
PRODUCTS OF IDEALS MAY NOT BE GOLOD

ALESSANDRO DE STEFANI

Abstract. We exhibit an example of a product of two proper monomial ideals such that the
residue class ring is not Golod. We also discuss the strongly Golod property for rational powers of
monomial ideals, and introduce some sufficient conditions for weak Golodness of monomial ideals.
Along the way, we ask some related questions.

1. Introduction

Let k be a field, and let (R,m, k) denote a Noetherian positively graded k-algebra, with R0 = k
and irrelevant maximal ideal m =

⊕
i>1Ri. Consider the Poincaré series of R

PR(t) =
∑
i>0

dimk TorRi (k, k)ti

which is, in general, not rational [Ani82]. If n = dimk m/m
2 is the embedding dimension of R, Serre

showed that PR(t) is bounded above term by term by the following rational series

(1 + t)n

1− t
∑
i>1

dimk (Hi(R)) ti
.

Here Hi(R) is the i-th homology of the Koszul complex on a minimal homogeneous generating
set of m, over the ring R. The ring R is called Golod if equality holds. As a consequence, Golod
rings have rational Poincaré series. The main purpose of this article is to answer, in negative, the
following question

Question 1.1. [MP13, Problem 6.18] Let k be a field, and let (R,m, k) be positively graded
k-algebra. Let I, J be two proper homogeneous ideals in R. Is the ring R/IJ always Golod?

As reported in [MP13], Question 1.1 was first asked by Volkmar Welker. The general belief,
supported by strong computational evidence, was that this question had positive answer. The first
result in this direction is a theorem of Herzog and Steurich [HS79]: let S be a polynomial ring over
a field, and let I,J be two proper homogeneous ideals of S. If I ∩ J = IJ , then S/IJ is Golod.
Another reason to believe that Question 1.1 had positive answer comes from a result of Avramov
and Golod [AG71], which says that Golod rings are never Gorenstein, unless they are hypersurfaces.
This is consistent with a result of Huneke [Hun07], according to which S/IJ is never Gorenstein,
unless I and J are principal. More recently, Herzog and Huneke show that, if I is a homogeneous
ideal in a polynomial ring S over a field of characteristic zero, then, for all d > 2, the ring S/Id is
Golod [HH13, Theorem 2.3 (d)]. In [SFW14, Theorem 1.1] Seyed Fakhari and Welker write that
any product of proper monomial ideals in a polynomial ring over a field is Golod. The key step in
their proof is to show that products of monomial ideals always satisfy the strong-GCD condition.
This condition is the existence of a linear order on a minimal monomial generating set of the ideal,
satisfing certaintain properties [Jöl06, Definition 3.8]. The fact that monomial ideals that satisfy
the strong-GCD condition are Golod is first stated by Jöllenbeck in [Jöl06, Theorem 7.5], provided
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an extra assumption, called Property (P), is satisfied, and then by Berglund and Jöllenbeck in
[BJ07, Theorem 5.5], where the extra assumption is removed.

In Section 2, we provide examples of products of proper monomial ideals in a polynomial ring S
over a field, such that the residue class ring is not Golod. For instance, Example 2.1:

Example. Let k be a field, and let S = k[x, y, z, w] be a polynomial ring, with standard grading.
Consider the monomial ideals m = (x, y, z, w) and J = (x2, y2, z2, w2) inside S. Let

I := mJ = (x3, x2y, x2z, x2w, xy2, y3, y2z, y2w, xz2, yz2, z3, z2w, xw2, yw2, zw2, w3)

be their product, and set R = S/I. Then, the ring R is not Golod.

Our example satisfies the strong-GCD condition. Indeed, the argument of [SFW14, Theorem 1.1]
is correct, but it only shows that products of monomial ideals satisfy the strong-GCD condition.
We have not been able to locate specifically where the mistake in [Jöl06] or [BJ07] may be.

In Section 3 we study the strongly Golod property for rational powers of monomial ideals. Let
S = k[x1, . . . , xn] be a polynomial ring over a field k of characteristic zero, and let I ⊆ S. In [HH13]
Herzog and Huneke introduce the following notion: I is called strongly Golod if ∂(I)2 ⊆ I, where
∂(I) is the ideal of S generated by the partial derivatives of elements in I. The main point of this
definition is that, if an ideal I is strongly Golod, then the ring S/I is Golod [HH13, Theorem 1.1].
Among other things, in Section 3 we show that if I is a strongly Golod monomial ideal, then so is
Ip/q, for any p > q. This generalizes [HH13, Proposition 3.1].

It is easy to find examples of ideals that are Golod, but not strongly Golod. In [HH13], Herzog
and Huneke introduce the notion of squarefree strongly Golod ideal, that applies to squarefree
monomial ideals. This is a weakening of the strongly Golod definition, but it still implies that
the multiplication on the Koszul homology is identically zero. We will say that a ring is weakly
Golod if the multiplication on Koszul homology is trivial. In [BJ07, Theorem 5.1], Berglund and
Jöllenbeck show that, in case the ideal in question is monomial, weak Golodness and Golodness are
equivalent notions. Herzog and Huneke use this result in [HH13, Theorem 3.5] to conclude that
squarefree strongly Golod ideals are Golod. See Section 5 for more discussions and questions about
this topic. In Section 4 we introduce lcm-strongly Golod monomial ideals, which are a more general
version of squarefree strongly Golod ideals. We show that lcm-strongly Golod ideals are weakly
Golod. In Section 5, we give some sufficient conditions for an ideal to be strongly Golod, and we
ask several related questions. In Appendix A we record a minimal free resolution for Example
2.5, for convenience of the reader. All computations are made using the computer software system
Macaulay2 [GS].

2. Examples of products that are not Golod

Golod rings were named after Evgenii S. Golod, who proved that the upper bound in Serre’s
inequality is achieved if and only if the Eagon resolution is minimial [Gol62]. This happens if and
only if all the Massey operations of the ring vanish. Since the vanishing of the second Massey
operation means that every product of Koszul cycles of positive homological degree is a boundary,
Golod rings have, in particular, trivial multiplication on the positive degree Koszul homology. We
will use this fact in the proofs of our examples in this section. See [GL69, Chapter 4] or [Avr98,
Section 5.2] for details and more general statements.

If (R,m, k) is a Noetherian positively graded algebra over a field k, we can write R ∼= S/I, where
S = k[x1, . . . , xn] is a polynomial ring, and I ⊆ S is a homogeneous ideal. If m = (x1, . . . , xn)
denotes the irrelevant maximal ideal of S, we can always assume that I ⊆ m2. Let K• be the
Koszul complex on the elements x1, . . . , xn of S, which is a minimal free resolution of k over S. We
have that K1 is a free S-module of rank n, and we denote by {ex1 , . . . , exn} a basis. In addition,
we have that Ki

∼=
∧
iK1 for all i = 1, . . . , n, and the differential δi : Ki → Ki−1 on a basis element
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is given by

δi(et1 ∧ . . . ∧ eti) =
i∑

j=1

(−1)j−1 tj et1 ∧ . . . ∧ etj−1 ∧ etj+1 ∧ . . . ∧ eti ,

and extended by linearity to Ki. Let K•(R) = K• ⊗S R be the Koszul complex on R. We denote
by Z•(R) the Koszul cycles, and by H•(R) the Koszul homology on R.

