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Chapter 1

Introduction

1.1 Sediment starved patterns

Sediment patterns produced by natural water flows over erodible granular surfaces are
highly intriguing and equally of great practical importance. In order to rationally introduce
the reader to the variety of sediment patterns encountered in nature, a criterion for their
classification is briefly outlined below. It is possible to distinguish among erosional, deposi-
tional and equilibrium patterns depending on the balance between sediment availability and
the sediment transport capacity of the forcing flow. Erosional patterns are mainly present in
the upper part of river basins (mountain fronts, glaciers) where sediment supply is typically
smaller than flow transport capacity. Depositional patterns develop at the base of mountain
fronts (alluvial fans) and in those transitional regions where rivers meet the ocean (deltas,
lagoons) owing to the inevitable reduction in the velocity of the carrier flows and also in
their resulting transport capacity. Erosional and depositional patterns are the expression
of a forced response of the flow-sediment system to hydrologic and geometric constraints.
In contrast, equilibrium patterns arise as rhythmic oscillations of erosion and deposition in
space and time so that a spatial-temporal equilibrium is maintained. These patterns (bed-
forms, planforms) represent a free response of the flow-sediment system to instabilities of
the liquid-solid interface in the form of internal waves showing a spectacular surprisingly
self-organisation. Depending on the various physical processes driving their formation, these
regular patterns display different spatial and temporal scales. The sediment patterns listed
below form as a free instability of the bed elevation, known as bedforms, and shape shallow
water seafloors and fluvial channels. Of note, although the erosion and deposition itsef is a
forced response, there can still be free responses (bedforms) within the upper part of river
basins (cyclic steps, climbing ripples).

River beds are seldom flat and those that contain sand generally exhibit fairly regular
undulations that arise spontaneously from an instability of the bed surface. These rippled
sandy beds develop when viscosity affects the vertical velocity profile of the river stream
in the near-bed region (hydraulically smooth and transitional flows) and, in turn, the bed
shear stress and the related sediment transport, inducing a particular bed wave instability
that ultimately leads to the appearance of the aforementioned bedforms, known as ripples.
These small-scale sandy patterns exhibit asymmetric profiles with fairly regular crests that
migrate invariably downstream and their formation does not depend on the flow depth being
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1.1 SEDIMENT STARVED PATTERNS 1 INTRODUCTION

Figure 1.1: Fascinating bedforms of Curtis Island, Cape Capricorn, Queensland, Australia.
From the series ‘Abstract Earth’ © Richard Woldendorp.

characteristic of subcritical flows in the Reynolds sense: they are likely to emerge when the
grain Reynolds number is lower than a certain critical value. Dunes are very similar to ripples
as they exhibit many comparable characteristics, although these bedforms are much larger
in size and they form where coarser sediment disrupts the viscous sub-layer (hydraulically
rough flows). Fluvial dunes are sand waves that, invariably, migrate downstream and are
marked by a sequence of gentle lee-slopes and sharp stoss-fronts. Their typical crest-to-crest
distance scales with the flow depth and they are characteristic of subcritical flows in the
Froude sense. Antidunes are a distinct class of bedforms, which scale with the flow depth
and emerge from sediment mixtures forced by supercritical streams and, unlike dunes, these
bedforms may migrate either upstream or downstream exhibiting rather symmetric profiles.
All the above listed bedforms have crests perpendicular to the main direction of the flow
and, as such, are a primary source of flow roughness. Their presence is therefore a major
factor in determining water levels. On the one hand, flow and sediment transport produce
bedforms, on the other hand, bedform appearance profoundly influences flow and sediment
transport. Because of their significance in formulating depth-discharge relations for river
flows and predictor formulae for sediment transport, bedforms in general, and dunes in
particular, received extensive attention from engineers and geomorphologists.

Even more fascinating is the variety of beforms encountered in shallow sandy seas. Most
readers would be familiar with those small regular patterns that are clearly visible on sandy
beaches during low tide. These bedforms are known as sea wave ripples as they form as a
consequence of the oscillatory flow at the bottom of sea waves in the surf zone. In deeper
waters, sea wave ripples are found on the flanks of larger morphological patterns resulting in
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1 INTRODUCTION 1.1 SEDIMENT STARVED PATTERNS

