of

footsteps has been achieved.

For footstep retargeting, let us assume that the feet move along the x-axis (forward

or backward) when walking; however, the extension to a 2D foot position retargeting is

straightforward. We Ąrst measure the displacement of the human foot over a footstep.

Then, we retarget the human footstep onto the robot, considering the range of feasible

values for the human and the robot (comprised within minimum and maximum values

xfootmin
and xfootmax), by computing the offset

o
footstep

=
(xfootH −xfootminH

)

(xfootmaxH
−xfootminH

)
(6.6)

from which we get the corresponding robot footstep length

xfootR = o
footstep

(xfootmaxR
−xfootminR

)+xfootminR
(6.7)

The same approach can be applied to retarget the step height.

6.1 Whole-body velocity-control framework for teleoperation 134

6.1.2 Finite state machine

The Ąnite state machine is used to deĄne Cartesian reference trajectories, depending on

motion capture data and desired behaviors. It allows to switch between teleoperated

and non teleoperated motion, as well as between different types of motions with contact

switching.

To demonstrate the potential of the framework, we set up a basic example of

hierarchical state machine, as illustrated in Ągure 6.6.

Autonomous motion

Idle Walking

Walking
double
support

Foot liftoff

Foot
touchdown

Teleoperation

Double support Walking

Walking
double
support

Foot liftoff

Foot
touchdown

Figure 6.6 States of a hierarchical finite state machine for teleoperation and walking

States of Ągure 6.6 can be described as follows.

1. Autonomous motion Ű used when teleoperation is inactive.

(a) Idle is the state in which the controller is initialized. At this point, the

initial pose of the robot, as well as the initial pose associated to each task,

are stored. The robot remains in the same pose, until teleoperation is

started.

(b) Walking is used for generating a walking motion. It is composed of the

same states as state 2b (teleoperated walking), except that reference poses

for the postural tasks remain constant.

2. Teleoperation is used when teleoperation is active. At this point, the retargeting

module streams in real time retargeted waist height and feet positions to the

state machine, as well as retargeted upper-body joint positions, to the controller.

6.1 Whole-body velocity-control framework for teleoperation 135

(a) Double support is the state which is Ąrst used, when teleoperation starts.

It is used for movements that keep both feet on the ground. The ground

projection of the CoM is set to lie in the middle between the feet, which

remain in place on the ground. Reference poses for the postural and waist

height tasks are continuously updated from the streamed retargeted joint

positions and waist height.

(b) Walking Ű used when walking is detected.

i. Walking double support is used to move the ground projection of

the CoM to the middle between the feet, while the feet remain in

place. Reference poses for the postural tasks are continuously updated

from the streamed retargeted joint positions. As long as the maximum

number of footsteps to be performed (as deĄned in section 6.1.1) has

not been reached, the size of the next footstep is adjusted according

to teleoperation signals and the state machine moves on to state 2(b)ii

when the error on CoM position is smaller than a threshold eCoM . When

the maximum number of footsteps has been reached, the state machine

moves on to state 2a.

ii. Foot liftoff is used to move the CoM above the stance foot, and to lift

the swing foot off the ground, up and in the walking direction, once the

CoM error is smaller than a threshold eCoM . Reference poses for the

postural tasks are continuously updated from the streamed retargeted

joint positions. The state machine moves on to state 2(b)iii once the

swing foot has reached the desired footstep height, and half of the

footstep size.

iii. Foot touchdown is used to bring the swing foot back down to the

ground, at the position deĄned from the desired footstep size, and to

move the CoM back between the feet, once the error on the foot pose is

smaller than a threshold efoot. Reference poses for the postural tasks

are continuously updated from the streamed retargeted joint positions.

Once the error on the CoM is smaller than a threshold eCoM , the

vertical contact force at the swing foot is above a threshold ftouchdown

and the swing foot has reached the desired pose, swing and stance feet

are switched and the sate machine moves on to state 2(b)i, in order to

initiate the next footstep.

6.1 Whole-body velocity-control framework for teleoperation 136

Note that references for the waist height and orientation tasks remain at their

measured initial values, during the walking states.

Additional states can easily be added to achieve a larger diversity of behaviors, e.g.

teleoperated single support or autonomous motions. Given that the main idea here

is to show the potential use of the framework and its Ćexibility, we have allowed the

state machine to deĄne simple reference trajectories, but this is in effect limiting the

potential of the motions that could actually be accomplished.

In fact, handling stability constraints and generating lower-body trajectories based

on the divergent component of motion, as benchmarked in [Romualdi et al., 2018] and

proposed in [Ishiguro et al., 2017, 2018], would be beneĄcial. Intrinsically stable model

predictive control approaches [Dafarra et al., 2018; Scianca et al., 2016] can also be

used for compliance to external interactions, with the proposed framework.

The next subsection explains the motion controller that tracks desired trajectories

deĄned by the state machine.

6.1.3 Stack-of-tasks for teleoperated whole-body velocity-

control of a humanoid robot

The stack-of-tasks considered for a whole-body velocity-controller is similar to that used

for a torque-controller, but with some adaptations. For the purpose of the proposed

framework, it also includes modiĄcations for retargeting movements from a human

operator, as described in section 6.1.1.

Since with velocity-control, contact stabilization may not be achieved with friction

cone constraints, it is instead attempted by using a two-layer hierarchy of tasks, in

which the tasks on the lower priority layer are achieved in the null space of the higher

priority layer. The stabilization of the stance and swing feet pose are placed on the

higher priority layer, while other tasks are on the lower priority layer. In this case, soft

tasks will be used as prioritization scheme between tasks on the same hierarchy layer.

A stack-of-tasks is proposed to be deĄned from the following tasks, where the

indentation denotes hierarchy.

Ű Stabilize the stance foot pose Tstance ∈ SE(3)

Ű Stabilize the swing foot pose Tswing ∈ SE(3)

6.1 Whole-body velocity-control framework for teleoperation 137

Ű Stabilize the projection of the CoM on the ground pCoM ∈ R2

Ű Stabilize the waist height zwaist ∈ R

Ű Stabilize the waist frame orientation Rwaist ∈ SO(3)

Ű Stabilize the neck frame orientation Rneck ∈ SO(3)

Ű Track upper-body joint positions sup ∈ Rnup

Ű Minimize robot velocity ν

Regarding the upper-body postural task, nup is the number of controlled DOFs on

the upper-body postural task, which can be broken down into subtasks on the head

(i.e. neck joints), torso and arms. In the particular implementation presented here, it

includes 3 DOFs on the neck joints, 3 DOFs on the torso joints and 4 DOFs on the

joints of each arm, for a total of 14 DOFs.

Note that both feet are equally considered with the highest priority, as opposed

to the stance foot only. Indeed, encouraging the swing foot to be well posed at the

moment of touchdown showed to have a positive impact on stability of the robot,

during preliminary tests performed on the robot.

The task on waist orientation is added for the case of whole-body teleoperation in

double support, where the controller can use these additional controlled DOFs in order

to stabilize the whole-body motion.

Tasks are then attributed priorities with respect to each other, with the following

set of task weights.

w =
{

wCoM ,wneck,wsup ,wν

}

(6.8)

where the weight wCoM ∈ R is associated to the stabilization of pCoM , zwaist and

Rwaist. Then, wneck,ws ∈ R are associated to tasks on Rneck and sup, respectively.

Finally, wν ∈ R is a parameter which controls the importance of the regularization on

the velocity of the robot.

Given the Cartesian and postural tasks deĄned here for the controller, each of them

may be stabilized as described in the following paragraphs.

Stabilization of Cartesian tasks

With velocity-control, the robot velocity ν is considered as the control input u. In

consequence, the velocity vT of the frame T can be computed as a function of the

6.1 Whole-body velocity-control framework for teleoperation 138

control input, from the associated Jacobian JT and the robot velocity, as follows.

vT (u) = JT ν (6.9)

Stabilization of a Cartesian task, i.e. the pose TT of a frame T can then be

attempted by minimizing the error on its velocity ṽT (u), given a feedback term v∗
T , as

follows.

ṽT (u) = vT (u)−v∗
T (6.10)

In this case, the feedback term v∗
T may be computed with

v∗
T = vdT +K

(

pdT −pT (q)
)

(6.11)

where pT is a vector representing the pose of the frame T using Euler parameters for

its rotation, the superscript d indicates desired values, and K is a feedback gain matrix

with different gain values for linear and angular terms.

Stabilization of postural tasks

In order to stabilize a postural task, one can obtain a formulation of the joint velocities

ṡ as a function of the control input, as

ṡ(u) = ζν (6.12)

where ζ = (0n×6,1n)⊤ is a selector matrix.

Stabilization of the postural task may then be attempted by minimizing the error

on the joint velocities ˜̇s(u), given a feedback term ṡ∗.

˜̇s(u) = ṡ(u)− ṡ∗ (6.13)

In this case, the feedback term ṡ∗ can be computed with

ṡ∗ = ṡd+Ks

(

sd− s
)

(6.14)

where the superscript d indicates desired values, and Ks is a feedback gain.

6.1 Whole-body velocity-control framework for teleoperation 139

6.1.4 QP controller

Once feasible postural and Cartesian values are obtained for the robot, they can be set

as reference set points for a whole-body controller.

In the case of the present whole-body velocity-controller, one is interested in

managing the velocity of the robot ν as control input u to the robot. For this purpose,

we deĄne a QP-based velocity-controller based on the stack-of-tasks presented in

subsection 6.1.3.

Additional safety constraints are added to the control problem. First, constraints

on the joint limits of the robot are deĄned in the shape

µ(smin− s)≤ ζu≤ µ(smax− s) (6.15)

where smin, smax are the minimum and maximum joint limits and µ is a scaling factor

deĄned in OpenSoT. Then, constraints on the joint velocities are deĄned in the shape

− ṡmax ≤ ζu≤ ṡmax (6.16)

where ṡmax is the maximum allowed joint velocity.

The following paragraphs describe the proposed optimization problem that computes

a control input in order to achieve objectives.

The problem is formulated with a mixture of hard and soft task priorities, using

the two-layer hierarchy of soft tasks introduced in subsection 6.1.3. In this case, the

cost functions Chigh, Clow of the higher and lower priority layers are deĄned as the

weighted sum of task errors, as introduced in equations (6.10) and (6.13).

The control architecture can then be formulated as the following optimization

problem:

u∗ = argmin
u

1

2
Clow (6.17a)

s. t. (6.17b)

µ(smin− s)≤ ζu≤ µ(smax− s) (6.17c)

− ṡmax ≤ ζu≤ ṡmax (6.17d)

u = argmin
u

1

2
Chigh (6.17e)

6.1 Whole-body velocity-control framework for teleoperation 140

where the lower priority tasks accounted for in (6.17a) act in the null space of the

higher priority tasks accounted for in (6.17e).

In our speciĄc implementation, the cost function of each layer is adapted between

the walking states and the others, for which a greater mobility can be achieved.

When in states other than walking, Chigh includes tasks on stance foot, swing

foot and head posture (neck joint velocities), while Clow includes tasks on CoM, waist

height and orientation, as well as posture of torso and arms, and regularization of

robot velocity:

Chigh = ♣ṽstance(u)♣2 + ♣ṽswing(u)♣2 +ws

∣

∣

∣

˜̇shead(u)
∣

∣

∣

2
(6.18)

Clow = wCoM

(

♣ṽCoM (u)♣2 + ♣ṽwaist(u)♣2
)

+wneck ♣ṽneck(u)♣2 +ws

∣

∣

∣

˜̇sup(u)
∣

∣

∣

2
+wν ♣ν♣2

(6.19)

where ṽstance(u), ṽswing(u), ṽCoM , ṽneck are the error on stance foot, swing foot, CoM,

and neck Cartesian tasks, respectively. The waist height and orientation are included

in ṽwaist, but ṽzwaist
(used below) only includes waist height, Also, ˜̇sup is the error on

the upper-body postural task, with ˜̇shead for the neck joints speciĄcally.

Instead, when in a walking state, Chigh only includes tasks on stance and swing feet,

while Clow includes tasks on CoM, waist height, as well as posture of the upper-body

(head, torso and arms), and regularization of robot velocity:

Chigh = ♣ṽstance(u)♣2 + ♣ṽswing(u)♣2 (6.20)

Clow = wCoM

(

♣ṽCoM (u)♣2 + ♣ṽzwaist
(u)♣2

)

+wneck ♣ṽneck(u)♣2 +ws

∣

∣

∣

˜̇sup(u)
∣

∣

∣

2
+wν ♣ν♣2

(6.21)

Reorganizing terms, the optimization problems of equations 6.17a and 6.17e can

easily be formulated as QP.

Note that the controller could as well be formulated for position or force/torque

control, using different control objectives and constraints.

6.2 Applications of the whole-body teleoperation framework 141

6.2 Applications of the whole-body teleoperation

framework

Two different applications of the framework are presented in the following subsections.

In the Ąrst one, the application is limited to walking, but provided increasingly complex

foot movements, as a way to verify that the framework can achieve generic footsteps. In

the second one, the framework is applied to whole-body teleoperation, for the speciĄc

problems of whole-body teleoperation while balancing on two feet, and upper-body

teleoperation while walking.

The whole-body controller described in section 6.1.4 is implemented using the

OpenSoT software library, as introduced in [Hoffman et al., 2018, 2017; Rocchi et al.,

2015]. OpenSoT is speciĄcally developed to solve optimization problems based on a

stack-of-tasks. At the moment this project took place, it was an open-source library for

implementing QP controllers based on a stack-of-tasks1. It offers interfaces for deĄning

QP problems related to whole-body control, including the deĄnition of tasks, as well

as specifying cost functions and constraints.