We are now ready for the first example.

Example 2.1. Let k be a field, and let S = k[x, y, z, w], with the standard grading. Let m =
(x, y, z, w) be the irrelevant maximal ideal, consider the monomial ideal J = (x2, y2, z2, w2) and let

I := mJ = (x3, x2y, x2z, x2w, xy2, y3, y2z, y2w, xz2, yz2, z3, z2w, xw2, yw2, zw2, w3).

Then, the ring R = S/I is not Golod.

Proof. Golod rings have trivial multiplication on H•(R)>1. Therefore, to show that R is not Golod,
it is enough to show that there exist two elements α, β ∈ H•(R)>1 such that αβ 6= 0. Consider the
element u = (ex ∧ ey)⊗ xy ∈ K2(R). It is a Koszul cycle:

δ2(u) = ey ⊗ x2y − ex ⊗ xy2 = 0 in K1(R),

because x2y ∈ I and xy2 ∈ I. Then, let α := [u] ∈ H2(R) be its residue class in homology.
Similarly, let v = (ez ∧ ew) ⊗ zw ∈ Z2(R), and let β := [v] ∈ H2(R). We want to show that
uv = (ex ∧ ey ∧ ez ∧ ew)⊗ xyzw ∈ Z4(R) is not a boundary, so that αβ = [uv] 6= 0 in H4(R). Note
that K5(R) = 0, hence such a product is zero in homology if and only if xyzw ∈ I. But xyzw /∈ I,
as every monomial generator of I contains the square of a variable. �

Remark 2.2. We keep the same notation as in Example 2.1. Using Macaulay2 [GS], one can
compute the first Betti numbers of k over R:

. . . // R11283 // R2312 // R493 // R98 // R22 // R4 // R // k // 0.

Therefore the Poincaré series of R is

PR(t) = 1 + 4t+ 422t2 + 98t3 + 493t4 + 2312t5 + 11283t6 + . . .

On the other hand, the upper bound given by Serre’s inequality is

(1 + t)4

1− 16t2 − 30t3 − 20t4 − 5t5
= 1 + 4t+ 22t2 + 98t3 + 493t4 + 2313t5 + 11288t6 + . . .

Since the two series are not coefficientwise equal, R is not Golod. We also checked that R is not
Golod using the Macaulay2 command isGolod(S/I) which computes the generators of all the
Koszul homology modules, and determines whether their products are zero.

Example 2.3. If one is looking for an example where the ideals are generated in higher degrees, for
j > 1 one can consider, along the lines of Example 2.1, the following family of products, suggested
to us by Aldo Conca:

(xj+1, yj+1, zj+1, wj+1)(xj , yj , zj , wj) ⊆ k[x, y, z, w].

As in Example 2.1, one can show that the product of cycles

((ex ∧ ey)⊗ xjyj) · ((ez ∧ ew)⊗ zjwj)
is not zero as a cycle and, hence, in homology.

Remark 2.4. We want to point out that Example 2.1 is not the first example of a non-Golod
product of ideals that we discovered. In fact, Example 2.1 was suggested to the author by Srikanth
Iyengar, after some discussions about Example 2.5. Given the proof of Example 2.1, it becomes
easy to show that the ring of Example 2.5 is not Golod. In fact, going modulo a regular sequence
of linear forms in the ring of Example 2.5, one obtains a ring isomorphic to the one of Example 2.1.
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Then, one can use [Avr98, Proposition 5.2.4 (2)], adapted to the graded case. The original proof
that Example 2.5 is not Golod is much more involved. Nonetheless, since this was the first example
discovered by this author, we want to briefly describe the argument in the rest of this section.

The original proof relies on lifting Koszul cycles. More specifically, we use the double-complex
proof of the fact that TorS• (k, S/I) can be computed in two ways, to lift a Koszul cycle to a specific
element of a finitely generated k-vector space. The results that we use are very well known, so we
will not explain all the steps. We refer the reader to [Wei94] or [Rot09] for more details.

Let S = k[x1, . . . , xn] be a polynomial ring over a field k, not necessarily standard graded, and
let m be the irrelevant maximal ideal. Let I ⊆ m2 be a homogeneous ideal in S, and consider
the residue class ring R = S/I. Since K• is a free resolution of k over S, we have that Hi(R) :=

Hi(K• ⊗S R) ∼= TorSi (k,R), and its dimension as a k-vector space is the i-th Betti number, βi, of
R as an S-module. On the other hand, if F• → R → 0 is a minimal free resolution of R over S,
then Hi(k ⊗S F•) ∼= k ⊗ Fi is also isomorphic to TorSi (k,R). There is map ψ : Zi(R) → k ⊗ Fi,
which is constructed by ”lifting cycles”. Since the boundaries map to zero via ψ, this induces a
map ψ : Hi(R)→ k ⊗S Fi, which is an isomorphism. See [Her92] for a canonical way to construct
Koszul cycles from elements in k ⊗ Fi (that is, a canonical choice of an inverse for ψ).

We are now ready to illustrate the example. We refer the reader to Appendix A for an explicit
expression of the differentials in a resolution of R = S/I as a module over S.

Example 2.5. Let k be a field, and let S = k[a, b, c, d, x, y, z, w]. Consider the monomial ideals
I1 = (ax, by, cz, dw) and I2 = (a, b, c, d) inside S. Let

I := I1I2 = (a2x, abx, acx, adx, aby, b2y, bcy, bdy, acz, bcz, c2z, cdz, adw, bdw, cdw, d2w)

be their product, and set R = S/I. Then, the ring R is not Golod.