an overlap of different types of bedforms generating fascinating and complex morphologies.
The most common large-scale bedforms encountered in shallow water offshore regions are
sand dunes and sand banks that are respectively associated with relatively weak and strong
tidal currents. Tidal dunes are rhythmic, elongated, sandy bodies which are typically several
meters high and display a regular spacing of the order of hundreds of meters. Their for-
mation comes as a consequence of oscillatory tidal flows that interact harmonically with the
perturbations of the seabed giving rise to steady recirculating cells that cause a net sediment
transport which drags sediments towards the crests of these patterns. Since these bedforms
evolve in unsteady oscillating currents, their sawtooth profiles are less asymmetric than those
of fluvial dunes, and flow separation does not occur at their crests. Tidal banks are huge sandy
bodies tens of meters high and tens of kilometres long spaced a few kilometres apart and,
in the northern hemisphere, display crests rotated counterclockwise with respect to the main
direction of the tidal current. A different interaction of oscillatory flows with seabed undula-
tions leads to the appearance of tidal banks. When a tidal current crosses a sand bank whose
crest is inclined with respect to the propagation of the tidal wave, the velocity of the current
experiences an increase of its cross-bank component as the water depth decreases, whereas
its along-bank component decreases as the bottom friction increases. Such a deflection of
tidal currents that cross a sand bank results in a net sediment transport which is directed
towards the bank crest during both the flood and ebb phase of the tide, thus resulting in
bank accretion. In contrast to tidal sand banks that hardly ever move, tidal dunes behave
very dynamically and their remarkable migration strongly depends on the intensity of the
local residual current. Tidal dune migration and seasonal-variations in their amplitude and
shape significantly affect the bathymetry of shallow water regions. In some cases, this leads
to a reduction of water depths in navigation channels. Understanding their dynamics has a
crucial application in the proper design of procedures related to dredging and mining activ-
ities. Furthermore, their migration may also cause the exposure of submarine pipelines and
cables. And indeed strong tidal currents and severe sea storms may, in turn, lead to faults
and/or damage of these infrastructures. The practical interest in tidal dunes arises in connec-
tion with the construction, safeguarding and maintenance of offshore and coastal structures,
whose safety can be endangered by dune migration.

Both field observations and laboratory experiments have revealed that sediment transport
produced by water flows can strongly vary as a result of the appearance of sediment patterns
and/or the variability in sediment supply. As sediment supply to a stream is progressively
reduced, the active zone of sediment transport narrows and some of the coarser particles
get left behind on the bed. This results in an overall fining of the sediment in motion and a
coarsening of the sediment resting at the bottom (Dietrich et al., 1989). As a consequence,
limitation of the sediment supply can cause an expansion of coarse patches that eventually
leads to the formation of a motionless substratum which inhibits the entrainment of sediment,
This condition will herein be referred to as sediment starvation. The size of the material
available for transport, as well as that of the transported particles, determines the mobility
of the sediment mixtures. Gravel-sand mixtures can experience full or partial mobility. Full
mobility occurs when the particle size in transport and that resting at the bed is approximately
the same, whereas the latter, partial mobility, occurs when transported sediment is finer than
bed material.

As channel slopes decrease, rivers typically exhibit abrupt transitions from gravel to sandy
bottoms. In gravel-bed rivers, full mobility transport is rare as they usually experience partial
mobility and, in many cases, seasonal and perennial streams exhaust the supply of sediment
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1.2 DUNE MORPHODYNAMICS 1 INTRODUCTION

that their transport capacity is able to entrain. As such, the finer sediment is mobilised while
the mean grain size of the sediment resting at the bed surface becomes coarser. As a result,
poorly sorted mixtures of sediment subject to periods of low flows or discharge waves un-
dergo a transient degradation until they are fully armoured (Parker et al., 1982). Then the
armour layer inhibits the entrainment of finer sediment from the bed which eventually leads
to sediment starvation. Such sediment starvation may be natural, as described above, or
may be man-made (such as erosion prevention measures) or induced (such as construction
of dams). Among the most significant factors affecting global sediment delivery is the con-
struction of dams in fluvial networks that cause rivers to fragment into a series of pools hence
altering natural sediment transport. Dams trap sediment in their storage reservoirs and thus
drastically reduce the sediment supply for downstream transport leading to dramatic effects
on fluvial and coastal morphologies and, on a more local scale, sediment starvation.

Where sediment starvation does not affect the formation of sediment patterns, a well-
known sequence of alluvial bedforms, that includes ripples, dunes and antidunes, can be
identified as the strength of the forcing flow increases. A comparable sequence of bedforms
has not yet been precisely identified whereby their appearance is also dictated by sediment
starvation. Starved bedforms of fine sediment that develop over a static coarser substratum
have been nevertheless well documented and include sand ribbons, barchans and dunes.
Most readers should have at least some familiarity with aeolian barchan dunes widespread
over sand-deserts. In subaqueous environments, starved bedforms have been especially ob-
served in gravel bed rivers where the armour layer develops, but fine material continues to
be persistently supplied from floodplains and hillslopes. Barchan dunes have a crescent shape
with horns pointing downstream and seem to form whenever transported sediment is insuffi-
cient for the formation of fully developed ripples or dunes. As the sediment supply increases,
barchans may gradually coalesce to dunes in a transition process, starting from barchans to
barchanoids with increasing slip-face lengths, onto dunes with a barchanoid shape, and even-
tually to more or less two-dimensional transverse dunes which exhibit flat troughs where a
motionless substrate is exposed (Kleinhans et al., 2002), hereinafter referred to as starved
dunes.

A similar sequence of bedforms has also been well-described in aeolian environments
(Bagnold, 1953), tidal environments (Allen, 1968) and on the sea floor (Lonsdale and Mal-
fait, 1974). This suggests that a definable suite of starved bedforms develops regardless of
the nature and the motion of the carrier fluid. Amorphous sandy mounds have been observed
in submarine shallow water environments, where sediment starvation prevents the appear-
ance of typical tidal dunes (Le Bot, 2001). In offshore regions, where tidal currents accelerate
because of geometric constraints, intense flow velocities prevent the uniform deposition of
sediment eventually leading to the exposition of relict pebble lags deposited before the post-
glacial sea level rise (Houbolt, 1968). Over these motionless substrata, mobile sediment is
transported in the form of morphological patterns that resemble tidal dunes but display more
irregular geometries and a much larger spacing, these bedforms will herein be referred to as
tidal sandy mounds.