Presented experiments are performed with the iCub, using 26 DOFs for whole-body

control: 3 DOFs for the torso, 3 for the neck, 4 for each arm and 6 for each leg. The

force-torque sensors in the feet of the robot are used to detect forces exchanged between

the feet and the ground. In the case of simulation experiments, they are conducted

using the open-source robot simulator Gazebo [Koenig and Howard, 2004].

For all applications presented below, parameters of the controller are deĄned as

follows. Task weights for the controller (6.17) are set as in table 6.1.

Table 6.1 Task weights w used with the controller of equation (6.17)

wCoM wwaist wneck wsup wν

1 1 0.6 0.05 0.1

The weight values are taken from the average results obtained in chapter 5, where

task priorities have been optimized using domain randomization, as well as an objective

function encouraging both robustness and performance on Cartesian tasks. wCoM

1Even though OpenSoT appears to be no more open source at the time of writing this thesis, the
source code used in this project is still available at github.com/EnricoMingo/OpenSoT-superbuild.

6.2 Applications of the whole-body teleoperation framework 142

and wwaist are attributed a value of 1, wneck a value of 0.6 (as the average neck task

value shown in table 5.2), while feet are already provided the highest priorities by the

formulation of the optimization problem. wν is attributed a weight of 0.1, as suggested

by expert users of the OpenSoT framework. In the end, the postural task weight wsup

is the only weight that needs manual tuning, so the tuning process is straightforward.

As for the feedback gains used for stabilization of Cartesian and postural tasks in

equations (6.11) and (6.14), the default values provided by OpenSoT are used, except

for the following orientation gains: they are set to a value of 1 for swing and stance

feet tasks, and 0.1 for the neck orientation task.

Finally, the parameters used for the Ąnite state machine as introduced in subsection

6.1.2 are deĄned as in table 6.2.

Table 6.2 Parameters of the finite state machine described in 6.1.2

parameter value

eCoM 0.03 m

efoot 0.02 m

Ftouchdown 80 N

In our speciĄc implementation of the walking states, desired CoM and feet trajec-

tories are generated using the minimum jerk trajectory generator of [Pattacini et al.,

2010]. As a consequence, the robot walks more slowly than the teleoperator, and the

waist height needs to be lowered by 0.01 m at foot liftoff and touchdown of short steps

(≤ 0.04 m) for better stability. In retrospect, we realize that this choice limits the

achievement of dynamic motions and would recommend to use other approaches, as

suggested for example in [Ishiguro et al., 2017, 2018; Romualdi et al., 2018].

6.2.1 Application to walking

This section exposes a preliminary application of the framework presented in section 6.1

to autonomous walking. Experiments with the controller are performed in simulation

and with the iCub, in order to Ąrst verify the effectiveness of the deĄned controller,

stack-of-tasks and state machine. The retargeting module is therefore disabled for these

experiments. The preliminary results shown here have been collected from 3 different

6.2 Applications of the whole-body teleoperation framework 143

experiments, in which the robot either steps in place, walks forward, or performs

generic footsteps.

Experiment 1 - Stepping in place

A Ąrst experiment performed on the robot validates that the proposed controller allows

to achieve a similar stepping behavior as the controllers presented in chapter 2. In this

case, the desired movement of the foot is set to be lifted 5 cm up, while keeping its

position constant along the x− and y−axes. The stepping motion has been successfully

tested on the iCub for 10 consecutive steps. Figure 6.7 shows the stepping behavior

achieved with the robot.

Experiment 2 - Walking

A second experiment performed on the robot shows that the proposed controller can be

used to achieve walking. In this case, the desired movement of the foot is set to be lifted

2.5 cm up, and brought 10 cm forward. The stepping motion has been successfully

tested on the iCub over 7 consecutive steps. Figure 6.8 shows the walking behavior

achieved with the robot.

Experiment 3 - Generic footsteps in simulation

Simulation experiments have then been conducted for walking with a variety of footsteps,

to assess the robustness of the controller with respect to desired foot trajectories. In

simulation experiments, the controller shows to be robust to arbitrary footsteps, allowing

foot displacements along x− and y−axes as well as foot rotations about the z−axis,

while walking. Figure 6.9 displays some examples of the walking behaviors achieved by

varying desired feet trajectories. Each of those have been tested for stability over at

least 15 steps. This experiment has not yet been performed on the robot, due to time

constraints and because it was deemed more interesting to move on to teleoperation at

this point.

6.2 Applications of the whole-body teleoperation framework 144

Figure 6.7 Walking experiment 1: snapshots of the robot stepping in place for the first
step (above) and last step (below): transferring the weight to the stance leg, lifting the swing
foot, bringing the swing foot back down and transferring the weight back to both legs.

Figure 6.8 Walking experiment 2: snapshots of the robot walking forward for two consecutive
steps: transferring the weight to the stance leg, lifting the swing foot forward, bringing the
swing foot back forward and down and transferring the weight back to both legs.

6.2 Applications of the whole-body teleoperation framework 145

(a) Walking sideways

(b) Walking forward and to the right

(c) Walking backward

(d) Walking with wide open feet

Figure 6.9 Walking experiment 3: snapshots of various walking behaviors achieved with
the simulated robot.

6.2 Applications of the whole-body teleoperation framework 146

6.2.2 Application to whole-body teleoperation

This section exposes experiments performed with a human teleoperator1 and the iCub

robot, in order to validate that the proposed framework is capable of generating

complex whole-body motions with teleoperation including simultaneous upper-body

and lower-body motions.

Experiments involve the use of a human motion capture system, which allows to

provide real-time estimation of the teleoperatorŠs posture. The Xsens MVN system

[Xsens, 2017] is used for this purpose. It is a wearable system consisting of 17 IMUs, that

considers a model of the human with 66 DOFs corresponding to 22 spherical joints. The

motion capture data of the Xsens can be visualized using the MVN Animate software

that generates a 3D human reconstructed skeleton, allowing to visually compare the

movements of the teleoperator and the robot.

Data captured with the Xsens is then used for motion retargeting to the robot, as

described in section 6.1.1.

Results shown here have been collected from 3 different teleoperation experiments,

in which the teleoperator begins in a resting pose (standing with the arms along the

body), and performs a sequence of movements, as described in the following paragraphs.

Experiment 1

The Ąrst experiment consists in the following sequence of movements.

1. Wave the left hand

2. Perform rotation movements of the head

3. Lift both arms

4. Bring arms forward

5. Perform two squats

6. Bring arms down

7. Walk four steps forward

8. Wave the right arm

1Note that in our experiments the operator is a sociologist, not an expert in robotics.

6.2 Applications of the whole-body teleoperation framework 147

It has been performed on the simulated and the real robot. Snapshots of squatting, arm

and walking motions, obtained with the virtual teleoperator and the simulated iCub,

are superposed in Ągure 6.11; they show that the robot closely follows the movements

of the teleoperator.

Figure 6.10 shows the upper-body movements obtained in the real iCub for experi-

ment 1, starting from the beginning of the sequence of movements, until the arms are

moved forward. The graphs show that the head, arms and torso roll follow closely the

orientation of the teleoperator, within the physical limits of the robot.

Also, Ągure 6.12 shows that the retargeted footstep lengths have been adapted to

those of the teleoperator.

Figure 6.10 Teleoperation experiment 1: results of retargeting upper-body joint motions
on the real robot. The numbering of joints corresponds to the order in which they are listed
in figure 6.5.

6.2 Applications of the whole-body teleoperation framework 148

Figure 6.11 Teleoperation experiment 1: snapshots of squatting and walking movements
taken with the human motion capture system and the simulated robot.

(a) Experiment 1

(b) Experiment 2

Figure 6.12 Teleoperation experiments 1 and 2: left and right feet motions achieved with the
simulated robot, in the walking direction (x-axis). Above: experiment 1, below: experiment
2. The target length and direction of a footstep is determined from the teleoperator’s step.

6.2 Applications of the whole-body teleoperation framework 149

Experiment 2

The second experiment has been performed in simulation, and consists in the following

sequence of movements.

1. Bring the right arm forward while performing a squat

2. Walk two steps forward while waving the right arm

3. Walk two steps backward while waving the right arm

Snapshots of squatting and walking steps, obtained with the virtual teleoperator

and the simulated iCub, are superposed in Ągure 6.13. They show that the robot

closely follows the movements of the teleoperator when squatting and moving the arm.

Note that the robot walks more slowly than the teleoperator: the operator walked

ŞnormallyŤ without waiting for the robot to complete each footstep. For this reason,

the operator has Ąnished waving the hand before the robot starts its second step, which

explains the discrepancy in arm positions between the operator and robot.

The retargeted footstep lengths have been adapted to those of the teleoperator,

as shown in Ągure 6.12. For example, the left foot of the robot performs a step

backward in experiment 2; the last footstep then equalizes the position of the two feet.

Moreover, the foot trajectories show to follow closely the desired trajectories; only at

foot touchdown, an impulse can be observed in the measured feet positions, due to the

impact with the ground.

(a) Initial pose (b) Squatting (c) Step (d) Step (e) Stop (f) Step back

Figure 6.13 Teleoperation experiment 2: snapshots of squatting, upper-body and walking
movements taken with the human motion capture system and the simulated robot.

6.2 Applications of the whole-body teleoperation framework 150

Experiment 3

The third experiment is performed as live teleoperation of the robot. It consists in the

following sequence of movements.

1. Walk four steps forward

2. Wave the right arm and bring it back down

3. Wave the left arm and bring it back down

4. Lift both arms forward and drop arms down

5. Wave the right arm

6. Lift both arms forward

7. Perform two squats

8. Wave the left arm

9. Wave the right arm

10. Open arms in cross.

Figure 6.14 shows snapshots of the teleoperator and robot performing each of these

movements. In particular, even though, as discussed above, the robot walks slower than

the teleoperator, upper-body movements are still being retargeted in real time. As a

result, while the robot is completing the number of steps performed by the teleoperator,

it can be seen simultaneously walking and following the teleoperatorŠs arm movements.

This behavior is not ideal for legibility and can be corrected with an improved foot

trajectory generator as suggested above. Nonetheless, this result is interesting because

it shows that the whole-body control framework allows the robot to keep balance

while effectively achieving upper-body and lower-body movements. In particular, the

robot shows to be following the teleoperatorŠs upper-body movements while walking,

as shown in the top pictures of Ągure 6.14.

6.3 Conclusion 151

Figure 6.14 Teleoperation experiment 3: snapshots of whole-body teleoperation on the
real robot: walking, waving arms, squatting, waving arms again and opening them in cross.

6.3 Conclusion

In summary, we have proposed a whole-body teleoperation framework that allows

the robot to perform generic whole-body motions, such as upper-body motions while

moving the lower-body, i.e., walking or squatting. The human-likeness of the robot

motion is achieved thanks to a complete retargeting of the human upper-body joints,

while the lower-body retargeting is formulated to guarantee the stability of the robot.

The effectiveness of our approach has been demonstrated by teleoperating the iCub

while performing the aforementioned movements. Results achieved with the proposed

approach show that teleoperation of the upper-body can be successfully performed

while walking. Results in simulation also show that the approach could be used for

generic walking steps.

6.3 Conclusion 152

The main limitation of our framework is the velocity of the robot walking movements.

This is due to limitations of the walking pattern generator we use, and more speciĄcally

to the use of the minimum jerk trajectory generator, which produces smooth trajectories

for the legs. In next iterations, the framework shall be upgraded to achieve state of the

art dynamic walking, including for example stability constraints, as well as MPC-based

methods. Indeed, state of the art MPC approaches have proven to be intrinsically

stable and to make a teleoperated robot compliant with respect to unexpected external

interactions [Scianca et al., 2016], [Scianca et al., 2017].

From another perspective, the walking movement has been teleoperated only in a

limited way, by scaling trajectories of the feet with respect to those of the teleoperator.

It could then be interesting to investigate ways to achieve a more complete teleoperation

of the human walking behavior. For instance, to achieve a more human-like walking,

the retargeting of speciĄc joints on the legs may be included, such as in [Hu et al.,

2014]. To make the controller even more general, we may also consider, for example,

single stance motions (retargeting swing leg movements) into the framework, and

extending the footstep retargeting to generic footstep trajectories including changes in

orientation.

Regarding the stack-of-tasks, experiments have shown the importance of considering

both feet with the highest priority, as opposed to the stance foot only (as described

in section 6.1.3), since this was beneĄcial for the swing foot to be well posed at the

moment of touchdown. The formulation of the stack-of-tasks is likely at cause here,

since only one stance foot is considered at a time: the swing foot is properly considered

as a stance foot only when the swing and stance feet are switched, at the end of a step.

In reality however, both feet should be considered as stance feet when they are both

in contact with the ground. This is something which could easily be improved in the

next iteration of the controller by deĄning as stance foot any foot which is currently in

contact with the ground, and as swing foot any foot which is not currently in contact

with the ground. Note also that, in the implementation of the controller, the head

posture is considered with equal priority as the feet, when in the double support state

(but not in walking states). This appears to be simply due to a quick implementation,

and can also be Ąxed in a next iteration.

Finally, a more serious limitation of the controller is the fact that it does not consider

contact constraints, which may allow the feet of the robot to slip on the ground. This

is however not a desired behavior when walking. The most sensible solution in this

6.3 Conclusion 153

case would be to eventually transfer the control problem to a torque-controller. Future

works in this direction should include the adaptation of OpenSoT for walking tasks

with torque-control. Another possibility could be to adopt an alternative library such

as the open-source Efficient Task Space Inverse Dynamics (TSID) library [Stack Of

Tasks development team, 2019].

Nonetheless, the formulation of the framework, making use of a Ąnite state machine

and QP-based controller to achieve whole-body motions, allows for substantial Ćexibility

and is worth pursuing further.