Proof. Let 0 → F4 → F3 → F2 → F1 → F0 → R → 0 be a minimal free resolution of R over S,
with maps ϕj : Fj → Fj−1, j = 1, . . . , 4, and ϕ0 : F0 = S → R being the natural projection. For

each i = 0, . . . , 4 and each free module Fi = Sβi fix standard bases E
(i)
j , j = 1, . . . , βi. In this way,

the differentials can be represented by matrices (see Appendix A for an explicit description). We
have the following staircase:

S ⊗S S5

1S⊗ϕ4

��

δ0⊗1S5 // k ⊗S S5

K1 ⊗S S20

1K1
⊗ϕ3

��

δ1⊗1S20 // S ⊗S S20

K2 ⊗S S30

1K2
⊗ϕ2

��

δ2⊗1S30 // K1 ⊗S S30

K3 ⊗S S16

1K3
⊗ϕ1

��

δ3⊗1S16 // K2 ⊗S S16

K4 ⊗S S
δ4⊗1S //

1K4
⊗ϕ0

��

K3 ⊗S S

K4 ⊗S R
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Let u = (ex∧ey)⊗(ab), and v = (ez∧ew)⊗(cd), inside K2(R) = K2⊗SR. As they are cycles, we can
consider their classes α = [u] and β = [v] in homology. We want to construct a lifting ψ(uv) of the
Koszul cycle uv = (ex∧ey ∧ez ∧ew)⊗ (abcd) ∈ K4(R). Given (ex∧ey ∧ez ∧ew)⊗ (abcd) ∈ K4⊗SR
we consider the lift (ex ∧ ey ∧ ez ∧ ew) ⊗ (abcd E

(0)
1 ) ∈ K4 ⊗S S, and then apply the differential

δ4 ⊗ 1S :

(δ4 ⊗ 1S)((ex ∧ ey ∧ ez ∧ ew)⊗ (abcd E
(0)
1 )) =

+(ey ∧ ez ∧ ew)⊗ (abcdxE
(0)
1 )

−(ex ∧ ez ∧ ew)⊗ (abcdy E
(0)
1 )

+(ex ∧ ey ∧ ew)⊗ (abcdz E
(0)
1 )

−(ex ∧ ey ∧ ez)⊗ (abcdw E
(0)
1 )

This is now a boundary, and, in fact, it is equal to

(1K3 ⊗ ϕ1)


+(ey ∧ ez ∧ ew)⊗ (cd E

(1)
2 )

−(ex ∧ ez ∧ ew)⊗ (cd E
(1)
5 )

+(ex ∧ ey ∧ ew)⊗ (ab E
(1)
12 )

−(ex ∧ ey ∧ ez)⊗ (ab E
(1)
15 )


Now we apply δ3 ⊗ 1S16 to this element:

(δ3 ⊗ 1S16)


+(ey ∧ ez ∧ ew)⊗ (cd E

(1)
2 )

−(ex ∧ ez ∧ ew)⊗ (cd E
(1)
5 )

+(ex ∧ ey ∧ ew)⊗ (ab E
(1)
12 )

−(ex ∧ ey ∧ ez)⊗ (ab E
(1)
15 )

 =

+(ez ∧ ew)⊗ (cdy E
(1)
2 − cdx E(1)

5 )

−(ey ∧ ew)⊗ (cdz E
(1)
2 − abx E(1)

12 )

+(ey ∧ ez)⊗ (cdw E
(1)
2 − abx E(1)

15 )

+(ex ∧ ew)⊗ (cdz E
(1)
5 − aby E(1)

12 )

−(ex ∧ ez)⊗ (cdw E
(1)
5 − aby E(1)

15 )

+(ex ∧ ey)⊗ (abw E
(1)
12 − abz E

(1)
15 )

This is a boundary. Namely, it is equal to

(1K2 ⊗ ϕ2)



−(ez ∧ ew)⊗ (cd E
(2)
13 )

+(ey ∧ ew)⊗ (dz E
(2)
3 + bx E

(2)
17 + bd E

(2)
20 )

−(ey ∧ ez)⊗ (cw E
(2)
5 + bx E

(2)
23 + bc E

(2)
28 )

−(ex ∧ ew)⊗ (dz E
(2)
8 + ay E

(2)
18 + ad E

(2)
21 )

+(ex ∧ ez)⊗ (cw E
(2)
10 + ay E

(2)
24 + ac E

(2)
29 )

−(ex ∧ ey)⊗ (ab E
(2)
30 )


We now apply the map δ2 ⊗ 1S30 to such a lift:

(δ2 ⊗ 1S30)



−(ez ∧ ew)⊗ (cd E
(2)
13 )

+(ey ∧ ew)⊗ (dz E
(2)
3 + bx E

(2)
17 + bd E

(2)
20 )

−(ey ∧ ez)⊗ (cw E
(2)
5 + bx E

(2)
23 + bc E

(2)
28 )

−(ex ∧ ew)⊗ (dz E
(2)
8 + ay E

(2)
18 + ad E

(2)
21 )

+(ex ∧ ez)⊗ (cw E
(2)
10 + ay E

(2)
24 + ac E

(2)
29 )

−(ex ∧ ey)⊗ (ab E
(2)
30 )


=

=

+ex ⊗ (dzw E2
8 − czw E

(2)
10 + ayw E

(2)
18 + adw E

(2)
21 − ayz E

(2)
24 − acz E

(2)
29 + aby E

(2)
30 )

−ey ⊗ (dzw E
(2)
3 − czw E

(2)
5 + bxw E

(2)
17 + bdw E

(2)
20 − bxz E

(2)
23 − bcz E

(2)
28 + abx E

(2)
30 )

+ez ⊗ (−cyw E
(2)
5 + cxw E

(2)
10 + cdw E

(2)
13 − bxy E

(2)
23 + axy E

(2)
24 − bcy E

(2)
28 + acx E

(2)
29 )

−ew ∧ (−dyz E(2)
3 + dxz E

(2)
8 + cdz E

(2)
13 − bxy E

(2)
17 + axy E

(2)
18 − bdy E

(2)
20 + adx E

(2)
21 )
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Again, this element is a boundary. In fact, it is equal to

(1K1 ⊗ ϕ3)


+ex ⊗ (zw E

(3)
7 + a E

(3)
20 )

−ey ⊗ (zw E
(3)
4 + b E

(3)
19 )

+ez ⊗ (xy E
(3)
13 + c E

(3)
18 )

−ew ⊗ (xy E
(3)
10 + d E

(3)
17 )


One more time, we apply δ1 ⊗ 1S20 , to get

(δ1 ⊗ 1S20)


+ex ⊗ (zw E

(3)
7 + a E

(3)
20 )

−ey ⊗ (zw E
(3)
4 + b E

(3)
19 )

+ez ⊗ (xy E
(3)
13 + c E

(3)
18 )

−ew ⊗ (xy E
(3)
10 + d E

(3)
17 )

 =

= 1⊗ (−yzw E
(3)
4 + xzw E

(3)
7 − xyw E

(3)
10 + xyz E

(3)
13 − dw E

(3)
17 + cz E

(3)
18 − by E

(3)
19 + ax E

(3)
20 ).

This is a boundary: it is equal to (1S⊗ϕ4)(1⊗E(4)
5 ). When applying δ0⊗1S5 to the lift, we finally

get the image of uv under the map ψ : Z4(R)→ k ⊗S S5. Namely:

ψ(uv) = (δ0 ⊗ 1S5)(1⊗ E(4)
5 ) = 1⊗ E(4)

5 ∈ k ⊗S S5

and since the latter is non-zero, because it is part of a k-basis of k⊗S S5, we obtain that uv is not
a boundary of the Koszul complex. Thus, αβ is non-zero in H4(R), and R is not Golod. �

Remark 2.6. As pointed out in Remark 2.4, with the same notation as in Example 2.5, we have
that x−a, y− b, z− c, w−d is a regular sequence modulo I. Going modulo such a regular sequence
of linear forms, one recovers the ring of Example 2.1.