1.2 Morphodynamics of fluvial and coastal dunes

How natural water flows interact with erodible granular surfaces by sediment transport is
an interesting subject that becomes even more compelling when the feedback between sedi-
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ment transport and morphology is taken into account. Geomorphology, the study of the form
of the ground surface and the processes that mould it, has recently tended to become more
deeply involved with the quantitative understanding of the processes of erosion, transport
and deposition of sediment that are ultimately responsible for landform formation. Resul-
tantly, it has developed many branches that comprise the study of a wide range of phenom-
ena. Morphodynamics has been conceived in such a strongly interdisciplinary context and,
originally developed at the boundary between geomorphology (Allen, 1982) and hydraulic
engineering (Vanoni, 1975), it has rapidly evolved from an initial descriptive empirical status
to establishing itself as a stand-alone branch of fluid mechanics. Coastal and river morpho-
dynamics refer to the study of the fascinating interaction of seafloor and river channels with
free surface water flows by sediment transport. Water flowing over an erodible surface in-
duces sediment transport that changes the morphology of the surface whose evolution, in
turn, changes the flow and sediment transport fields in a continuous feedback loop.

Felix Maria Exner, an Austrian researcher active in the early part of the twentieth cen-
tury, was the first to derive an equation describing the conservation of sediment mass which
was instrumental in aiding the formulation of the morphodynamic problem in quantitative
terms. Morphodynamics generally deals with the motion of the interface between an erodible
medium consisting of motionless, densely-packed sediment particles and a dynamic mixture
composed of flowing water and transported sediment particles. Water flow may entrain sed-
iment belonging to the erodible medium and, conversely, sediment transported by the flow
may deposit at the interface between the two media. The inherent non-uniformity of both
forcing flows and sediment supplies leads to an imbalance between entrainment and depo-
sition of sediment ultimately resulting in the displacement of the liquid-solid interface. The

Figure 1.2: Barchan dunes of the Namib Desert, Namibia. © Ladislav Kamaràd.
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1.2 DUNE MORPHODYNAMICS 1 INTRODUCTION

equation describing the evolution of the erodible interface can be derived directly from the
conservation of the sediment mass, commonly quoted as the Exner equation (Exner, 1925).

In many cases, the problem of morphodynamics reveals itself as a free boundary prob-
lem. Since an exchange of sediment particles exists between the water flow and the erodible
medium, the time development of the interface between the two media turns out to be very
much like that of a free boundary, the shape of which is apriori unknown depending on the
highly variable parameters that characterise water flow and sediment supply. As would be ex-
pected, instabilities of the free boundary arise spontaneously as internal waves which shape
the boundary itself and, as a result, the processes of erosion, transport and deposition of
sediment are responsible for the formation of specific and somewhat predictable sediment
patterns that ultimately determine the morphology of river channels, coasts and offshore
regions.

As already pointed out in 1.1, among the variety of sediment patterns typically observed in
fluvial and coastal environments sand dunes are far more important than any other bedforms.
The appearance of sand dunes and their characteristics have been studied in great detail by
various researchers over the years and a great deal of theoretical and physical modelling has
been carried out in relation to their morphology and dynamics. Progress in the understanding
of dune dynamics is still being made with ever improving techniques through laboratory
and field observations. Field surveys clearly show that these bedforms are repetitive both
in time and space and, as such, typical wavelengths, amplitudes and migration speeds can
be assigned to them. Although no theoretical models has yet been able to reproduce all
the characteristics of sand dunes correctly, idealised models do exist which are capable of
predicting their spacing. By describing their appearance as a free instability of a sandy bottom
forced by a water flow, these models, based on a linear stability analysis, are able to predict
dune wavelengths in fair agreement with both laboratory and field observations.

The morphodynamic evolution of subaqueous sand dunes is a non-trivial problem which
has been addressed by several authors. A first theoretical approach to the study of sand
dune formation was proposed by Kennedy (1969), who’s contribution proved that fluvial

Figure 1.3: Sand dunes of the Delta do Parnaìba, Brazil. © Maranhão de Todos Nòs.
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1 INTRODUCTION 1.3 HYDRAULIC SEDIMENT TRANSPORT

dunes can be interpreted as a free instability of perturbed alluvial beds forced by uniform
steady flows. Later, Engelund (1970), described dune instability as a result of the balance
between the stabilising effects of gravity and the destabilising effects of friction leading to a
phase shift between the bottom perturbation and the perturbation of the shear stress which
drives the instability process. By using suitable flow models and the sediment continuity
equation, progresses were made in the modelling of the formation of fluvial dunes within the
framework of linear stability encompassing various lines of research (Richards, 1980). An
extensive review of the linear theory of fluvial dune formation can be found in Colombini
(2004), who revisited it by overcoming some deficiencies in the state-of-the-art modelling
through the use of a more refined description of both hydrodynamics and sediment transport.