In particular, an interesting property of the proposed framework is that it can be

used with state of the art QP-based whole-body controllers. This makes it possible to

seamlessly switch between autonomous and teleoperated whole-body control, since the

same controller can be used in both situations. Such a feature can become extremely

useful in teleoperation scenarios where the communication between operator and robot

can suffer losses or unexpected interruptions. Future work shall delve deeper into the

integration of teleoperated and autonomous behaviors into the framework.

In conclusion, as outlined in the paragraphs above, our work on whole-body

teleoperation of humanoid robots presented in this last chapter appears to be only a

beginning: the promising results achieved with our method open many possibilities for

exciting future developments.

Chapter 7

Conclusion

This thesis has explored subjects related to whole-body control, and proposes methods to

increase the robustness of humanoid robots. Advances in this direction are particularly

important, because achieving robust, autonomous and complex behaviors is essential

to the development of service robots that can effectively deal with the real world.

While based on whole-body control, contributions have been developed along three

more axes: joint limit avoidance, parameter tuning, and generalizing the whole-body

motions that can be achieved by a controller.

7.1 Whole-body balancing torque-control

While developing a new whole-body torque-controller for the iCub, we have found that

treating Cartesian and postural tasks with soft priorities helps in achieving smoother

behaviors of the robot. However, many different formulations of a controller can

actually lead to similar results, for instance using different strict and soft task hierachy

combinations, Ąnite state machines or feedback control policies. It is up to the control

expert to carefully design the controller, in order to make its implementation easier,

but this most likely unfolds as an incremental process.

Additionally, results achieved with the framework developed in chapter 2 show Carte-

sian and postural tasks to be suitable for balancing and walking of a humanoid robot

through torque-control. For instance, further results achieved using this framework,

7.2 Joint limit avoidance 155

given reference trajectories obtained from a receding horizon controller, successfully

achieved walking of the robot in [Dafarra et al., 2018].

Nonetheless, additional methods addressing the robustness and tuning of the

controllers would improve performance. This is what the rest of the thesis has then

been concerned with.

7.2 Joint limit avoidance

DeĄning a parametrization of the feasible joint space of the robot has allowed to

develop a theoretically guaranteed method for joint limit avoidance, which is adapted

for torque-control. It has been shown to allow the robot to remain compliant, while

resisting external perturbations in the case where joint limits are approached. When

applied to whole-body control, is also shows to be beneĄcial for the robustness of the

controller and produces smoother reactions to external perturbations.

Clearly, this approach is limited by the maximal torques which actuators may actu-

ally apply, and by proper tuning of the feedback gains. The fact that the parametrization

creates a discontinuity when a joint limit is actually reached must however be addressed,

but it can be as simple as introducing saturation.

7.3 Tuning parameters of whole-body controllers

While controllers developed in chapter 2 have shown to require particular efforts in

the tuning of their parameters, it was not clear how much of a general issue it was,

with controllers based on quadratic programming. A survey sent out to the robotics

community has allowed to conĄrm that it indeed is, in a more formal way than simple

anectodal evidence. It has also conĄrmed that tuning is generally done by hand,

through a process which can be described as tedious and time consuming, and there is

a need to develop tools to make it easier.

In this case, our method for learning task priorities, taking advantage of domain

randomization, has shown in chapter 5 to be highly promising. It automatically adjusts

task priorities in simulation, while allowing to increase the capability of the controller

to cope with disturbances, changes in working conditions and different platforms.

7.4 Whole-body control for generic motions 156

Ultimately, using the optimized task priorities has shown to allow transferring

results between different robot models, without the need to re-tune the controller. It

can potentially be of great help in bridging the reality gap.

So far, the proposed method is adapted for learning task priorities in simulation,

but other parameters also require tuning. For instance, gains used for computing

feedback terms may also have an important impact on the performance of a controller.

Nonetheless, since robot simulation models are not perfect reĆections of the reality (for

example, motor backlash and stiction may be overlooked), it is possible that gains need

different values between simulated and real-world robots. However, using the proposed

method directly on the robot is potentially risky. Additional measures to Ąnely tune

controller parameters directly on the robot may eventually be useful as well.

7.4 Whole-body control for generic motions

Due to the tedious manual process of tuning controller parameters, controllers are

generally well deĄned to achieve a speciĄc action of the robot. For example, controllers

used in chapters 2, 3 and 5 are specialized for balancing on a robotŠs feet and walking

by moving the feet and center of mass in a predeĄned way. It remains, nevertheless,

that envisioned applications for humanoid robots do not conĄne them to such limited

tasks. Sooner or later, humanoid robots will be called to perform actions with their

upper-body, while walking. The control framework presented in chapter 6 is a Ąrst

step in this direction, allowing to achieve generic footsteps, as well as generic and

human-like upper-body movements. In particular, it has shown to allow teleoperating

upper-body movements in real-time, while the robot is simultaneously walking, taking

footsteps adjusted according to those of the teleoperator.

Robustness to the various trajectories generated by the teleoperation has been

achieved by controlling the center of mass such that it remains in a stable position. In

the implementation presented in chapter 6, the feet trajectories are not yet retargeted

in real-time from the motion of the teleoperator. While walking slower might help

stability during static walking, the walk of the robot appears slow compared to the

movements of the upper-body. Further developments for the teleoperation of the

lower-body would clearly improve the capabilities of the robot.

7.5 Closing remarks 157

7.5 Closing remarks

In conclusion, exciting directions for future research may include (but are far from

being limited to) testing joint limit avoidance in more challenging scenarios with the

real robot, addressing the tuning of feedback gains and exploring real-time walking

teleoperation. Eventually, exploring additional approaches that allow to increase

even more the robustness achieved with whole-body controllers, promise to be highly

beneĄcial. Not only will it save time and effort when deploying controllers, but it shall

have a signiĄcant impact on the autonomy of robots.

References

Antonova, R., Cruciani, S., Smith, C., and Kragic, D. (2017). Reinforcement learning
for pivoting task. CoRR, abs/1703.00472.

Arnold, D. V. and Hansen, N. (2012). A (1+1)-cma-es for constrained optimisation. In
Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation,
GECCO Š12, pages 297Ű304.

Assal, S. F. M., Watanabe, K., and Izumi, K. (2005). Neural network learning from
hint for the inverse kinematics problem of redundant arm subject to joint limits. In
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1477Ű1482.

Atawnih, A., Papageorgiou, D., and Doulgeri, Z. (2016). Kinematic control of redundant
robots with guaranteed joint limit avoidance. Robotics and Autonomous Systems,
79:122 Ű 131.

Ayusawa, K. and Yoshida, E. (2017). Motion retargeting for humanoid robots based
on simultaneous morphing parameter identiĄcation and motion optimization. IEEE
Transactions on Robotics, 33(6):1343Ű1357.

Bhat, S. P. and Bernstein, D. S. (2000). A topological obstruction to continuous
global stabilization of rotational motion and the unwinding phenomenon. Systems &
Control Letters, 39(1):63 Ű 70.

Bischoff, B., Nguyen-Tuong, D., van Hoof, H., McHutchon, A., Rasmussen, C. E.,
Knoll, A., Peters, J., and Deisenroth, M. P. (2014). Policy search for learning robot
control using sparse data. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 3882Ű3887.

Boston Dynamics, i. (2018). Atlas - the worldŠs most dynamic humanoid. https:
//www.bostondynamics.com/atlas. [Online; accessed 19 December 2018].

Brygo, A., Sarakoglou, I., Tsagarakis, N., and Caldwell, D. G. (2014). Tele-manipulation
with a humanoid robot under autonomous joint impedance regulation and vibrotactile
balancing feedback. In 2014 IEEE-RAS 14th International Conference on Humanoid
Robotics (Humanoids), pages 862Ű867.

Caron, S., Pham, Q., and Nakamura, Y. (2015). Stability of surface contacts for
humanoid robots: Closed-form formulae of the contact wrench cone for rectangular
support areas. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 5107Ű5112.

https://www.bostondynamics.com/atlas
https://www.bostondynamics.com/atlas

References 159

Chan, T. F. and Dubey, R. V. (1995). A weighted least-norm solution based scheme
for avoiding joint limits for redundant joint manipulators. IEEE Transactions on
Robotics and Automation, 11(2):286Ű292.

Charbonneau, M., Modugno, V., Nori, F., Oriolo, G., Pucci, D., and Ivaldi, S. (2018).
Learning robust task priorities of qp-based whole-body torque-controllers. In 2018
IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pages
1Ű9.

Charbonneau, M., Nori, F., and Pucci, D. (2016). On-line joint limit avoidance for
torque controlled robots by joint space parametrization. In 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids), pages 899Ű904.

Charbonneau, M., Penco, L., Nori, F., Pucci, D., and Ivaldi, S. (2019). A comprehen-
sive framework for qp-based whole-body teleoperation. Manuscript submitted for
publication to 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

Chen, J.-L. and Liu, J.-S. (2002). Avoidance of obstacles and joint limits for end-effector
tracking in redundant manipulators. In 7th International Conference on Control,
Automation, Robotics and Vision, 2002. ICARCV 2002., volume 2, pages 839Ű844
vol.2.

Chen, L. and Guo, Y. (2006). Hierarchical nonholonomic path planning of dual-arm
space robot systems with joint limits. In 2006 6th World Congress on Intelligent
Control and Automation, volume 2, pages 8862Ű8865.

Clever, D., Harant, M., Mombaur, K. D., Naveau, M., Stasse, O., and Endres, D.
(2017). Cocomopl: A novel approach for humanoid walking generation combining
optimal control, movement primitives and learning and its transfer to the real robot
HRP-2. IEEE Robotics and Automation Letters, 2(2):977Ű984.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). Robots that can adapt
like animals. Nature, 521:503Ű507.

Dafarra, S., Nava, G., Charbonneau, M., Guedelha, N., Andradel, F., Traversaro,
S., Fiorio, L., Romano, F., Nori, F., Metta, G., and Pucci, D. (2018). A control
architecture with online predictive planning for position and torque controlled walking
of humanoid robots. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1Ű9.

Dariush, B., Gienger, M., Arumbakkam, A., Zhu, Y., Jian, B., Fujimara, K., and
Goerick, C. (2009). Online transfer of human motion to humanoids. International
Journal of Humanoid Robotics, 06(02):265Ű289.

Dehio, N., Reinhart, R. F., and Steil, J. J. (2015). Multiple task optimization with
a mixture of controllers for motion generation. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6416Ű6421.

Del Prete, A. and Mansard, N. (2016). Robustness to joint-torque-tracking errors in
task-space inverse dynamics. IEEE Transactions on Robotics, 32(5):1091Ű1105.

References 160

Dietrich, A., Wimböck, T., and Albu-Schäffer, A. (2011). Dynamic whole-body mobile
manipulation with a torque controlled humanoid robot via impedance control laws.
In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3199Ű3206.

Dragan, A. D., Lee, K. C., and Srinivasa, S. S. (2013). Legibility and predictability of
robot motion. In Proceedings of the 8th ACM/IEEE International Conference on
Human-robot Interaction, HRI Š13, pages 301Ű308.

Elobaid, M., Hu, Y., Babic, J., and Pucci, D. (2018). Telexistence and teleoperation
for walking humanoid robots. arXiv preprint arXiv:1809.01578.

Escande, A., Mansard, N., and Wieber, P. B. (2010). Fast resolution of hierarchized in-
verse kinematics with inequality constraints. In 2010 IEEE International Conference
on Robotics and Automation, pages 3733Ű3738.

euRobotics (2018). eurobotics mailing list used for dissemination related to robotics.
https://www.eu-robotics.net/eurobotics/newsroom/mailing-list/index.html. [Online;
accessed 19 December 2018].

Fava, A. D., Bouyarmane, K., Chappellet, K., Ruffaldi, E., and Kheddar, A. (2016).
Multi-contact motion retargeting from human to humanoid robot. In 2016 IEEE-
RAS 16th International Conference on Humanoid Robotics (Humanoids), pages
1081Ű1086.

Feng, S., Whitman, E., Xinjilefu, X., and Atkeson, C. G. (2014). Optimization based
full body control for the atlas robot. In 2014 IEEE-RAS International Conference
on Humanoid Robots, pages 120Ű127.

Ferreau, H., Kirches, C., Potschka, A., Bock, H., and Diehl, M. (2014). qpOASES: A
parametric active-set algorithm for quadratic programming. Mathematical Program-
ming Computation, 6(4):327Ű363.

Fiacco, F. and Luca, A. D. (2013). Fast redundancy resolution for high-dimensional
robots executing prioritized tasks under hard bounds in the joint space. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2500Ű
2506.

Fritsche, L., Unverzag, F., Peters, J., and Calandra, R. (2015). First-person tele-
operation of a humanoid robot. In 2015 IEEE-RAS 15th International Conference
on Humanoid Robotics (Humanoids), pages 997Ű1002.

Fukumoto, Y., Nishiwaki, K., Inaba, M., and Inoue, H. (2004). Hand-centered whole-
body motion control for a humanoid robot. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
volume 2, pages 1186Ű1191 vol.2.

Fumagalli, M., Ivaldi, S., Randazzo, M., Natale, L., Metta, G., Sandini, G., and Nori, F.
(2012). Force feedback exploiting tactile and proximal force/torque sensing. Auton.
Robots, 33(4):381Ű398.

https://www.eu-robotics.net/eurobotics/newsroom/mailing-list/index.html

References 161

Fumagalli, M., Randazzo, M., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010).
Exploiting proximal f/t measurements for the icub active compliance. In 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1870Ű
1876.

GdR-Robotique (2018). Groupement de recherche (gdr) en robotique, an important
robotics mailing list in france. http://www.gdr-robotique.org/annonces/. [Online;
accessed 19 December 2018].

Guedelha, N., Kuppuswamy, N., Traversaro, S., and Nori, F. (2016). Self-calibration
of joint offsets for humanoid robots using accelerometer measurements. In 2016
IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages
1233Ű1238.