Recall that a monomial ideal I satisfies the strong-GCD condition (see [Jöl06, Definition 3.8])
if there exists a linear order ≺ on the set MinGen(I) of minimal monomial generators of I such
that, for any two monomials u ≺ v in MinGen(I), with gcd(u, v) = 1, there exists a monomial
w ∈ MinGen(I), v 6= w, with u ≺ w and such that w divides uv. The ring in Example 2.5 satisfies
the strong-GCD condition, being a product (see [SFW14, Theorem 1.1] and the discussion in the
Introduction). We present here another ideal that satisfies the strong-GCD condition, that is not
Golod. Although it is not a product, it has the advantage of having fewer generators than our
previous ideals. Another example has been discovered by Lukas Katthän [Kat], who considers the
ideal I = (x1x2y, x2x3y, x3x4y, x4x5, x5x1) in the polynomial ring k[x1, x2, x3, x4, x5, y].

Example 2.7. Let S = k[x, y, z], and let I = (x2y, xy2, x2z, y2z, z2). Set R = S/I. The ideal
I satisfies the strong-GCD condition, for example choosing x2y ≺ xy2 ≺ x2z ≺ y2z ≺ z2. Using
Macaulay2 [GS], we checked that the Poincaré series of R starts as

PR(t) = 1 + 3t+ 8t2 + 21t3 + 55t4 + 144t5 + 377t6 + . . .

and that the right-hand side of Serre’s inequality is

(1 + t)3

1− 5t2 − 5t3 − t4
= 1 + 3t+ 8t2 + 21t3 + 56t4 + 148t5 + 393t6 + . . .

Therefore, R is not Golod. Alternatively, one can use the Macaulay2 command isGolod(S/I), or
one can show, with arguments similar to the ones used above, that the product of Koszuyl cycles

((ex ∧ ey)⊗ xy) · (ez ⊗ z) ∈ K3(R)

is not zero in homology. Looking for a squarefree example, using polarization, one obtains that
I ′ = (axy, bxy, axz, byz, cz) ⊆ k[a, b, c, x, y, z] satisfies the strong GCD condition, and is not Golod.
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3. Strongly Golod property for rational powers of monomial ideals

Let k be a field, and let S = k[x1, . . . , xn], with deg(xi) = di > 0. We recall the definition of
rational powers of an ideal.

Definition 3.1. For an ideal I ⊆ S and positive integers p, q define the ideal

Ip/q := {f ∈ R | f q ∈ Ip}.

The integral closure of Ip inside the definition is needed in order to make the set into an ideal,
and to make it independent of the choice of the representation of p/q as a rational number.

Remark 3.2. We would like to warn the reader about a potential source of confusion. When
p = q, the ideal Ip/q = I1/1 is the integral closure I of I, and should not be regarded as the ideal
I1 = I, even though the exponents 1/1 and 1 are equal.

Remark 3.3. If I ⊆ S is a monomial ideal, then so is Ip/q.

Proof. Let f =
∑d

i=1 λiui ∈ Ip/q, where 0 6= λi ∈ k and ui are monomials. Since Ip is monomial,
and we have that f qr ∈ Ipr for all integers r � 0 [HH11, Theorem 1.4.2]. Also, Ipr is monomial,
therefore every monomial appearing in f qr belongs to Ipr, and in particular for any i = 1, . . . , d we
have that uqri ∈ Ipr for all r � 0. This shows that uqi ∈ Ip, that is ui ∈ Ip/q for all i = 1, . . . , d, and

hence Ip/q is monomial. �

In the rest of the section, we assume that the characteristic of k is zero.

Definition 3.4 ([HH13]). A proper homogeneous ideal I ⊆ S is called strongly Golod if ∂(I)2 ⊆ I.

Here, ∂(I) denotes the ideal of S generated by the partial derivatives of elements in I. By [HH13,
Theorem 1.1], if I is strongly Golod, then S/I is Golod. This condition, however, is only sufficient.
For example, the ideal I = (xy, xz) ⊆ k[x, y, z] is Golod [Sha69], or [Avr98, Proposition 5.2.5].
However, it is not strongly Golod. This example is not even squarefree strongly Golod (see Section
4 for the definition). In case I is monomial, being strongly Golod is equivalent to the requirement
that, for all minimal monomial generators u, v ∈ I, and all integers i, j such that xi divides u and
xj divides v, one has uv/xixj ∈ I.

The following argument is a modification of [HH13, Proposition 3.1].

Theorem 3.5. Let I ⊆ S be a strongly Golod monomial ideal. If p > q, then Ip/q is strongly
Golod.

Proof. Let u ∈ Ip/q be a monomial generator, then uqr ∈ Ipr for all r � 0. Let j be an index such
that xj | u, we claim that (u/xj)

qr ∈ Ipr/2 for all even r � 0. Notice that if x2
j | u then, for any

even r, r � 0, we have (
u

xj

)qr
= uq(r/2)

(
u

x2
j

)qr/2
∈ Ip(r/2),

as desired. Now suppose that xj divides u, but x2
j does not. Since for any r � 0 we have that

uqr ∈ Ipr, we can write

uqr = m1m2 · · ·mpr,

where mi ∈ I for all i. Again, we can assume that r is even. For i = 1, . . . , pr let di be the
maximum non-negative integer such that xdij divides mi. Then we can rewrite

uqr = m1 · · ·mama+1 · · ·ma+bma+b+1 · · ·mpr,
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where di = 0 for 1 6 i 6 a, di = 1 for a+ 1 6 i 6 a+ b and di > 2 for a+ b+ 1 6 i 6 pr. Because
of the assumption x2

j 6 | u we have that

qr =

pr∑
i=1

di = b+

pr∑
i=a+b+1

di > b+ 2(pr − b− a).

But we assumed that p > q, therefore pr > b+ 2(pr − b− a), which gives a+ b/2 > pr/2 and also
a+ bb/2c > pr/2 because pr/2 is an integer. Write(

u

xj

)qr
=
uqr

xqrj
= m1 · · ·ma

ma+1

xj
· · · ma+b

xj

ma+b+1 · · ·mpr

xqr−bj

,

then ma+1 . . .ma+b/x
b
j ∈ Ibb/2c because I is strongly Golod, so that ∂(I)b ⊆ Ib

b
2
c. Furthermore,

m1 · · ·ma ∈ Ia. Therefore (
u

xj

)qr
∈ Ia+bb/2c ⊆ Ipr/2.

Now let v ∈ Ip/q be another monomial generator, and assume that xi|v. Then, for all even r � 0
we have (

uv

xjxi

)qr
∈ Ipr

which implies that uv/xjxi ∈ Ip/q. Since u and v were arbitrary monomial generators, Ip/q is
strongly Golod. �

Corollary 3.6. [HH13, Proposition 3.1] Let I ⊆ S be a monomial strongly Golod ideal, then I is
strongly Golod.