A similar instability process is responsible for the emergence of tidal dunes. A first at-
tempt, proposed by Deigaard and Fredsøe (1987), was made to extend the aforementioned
theoretical modelling developed in the framework of alluvial streams to the problem of tidal
dune formation. Based on the physical analogy between fluvial dunes, which form where al-
luvial beds are forced by steady currents, and tidal dunes, which form where sandy seafloors
are forced by slow varying tidal currents, the model is an adaptation of the dune model by
Fredsøe (1974). However, since tidal flows have an intrinsic oscillatory character, the mech-
anism leading to the appearance of tidal dunes turns out to be different from that which in-
duces the formation of dunes in fluvial environments. The presence of tidal dunes is related
to steady streams in the form of recirculating cells over the depth owing to the interaction
between seafloor perturbations and oscillatory tidal flows. The first detailed investigation of
this interaction was made by Hulscher (1996), who proved that these large-scale sand waves
can be interpreted as a free instability of a seabed undulation forced by tidal currents. Later
Besio et al. (2006) improved the linear stability analysis proposed by Hulscher (1996) ac-
counting for a more refined description of turbulence dynamics which allows the complete
evaluation of the flow field from the bottom up to the free surface. Moreover, Besio et al.
(2006) accounted for the presence of residual currents, which have a large influence on the
migration of tidal dunes, and of wind waves, whose stirring lift into suspension large amounts
of sediment affecting the formation of tidal dunes. In addition, they were able to highlight
the crucial role played by the phase shift between different tidal constituents in determining
dune migration, which is their most important property to be evaluated.

1.3 Hydraulic sediment transport

The above-mentioned morphodynamic predictions of the dynamics of sediment patterns
observed in fluvial and coastal environments strongly rely on the modelling of sediment trans-
port for given hydraulic conditions and sediment parameters.

The term sediment encompasses a wide range of particles with different grain sizes, rang-
ing from fine clay to large boulders, that are produced in the upper part of river basins by
weathering of mountain rocks and, as a result, it is composed of a variety of rock miner-
als. Silicates are the main constituents of rocks, the most diffused of which are feldspar and
quartz, which are very resistant minerals that can travel long distances without loosing in-
tegrity. Other diffused minerals are carbonates, that are the basic constituents of sedimentary
rocks, like limestone and dolomite. Limestone is a far less resistant rock that easily degrades
to silt eventually leading to its total dissolution into water and, as such, clastic limestone
sediment is hardly ever found at locations far from its source. Lesser abundant rocks in the
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1.3 HYDRAULIC SEDIMENT TRANSPORT 1 INTRODUCTION

crust of the Earth include basalt, granite and more esoteric variants such as those composed
of magnetite. The specific gravity of the sediment, that being the ratio between the sedi-
ment density and the density of the surrounding fluid, depends on the type of parent rock
the sediment derives from. This is a crucial factor in determining sediment entrainment and
transport.

During its gradual descent from the mountain slopes to the abyssal plains, sediment is
transported by gravitational forces acting on the solid particles or on the fluid flows thereby
transmitting momentum to the particles via drag. Sediment motion begins high up on moun-
tain slopes where the raindrops cause sheet erosion and rapid snow-melts trigger rock slides.
Rocky debris that has made its way down the slopes finally deposits as alluvial fans at the
base of the mountain fronts. Here, mixtures of coarse material, possibly embedded in a
muddy matrix, can be destabilised by heavy rainfalls and can ultimately lead to landslides,
debris flows and mud flows. In all these transport phenomena the dominant mechanism of
sediment motion is an interplay between gravity and inter-particle friction.

The material eroded in the upper part of river basins reaches river networks and the sed-
iment that does make it this far is further mobilised by river streams through river channels,
which act as conduits for sediment movement. Streams entrain sediment; the stronger the
flow, the larger the amount of sediment in motion. Throughout its fluvial journey, sediment
is continually altered as a consequence of selective sorting and particle abrasion and so, pro-
ceeding further downstream, the sediment mixture at the river bed undergoes progressive
fining. In the upper part of the watersheds, gravel-bed streams are characterised by poorly
sorted sediment mixtures whereas, further towards the ocean, sand bed streams dissecting
the floodplains are characterised by well sorted mixtures. A noteworthy property of sediment
mixtures is its grain size distribution and, as grains display different shapes depending on the
amount of abrasion they incur, it is necessary to define a conventional grain size so as to give
an overall average. Such a categorisation is carried out in different ways, the most common
of which is by sieving, which is employed for mixtures consisting of grains ranging from silt to
fine gravel. It is thus possible to determine the grain size distribution by defining the cumu-
lative distribution function for a given grain size, which is the fraction of the sample weight
which contains only grains smaller than the given size. Furthermore, sediment mixtures are
also characterised by their porosity, that being the ratio between the volume of the voids in a
given sample and its total volume. Sediment mixtures in natural environments have different
porosity depending on their grain size distribution.