Ha, S. and Liu, C. K. (2016). Evolutionary optimization for parameterized whole-body
dynamic motor skills. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 1390Ű1397.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 9:159Ű195.

Heremans, F., der Noot, N. V., Ijspeert, A. J., and Ronsse, R. (2016). Bio-inspired
balance controller for a humanoid robot. In 2016 6th IEEE International Conference
on Biomedical Robotics and Biomechatronics (BioRob), pages 441Ű448.

Herzog, A., Righetti, L., Grimminger, F., Pastor, P., and Schaal, S. (2014). Balancing
experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
981Ű988.

Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., and Righetti, L.
(2016). Momentum control with hierarchical inverse dynamics on a torque-controlled
humanoid. Autonomous Robots, 40(3):473Ű491.

Hoffman, E. M., Clément, B., Zhou, C., Tsagarakis, N. G., Mouret, J.-B., and Ivaldi,
S. (2018). Whole-Body Compliant Control of iCub: Ąrst results with OpenSoT. In
IEEE/RAS ICRA Workshop on Dynamic Legged Locomotion in Realistic Terrains,
Brisbane, Australia.

Hoffman, E. M., Rocchi, A., Laurenzi, A., and Tsagarakis, N. G. (2017). Robot
control for dummies: Insights and examples using opensot. In 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids), pages 736Ű741.

Hopkins, M. A., Hong, D. W., and Leonessa, A. (2015). Compliant locomotion using
whole-body control and divergent component of motion tracking. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 5726Ű5733.

Hu, K., Ott, C., and Lee, D. (2014). Online human walking imitation in task and joint
space based on quadratic programming. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 3458Ű3464.

http://www.gdr-robotique.org/annonces/

References 162

Hyon, S. H., Hale, J. G., and Cheng, G. (2007). Full-body compliant human-humanoid
interaction: Balancing in the presence of unknown external forces. IEEE Transactions
on Robotics, 23(5):884Ű898.

Igel, C., Suttorp, T., and Hansen, N. (2006). A computational efficient covariance
matrix update and a (1+1)-cma for evolution strategies. In Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, GECCO Š06, pages
453Ű460.

Isenberg, D. R., Mclain, M. A., and Kakad, Y. P. (2010). Contact force measurement
noise in the partial feedback linearization control of humanoid robots. In 2010 10th
IEEE-RAS International Conference on Humanoid Robots, pages 257Ű262.

Ishiguro, Y., Kojima, K., Sugai, F., Nozawa, S., Kakiuchi, Y., Okada, K., and Inaba,
M. (2017). Bipedal oriented whole body master-slave system for dynamic secured
locomotion with lip safety constraints. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 376Ű382.

Ishiguro, Y., Kojima, K., Sugai, F., Nozawa, S., Kakiuchi, Y., Okada, K., and Inaba,
M. (2018). High speed whole body dynamic motion experiment with real time
master-slave humanoid robot system. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1Ű7.

Ito, M., Kawatsu, K., and Shibata, M. (2010). Maximal admission of joint range of
motion based on redundancy resolution for kinematically redundant manipulators.
In Proceedings of SICE Annual Conference 2010, pages 778Ű782.

Ivaldi, S., Babič, J., Mistry, M., and Murphy, R. (2016). Special issue on whole-
body control of contacts and dynamics for humanoid robots. Autonomous Robots,
40(3):425Ű428.

Jamone, L., Damas, B., Santos-Victor, J., and Takanishi, A. (2013). Online learn-
ing of humanoid robot kinematics under switching tools contexts. In 2013 IEEE
International Conference on Robotics and Automation, pages 4811Ű4817.

Kanajar, P., Caldwell, D. G., and Kormushev, P. (2017). Climbing over large obstacles
with a humanoid robot via multi-contact motion planning. In 2017 26th IEEE
International Symposium on Robot and Human Interactive Communication (RO-
MAN), pages 1202Ű1209.

Kawada Industries, i. (2018). Humanoid robot hrp-4. http://global.kawada.jp/
mechatronics/hrp4.html. [Online; accessed 19 December 2018].

Kermorgant, O. and Chaumette, F. (2011). Avoiding joint limits with a low-level
fusion scheme. In 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 768Ű773.

Khalil, H. (2002). Nonlinear Systems. Pearson Education. Prentice Hall.

Kim, D., You, B.-J., and Oh, S.-R. (2013). Whole Body Motion Control Framework
for Arbitrarily and Simultaneously Assigned Upper-Body Tasks and Walking Motion,
pages 87Ű98. Springer Berlin Heidelberg, Berlin, Heidelberg.

http://global.kawada.jp/mechatronics/hrp4.html
http://global.kawada.jp/mechatronics/hrp4.html

References 163

Koenemann, J., Burget, F., and Bennewitz, M. (2014). Real-time imitation of human
whole-body motions by humanoids. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 2806Ű2812.

Koenig, N. and Howard, A. (2004). Design and use paradigms for gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2149Ű2154.

Koryakovskiy, I., Kudruss, M., Vallery, H., Babuška, R., and Caarls, W. (2018). Model-
plant mismatch compensation using reinforcement learning. IEEE Robotics and
Automation Letters, 3(3):2471Ű2477.

Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen,
T., Marion, P., and Tedrake, R. (2016). Optimization-based locomotion planning,
estimation, and control design for the atlas humanoid robot. Autonomous Robots,
40(3):429Ű455.

Kuindersma, S., Permenter, F., and Tedrake, R. (2014). An efficiently solvable quadratic
program for stabilizing dynamic locomotion. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 2589Ű2594.

Lee, S.-H. and Goswami, A. (2012). A momentum-based balance controller for humanoid
robots on non-level and non-stationary ground. Autonomous Robots, 33(4):399Ű414.

Liegeois, A. (1977). Automatic supervisory control of the conĄguration and behavior
of multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics,
7(12):868Ű871.

Liu, M., Tan, Y., and Padois, V. (2015). Generalized hierarchical control. Autonomous
Robots, 40(1):17Ű31.

Lober, R. (2017). Task Compatibility and Feasibility Maximization for Whole-Body
Control. Theses, UPMC.

Luo, R. C., Perng, Y.-W., Shih, B.-H., and Tsai, Y.-H. (2013). Cartesian position and
force control with adaptive impedance/compliance capabilities for a humanoid robot
arm. In 2013 IEEE International Conference on Robotics and Automation, pages
496Ű501.

Mansard, N., Stasse, O., Evrard, P., and Kheddar, A. (2009). A versatile generalized
inverted kinematics implementation for collaborative working humanoid robots: The
stack of tasks. In 2009 International Conference on Advanced Robotics, pages 1Ű6.

Marey, M. and Chaumette, F. (2010). New strategies for avoiding robot joint limits:
Application to visual servoing using a large projection operator. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 6222Ű6227.

Marsden, J. E. and Ratiu, T. S. (2010). Introduction to Mechanics and Symmetry: A
Basic Exposition of Classical Mechanical Systems. Springer Publishing Company,
Incorporated.

References 164

Mason, S., Righetti, L., and Schaal, S. (2014). Full dynamics lqr control of a humanoid
robot: An experimental study on balancing and squatting. In 2014 IEEE-RAS
International Conference on Humanoid Robots, pages 374Ű379.

Metta, G., Sandini, G., Vernon, D., Natale, L., and Nori, F. (2008). The icub humanoid
robot: An open platform for research in embodied cognition. In Proceedings of the
8th Workshop on Performance Metrics for Intelligent Systems, PerMIS Š08, pages
50Ű56.

Modugno, V., Chervet, U., Oriolo, G., and Ivaldi, S. (2016a). Learning soft task
priorities for safe control of humanoid robots with constrained stochastic optimization.
In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids),
pages 101Ű108.

Modugno, V., Nava, G., Pucci, D., Nori, F., Oriolo, G., and Ivaldi, S. (2017). Safe
trajectory optimization for whole-body motion of humanoids. In 2017 IEEE-RAS
17th International Conference on Humanoid Robotics (Humanoids), pages 763Ű770.

Modugno, V., Neumann, G., Rueckert, E., Oriolo, G., Peters, J., and Ivaldi, S.
(2016b). Learning soft task priorities for control of redundant robots. In 2016 IEEE
International Conference on Robotics and Automation (ICRA), pages 221Ű226.

Moro, F. L., Gienger, M., Goswami, A., Tsagarakis, N. G., and Caldwell, D. G. (2013).
An attractor-based whole-body motion control (wbmc) system for humanoid robots.
In 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids),
pages 42Ű49.

Na, M., Yang, B., and Jia, P. (2008). Improved damped least squares solution with joint
limits, joint weights and comfortable criteria for controlling human-like Ągures. In
2008 IEEE Conference on Robotics, Automation and Mechatronics, pages 1090Ű1095.

Nava, G., Romano, F., Nori, F., and Pucci, D. (2016). Stability analysis and design of
momentum-based controllers for humanoid robots. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 680Ű687.

Ngo, K. B. and Mahony, R. (2006). Bounded torque control for robot manipulators sub-
ject to joint velocity constraints. In Proceedings 2006 IEEE International Conference
on Robotics and Automation, 2006. ICRA 2006., pages 7Ű12.

Norton, A., Ober, W., Baraniecki, L., McCann, E., Scholtz, J., Shane, D., Skinner,
A., Watson, R., and Yanco, H. (2017). Analysis of humanŰrobot interaction at the
darpa robotics challenge Ąnals. The International Journal of Robotics Research,
36(5-7):483Ű513.

Olfati-Saber, R. (2001). Nonlinear Control of Underactuated Mechanical Systems with
Application to Robotics and Aerospace Vehicles. PhD thesis, Massachusetts Institute
of Technology, Cambridge.

Otani, K. and Bouyarmane, K. (2017). Adaptive whole-body manipulation in human-to-
humanoid multi-contact motion retargeting. In 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids), pages 446Ű453.

References 165

Otani, K., Bouyarmane, K., and Ivaldi, S. (2018). Generating assistive humanoid
motions for co-manipulation tasks with a multi-robot quadratic program controller.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
3107Ű3113.

Ott, C., Lee, D., and Nakamura, Y. (2008). Motion capture based human motion
recognition and imitation by direct marker control. In Humanoids 2008 - 8th
IEEE-RAS International Conference on Humanoid Robots, pages 399Ű405.

Ott, C., Roa, M. A., and Hirzinger, G. (2011). Posture and balance control for biped
robots based on contact force optimization. In 2011 11th IEEE-RAS International
Conference on Humanoid Robots, pages 26Ű33.

Pan, S. and Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345Ű1359.

Parmiggiani, A., Maggiali, M., Natale, L., Nori, F., Schmitz, A., Tsagarakis, N., Victor,
J., Becchi, F., Sandini, G., and Metta, G. (2012). The design of the icub humanoid
robot. International Journal of Humanoid Robotics, 9(4).

Pattacini, U., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010). An experimental
evaluation of a novel minimum-jerk cartesian controller for humanoid robots. In
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1668Ű1674.

Penco, L., Clément, B., Modugno, V., Mingo Hoffman, E., Nava, G., Pucci, D.,
Tsagarakis, N. G., Mouret, J. B., and Ivaldi, S. (2018). Robust real-time whole-body
motion retargeting from human to humanoid. In 2018 IEEE-RAS 18th International
Conference on Humanoid Robots (Humanoids), pages 425Ű432.

Prajna, S. and Jadbabaie, A. (2004). Safety veriĄcation of hybrid systems using barrier
certiĄcates. In Alur, R. and Pappas, G. J., editors, Hybrid Systems: Computation
and Control, pages 477Ű492, Berlin, Heidelberg. Springer Berlin Heidelberg.

Prete, A. D. (2018). Joint position and velocity bounds in discrete-time accelera-
tion/torque control of robot manipulators. IEEE Robotics and Automation Letters,
3(1):281Ű288.

Pucci, D., Nava, G., and Nori, F. (2016a). Automatic gain tuning of a momentum based
balancing controller for humanoid robots. In 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), pages 158Ű164.

Pucci, D., Romano, F., Traversaro, S., and Nori, F. (2016b). Highly dynamic balancing
via force control. In 2016 IEEE-RAS 16th International Conference on Humanoid
Robots (Humanoids), pages 141Ű141.

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., and Schaal, S. (2013). Optimal
distribution of contact forces with inverse-dynamics control. The International
Journal of Robotics Research, 32(3):280Ű298.

References 166

Righetti, L. and Schaal, S. (2012). Quadratic programming for inverse dynamics
with optimal distribution of contact forces. In 2012 12th IEEE-RAS International
Conference on Humanoid Robots (Humanoids 2012), pages 538Ű543.

robotics worldwide (2018). robotics-worldwide mailing list, used for announcements of
general value to the robotics community. http://duerer.usc.edu/mailman/listinfo.
cgi/robotics-worldwide. [Online; accessed 19 December 2018].

Robotis Co., L. (2018). Robotis op-2. http://www.robotis.us/robotis-op2-us/. [Online;
accessed 19 December 2018].

Rocchi, A., Hoffman, E. M., Caldwell, D. G., and Tsagarakis, N. G. (2015). Opensot: A
whole-body control library for the compliant humanoid robot coman. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 6248Ű6253.

Romano, F., Nava, G., Azad, M., Čamernik, J., Dafarra, S., Dermy, O., Latella,
C., Lazzaroni, M., Lober, R., Lorenzini, M., et al. (2018). The codyco project
achievements and beyond: Toward human aware whole-body controllers for physical
human robot interaction. IEEE Robotics and Automation Letters, 3(1):516Ű523.

Romano, F., Traversaro, S., Pucci, D., Eljaik, J., Del Prete, A., and Nori, F. (2017). A
whole-body software abstraction layer for control design of free-Ćoating mechanical
systems. In IEEE Int. Conf. on Robotic Computing (IRC), pages 148Ű155.