Proof. Choose p = q in Theorem 3.5. �

Proposition 3.7. Let I ⊆ S be a monomial ideal. If p > 2q, then Ip/q is strongly Golod.

Proof. Since the ideal Ip/q does not depend on the representation of p/q as a rational number,

without loss of generality we can assume that p is even. Let u ∈ Ip/q be a monomial generator, so
that uqr ∈ Ipr for all r � 0. Let j be such that xj | u, then we can write(

u

xj

)qr
=
uqr

xqrj
=
m1 . . .mpr

xqrj
= m1 . . .mpr−qr ·

mpr−qr+1 . . .mpr

xqrj
,

for some mi ∈ I. But then (u/xj)
qr ∈ Ipr−qr ⊆ Ipr/2 because q 6 p/2. Let v ∈ Ip/q be another

monomial generator and assume that xi | v. For r � 0 we have again that (v/xi)
qr ∈ Ipr/2, so that(

uv

xjxi

)qr
∈ Ipr

for all r � 0, and thus uv/xjxi ∈ Ip/q. Since u and v were arbitrary, we have that Ip/q is strongly
Golod. �

If I is not strongly Golod and 2q > p > q, it is not true in general that Ip/q is strongly Golod,
as the following family of examples shows.

Example 3.8. Let 2q > p > q be two positive integers and consider the ideal I = (xy, zq) inside
the polynomial ring S = k[x, y, z], where k is a field of characteristic zero. Then

(xy)q(zq)p−q = (xyzp−q)q ∈ Ip,

that is xyzp−q ∈ Ip/q. Thus, u := y2z2p−2q ∈ ∂(Ip/q)2. On the other hand, uq = y2qz2pq−2q2
/∈ Ip

because the only monomial generator of Ip that can appear in an integral relation for u is zpq. But

y2qnz2pqn−2q2n /∈ (zpqn)
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for any n because pqn > 2pqn − 2q2n ⇐⇒ p < 2q, and we have the latter by assumption. As a
consequence, u /∈ Ip/q, and thus Ip/q is not strongly Golod.

Remark 3.9. If we choose p = q = 2 in Example 3.8, we have in addition that Ip/q = I = I =
(xy, z2) is not even Golod, because it is a complete intersection of height two.

As a consequence, not all integrally closed ideals, even if assumed monomial, are Golod. A more
trivial example is the irrelevant maximal ideal m. However, as noted above in Corollary 3.6, if I is
a strongly Golod monomial ideal, then I is strongly Golod. More generally, if I ⊆ S = k[x1, . . . , xn]

is homogeneous, then Ij is strongly Golod for all j > n + 1 [HH13, Theorem 2.11]. It is still an

open question whether Ij is strongly Golod, or, at least, Golod, for any ideal I and j > 2. Since
for j > 2, the ideal Ij is strongly Golod, one can ask the following more general question, which
has already been raised by Craig Huneke:

Question 3.10. [MP13, Problem 6.19] Let I ⊆ S be a strongly Golod ideal. Is I [strongly] Golod?

Remark 3.11. We checked with Macaulay2 [GS] that the ideal I of Example 2.5 is integrally
closed. Therefore, the integral closure of a product of ideals, even monomial ideals in a polynomial
ring, may not be Golod.

We end the section with a more generic question about Golodness of the ideal I3/2. Note
that for each ideal I = (xy, zq) of the family considered in Example 3.8, the rational power I3/2

is not strongly Golod. However, it is Golod. In fact, it is not hard to see that I3 = I3 =

(x3y3, x2y2zq, xyz2q, z3q). As a consequence, we have I3/2 = (x2y2, xyzd
q
2
e, zd

3q
2
e). Consider the

linear form x − y ∈ m r m2, which is a non-zero divisor modulo I3/2. The image of I3/2 in the

polynomial ring S′ = S/(x − y) ∼= k[x, z] is (x4, x2zd
q
2
e, zd

3q
2
e). Such an ideal is easily seen to be

strongly Golod, hence Golod. By [Avr98, Proposition 5.2.4 (2)], the ideal I3/2 is then Golod.

Question 3.12. Let I ⊆ S be a proper homogeneous ideal. Is I3/2 always Golod? Is it true if I is
monomial?

4. lcm-strongly Golod monomial ideals

Let k be a field, and let S = k[x1, . . . , xn], with deg(xi) = di > 0.

Definition 4.1. Let m ∈ S be a monomial, and let I ⊆ S be a monomial ideal. Define Im ⊆ I to
be the ideal of S generated by the monomials of I which divide m. We say that I is m-divisible if
I = Im.

Remark 4.2. Note that, choosing m = x1 · · ·xn, then m-divisible simply means squarefree.

We now recall the Taylor resolution of a monomial ideal. Let I ⊆ S be a monomial ideal,
with minimal monomial generating set {m1, . . . ,mt}. For each subset Λ ⊆ [t] := {1, . . . , t} let
LΛ := lcm(mi | i ∈ Λ). Let aΛ ∈ Nn be the exponent vector of the monomial LΛ, and let S(−aΛ) be
the free module, with generator in multi-degree aΛ. Consider the free modules Ti :=

⊕
|Λ|=i S(−aΛ),

with basis {eΛ}|Λ|=i. Also, set F0 := S. The differential τi : Ti → Ti−1 acts on an element of the
basis eΛ, for Λ ⊆ [t], |Λ| = i, as follows:

τi(eΛ) =
∑
j∈Λ

sign(j,Λ) · LΛ

LΛr{j}
· eΛr{j}

Here sign(j,Λ) is (−1)s+1 if j is the s-th element in the ordering of Λ ⊆ [t]. The resulting complex
is a free resolution of S/I over S, called the Taylor resolution. The following was already noted in
[BH95, Corollary 3.2], and [Iye97, Corollary to Theorem 1].
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Remark 4.3. [BH95, Corollary 3.2] Let I be an m-divisible monomial ideal. Then, the Koszul
homology H•(S/I) is Zn-multigraded, and it is concentrated in multidegrees aΛ′ ∈ Nn such that

the monomial x
(aΛ′ )1

1 · · ·x(a′Λ)n
n = LΛ′ divides m.

In [HH13], given a squarefree monomial ideal, Herzog and Huneke introduce the notion of square-
free strongly Golod monomial ideal. Given Remark 4.2, we generalize it to the notion of lcm-strongly
Golod. Let I be a monomial ideal, and let m := lcm(I) be the least common multiple of the mono-
mials appearing in the minimal monomial generating set of I. By definition, I is always m-divisible.
Also, if I is m′-divisible for some other monomial m′, then m divides m′.

In what follows, we assume that the characteristic of k is zero.

Definition 4.4. Let I ⊆ S be a monomial ideal, and let m := lcm(I) be as defined above. Let

∂(I)[2] denote the ideal (∂(I)2)m. We say that I is lcm-strongly Golod if ∂(I)[2] ⊆ I.