Where rivers meet the ocean, hydraulic sediment transport is significantly affected by
tides, winds and waves. Here, sediment does not only originate from fluvial networks, but
may also originate from the erosion of coastal cliffs, the decomposition of sea shells and other
marine organisms. Finally, in the very last part of its journey, sediment sinks from the coastal
regions to the abyss. Turbidity currents carry suspended sediment across the continental
shelf down to the deep sea. Severe sea storms, submarine landslides, or sediment-laden
river outflows can mobilise significant amounts of sediment in suspension which, in turn,
may reach the inlet of submarine canyons. Mixtures of water and sediment approaching
canyon inlets have a density higher than the surrounding water and thus they move down the
canyon slopes in the form of turbidity currents until the flat abyssal plains. Here, the currents
decelerate leading to the settling of the sediment and, as a result of geological diagenesis,
offshore sediment deposits eventually evolve into deep water rocks, called turbidities.

Throughout the sediment cycle briefly illustrated, natural fluid flows interact with the
erodible surface of the Earth by sediment transport. Mechanics of sediment transport refers

8
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to theories and experiments concerning the physical mechanisms that drive the transport
of granular particles by fluid flows and, as such, it pertains to the motion of two phase
flows, one phase being fluid and the other solid. In the following, attention is drawn to
the sediment transport exclusively due to the action of water flows typically encountered in
fluvial and coastal environments. Here, the concentration of sediment tends to be rather
dilute throughout the water column, although this does increase towards the bottom where
it attains significant values only in a thin layer confined to the liquid-solid interface. As a
consequence, it is generally assumed that large scale water flows are not affected by the
presence of the solid phase. The inherent turbulent nature of these flows further complicates
the picture. Intermittent turbulent sweeps close to the ground and intense random ejections

Figure 1.4: Sediment laden outflow of the Yukon River, Canada. © Georgia Scardamaglia.
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entrain sediment particles tending to lift them upwards. Inelastic collisions of the transported
particles with those particles resting at the ground complicate the matter as these collisions
cause an increase of the shear stress at the liquid-solid interface where particles at rest can
be resultantly mobilised. All that being said, the mechanics of sediment transport constitutes
an interesting field in its own right.

Water flowing over an erodible bottom is able to entrain sediments in various modes of
transport which depend on the strength of the carrier flow, that determines the amount of
sediments the flowing water is able to transport, the flow transport capacity. At the lower
stages of transport, moving particles slide and roll over the bottom, but with only a small
increase of the flow, these particles lift up from the bottom tracing out ballistic trajectories.
This mode of sediment transport is known as saltation (Lat. saltare). Saltation is mainly
governed by the action of hydrodynamic forces exerted on the granular particles by the carrier
flow, as well as by the downward action of gravity and, in addition, by the collision of the
transported particles with those resting at the bottom. Saltating sediments leap in the vicinity
of the bottom within a layer that is only a few grain diameters thick, known as the saltation
layer. Here, transported particles exhibit a complex dynamics which is driven by, but different
from, the dynamics of the fluid particles. At higher stages of transport, the water flow entrains
finer sediment throughout the water column into suspension. The suspended sediments,
captured by coherent vortices, escape the saltation layer in the form of intense ejections that
come as a result of the increased turbulence of the flow. These lightweight particles are then
advected by the flow in a dynamic process which differs from that of fluid particle motion
only for their tendency to re-settle. As saltation and suspension clearly turn out to be the
major modes of hydraulic sediment transport, it is possible to ideally split the total hydraulic
sediment load into bed-load and suspended-load. The former consists of sediments mainly
saltating over each other, never rising too far from the bed, whereas the latter consists of
sediments drawn into suspension. In gravel-bed rivers, sediments are transported mainly
as bed-load, and conversely, in sand-bed rivers as well as in coastal regions, bed-load and
suspended-load coexist.

Whether the mode of transport is saltation or suspension, flow turbulence typically pre-
vents a clear definition of the hydraulic conditions required for incipient sediment transport,
a major issue regarding the mechanics of sediment transport. It is nevertheless possible to
define threshold conditions below which sediment transport can be neglected for many prac-
tical purposes. Experimental findings suggest that a uniform water flow over a cohesionless
erodible surface is unable to entrain sediments below a critical value of the ratio between the
drag force and the resistive frictional force acting on these sediments. This is the parameter
set out by Shields (1936), who deduced, from dimensional analysis of his set of pioneer-
ing laboratory experiments, a formulation of the threshold conditions for incipient sediment
transport in terms of a dimensionless measure of the bottom shear stress. It is possible to
obtain an explicit formulation of the relation explored by Shields by means of a mechanistic
model for the incipient motion of an idealised spherical particle protruding upwards from
an erodible flat surface, assuming that drag and lift forces due to a uniform laminar flow
are applied to the centre of the particle. This simplified model highlights the main sources
of uncertainty, such as drag and lift coefficients, particle shape and location, and it explains
why it is so difficult to define the threshold conditions for incipient sediment transport in a
deterministic way.