Romualdi, G., Dafarra, S., Hu, Y., and Pucci, D. (2018). A benchmarking of dcm based
architectures for position and velocity controlled walking of humanoid robots. In
2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids),
pages 1Ű9.

Saab, L., Ramos, O. E., Keith, F., Mansard, N., Souères, P., and Fourquet, J. Y. (2013).
Dynamic whole-body motion generation under rigid contacts and other unilateral
constraints. IEEE Transactions on Robotics, 29(2):346Ű362.

Salini, J., Padois, V., and Bidaud, P. (2011). Synthesis of complex humanoid whole-body
behavior: A focus on sequencing and tasks transitions. In 2011 IEEE International
Conference on Robotics and Automation, pages 1283Ű1290.

Scianca, N., Cognetti, M., Simone, D. D., Lanari, L., and Oriolo, G. (2016). Intrinsically
stable mpc for humanoid gait generation. In 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), pages 601Ű606.

Scianca, N., Modugno, V., Lanari, L., and Oriolo, G. (2017). Gait generation via
intrinsically stable mpc for a multi-mass humanoid model. In 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids), pages 547Ű552.

Shin, S. Y. and Kim, C. (2010). On-line human motion transition and control for
humanoid upper body manipulation. In IROS, pages 477Ű482.

Sian, N. E., Yokoi, K., Kajita, S., Kanehiro, F., and Tanie, K. (2002). Whole body
teleoperation of a humanoid robot - development of a simple master device using
joysticks. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
volume 3, pages 2569Ű2574 vol.3.

http://duerer.usc.edu/mailman/listinfo.cgi/robotics-worldwide
http://duerer.usc.edu/mailman/listinfo.cgi/robotics-worldwide
http://www.robotis.us/robotis-op2-us/

References 167

Siciliano, B. and Khatib, O. (2007). Springer Handbook of Robotics. Springer-Verlag,
Berlin, Heidelberg.

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2008). Robotics: Modelling,
Planning and Control. Springer Publishing Company, Incorporated, 1st edition.

Silvério, J., Calinon, S., Rozo, L. D., and Caldwell, D. G. (2018). Learning competing
constraints and task priorities from demonstrations of bimanual skills. CoRR,
abs/1707.06791.

SoftBank Robotics, C. (2018). Nao. https://www.softbankrobotics.com/emea/en/nao.
[Online; accessed 19 December 2018].

Spitz, J., Bouyarmane, K., Ivaldi, S., and Mouret, J. B. (2017). Trial-and-error learning
of repulsors for humanoid qp-based whole-body control. In 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids), pages 468Ű475.

Stack Of Tasks development team (2019). Efficient task space inverse dynamics (tsid).
https://github.com/stack-of-tasks/tsid.

Stephens, B. J. and Atkeson, C. G. (2010). Dynamic balance force control for compliant
humanoid robots. In 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1248Ű1255.

Stilman, M., Nishiwaki, K., and Kagami, S. (2008). Humanoid teleoperation for
whole body manipulation. In 2008 IEEE International Conference on Robotics and
Automation, pages 3175Ű3180.

Su, Y., Wang, Y., and Kheddar, A. (2018). Sample-efficient learning of soft task
priorities through bayesian optimization. In 2018 IEEE-RAS 18th International
Conference on Humanoid Robots (Humanoids), pages 1Ű6.

Tassa, Y., Mansard, N., and Todorov, E. (2014). Control-limited differential dynamic
programming. 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 1168Ű1175.

Tee, K. P., Ge, S. S., and Tay, E. H. (2009). Barrier lyapunov functions for the control
of output-constrained nonlinear systems. Automatica, 45(4):918 Ű 927.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017).
Domain randomization for transferring deep neural networks from simulation to the
real world. In 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 23Ű30.

Traversaro, S. (2017). Modelling, Estimation and Identification of Humanoid Robots
Dynamics. PhD thesis, Italian Institute of Technology.

Traversaro, S., Del Prete, A., Ivaldi, S., and Nori, F. (2015). Inertial parameters
identiĄcation and joint torques estimation with proximal force/torque sensing. In
2015 IEEE International Conference on Robotics and Automation (ICRA), pages
2105Ű2110.

https://www.softbankrobotics.com/emea/en/nao

References 168

Wieland, P. and Allgöwer, F. (2007). Constructive safety using control barrier functions.
IFAC Proceedings Volumes, 40(12):462 Ű 467. 7th IFAC Symposium on Nonlinear
Control Systems.

Xsens (2017). Xsens the leading innovator in 3d motion tracking technology. http:
//www.xsens.com/products/xsens-mvn/. [Online; accessed 19 December 2018].

Yamane, K. and Hodgins, J. (2009). Simultaneous tracking and balancing of humanoid
robots for imitating human motion capture data. In 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2510Ű2517.

Yamane, K. and Nakamura, Y. (2003). Dynamics Ąlter - concept and implementation
of online motion generator for human Ągures. IEEE Trans. Robotics and Automation,
19(3):421Ű432.

Zhang, Y., Wang, J., and Xia, Y. (2003). A dual neural network for redundancy
resolution of kinematically redundant manipulators subject to joint limits and joint
velocity limits. IEEE Transactions on Neural Networks, 14(3):658Ű667.

http://www.xsens.com/products/xsens-mvn/
http://www.xsens.com/products/xsens-mvn/

Appendix A

Additional material for the soft

tasks controller #1

This appendix provides additional details concerning the soft tasks controller #1

presented in section 2.3.2. In particular, it details the Ąnite state machine in section

A.1, before stating the parameters used by the Ąnite state machine, as well as the gains

used by the feedback control policies, for simulation experiments in section A.2, and

for experiments with the real robot in section A.3.

A.1 Finite state machine for the soft tasks

controller #1

A Ąnite state machine is used by the control framework to output desired setpoints for

Cartesian and postural tasks, in function of the state of the robot. It is also used for

gain scheduling, outputting proportional-derivative gains used in the computation of

feedback control policies for the Cartesian and postural tasks. In this case, the state

machine is applied to the whole-body motion of stepping in place, and is divided into

11 states for this purpose, as described in the following paragraphs.

1. Balancing on two feet is the initial state, where the robot is assumed to be

standing on both feet. At this point, the Cartesian and postural task values are

set to their initial values pCoM0
, Tleft0 , Tright0 , Rroot0 , q0, and both feet are set

to be in contact with the ground. The state machine moves on to state 2, if

A.1 Finite state machine for the soft tasks controller #1 170

the error on the CoM position is below a threshold eCoM and a delay tmin has

elapsed.

2. Transition to left foot is used to move the center of mass above the left foot.

• The projection of the CoM onto the x−y plane is set to be coincident with

the origin of the left foot, plus a user-deĄned distance δCoM .

• The desired postural task values are set to user-deĄned joint positions qdes.

The state machine moves on to state 3 when the error on the CoM position

is below a threshold eCoM and the vertical force measured at the right foot is

smaller than a threshold fliftoff .

3. Left foot support is used to lift the right foot above the ground, while the left

foot remains in place.

• The right foot is set to not be in contact with the ground anymore.

• The projection of the CoM onto the x−y plane is set to be coincident with

the origin of the left foot frame, plus a user-deĄned distance δCoM .

• The desired postural task values are set to user-deĄned joint positions qdes.

In particular, the right knee is made to bend.

• The desired position of the origin of the right foot frame is set to be at a

user-deĄned distance δright from the left foot frame.

The state machine moves on to state 4 if the norm of the errors on the left leg

joint positions is smaller than a threshold elegc, the norm of the errors on the

right leg joint positions is smaller than a threshold eleg, the error on right foot

position is smaller than a threshold efoot, and the time elapsed in this state is

over tbalancing.

4. Preparing for right foot touchdown is used to bring the right foot back

down towards the ground.

• The right foot remains not in contact with the ground.

• The projection of the CoM onto the x−y plane is set to be coincident with

the origin of the left foot frame, plus a user-deĄned distance δCoM .

• The desired postural task values are set to user-deĄned joint positions qdes.

• The desired position of the origin of the right foot frame is set to be at a

user-deĄned distance δright from the left foot frame.

A.1 Finite state machine for the soft tasks controller #1 171

The state machine moves on to state 5 if the norm of the errors on the left leg

joint positions is smaller than a threshold elegc, the norm of the errors on the

right leg joint positions is smaller than a threshold eleg, and the error on right

foot position is smaller than a threshold efoot.

5. Right foot touchdown is used to bring the right foot back in contact with the

ground.

• The right foot continues to be considered not in contact with the ground.

• The projection of the CoM onto the x−y plane is set to be coincident with

the origin of the left foot frame, plus a user-deĄned distance δCoM .

• The desired postural task values are set to user-deĄned joint positions qdes.

• The desired position of the origin of the right foot frame is set to be at a

user-deĄned distance δright from the left foot frame.

The state machine moves on to state 6 when the vertical force measured at the

right foot is higher than a threshold ftouchdown.

6. Transition to initial position is used to bring back the robot as it was at the

initialization of the state machine.

• Both feet are set to be in contact with the ground.

• The CoM position is set back to pCoM0

• The desired postural task values are set back to q0.

• The right foot pose is set back to Tright0 .

The state machine moves on to state 7 when the error on the CoM position is

below a threshold eCoM .

7. Transition to right foot is used to move the center of mass above the right

foot.

• The projection of the CoM onto the x−y plane is set to be coincident with

the origin of the right foot, plus a user-deĄned distance δCoM .

• The desired postural task values are set to user-deĄned joint positions qdes.

The state machine moves on to state 8 when the error on the CoM position is

below a threshold eCoM and the vertical force measured at the left foot is smaller

than a threshold fliftoff .

A.1 Finite state machine for the soft tasks controller #1 172

8. Right foot support is used to lift the left foot above the ground, while the

right foot remains in place.

• The left foot is set to not be in contact with the ground anymore.

• The projection of the CoM onto the x−y plane is set to be coincident with

the origin of the right foot frame, plus a user-deĄned distance δCoM .

• The desired postural task values are set to user-deĄned joint positions qdes.

In particular, the left knee is made to bend.

• The desired position of the origin of the left foot frame is set to be at a

user-deĄned distance δright from the right foot frame.

The state machine moves on to state 9 if the norm of the errors on the right

leg joint positions is smaller than a threshold elegc, the norm of the errors on

the left leg joint positions is smaller than a threshold eleg, the error on left foot

position is smaller than a threshold efoot, and the time elapsed in this state is

over tbalancing.

9. Preparing for left foot touchdown is used to bring the left foot back down

towards the ground.

• The left foot remains not in contact with the ground.

• The projection of the CoM onto the x−y plane is set to be coincident with

the origin of the right foot frame, plus a user-deĄned distance δCoM .

• The desired postural task values are set to user-deĄned joint positions qdes.

• The desired position of the origin of the left foot frame is set to be at a

user-deĄned distance δright from the right foot frame.

The state machine moves on to state 10 if the norm of the errors on the right leg

joint positions is smaller than a threshold elegc, the norm of the errors on the

left leg joint positions is smaller than a threshold eleg, and the error on left foot

position is smaller than a threshold efoot.

10. Left foot touchdown is used to bring the left foot back in contact with the

ground.

• The left foot continues to be considered not in contact with the ground.

• The projection of the CoM onto the x−y plane is set to be coincident with

the origin of the right foot frame, plus a user-deĄned distance δCoM .

A.1 Finite state machine for the soft tasks controller #1 173

• The desired postural task values are set to user-deĄned joint positions qdes.

• The desired position of the origin of the left foot frame is set to be at a

user-deĄned distance δright from the right foot frame.

The state machine moves on to state 11 when the vertical force measured at the

left foot is higher than a threshold ftouchdown.

11. Transition to initial position is used to bring back the robot as it was at the

initialization of the state machine.

• Both feet are set to be in contact with the ground.

• The CoM position is set back to pCoM0

• The desired postural task values are set back to q0.

• The left foot pose is set back to Tleft0 .

The state machine moves on to state 2 when the error on the CoM position is

below a threshold eCoM .

Note that across all states, the desired orientation of the root link is left untouched,

remaining at Rroot0 . The same is true for the orientation of the left and right feet.

Also, at each state, a different set of feedback gains, used for the computation of

feedback terms for the Cartesian and postural tasks as in equations (2.11) and (2.13),

is output by the state machine.

In order to smooth the transition of signal values (task setpoints or gains) from one

state to the next, we use the minimum jerk trajectory generator developed in [Pattacini

et al., 2010], which provides instantaneous desired positions, as well as desired velocities

and accelerations in the case of task setpoints, given a user-deĄned smoothing time

tsmooth. In this case, tsmooth is also attributed different values by the state machine, in

function of the current state.

A.2 Parameter values for the implementation in simulation 174

A.2 Parameter values defined for the

implementation of the soft tasks controller #1

in simulation

This section details the values deĄned for implementing the soft tasks controller #1

presented in section 2.3.2, in simulation. In particular, it deĄnes the parameters used

by the Ąnite state machine, as well as the gains used by the feedback control policies.

Table A.1 Parameters for the stabilization of contact tasks in simulation experiments:
fkzmin

is the minimal vertical reaction force for which a contact is considered to exist, nv

is the number of vertices used in the approximation of the friction cone, µc and µt are
approximations of the Coulomb and torsional static friction coefficients associated to the
contact surfaces.

parameter value

fkzmin
10 N

nv 4

µc 1

µt
1
75

Table A.2 Task weights w used with the soft tasks controller #1 for simulation experi-
ments

wΥ ws wτ

100 0.3 1e−4

A.2 Parameter values for the implementation in simulation 175

Table A.3 Parameters of the finite state machine used by the soft tasks controller #1 for
simulation experiments. Parameters are introduced in A.1

parameter value

eCoM 0.01 m

efoot 0.01 m

eleg 5 deg

elegc 5 deg

fliftoff 60 N

ftouchdown 4 N

τmax 60 N

τ̇max 50 N/s

tmin 2 s

tbalancing 5 s

tsmooth 2 s

A.2 Parameter values for the implementation in simulation 176

Table A.4 Proportional (P) feedback gains defined for Cartesian tasks in simulation
experiments, along the x−, y− and z−axes for feedback on position, and about the same
axes for feedback on rotation (denoted by θx, θy, θz). For all P gains, the associated derivative
(D) feedback gains are obtained as D = 2

√
P .