We also make the following definition

Definition 4.5. Let I ⊆ S be a proper homogeneous ideal. We say that R = S/I is weakly Golod
if the multiplication on Koszul homology is identically zero.

The following is the main result of the section, and justifies the previous definition. It is a
generalization of [HH13, Theorem 3.5].

Theorem 4.6. Let I ⊆ S be an lcm-strongly Golod monomial ideal. Then, S/I is weakly Golod.

Proof. Let m := lcm(I), so that I is m-divisible and ∂(I)[2] ⊆ I. By Remark 4.3, we can choose
a k-basis of H•(S/I) consisting of elements of multidegrees αΛ, where xαΛ divides m. Let a, b be
two such elements. If ab has multidegree α ∈ Nn, such that xα does not divide m, then necessarily
ab = 0 because of the multigrading on H•(S/I). So assume that the multidegree α of ab is such
that xα divides m. By [Her92], a and b can be represented by cycles whose coefficients are k-linear
combinations of elements in ∂(I). Since I is monomial, so is ∂(I). Because of the multidegree of ab,
we then have that a and b can be represented by cycles whose coefficients are k-linear combinations
of monomials u, v ∈ ∂(I), such that the products uv divide m. Then uv ∈ ∂(I)[2] ⊆ I for each
product uv appearing in these sums, and, as a consequence, ab = 0 in H•(S/I). �

Discussion. It is easy to see that being lcm-strongly Golod is only sufficient to be weakly Golod.
For example, the ideal (xy, xz) ⊆ k[x, y, z] is even Golod [Sha69], but not lcm-strongly Golod. The
proof of Theorem 4.6, as well as the proofs of [HH13, Theorem 1.1] and [HH13, Theorem 3.5], are
based on a canonical description of Koszul cycles whose residue classes form a k-basis for the Koszul
homology H•(S/I) [Her92]. We want to suggest a slightly different definition of strong Golodness:

Potentially, one has to check that ∂i(f)∂j(g) ∈ I for any f, g ∈ I, and any i, j = 1, . . . , n, where
∂i = ∂/∂xi and ∂j = ∂/∂xj . However, by [Her92], each ∂i(f) appears as a factor in some coefficient
of a Koszul cycle, which has the form (ei ∧ . . .) ⊗ ∂i(f) ∈ K• ⊗ S/I = K•(S/I). Therefore, the
corresponding product ∂i(f)∂j(g) will appear inside some coefficient of the form

(ei ∧ ej ∧ . . .)⊗ ∂i(f)∂j(g).

For i = j, we have that ei ∧ ej = 0. Hence we may consider only products ∂i(f)∂j(g), for i 6= j, in
the definition of strongly Golod and lcm-strongly Golod. With this modification, the ideal (xy, xz)
becomes lcm-strongly Golod. The ideal (x2, xy) in the polynomial ring k[x, y], which is lcm-strongly
Golod, with this modification becomes strongly Golod. In fact, xyx ·

xy
x = y2 /∈ (x2, xy) is the product

that is preventing it from being strongly Golod. However, the partial derivatives, in this case, are
both with respect to x, so we can disregard such a product.

Here follows an example of a non-squarefree ideal which is lcm-strongly Golod, but not strongly
Golod, even with the modified definition.
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Example 4.7. Let k be a field of characteristic zero, and let I = (x2y2, x2z, y2z) ⊆ k[x, y, z]. Then
I is not strongly Golod, even in the definition suggested above. In fact, xz, yz ∈ ∂(I) come from
taking derivative with respect to x and y, respectively, but their product is xz · yz /∈ I. However,
such an element does not divide lcm(I) = x2y2z, therefore it can be disregarded when looking at

the lcm-strongly Golod condition. In fact, one can check that ∂(I)[2] ⊆ I, that is, I is lcm-strongly
Golod in this case.

As shown in [HH13, Proposition 3.7] for the squarefree part, if m is a monomial in S, then the
m-divisible part of a strongly Golod monomial ideal is lcm-strongly Golod. We record it in the
next proposition.

Proposition 4.8. Let I ⊆ S be a strongly Golod monomial ideal, and let m be a monomial. Then
Im is lcm-strongly Golod. In particular, I is lcm-strongly Golod.

Proof. We have that

∂(Im)[2] = (∂(Im)2)m ⊆ (∂(I)2)m ⊆ Im.
�

As mentioned in Section 3, if I is a strongly Golod monomial ideal, then I is strongly Golod. It
is natural to ask the following question:

Question 4.9. If I ⊆ S is an lcm-strongly Golod monomial ideal, is I (lcm-strongly) Golod? For

integers p > q, is the ideal Ip/q (lcm-strongly) Golod?

The inequality p > q seems reasonable to require, given previous results.

5. Golodness of products and further questions

Throughout this section, unless otherwise specified, k is a field of characteristic zero, and S =
k[x1, . . . , xn] is a polynomial ring over k, with deg(xi) = di > 0. It is easy to see that arbitrary
intersections of strongly Golod ideals are strongly Golod [HH13, Theorem 2.3 (a)]. Given a proper
homogeneous ideal I ⊆ S, one may ask what is the intersection of all the strongly Golod ideals
containing I. In other words, what is the smallest ideal that contains I and that is strongly Golod.
Clearly, such an ideal must contain I + ∂(I)2. On the other hand, note that ∂(∂(I)2)) ⊆ ∂(I),
therefore

∂(I + ∂(I)2)2 ⊆ I + ∂(I)2.

Thus, I + ∂(I)2 is strongly Golod, and it is indeed the smallest strongly Golod ideal containing I.
We now introduce a sufficient condition, which is far from being necessary, for the product of

two ideals to be strongly Golod.

Definition 5.1. Let S = k[x1, . . . , xn] and let I, J ⊆ S be two ideals. (I, J) is called a strongly
Golod pair if ∂(I)2 ⊆ I : J and ∂(J)2 ⊆ J : I.

Note that, for examples of small size, the conditions from Definition 5.1 can easily be checked
with the aid of a computer. The following proposition is the main motivation behind the definition.

Proposition 5.2. If (I, J) is a strongly Golod pair, then IJ is strongly Golod.

Proof. We noted above that the smallest strongly Golod ideal containing IJ is IJ +∂(IJ)2. In our
assumptions, we have

∂(IJ)2 ⊆ (∂(I)J + I∂(J))2 ⊆ ∂(I)2J2 + I2∂(J)2 + IJ ⊆ IJ.