Sediment transport models attempt to predict sediment erosion, transport and deposition
rates for given hydraulic conditions. In principle, a rigorous modelling would reproduce a
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rough turbulent shear two-phase flow accounting for mutual interactions between the two
phases. Such modelling is currently beyond today’s theoretical and computational capabili-
ties and consequently approximate models are commonly used. Although advanced numer-
ical models do exist that are able to capture not only the feature of the mean water flow
but also its intermittent turbulent structures, flow models usually solve simplified forms of
the Navier-Stokes Equations, such as Saint Venant Equations, Shallow Water Equations and
Reynolds Averaged Equations, being respectively one-, two- and three-dimensional. One-
dimensional flow models are applied to sedimentation processes in fluvial channels, whereas
two- and three-dimensional models can be applied to sedimentation processes in floodplains,
estuaries and coastal regions. Adding to these limitations, common practises for predicting
hydraulic sediment transport directly from the knowledge of the forcing flow are based on
heuristic approaches whose intrinsic uncertainty affects the reliability of sediment transport
predictions.

Most of these approaches have a somewhat theoretical basis but depend mostly on exper-
imental data for their quantitative aspects. A large assortment of sediment transport predictor
relations exist that have being customarily integrated into computer programs for sediment
transport modelling. Selection among different predictors, algorithms, or procedures must
be based on comparisons between different methods. Whenever possible, model calibration
against real data is highly recommended in order to set the correct values of the various hy-
drodynamic and sediment parameters which features the most commonly-quoted relations.

1.4 Research questions, methodology and outline of the thesis

The present study is intended to be a contribution to the theory of sand dune stabil-
ity which comprises the effects of sediment starvation. In this section, the list of the main
research questions is introduced, followed by the adopted methodology and finally the sub-
sequent chapters of the thesis are outlined.

Q1. What is known about the effect of sediment starvation on the formation of sand dunes?

Q2. Can the effect of sediment starvation on sand dune formation (Q1) be reproduced by
laboratory experiments that simulate the appearance of fluvial dunes in steady cur-
rents, and how do the experimental findings then compare to the outcome of previous
laboratory and field observations?

Q3. Can the effect of sediment starvation on sand dune formation (Q1) be reproduced by an
idealised process-based model, and how do the model results compare to the results of
the laboratory experiments (Q2)?

Q4. Can the idealised modelling of the starved dune formation in steady currents (Q3) be
extended to reproduce the effect of sediment starvation on the formation of tidal dunes,
and, if so, how do the results of the model compare to field observations?

By following a rigorous scientific method, the present investigation entails few funda-
mental steps. The first of which concerns the description of the phenomenon and considers
both laboratory and field observations. Since data on this topic is limited and an apparent
contradiction exists in the literature between laboratory measurements and field surveys, a
physical modelling is described here that investigates the effects of sediment starvation on the
morphology of sand dunes. The main outcome of this experimental study is that the volume
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of sediment available for transport affects the formation of sand dunes as a reduction in the
sediment availability implies longer dunes with a more three-dimensional morphology. Ac-
cording to this experimental outcome, the following hypothesis is deduced that represents the
novelty of the present contribution. When a motionless substratum is exposed by the growth of
sand dunes, the lack of sand affects the sediment transport, and, in turn, the dune morphology.
This leads to the tendency of starved dunes to increase their wavelength because of sand deficit
which is consistent with the above introduced experimental measurements. Also, starved
bedforms become more irregular which is consistent with previous field observations. The
aforementioned hypothesis is then formulated through numerical means, by modelling the
sediment transport under supply-limited conditions, and is developed in the framework of
the stability theory of fluvial dunes. The main outcome of such theoretical modelling is qual-
itatively and quantitatively in agreement with the experimental measurements presented in
the following subsection. The final step of the investigation consists of testing the aforesaid
hypothesis in the more complex framework of the stability theory of tidal dunes. A more
sophisticated hydrodynamic model is introduced to properly simulate the oscillatory tidal
flow and an extension of the tidal dune stability is ultimately proposed that includes the ef-
fects of sediment starvation. Finally, a comparison of the model predictions to previous field
observations is made that supports the reliability of the idealised modelling.

1.4.1 Chapter 2

A physical model which investigates the formation of starved dunes in steady currents is
presented herein. This is to be used to provide data on a topic in which measurements are
limited and shed light on the apparent contradiction found in the literature. To do so, a set
of laboratory experiments is presented that investigate the relationship between dune mor-
phology and sediment starvation. An open channel flow in a laboratory flume is realised that
forces an erodible and hydraulically rough sandy bottom in a flow regime for which continu-
ous intermittent sediment transport occurs. Cohesion-less sand is used as artificial roughness
and, at the beginning of each experiment, the same sand is uniformly spread on the flume
bottom to generate an initial layer of sediment with a constant thickness. The series of ex-
periments are then thoroughly described which are conducted by fixing all the hydrodynamic
and morphodynamic parameters except the thickness of the initial layer of mobile sediment.
Another fixed parameter is the duration of each experiment which is sufficient for the forma-
tion of sand dunes over the entire length of the flume that is observed in both alluvial and
supply limited conditions. Laboratory measurements indicate that the exposition of the rigid
bottom of the flume strongly affects the morphology of starved dunes, the average spacing of
which increases with a decreasing sediment availability.