Task Gain
State

1 2 3 4 5 6 7 8 9 10 11

CoM
Px 50 50 50 50 50 50 50 50 50 50 50

Py 60 60 60 60 60 60 60 60 60 60 60

Pz 50 50 50 50 50 50 50 50 50 50 50

left foot
Px 20 0 0 0 0 0 0 20 20 20 0

Py 20 0 0 0 0 0 0 20 20 20 0

Pz 20 0 0 0 0 0 0 20 20 20 0

Pθx 5 5 5 5 5 5 5 10 10 10 5

Pθy 5 5 5 5 5 5 5 10 10 10 5

Pθz 5 5 5 5 5 5 5 10 10 10 5

right foot
Px 20 0 20 20 20 0 0 0 0 0 0

Py 20 0 20 20 20 0 0 0 0 0 0

Pz 20 0 20 20 20 0 0 0 0 0 0

Pθx 5 5 10 10 10 5 5 5 5 5 5

Pθy 5 5 10 10 10 5 5 5 5 5 5

Pθz 5 5 10 10 10 5 5 5 5 5 5

root link
Pθx 5 10 10 5 10 15 10 10 5 10 15

Pθy 5 10 10 5 10 15 10 10 5 10 15

Pθz 5 10 10 5 10 15 10 10 5 10 15

A.2 Parameter values for the implementation in simulation 177

Table A.5 Proportional (P) feedback gains defined for the postural task in simulation
experiments. For all P gains, the associated derivative (D) feedback gains are obtained
as D = 2

√
P . Gains for the left and right side have the same values. Joints are denoted

according to the pitch-roll-yaw convention, where θ is pitch, ψ is roll, and ϕ is yaw.

Joint
State

1 2 3 4 5 6 7 8 9 10 11

Torso
Pθ 20 20 20 20 30 30 20 20 20 20 20

Pψ 50 30 30 30 30 30 30 30 20 20 20

Pϕ 20 20 20 20 30 30 20 20 20 20 20

Shoulder
Pθ 10 10 10 10 10 10 10 10 10 10 10

Pψ 10 10 10 10 10 10 10 10 10 10 10

Pϕ 10 10 10 10 10 10 10 10 10 10 10

Elbow Pθ 10 10 10 10 10 10 10 10 10 10 10

Hip
Pθ 15 15 15 15 15 15 15 15 15 15 15

Pψ 25 25 25 25 25 25 25 25 25 25 25

Pϕ 15 15 15 15 15 15 15 15 15 15 15

Knee Pθ 30 30 30 30 30 30 30 30 30 30 30

Ankle
Pθ 25 25 25 25 25 25 25 25 25 25 25

Pψ 25 25 25 25 25 25 25 25 25 25 25

A.2 Parameter values for the implementation in simulation 178

Table A.6 Displacement of the Cartesian tasks, defined to achieve a stepping motion, along
the x−, y− and z−axes for simulation experiments

δ
State

1 2 3 4 5 6 7 8 9 10 11

δCoMx - 0 0.01 0.01 0.01 - 0 0.01 0.01 0.01 -

δCoMy - 0.01 0 0 −2.01 - −0.01 0 0 2.0054 -

δCoMz - 0 0 0 −0.86 - 0 0 0 −0.86 -

δleftx - - - - - - 0 0 0 0 -

δlefty - - - - - - 0 0.13 0.13 0.13 -

δleftz - - - - - - 0 0.05 0 0 -

δrightx - 0 0 0 0 - - - - - -

δrighty - 0 −0.13 −0.13 −0.13 - - - - - -

δrightz - 0 0.05 0 0 - - - - - -

A.2 Parameter values for the implementation in simulation 179

Table A.7 Joint position values defined for simulation experiments in degrees according
to the pitch-roll-yaw convention: θ is pitch, ψ is roll, and ϕ is yaw, and used by the postural
task

Joint
State

1 2 3 4 5 6 7 8 9 10 11

Torso
θ - −2.01 4.93 −2.01 −4.93 - 2.01 −4.93 2.01 4.93 -

ψ - 4.47 1.49 4.47 1.49 - −4.47 −1.49 −4.47 −1.49 -

ϕ - 2.46 0.86 2.46 0.86 - 2.46 0.86 2.46 0.86 -

Left

shoulder

θ - −8.55 7.18 −8.55 7.18 - −8.55 3.23 −8.55 3.23 -

ψ - 49.16 46.61 49.16 46.61 - 49.16 38.90 49.16 38.90 -

ϕ - 13.96 17.48 13.96 17.48 - 13.96 19.14 13.96 19.14 -

Left elbow θ - 49.90 45.42 49.90 45.42 - 49.90 35.60 49.90 35.60 -

Right

shoulder

θ - −8.55 3.23 −8.55 3.23 - −8.55 7.18 −8.55 7.18 -

ψ - 49.16 38.90 49.16 38.90 - 49.16 46.61 49.16 46.61 -

ϕ - 13.96 19.14 13.96 19.14 - 13.96 17.48 13.96 17.48 -

Right elbow θ - 49.90 35.60 49.90 35.60 - 49.90 45.42 49.90 45.42 -

Left hip
θ - 0 0 0 0 - 0 18 0 0 -

ψ - −6.35 −6.35 −6.35 −4.25 - 4.54 4.54 4.54 1.29 -

ϕ - 0 0 0 0 - 0 0 0 0 -

Left knee θ - 0 0 0 0 - 0 −45 0 0 -

Left

ankle

θ - 0 0 0 1.43 - 0 −20 0 0 -

ψ - 6.88 6.88 6.88 6.88 - −6.59 −6.59 −6.59 −1.59 -

Right hip
θ - 0 18 0 0 - 0 0 0 0 -

ψ - 4.54 4.54 4.54 1.29 - −6.35 −6.35 −6.35 −4.25 -

ϕ - 0 0 0 0 - 0 0 0 0 -

Right knee θ - 0 0 0 0 - 0 0 0 0 -

Right

ankle

θ - 0 0 0 0 - 0 0 0 1.43 -

ψ - −6.59 −6.59 −6.59 −1.59 - 6.88 6.88 6.88 6.88 -

A.3 Parameter values for the implementation on the iCub 180

A.3 Parameter values defined for the implementa-

tion of the soft tasks controller #1 on the iCub

This section details the values deĄned for implementing the soft tasks controller #1

presented in section 2.3.2, for real-world experiments with the iCub. In particular, it

deĄnes the parameters used by the Ąnite state machine, as well as the gains used by

the feedback control policies.

Table A.8 Parameters for the stabilization of contact tasks in real world experiments:
fkzmin

is the minimal vertical reaction force for which a contact is considered to exist, nv

is the number of vertices used in the approximation of the friction cone, µc and µt are
approximations of the Coulomb and torsional static friction coefficients associated to the
contact surfaces.

parameter value

fkzmin
1 N

nv 4

µc
1
3

µt
1
75

Table A.9 Task weights w used by the soft tasks controller #1 in real-world experiments

wΥ ws wτ

100 0.5 1e−4

A.3 Parameter values for the implementation on the iCub 181

Table A.10 Parameters of the finite state machine used by the soft tasks controller #1 in
real-world experiments. Parameters are introduced in A.1

parameter value

eCoM 0.013 m

efoot 0.02 m

eleg 24 deg

elegc 24 deg

fliftoff 60 N

ftouchdown 14 N

τmax 70 N

τ̇max 100 N/s

tmin 5 s

tbalancing 15 s

tsmooth 2 s

A.3 Parameter values for the implementation on the iCub 182

Table A.11 Proportional (P) feedback gains defined for Cartesian tasks in real-world
experiments, along the x−, y− and z−axes for feedback on position, and about the same
axes for feedback on rotation (denoted by θx, θy, θz). For all P gains, the associated derivative
(D) feedback gains are obtained as D = 2

√

P/40.

Task Gain
State

1 2 3 4 5 6 7 8 9 10 11

CoM
Px 50 50 50 50 50 70 50 50 50 50 70

Py 60 60 60 60 60 60 60 60 60 60 60

Pz 50 50 50 50 50 50 50 50 50 50 50

left foot
Px 0 0 0 0 0 0 0 90 90 50 30

Py 0 0 0 0 0 0 0 20 40 20 50

Pz 20 0 0 0 0 0 0 70 20 50 30

Pθx 5 5 5 5 5 5 5 20 10 10 10

Pθy 5 5 5 5 5 5 5 20 10 10 10

Pθz 5 5 5 5 5 5 5 20 10 10 10

right foot
Px 0 0 90 90 50 30 0 0 0 0 0

Py 0 0 20 40 20 50 0 0 0 0 0

Pz 0 0 70 20 50 30 0 0 0 0 0

Pθx 5 5 20 10 10 10 5 5 5 5 5

Pθy 5 5 20 10 10 10 5 5 5 5 5

Pθz 5 5 20 10 10 10 5 5 5 5 5

root link
Pθx 5 5 10 10 10 5 5 10 10 10 5

Pθy 5 5 10 10 10 5 5 10 10 10 5

Pθz 5 5 10 10 10 5 5 10 10 10 5

A.3 Parameter values for the implementation on the iCub 183

Table A.12 Proportional (P) feedback gains defined for the postural task in real-world
experiments. For all P gains, the associated derivative (D) feedback gains are all set to
D = 0, the mechanics of each joint motor already providing damping. Gains for the shoulder
and elbow have the same values for both right and left arms. Joints are denoted according to
the pitch-roll-yaw convention, where θ is pitch, ψ is roll, and ϕ is yaw.

Joint
State

1 2 3 4 5 6 7 8 9 10 11

Torso
Pθ 40 40 40 40 40 40 40 40 40 40 40

Pψ 40 40 40 40 40 40 40 40 40 40 40

Pϕ 40 40 40 40 40 40 40 40 40 40 40

Shoulder
Pθ 45 45 45 45 45 45 45 45 45 45 45

Pψ 45 45 45 45 45 45 45 45 45 45 45

Pϕ 45 45 45 45 45 45 45 45 45 45 45

Elbow Pθ 45 45 45 45 45 45 45 45 45 45 45

Left hip
Pθ 35 32 32 400 375 295 35 300 0 300 35

Pψ 35 35 35 35 35 35 35 35 35 35 35

Pϕ 25 25 25 25 25 25 25 25 25 25 25

Left knee Pθ 50 50 50 100 50 50 50 400 600 600 50

Left

ankle

Pθ 50 100 100 50 50 50 50 0 0 50 50

Pψ 75 100 100 75 75 75 75 0 0 75 75

Right hip
Pθ 35 35 300 0 300 35 35 35 300 300 50

Pψ 35 35 35 35 35 35 100 100 35 35 35

Pϕ 25 25 25 25 25 25 25 25 25 25 25

Right knee Pθ 50 50 200 400 200 200 50 50 50 50 50

Right

ankle

Pθ 50 50 0 0 50 50 100 100 50 50 50

Pψ 75 75 0 0 75 75 100 100 75 75 75

A.3 Parameter values for the implementation on the iCub 184

Table A.13 Displacement of the Cartesian tasks for real-world experiments, defined to
achieve a stepping motion, along the x−, y− and z−axes.

δ
State

1 2 3 4 5 6 7 8 9 10 11

δCoMx - 0.01 0.01 0.01 0.01 - 0.01 0.01 0.01 0.01 -

δCoMy - 0 0 0 −0.02 - 0 0 0 0.02 -

δCoMz - −0.005 −0.005 −0.005 −0.01 - −0.005 −0.005 −0.005 −0.01 -

δleftx - - - - - - 0 0 0 0 -

δlefty - - - - - - 0 0.13 0.13 0.13 -

δleftz - - - - - - 0 0.05 0 0 -

δrightx - 0 0 0 0 - - - - - -

δrighty - 0 −0.13 −0.13 −0.13 - - - - - -

δrightz - 0 0.05 0 0 - - - - - -

A.3 Parameter values for the implementation on the iCub 185

Table A.14 Joint position values defined for real-world experiments in degrees according
to the pitch-roll-yaw convention: θ is pitch, ψ is roll, and ϕ is yaw, and used for the postural
task

Joint
State

1 2 3 4 5 6 7 8 9 10 11

Torso
θ - −2.01 4.93 −2.01 −4.93 - 2.01 −4.93 2.01 4.93 -

ψ - 4.47 1.49 4.47 1.49 - −4.47 −1.49 −4.47 −1.49 -

ϕ - 2.46 0.86 2.46 0.86 - 2.46 0.86 2.46 0.86 -

Left

shoulder

θ - −8.55 7.18 −8.55 7.18 - −8.55 3.23 −8.55 3.23 -

ψ - 49.16 46.61 49.16 46.61 - 49.16 38.90 49.16 38.90 -

ϕ - 13.96 17.48 13.96 17.48 - 13.96 19.14 13.96 19.14 -

Left elbow θ - 49.90 45.42 49.90 45.42 - 49.90 35.60 49.90 35.60 -

Right

shoulder

θ - −8.55 3.23 −8.55 3.26 - −8.55 7.18 −8.55 7.18 -

ψ - 49.16 38.90 49.16 38.90 - 49.16 46.61 49.16 46.61 -

ϕ - 13.96 19.14 13.96 19.14 - 13.96 17.48 13.96 17.48 -

Right elbow θ - 49.90 35.60 49.90 35.60 - 49.90 45.42 49.90 45.42 -

Left hip
θ - 0 0 0 0 - 0 18 0 0 -

ψ - −6.35 −6.35 −6.35 −4.25 - 4.54 4.54 4.54 1.29 -

ϕ - 0 0 0 0 - 0 0 0 0 -

Left knee θ - 0 0 0 0 - −5.73 −45 −5.73 −5.73 -

Left

ankle

θ - 0 0 0 1.43 - 0 −20 0 0 -

ψ - 10.40 10.40 10.40 10.40 - 0 0 0 0 -

Right hip
θ - 0 18 0 0 - 0 0 0 0 -

ψ - 4.54 4.54 4.54 1.2892 - −6.35 −6.35 −6.35 −4.25 -

ϕ - 0 0 0 0 - 0 0 0 0 -

Right knee θ - −10.40 −45 −10.40 −10.40 - 0 0 0 0 -

Right

ankle

θ - 0 −20.00 0 0 - 0 0 0 1.43 -

ψ - −6.59 −6.59 −6.59 −1.59 - 10.40 10.40 10.40 10.40 -

Appendix B

Additional material for the soft

tasks controller #2

This appendix provides additional details concerning the soft tasks controller #2

presented in section 2.3.3. In particular, it details the Ąnite state machine in section

B.1, before stating the parameters used by the Ąnite state machine, as well as the gains

used by the feedback control policies, for simulation experiments, in section B.2.