Therefore, IJ + ∂(IJ)2 = IJ , which is then strongly Golod. �
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Note that, looking at the proof of Proposition 5.2, one may notice that the conditions ∂(I)2 ⊆
IJ : J2 and ∂(J)2 ⊆ IJ : I2 are sufficient in order for the product IJ to be strongly Golod.
However, when studying properties of the product IJ , one can replace the ideal I with IJ : J
without affecting the product. In fact:

IJ ⊆ (IJ : J)J ⊆ IJ,

forcing equality. Repeating the process, one gets an ascending chain of ideals containing I, that
eventually stabilizes. Therefore one can assume that IJ : J = I. Similarly, one can assume that
IJ : I = J . Therefore the conditions above become

∂(I)2 ⊆ IJ : J2 = (IJ : J) : J = I : J,

which is precisely the requirement in the definition of strongly Golod pair. Similarly for the other
colon ideal. Of course, as long as one can write an ideal in terms of a Golod pair, one gets that the
ideal is strongly Golod. Therefore, one may keep in mind the weaker colon conditions that come
from the proof of Proposition 5.2. Examples of strongly Golod pairs include:

(1) (Ir, Is), for any proper ideal I ⊆ S and any integers r, s > 1.
(2) If I and J are strongly Golod, then (I, J) is a strongly Golod pair.
(3) If I ⊆ J and I is strongly Golod, then (I, J) is a strongly Golod pair.
(4) (I, I : ∂(I)2) is a strongly Golod pair for any proper ideal I ⊆ S.

Remark 5.3. Let I1, . . . , In be proper ideals in S. Assume that, for all i = 1, . . . , n there exists
j 6= i such that (Ii, Ij) is a strongly Golod pair, then the product I := I1 · · · In is strongly Golod.
In fact

∂(I1I2 . . . In) ⊆ ∂(I1)I2 . . . In + I1∂(I2) . . . In + . . .+ I1I2 . . . ∂(In).

Thus

∂(I)2 ⊆ ∂(I1)2I2
2 · · · I2

n + I2
1∂(I2)2 · · · I2

n + . . .+ I2
1I

2
2 · · · ∂(In)2 + I.

By assumption, for each i there exists j 6= i such that ∂(Ii)
2Ij ⊆ Ii, and the claim follows. More

generally, one could define (I1, . . . , In) to be a strongly Golod n-uple provided

∂(Ii)
2 ⊆ I : (I1 · · · Ii−1 · Ii+1 · · · In)

for all i = 1, . . . , n. Then, the above argument shows that if (I1, . . . , In) is a strongly Golod n-uple,
the product I1 · · · In is strongly Golod.

All the conditions discussed above are sufficient, but evidently not necessary, for a product of
two ideals to be Golod. We raise the following general question:

Question 5.4. Is there some relevant class of [pairs of] ideals for which products are [strongly]
Golod?

In particular, note that in all the examples of Section 2, the ideals appearing in the product are
not Golod. It is then natural to ask:

Question 5.5. If one of the two ideals I1, I2 [or both] is Golod, is then S/I1I2 Golod?

Another problem relating Golod rings to products is the following. Let I, J be two proper
homogeneous ideals in a polynomial rings S = k[x1, . . . , xn], with m = (x1, . . . , xn). Suppose that
S/IJ is Cohen-Macaulay. In [Hun07], Huneke asks whether the Cohen-Macaulay type, that is,

t(S/IJ) = dimk Extdepth(S/IJ)(k, S/IJ), is always at least the height of IJ . This was motivated by
the fact that Gorenstein rings are never products, unless they are hypersurfaces. Thus, when S/IJ
is Cohen-Macaulay and not a hypersurface, the type is always at least two. As noted in [Hun07],
the case when I = m and J is m-primary, follows by Krull’s height theorem. In our context, it
seems natural to ask the following question:
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Question 5.6. Let I ⊆ S be a homogeneous ideal such that S/I is Cohen-Macaulay and Golod.
Is it true that the Cohen-Macaulay type t(S/I) is always at least ht(I)? Is the Cohen-Macaulay
assumption needed?

As pointed out by Frank Moore, there is still no example of a ring which is not Golod, and for
which the second Massey operation is trivial. With our notation, this means that it is not known
whether weakly Golod rings are always Golod. As explained earlier in this article, it has been
claimed in [BJ07, Theorem 5.1] that this is true in case the ideal is monomial. Given the examples
in Section 2, and our previous discussions, we do not know whether such an argument is still valid.
We decided to raise the general question here again:

Question 5.7. Are weakly Golod rings always Golod? Is it true for monomial ideals? Is there any
relevant class of ideals for which this holds true?

In [HH13, Proposition 2.12], Herzog and Huneke show that the Ratliff Rush filtration of a strongly
Golod ideal is strongly Golod. We obtain a similar statement, using Golod pairs.

Proposition 5.8. If (I, J) is a strongly Golod pair, then the ideal⋃
n>0

(
In+1J : In

)
is strongly Golod.

Proof. Let f ∈ S be such that fIn−1 ⊆ InJ for some n. Then fIn ⊆ In+1J . Let ∂ denote a partial
derivative with respect to any variable. Taking partial derivatives, from the containment above we
obtain that

∂(f)In ⊆ fIn−1∂(I) + In∂(I)J + In+1∂(J) ⊆ In∂(I)J + In+1∂(J).

Let f, g ∈
⋃
n>0 I

n+1J : In and choose n� 0 such that fIn−1 ⊆ InJ and gIn−1 ⊆ InJ . Then

∂(f)∂(g)I2n ⊆ I2n∂(I)2J2 + I2n+2∂(J)2 + I2n+1J ⊆ I2n+1J

because ∂(I)2J ⊆ I and I∂(J)2 ⊆ J . �

In particular, Proposition 5.8 shows that the Ratliff-Rush closure of any power Id, d > 2, is
strongly Golod. In fact, it is enough to apply Proposition 5.8 to the strongly Golod pair (Id−1, I).
This already follows from [HH13, Proposition 2.12], since Id is strongly Golod for any d > 2.

Given that the Ratliff-Rush closure of a strongly Golod ideal is strongly Golod we ask:

Question 5.9. Given a strongly Golod ideal I ⊆ S, is every coefficient ideal of I [strongly] Golod?

Question 5.9 is a more general version of Question 3.10. In fact, both the integral closure and
the Ratliff-Rush closure are coefficient ideals. See [Sha91] for details about coefficient ideals.

We conclude the section with two questions regarding the notion of strongly Golod ideal. The
definition of strongly Golod ideals is restricted to homogeneous ideals in a polynomial ring S =
k[x1, . . . , xn], with k a field of characteristic zero. This is because Herzog’s canonical lift of Koszul
cycles [Her92] can be applied only under these assumptions.

Question 5.10. Is there a suitable definition of strongly Golod for local rings, at least when the
ring contains a field?

Question 5.11. Is there a notion of strongly Golod that does not require the characteristic of k
to be zero?
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A. The minimal free resolution of Example 2.5

Let k be a field, and let S = k[a, b, c, d, x, y, z, w]. Consider the monomial ideals I1 = (ax, by, cz, dw)
and I2 = (a, b, c, d) inside S. Let I := I1I2 be their product, and set R = S/I. Let T =
Z[a, b, c, d, x, y, z, w], and let J be the ideal I inside T . Then, using the Macaulay2 command
res J, we get a resolution of J over T

F• : 0 // T 5 ϕ4 // T 20 ϕ3 // T 30 ϕ2 // T 16 ϕ1 // T
ϕ0 // T/I // 0.