1.4.2 Chapter 3

A numerical model of the formation of starved dunes in steady currents is presented which
represents an extension of the linear stability analysis by Colombini (2004) that takes into
account the effect of sediment starvation on the formation of fluvial dunes. A steady turbu-
lent free-surface water flow through a wide straight channel is studied in a two-dimensional
Cartesian coordinate system with the horizontal axis along the channel axis, and the ver-
tical axis over the depth pointing upwards with the origin at the bottom. The presence of
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two-dimensional dunes with crests orthogonal to the direction of the flow is considered. As-
suming that the dune amplitude is much smaller than the local water depth, the flow field
can be evaluated by means of a perturbation approach. Such an assumption is reasonable for
initial-instability stages of the pattern formation and is a necessary condition for the below
described stability analysis. By regarding the bottom geometry as periodic, the sandy bed can
be expressed as superposition of different spatial components, the number of which should
be large enough to describe the discontinuity of the starved bottom profile. Analogously to
the above described physical modelling, the profile of the dunes is thought to arise as a result
of the instability of a thin layer of sand which initially is homogeneously lying over a mo-
tionless substratum. The hydrodynamic problem can be split into the evaluation of a basic
flow field, which describes the steady flow over a flat bottom, and a set of linearly indepen-
dent differential problems, which describe the perturbation of the flow field owing to the
presence of sand dunes. As fluvial streams are known to be characterised by high Reynolds
number values, the determination of the flow field requires the introduction of a turbulence
model. The two-dimensional Reynolds-Averaged-Navier-Stokes equations are numerically in-
tegrated to evaluate the basic flow field, under the shallow water approximation, as well as
the perturbed flow field, which is solved in a full two-dimensional form. At the free surface,
the dynamic boundary condition forces the vanishing of the shear stresses and the kinematic
boundary condition is also imposed. Close to the bottom, the flow velocity vanishes at a dis-
tance from the seabed which is related to the bed roughness. The hydrodynamic problem is
closed by simply introducing a self-similar solution for the kinematic eddy viscosity, and then
Reynolds stresses are quantified by the Boussinesq relationship. Information about the net
sediment transport can be obtained directly from the knowledge of the perturbed flow field
through evaluating the bed shear stress, along with the relative Shields parameter, and by
also introducing a suitable sediment transport predictor formula. Suspended sediment trans-
port is neglected at this first stage of the modelling and only bed-load sediment transport is
considered. The time development of the sandy bottom can be estimated by introducing the
sediment continuity equation (Exner equation), which lies at the heart of the morphodynamic
model. By linearising all the morphodynamic formulae and coupling them with the linear hy-
drodynamics previously described, it is possible to perform a linear stability analysis. To do
so, small amplitude bottom perturbations and related sediment transport rates are expressed
as exponential functions in time and space and then investigated separately. Directly from
the linearised sediment continuity equation a dispersion relationship is straightforwardly ob-
tained. The morphodynamic time development of the generic bottom perturbation turns out
to be exponential, and thus its complex argument describes the growth (decay) of the am-
plitude, with its imaginary part, and the migration of the crest, with its real part. Finally,
assuming that the most unstable mode prevails over all the others, the main features of the
sand dune which is more likely to occur can be predicted depending on the values of the flow
and sediment parameters.

The numerical approach described by Blondeaux et al. (2016) is adopted to take into
account the effect of sediment starvation on sediment transport. When local entrainment of
sediment is prevented by the presence of a motionless substratum, the amount of sediment
in motion is smaller than the local transport capacity and the evaluation of the sediment flux
calls for a numerical procedure. Where locally no sand is available, sediment transport de-
pends on the bed shear stress and its spatial derivative. If the shear decreases in the direction
of the main flow, the sediment transport rate is provided by the sediment transport predictor
formulas and some deposition thus occurs in line with sediment continuity. Conversely, if the
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shear increases in the flow direction, the sediment transport rate cannot increases as, locally,
no further sediment is available for transport, and, therefore, its local value should be equal
to the upstream value. Numerical simulations of the time development of a bottom configu-
ration starting from an initial small amplitude perturbation are presented. by integrating the
sediment continuity equation along the longitudinal coordinate and over the morphodynamic
time. A comparison with the laboratory measurements described in the previous subsection
is made by choosing a simulation-time-window and flow and sediment parameters so that
they fall in the range of values typical of the laboratory experiments. Numerical results con-
firm the lengthening of the starved dunes as the initial sand layer thickness decreases in fair
agreement with the aforementioned experimental measurements.

1.4.3 Chapter 4

In those submarine regions where sediment starvation does not allow the formation of
typical tidal dunes, field observations reveal regularly spaced amorphous mounds of sand. For
similar hydrodynamic and morphodynamic conditions, these sandy mounds are characterised
by crest-to-crest distances which are larger than those of typical tidal dunes. In particular,
sandy mounds were observed by Le Bot (2001) in the middle of English Channel between
Calais and Dover.