B.1 Finite state machine for the soft tasks con-

troller #2

A Ąnite state machine is used by the control framework to output desired setpoints for

Cartesian and postural tasks, in function of the state of the robot. In this case, the

state machine is applied to the whole-body motion of stepping in place, and is divided

into 5 states for this purpose, as described in the following paragraphs.

1. Initial balancing on two feet is the initial state in which the controller begins.

It assumes that the origin of the world frame coincides with the base frame. It

also assumes the robot to be standing on two feet, and signals that both feet are

in contact with the ground. It is used to register the initial CoM position, feet

pose, neck orientation and joint positions, and it sets their desired values to the

measured initial values. After a user-deĄned delay tmin, the state machine moves

on to state 2.

B.1 Finite state machine for the soft tasks controller #2 187

2. Move CoM above the stance foot is used to set the desired position of the

CoM above the stance foot (i.e. moving the CoM laterally along the y-axis to be

aligned with the current foot frame y-axis, keeping the initial height and position

along the x-axis). An additional displacement (or correction) of the CoM δCoM

can be deĄned by the user, along the x- and y-axes. The state machine moves

on to state 3 when the error on the CoM position is smaller than a user-deĄned

threshold eCoMmax , once more than a given time delay tmin has elapsed, or when

a larger given time delay tmax has been exceeded.

3. Stance foot balancing is used to lift the swing foot above the ground. It

signals that the swing foot is not in contact with the ground anymore, and sets

the desired pose of the swing foot to a user-deĄned displacement δswingfoot
with

respect to its initial pose. At the same time, the CoM desired position is kept

above the stance foot, with an additional displacement δCoM (or correction) of

the CoM that can be deĄned by the user. The state machine moves on to state 4

when the error on feet position is smaller than a threshold efeetmax, or when a

given time delay tmax has been exceeded.

4. Prepare for foot touchdown is used to move the foot back towards the ground.

It sets the desired pose of the swing foot to its initial pose, while the CoM is

again kept above the stance foot, with an additional displacement (or correction)

δCoM of the CoM that can be deĄned by the user. The state machine moves on

to state 5 when the error on feet position is smaller than a threshold efeetmax,

once more than a given time delay tmin has elapsed, or when a larger given time

delay tmax has been exceeded.

5. Two feet balancing is used to bring the CoM back to its initial position. It

also signals that both feet are in contact with the ground, once the vertical force

measured at the swing foot is above a user-deĄned threshold Fzmin
. The state

machine swaps the swing and stance feet, and moves on to state 2 when the error

on CoM position is smaller than a threshold eCoMmax, once more than a given

time delay tmin has elapsed, or when a larger given time delay tmax has been

exceeded.

The neck orientation and joint positions are left untouched by states, allowing

their desired values to remain equal to their initial values. Furthermore, at each time

instant, the desired values output from the state machine are sent to a minimum

B.1 Finite state machine for the soft tasks controller #2 188

jerk trajectory generator [Pattacini et al., 2010], that provides instantaneous desired

positions, velocities and accelerations to the controller, for smooth trajectories, given a

user-deĄned smoothing time tsmooth.

According to the current state, feedback gains used in equations (2.11) and (2.13)

may be updated to values deĄned by the user for each state. In this speciĄc application,

however, the gain values are deĄned to be the same across all states.

Furthermore, remark that in this controller, the purpose of the postural task is solely

to stabilize redundant degrees of freedom, and desired joint positions are simply deĄned

as the initial posture of the robot. In order to encourage that the reference postural

task accelerations input to the controller are consistent with reference Cartesian task

accelerations, we attempt taking into account feedback terms on Cartesian tasks v̇∗
T

into the computation of the postural feedback term s̈∗, which was previously computed

as in equation (2.13).

The idea of the modiĄcation we propose here is to compute joint accelerations that

allow a tradeoff between the achievement of the desired Cartesian accelerations, and

remaining close to the desired postural accelerations computed with a PD feedback

control policy.

For doing so, ν̇T , the robot acceleration that Cartesian task accelerations v̇∗
T may

induce, is computed using the following expression. The use of the Jacobian pseudo-

inverse is considered acceptable in the context where we are only concerned with

stabilizing redundant DOFs, and we do not need precision.

ν̇T = J†
T

(

J̇T ν− v̇∗
T

)

(B.1)

As for ν̇s, the robot acceleration that postural task accelerations may induce, it is

computed using the following expression, where a feedback term on the base velocity

v̇∗
B is used to ensure convergence of the base acceleration due to postural accelerations

to zero.

ν̇s =
[

v̇∗⊤
B s̈ref⊤

]⊤

(B.2)

From there, the following optimization problem is deĄned, to compute the desired

postural acceleration, which will then be used by the controller.

s̈∗ = argmin
s̈

ws

∣

∣

∣

˜̇νs(s̈)
∣

∣

∣

2
+
∑

T

wT

∣

∣

∣

˜̇νT (s̈)
∣

∣

∣

2
(B.3)

B.2 Parameter values for the implementation in simulation 189

In the above, the error on robot acceleration is computed with

˜̇νT (s̈) =







v̇B

s̈





− ν̇T (B.4)

for Cartesian tasks, and with

˜̇νs(s̈) =







v̇B

s̈





− ν̇s (B.5)

for the postural task.

B.2 Parameter values defined for the implementa-

tion of the soft tasks controller #2

This section details the values deĄned for implementing the soft tasks controller #2

presented in section 2.3.3, for simulation experiments.

Table B.1 Parameters for the stabilization of contact tasks: fkzmin
is the minimal vertical

reaction force for which a contact is considered to exist, nv is the number of vertices used in
the approximation of the friction cone, µc and µt are approximations of the Coulomb and
torsional static friction coefficients associated to the contact surfaces.

parameter value

fkzmin
10 N

nv 4

µc 1

µt
1
75

B.2 Parameter values for the implementation in simulation 190

Table B.2 Parameters of the finite state machine used by the soft tasks controller #2.
Parameters are introduced in B.1, and displacements are given along the axes [x, y, z].

parameter value

δCoM [0,0,0] m

δswingfoot
[−0.025,0,0.025] m

eCoMmax 0.025 m

efeetmax 0.025 m

tmin 2 s

tmax 6 s

Fzmin
0.1 N

tsmooth 2 s

Table B.3 Task weights w used with the soft tasks controller #2

wCoM wstance wswing wneck ws wτ

1 1 1 1 1e−3 1e−4

B.2 Parameter values for the implementation in simulation 191

Table B.4 Proportional (P) and derivative (D) feedback gains defined for Cartesian tasks
of the soft tasks controller #2, along the x−, y− and z−axes for feedback on position, and
about the same axes for feedback on rotation (denoted by θx, θy, θz)

Task Gain x y z θx θy θz

CoM
P 5 5 5 - - -

D 2
√

5 2
√

5 2
√

5 - - -

swing

foot

P 10 10 10 6 6 6

D 2
√

10 2
√

10 2
√

10 2
√

6 2
√

6 2
√

6

stance

foot

P 10 10 10 6 6 6

D 2
√

10 2
√

10 2
√

10 2
√

6 2
√

6 2
√

6

neck
P - - - 1.5 1.5 1.5

D - - - 2
√

1.5 2
√

1.5 2
√

1.5

Table B.5 Proportional (P) and derivative (D) feedback gains defined for the postural task
of the soft tasks controller #2

Torso Shoulder Elbow Hip Knee Ankle

pitch roll yaw pitch roll yaw pitch pitch roll yaw pitch pitch roll

P 20 20 20 10 10 10 8 30 30 30 60 10 10

D 2
√

20 2
√

20 2
√

20 2
√

10 2
√

10 2
√

10 2
√

8 2
√

30 2
√

30 2
√

30 2
√

60 2
√

10 2
√

10

Appendix C

Additional material for the

parametrization-based joint limit

avoidance approach of chapter 3

C.1 Proof of lemma 3

This section presents the proof of lemma 3, introduced in section 3.4.1 for joint

limit avoidance using the exogenous parameter ξ. As a recall, the lemma states that

substituting ξ in a passivity-based control law allows for joint limit avoidance, as well

as the asymptotic stability of the closed-loop dynamics equlibrium point.

Consider the following candidate Lyapunov function:

V :=
1
2

˙̃ξTMξ
˙̃ξ +

1

2
ξ̃TKP ξ̃ (C.1)

Observe that

V = 0 ⇐⇒ (˙̃ξ, ξ̃) = (0n,0n) (C.2)

Note that KP being a positive deĄnite matrix, and in view of Property 3, then

V (ξ̃, ˙̃ξ, t) > 0 ∀(ξ̃, ˙̃ξ)−¶0♢ (C.3)

C.1 Proof of lemma 3 193

Now, recall that Mξ tends to zero when ξ̃ tends to inĄnity. Despite this fact, one

shows that the candidate Lyapunov function is radially unbounded, i.e.

♣(ξ̃, ˙̃ξ)♣ →∞⇒ V →∞ (C.4)

which is a sufficient condition for obtaining global stability results associated with a

candidate Lyapunov function [Khalil, 2002, p. 152]. This is the main point of the proof,

where it differs consistently from the proof of the passivity-based controller (3.3).

Then, in view of Property 4, the time derivative of V along the closed loop

system (3.17)-(3.18) is given by

V̇ = − ˙̃ξTKD
˙̃ξ ≤ 0 (C.5)

which implies the stability of the equilibrium point

(ξ̃, ˙̃ξ) = (0,0) (C.6)

and boundedness of the system trajectories

(ξ̃, ˙̃ξ)(t) (C.7)

for any initial condition.

Now, observe that the closed-loop system (3.17)-(3.18) is time varying, and this

implies that LaSalleŠs lemma cannot be applied to determine that V̇ tends to zero. To

show this, we have to apply BarbalatŠs lemma, and thus we have to show that V̈ is

bounded. By using the fact that the trajectories of the system (ξ̃, ˙̃ξ)(t) are bounded,

one shows that V̈ is bounded. Then, V̇ tends to zero, and this implies that ˙̃ξ tends

to zero. To show that also ξ̃ tends to zero, we have to show Ąrst that ¨̃ξ tends to zero.

This latter fact can be shown by using again BarbalatŠs lemma, i.e. one shows that...
ξ̃ is bounded using the fact that the system trajectories are bounded. Then, one has
˙̃ξ→ 0 and ¨̃ξ→ 0. By using these facts in the closed loop dynamics (3.17)-(3.18), one

has that ξ̃ tends to zero.

Appendix D

Additional material related to the

survey on tuning of QP-based

controllers

This appendix provides additional material with respect to the survey on parameter

tuning of QP-based controllers, presented in chapter 4. Section D.1 contains a copy

of the email sent to mailing lists [euRobotics, 2018; GdR-Robotique, 2018; robotics

worldwide, 2018] in order to distribute our survey. Then, section D.2 reproduces the

form of the survey in its entirety. Finally, section D.3 reports the entirety of the free

text comments provided by the respondents of the survey, in answers to open-ended

questions.

D.1 Invitation to participate to the survey on QP-based controllers 195

D.1 Invitation to participate to the survey on

QP-based controllers

Dear robotics community members,

We are working on automatic tuning of QP controllers for humanoid

robots, and we need your help!

If you have at any point worked with controllers based on

quadratic programming (QP), we would like to invite you to

participate in an online survey on this subject:

https://goo.gl/forms/M4LC64ll4fIKw0503

Please fill it out to help us know about your experience with

QP-based controllers, and if a tool for their tuning would be

useful to the community.

The survey is anonymous, and should take approximately 10 minutes

of your time.

Many thanks in advance for your help!