Assume that char(k) = p > 0. We checked with Macaulay2 [GS] that (a2x) ⊆ I(ϕ1), where I(ϕ1)
is the Fitting ideal of the map ϕ1. This is still a regular element after tensoring with −⊗Z Z/(p),
so that grade(I(ϕ1 ⊗ 1Z/(p))) > 1. Similarly, one can see that

(a12x3, b12y3) ⊆ I(ϕ2) (a15x3, b15y3, c15z3) ⊆ I(ϕ3) (a5x, b5y, c5z, d5w) ⊆ I(ϕ4)

Since the former stay regular sequences after tensoring with −⊗Z Z/(p) we obtain that

grade(I(ϕi ⊗ 1Z/(p))) > i

for all i = 1, . . . , 4. In addition, the ranks of the maps add up to the correct numbers after tensoring.
By Buchsbaum-Eisenbud’s criterion for exactness of complexes [BE73], F• ⊗Z Z/(p) is a minimal
free resolution of J⊗ZZ/(p) as an ideal of T ⊗Z Z/(p) ∼= Z/(p)[a, b, c, d, x, y, z, w]. Finally, since the
map T ⊗Z Z/(p) → S is faithfully flat, tensoring with (F• ⊗Z Z/(p))⊗Z/(p) S gives a minimal free
resolution of I over S, using Buchsbaum-Eisenbud’s criterion for exactness of complexes [BE73]
once again. When char(k) = 0, one can use Q instead of Z/(p) and the same arguments can be
applied.

Therefore we get a resolution

F• ⊗Z S : 0 // S5 ϕ4 // S20 ϕ3 // S30 ϕ2 // S16 ϕ1 // S
ϕ0 // R // 0.

Letting E
(i)
j be the canonical bases of the modules Fi ∼=

⊕βi
j=1 T , for i = 0, . . . , 4, the matrices

representing the differentials of the minimal free resolution of J over T are the same as the ones of
a minimal free resolution of I over S. Here follows a description of such matrices. All the missing
entries should be regarded as zeros:

ϕ1 E
(1)
1 E

(1)
2 E

(1)
3 E

(1)
4 E

(1)
5 E

(1)
6 E

(1)
7 E

(1)
8 E

(1)
9 E

(1)
10 E

(1)
11 E

(1)
12 E

(1)
13 E

(1)
14 E

(1)
15 E

(1)
16

E
(0)
1 a2x abx acx adx aby b2y bcy bdy acz bcz c2z cdz adw bdw cdw d2w
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ϕ
2
E

(2
)

1
E

(2
)

2
E

(2
)

3
E

(2
)

4
E

(2
)

5
E

(2
)

6
E

(2
)

7
E

(2
)

8
E

(2
)

9
E

(2
)

1
0
E

(2
)

1
1
E

(2
)

1
2
E

(2
)

1
3
E

(2
)

1
4
E

(2
)

1
5
E

(2
)

1
6
E

(2
)

1
7
E

(2
)

1
8
E

(2
)

1
9
E

(2
)

2
0
E

(2
)

2
1
E

(2
)

2
2
E

(2
)

2
3
E

(2
)

2
4
E

(2
)

2
5
E

(2
)

2
6
E

(2
)

2
7
E

(2
)

2
8
E

(2
)

2
9
E

(2
)

3
0

E
(1

)
1
−
b
−
c

−
d

E
(1

)
2

a
−
c

−
d

−
y

E
(1

)
3

a
b

−
d

−
z

E
(1

)
4

a
b

c
−
w

E
(1

)
5

−
b
−
c

−
d

x

E
(1

)
6

a
−
c

−
d

E
(1

)
7

a
b

−
d

−
z

E
(1

)
8

a
b

c
−
w

E
(1

)
9

−
b
−
c

−
d

x

E
(1

)
1
0

a
−
c

−
d

y

E
(1

)
1
1

a
b

−
d

E
(1

)
1
2

a
b

c
−
w

E
(1

)
1
3

−
b
−
c

−
d

x

E
(1

)
1
4

a
−
c

−
d

y

E
(1

)
1
5

a
b

−
d

z

E
(1

)
1
6

a
b

c
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ϕ3 E
(3)
1 E

(3)
2 E

(3)
3 E

(3)
4 E

(3)
5 E

(3)
6 E

(3)
7 E

(3)
8 E

(3)
9 E

(3)
10 E

(3)
11 E

(3)
12 E

(3)
13 E

(3)
14 E

(3)
15 E

(3)
16 E

(3)
17 E

(3)
18 E

(3)
19 E

(3)
20

E
(2)
1 c d

E
(2)
2 −b d

E
(2)
3 a d −yz

E
(2)
4 −b −c

E
(2)
5 a −c −yw

E
(2)
6 a b −zw

E
(2)
7 c d

E
(2)
8 −b d xz

E
(2)
9 a d

E
(2)
10 −b −c xw

E
(2)
11 a −c

E
(2)
12 a b −zw

E
(2)
13 cz dw

E
(2)
14 c d −xy

E
(2)
15 −b d

E
(2)
16 a d

E
(2)
17 −b −c xw

E
(2)
18 a −c yw

E
(2)
19 a b

E
(2)
20 −by dw

E
(2)
21 ax dw

E
(2)
22 c d −xy

E
(2)
23 −b d −xz

E
(2)
24 a d −yz

E
(2)
25 −b −c

E
(2)
26 a −c

E
(2)
27 a b

E
(2)
28 −by −cz

E
(2)
29 ax −cz

E
(2)
30 ax by
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ϕ4 E
(4)
1 E

(4)
2 E

(4)
3 E

(4)
4 E

(4)
5

E
(3)
1 −d

E
(3)
2 c

E
(3)
3 −b

E
(3)
4 a −yzw

E
(3)
5 −d

E
(3)
6 c

E
(3)
7 −b xzw

E
(3)
8 a

E
(3)
9 −d

E
(3)
10 c −xyw

E
(3)
11 −b

E
(3)
12 a

E
(3)
13 −d xyz

E
(3)
14 c

E
(3)
15 −b

E
(3)
16 a

E
(3)
17 −dw

E
(3)
18 cz

E
(3)
19 −by

E
(3)
20 ax
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mial rings. J. Pure Appl. Algebra, 207(2):261–298, 2006. 1, 2, 6
[Kat] Lukas Katthän. Personal communication. 6
[MP13] Jason McCullough and Irena Peeva. Infinite graded free resolutions. Available online at

http://www.math.cornell.edu/ irena/papers/infiniteRes.pdf, 2013. 1, 9
[Rot09] Joseph J. Rotman. An introduction to homological algebra. Universitext. Springer, New York, second edition,

2009. 4
[SFW14] S. A. Seyed Fakhari and V. Welker. The Golod property for products and high symbolic powers of monomial

ideals. J. Algebra, 400:290–298, 2014. 1, 2, 6
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