Marie Charbonneau

Invited PhD student

Team Larsen

INRIA Nancy Grand-Est

France

email:marie.charbonneau@loria.fr

https://goo.gl/forms/M4LC64ll4fIKw0503
mailto:marie.charbonneau@loria.fr

D.2 Questionnaire of the survey on tuning of QP-based controllers 196

D.2 Questionnaire of the survey on tuning of

QP-based controllers

Figure D.1 Survey page 1

D.2 Questionnaire of the survey on tuning of QP-based controllers 197

Figure D.2 Survey page 2

D.2 Questionnaire of the survey on tuning of QP-based controllers 198

Figure D.3 Survey page 3

D.2 Questionnaire of the survey on tuning of QP-based controllers 199

Figure D.4 Survey page 4, part 1

D.2 Questionnaire of the survey on tuning of QP-based controllers 200

Figure D.5 Survey page 4, part 2

D.2 Questionnaire of the survey on tuning of QP-based controllers 201

Figure D.6 Survey page 4, part 3

D.2 Questionnaire of the survey on tuning of QP-based controllers 202

Figure D.7 Survey page 5

D.3 Answers to open-ended questions 203

D.3 Answers to open-ended questions

Answers to “If possible, you may indicate a link to a reference regarding

the QP controller(s) you work(ed) with, or to the code”

https://github.com/robotology/whole-body-controllers

https://orca-controller.readthedocs.io/en/dev/

https://github.com/kuka-isir/cart_opt_ctrl

Controller source code: https://github.com/jrl-umi3218/Tasks

https://hal.archives-ouvertes.fr/hal-01276931/document

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7433460

Home-made

https://projects.coin-or.org/qpOASES

https://ieeexplore.ieee.org/document/6482266/

https://github.com/semroco/giskard_core and github.com/semroco/giskardpy

http://www.roboticsproceedings.org/rss14/p54.pdf

The QP used on HRP4 at LIRMM montpellier and

https://hal.archives-ouvertes.fr/hal-01735462v1

OpenSoT and MC-RTC

https://github.com/robotology/walking-controllers/blob/master/modules/

Walking_module/src/WalkingQPInverseKinematics_qpOASES.cpp

https://github.com/jrl-umi3218/Tasks/

Contrôleur développé par Joseph Salini (ISIR) pour XDE

https://github.com/robotology/whole-body-controllers
https://orca-controller.readthedocs.io/en/dev/
https://github.com/kuka-isir/cart_opt_ctrl
https://github.com/jrl-umi3218/Tasks
https://hal.archives-ouvertes.fr/hal-01276931/document
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7433460
https://projects.coin-or.org/qpOASES
https://ieeexplore.ieee.org/document/6482266/
https://github.com/semroco/giskard_core and github.com/semroco/giskardpy
http://www.roboticsproceedings.org/rss14/p54.pdf
https://hal.archives-ouvertes.fr/hal-01735462v1
https://github.com/robotology/walking-controllers/blob/master/modules/Walking_module/src/WalkingQPInverseKinematics_qpOASES.cpp
https://github.com/robotology/walking-controllers/blob/master/modules/Walking_module/src/WalkingQPInverseKinematics_qpOASES.cpp
https://github.com/jrl-umi3218/Tasks/

D.3 Answers to open-ended questions 204

Answers to “Is there another parameter which you think is important to

tune, but which we forgot in the question above? Please provide a descrip-

tion”

Regularization parameters (e.g. tolerances, saturations...)

Regularization terms

aleatory

Sampling rate of the trajectory

Answers to “Do you have comments to add with respect to the penultimate

question?”, referring to “In your experience, how important is it to tune

the following parameters associated to a QP controller?”

Trajectories should not be tuned but should be the outcome!

You should specify ŠdonŠt knowŠ answer to the questions above (I am not sure

about all)

Answers to “Is there another parameter which you spend time and effort

tuning, but which we forgot in the question above? Please provide a de-

scription”

What took the longest in terms of getting all of these things implemented was

when you see some undesired behavior (like a foot bouncing off the ground on

touch down) it can be difficult to Ągure out which part of the system to Ąx.

It could be the foot trajectory, the trajectory following due to low gains, the

trajectory following due to a bad damping estimate that gets fed in through

inverse dynamics, maybe the objective weighting is too low, maybe we are

switching from swing to stance too early/late. While this framework is incredibly

Ćexible and useful it does inherently couple everything together so it can be

difficult to tease things apart.

D.3 Answers to open-ended questions 205

Answers to “Do you have comments to add with respect to the penultimate

question?”, referring to “From your experience, and please be honest: how

much time and effort do you generally spend tuning the following parame-

ters for a new QP controller?”

I assumed a person is working on the robot every day, full time.

The crucial parts are to get the constraints right. And that changes with every

task. However, if done smartly, they can be (partly) reused. Some parameters

follow iterations (eg contact properties), and they can be short (weeks or months

for modifying a manipulatorŠs end effector) or long (up to a year or longer for

building a new robot). Many parameters are also dependent, so changing e.g.

the compliance of the actuator triggers changes in other parameters. Therefore,

most are continuously evolving and good sets vary from task to task.

Tunning time can vary extremely depending of the scenario. It can be really fast

on some mono robot manipulation scenario but can be really tedious for multi

robot scenario.

I donŠt tune the parameters, Phd students do, so do not consider my answers.

I donŠt consider "desired task trajectories" as part of QP tuning, but rather as

part of motion planning/MPC.

Answers to “Have you developed or are you using any tools or techniques

for making the tuning process easier?”

No

no

No.

Not at the moment. We are evaluating everything directly on the hardware since

it is in front of us anyway.

magic

Yes see my thesis

D.3 Answers to open-ended questions 206

Matlab Hybrid MPC toolbox

We developed tools on top of RVIZ to graphically tune controller gain and tasks

trajectory.

Basic zero-pole graphs or simulated time plots while tuning the low-level (PID)

gains.

We are learning a mix of the controller -so best case, its parameters require no

tuning- and the task jacobian which takes care of some of the other parameters.

Yes

Not yet

NA

No. We are just getting around to deĄning performance metrics such that you

can quantify improvement while tuning... but currently it is all based on trying

it on the robot and see how it looks.

No tuning, just Mismatch Learning :)

Developed by the team.

Answers to “For what reason?”, referring to “How tedious do you find

parameter tuning to be?”

A complex dynamical system may have too many parameters to tune, the possible

combinations are endless and the combined effect of all parameters is not easy to

predict.

Parameters should have a physical meaning and should therefore be easy to tune.

If that is not the case, your model is bullshit. Of course, it is not always easy to

Ąnd the actual numbers for the physical parameters, but at least you can apply

common sense to their ranges.

Application speciĄc and mostly heuristic

QP controller can be really tedious to tune if you use it with bad trajectory

planning and try to play with tasks weights and gains to overcome this issue.

D.3 Answers to open-ended questions 207

Sometimes work for the conĄguration of the robot used during tuning, then fails

for a different robot conĄguration

Once you work with it a while it certainly gets easier.

Trial and error tuning is too long and often tuning one parameter will affect

other tuned parameters

I usually Ąnd that tuning only the scale-of-order is enough to get a Ąrst set of

working QP settings (this applies to both PD gain and weight tunings).

Temps consommé imprévisible et toujours ż temps de développement du code

Answers to “For what reason?”, referring to “How important do you think

it is to make parameter tuning less tedious?”

It is tedious because it often takes a huge amount of time. If less tedious = less

time, then I think it is really important.

See answer above.

Save time and make QPŠs useful for production systems

No one wants to tune parameters every time with a new platform.

Easier implementation on industrial robots

In our work the QP part was the most robust. Compared to the contact planning

part it was really easy.

ItŠs never tuned correctly and/or for all applications

I think the main problem with parameter tuning is not that it might be tedious.

The main problem is that one never knows when the current tuning is good

enough.

I see potential in there.

D.3 Answers to open-ended questions 208

Answers to “What would be the ideal tool in your opinion?”

It should take as input parameters that have a clear and predictable effect on the

robot, then map these parameters to the ones that people usually tune, whose

effect is neither clear or predictable

Easy to use, good GUI.

Automatically move the robot and Ąnd the best PID values

The ideal tool would not need to any major adaptation on the part of the

controller itself.

It should rely on a dynamic simulator and on some machine learning (better if

supervised learning, even if automatically supervised). The simulator replays the

experiment systematically and tunes the gain. Some manual tuning will also be

required on the real robot, but only at the end.

An easy to set-up tool that can be easily applied to different QP frameworks,

and auto-tune the parameters quickly+safely

Hmm, letŠs see. The tool needs a way to guess what IŠm looking for in terms of

whole-body behavior. At Ąrst, I see two ways to do that:

1 — The tool assumes the instantaneous QP cost function is the specification.

It then goes on to play a motion following my desired tasks, and looks at the

integral of this cost function over a given run. Then changes QP parameters,

and tries again for a different run. This way, we know how to generate a

dataset (parameters, costs); then we can follow a data-driven approach (a.k.a.

"learning")! Expected pro: user can do something else while the computer is

working. Expected con: computation time may be prohibitive; only applies to

PD-gain tuning of a weighted QP.

2 — The tool does not assume a specification; rather, it generates a trajectory

and asks me every time which one I find better. Expected pro: applies to both

PD-gain and weight tunings; specification is implicit. Expected con: user spends

brain time in the process, dataset will thus be smaller.

These thoughts being sketched, the ideal tool in my opinion looks like this: the

user specifies all of its cost terms (for a weighted QP: the expressions that are

weighted; for a lexicographic QP: same across all layers), but not weights nor PD

D.3 Answers to open-ended questions 209

gains. The tool will generate several trajectories for, say, at most a week. As a

final outcome, the user is presented with a cost-function design GUI:

— Input: cost function, i.e. weights on each cost terms and/or lexicographic

separation between weighted layers

— Output: recommended set of PD gains, and statistics over each cost term:

min/max/average/standard deviation of the cost value over a trajectory.

... well, you asked for the ideal ;-)

Answers to “Is there information based on your experience that you would

like to share, in order to help us better understand your issues related to

the tuning of QP controllers (if you have any)?”

I think having more robustness w.r.t. a change of task is important. Usually, the

hand-made tuning is really task-dependent.

Check out my thesis : https://tel.archives-ouvertes.fr/tel-01685182/en

A graphic "tutorial" on QP parameters could be useful for people getting started

with QP controllers

PD-gain tuning is not so hard. The problem is, the user does not really know

what she/he wants. Hence my hunch that the point is not helping users tune

their QPs, but helping QPs tune their users!

Answers to “Would you like to share further information, comments, rec-

ommendations or feedback related to this topic?”

Refer to works on machine learning for transferring from simulation to real robot.

Good luck!

Answers to “Are you a robot?”

1 21 13

Yes No Maybe

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.2.1 Whole-body motion control of humanoid robots
	1.2.2 Tuning of motion controllers
	1.2.3 Joint limit avoidance of torque-controllers
	1.2.4 Whole-body teleoperation

	1.3 Contributions
	1.4 Notation
	1.5 Thesis outline

	2 Optimization-based whole-body torque-control for humanoid robots
	2.1 Modelling of floating-base systems
	2.2 Optimization-based whole-body torque-control framework
	2.2.1 Control input
	2.2.2 Stack-of-tasks for whole-body torque-control
	2.2.3 Stabilization of tasks
	2.2.4 Whole-body control optimization problem

	2.3 Implementation of optimization-based whole-body torque-controllers
	2.3.1 Implementation of a strict tasks controller
	2.3.2 Implementation of the soft tasks controller #1
	2.3.3 Implementation of the soft tasks controller #2

	2.4 Application to walking in place
	2.4.1 Walking in place with the soft tasks controller #1
	2.4.2 Walking in place with the soft tasks controller #2
	2.4.3 Discussion

	2.5 Conclusion

	3 Joint limit avoidance for torque-control
	3.1 Modelling of fixed-base systems
	3.2 Classical torque-control techniques for fixed-base systems
	3.3 Joint space parametrization
	3.4 Joint space control with joint limit avoidance
	3.4.1 Joint limit avoidance for fixed-base systems
	3.4.2 Joint limit avoidance within a whole-body torque-controller

	3.5 Implementation for a fixed-base manipulator
	3.5.1 Application of joint limit avoidance for the iCub leg
	3.5.2 Discussion

	3.6 Implementation within a whole-body torque-controller
	3.6.1 Optimization-based controller
	3.6.2 Application to walking in place
	3.6.3 Discussion

	3.7 Conclusion

	4 Survey on parameter tuning for QP-based controllers
	4.1 Description of the survey
	4.2 Results of the survey
	4.3 Conclusion

	5 Learning task priorities of whole-body controllers
	5.1 Constrained stochastic optimization
	5.2 Framework for learning task priorities
	5.3 Implementation for whole-body torque-control
	5.3.1 Control problem formulation
	5.3.2 Constraints on stochastic optimization
	5.3.3 Fitness
	5.3.4 Randomized conditions

	5.4 Application to learning task priorities for walking in place
	5.4.1 Training with the tethered iCub model
	5.4.2 Testing with the tethered iCub model
	5.4.3 Testing with the backpacked iCub model
	5.4.4 Discussion

	5.5 Conclusion

	6 Teleoperation of generic whole-body motions
	6.1 Whole-body velocity-control framework for teleoperation
	6.1.1 Retargeting module
	6.1.2 Finite state machine
	6.1.3 Stack-of-tasks for whole-body velocity-control
	6.1.4 QP controller

	6.2 Applications of the whole-body teleoperation framework
	6.2.1 Application to walking
	6.2.2 Application to whole-body teleoperation

	6.3 Conclusion

	7 Conclusion
	7.1 Whole-body balancing torque-control
	7.2 Joint limit avoidance
	7.3 Tuning parameters of whole-body controllers
	7.4 Whole-body control for generic motions
	7.5 Closing remarks

	References
	Appendix A Additional material for the soft tasks controller #1
	A.1 Finite state machine for the soft tasks controller #1
	A.2 Parameter values for the implementation in simulation
	A.3 Parameter values for the implementation on the iCub

	Appendix B Additional material for the soft tasks controller #2
	B.1 Finite state machine for the soft tasks controller #2
	B.2 Parameter values for the implementation in simulation

	Appendix C Additional material for joint limit avoidance
	C.1 Proof of lemma 3

	Appendix D Additional material for the survey on QP controllers
	D.1 Invitation to participate to the survey on QP-based controllers
	D.2 Questionnaire of the survey on tuning of QP-based controllers
	D.3 Answers to open-ended questions