A numerical model of the formation of starved dunes in oscillatory tidal currents is pre-
sented which represents an extension of the linear stability analysis by Besio et al. (2006)
that takes into account the effect of sediment starvation on the formation of tidal dunes by
including the numerical procedure outlined by Blondeaux et al. (2016). In order to com-
pare the numerical findings with the results of a classical linear stability analysis, a numerical
growth rate for the generic harmonic component is defined by simply integrating the disper-
sion relationship over the morphodynamic simulation time. Such numerical growth rate can
be then compared to the analytic growth rate provided by standard linear stability analyses.
If tidal dunes develop in a sand rich environment, the initial growth of the unstable bottom
perturbations is exponential and the value of the numerical growth rate matches the value of
the analytic growth rate predicted by the linear stability analysis. On the other hand, if tidal
dunes develop over a motionless substratum, the supply limitation affects the growth of the
perturbations, especially those with small wavelengths. The lengthening of the fastest grow-
ing mode predicted by the model is analogous to that observed by Blondeaux et al. (2016)
for sea-wave-ripples. Numerical results suggest that the mound-to-mound distance which is
more likely to occur is larger than the crest-to-crest distance of typical tidal dunes in analogy
with the field observations by Le Bot (2001).
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Chapter 2

An Experimental Investigation
on the Formation of Starved Dunes
in Steady Currents

Abstract

Field observations indicate that alluvial bedforms, that are sedimentary patterns ob-
served where mobile sediments entirely cover a underlying motionless substratum, differ
from starved bedforms, that are sedimentary patterns observed where a motionless substra-
tum is exposed by their appearance. Laboratory experiments were designed to investigate the
effect of sediment starvation on the formation of fluvial dunes. Three series of experiments
were conducted in a laboratory flume by fixing all the hydrodynamic and morphodynamic
parameters except the volume of mobile sediments that was uniformly spread over the rigid
bottom of the flume prior to each experiment. At the end of all the experiments, which lasted
for the same amount of time, the formation of alluvial dunes and starved dunes was observed.
The main outcome of this experimental investigation is that the volume of sediment available
for transport affects the formation of fluvial dunes. As the initial volume of mobile sediments
decreases, the rigid bottom of the flume was exposed progressively earlier during the ex-
periments and laboratory measurements clearly indicate the tendency of starved dunes to
lengthen, the stronger the sediment starvation, the longer their final crest-to-crest distance.
Furthermore, as the sediment starvation attains its maximum value, the dune morphology
becomes more irregular: two-dimensional starved dunes turn into amorphous sandy mounds
that eventually separate onto three-dimensional barchan dunes.
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2.1 Introduction

In many natural environments, the morphological patterns which are commonly observed
where large amounts of mobile sediment are available (i.e. alluvial bedforms) differ from
those which form where the mobile sediment is insufficient to cover an underlying body
of sediment which cannot be moved by the flowing fluid (i.e. starved bedforms). Isolated
bedforms which migrate over flat immobile terrains are observed in aeolian environments
and their geometric and kinematic characteristics are consistently different from those of
the bedforms observed along the deserts where sand is profuse, e.g., Allen (1968), Howard
et al. (1978), Wippermann and Gross (1986). Field surveys seem to indicate that for similar
conditions, the crest-to-crest distance of the starved bedforms is consistently larger than that
of the bedforms which form where the sand is abundant. In the left panel of Figure 2.1,
the crest-to-crest distance of the desert dunes in the lower part of the photo, where less
sand is present, appears to be longer than the crest-to-crest distance of the dunes that can
be identified in the upper part of the photo, where more sand is present. The tendency of
bedforms to elongate when they enter regions characterised by a scarcity of mobile sediment
is also curiously shown by some images of the large dunes photographed on the surface of
Mars (see the right panel of Figure 2.1, where the crest-to-crest distance of the bedforms in
the lower part of the photo is smaller than that of the bedforms in the upper part of the photo
where mobile sediment is present only in the form of three-dimensional barchan dunes).

A similar trend is observed in subaqueous marine environments where the sediment is
mobilised by the oscillatory flow generated by the propagation of tidal waves. For exam-
ple the field observations of Le Bot (2001), which were carried out in the English Channel
through the central part of the Calais-Dover Strait where strong tidal currents prevent the uni-
form deposition of sediments ultimately leading to sediment starvation, show the presence
of bedforms with geometric and kinematic characteristics that are similar to, but different
from, those of typical tidal dunes. In particular, these amorphous sandy mounds exhibit an
averaged spacing which is larger than the wavelength of tidal dunes that are observed in the
same surveyed area where sand is abundant (Figure 2.2).

Figure 2.1: Left panel: Dunes of the Taklamakan Desert (courtesy of Beno Saradzic). Right
panel: Barchan dunes on the surface of Mars (credit: photo by NASA). Flow is from left to
right.
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Figure 2.2: Example of a complete survey realised through the Calais-Dover Strait
(SHOM/MHA, 1992). Two morphologically contrasted sectors are clearly identifiable: a
North-West sector where sand is abundant and regular tidal dunes shape the seafloor and
a South-East sector where sand is present only in the form of amorphous sandy mounds
interspersed with exposed pebble lags (courtesy of Sophie Le Bot).

Furthermore, in both aeolian and marine environments, a definable suite of starved bed-
forms develops (Venditti et al., 2017). In the Celtic Sea, where sandy patches overlay gravel
lags, Kenyon (1970) distinguished marine sand ribbons, barchanoid sand waves and isolated
dunes depending on the thickness of the sand cover and the strength of the forcing tidal cur-
rents. A similar sequence of bedforms is observed in fluvial environments (Kleinhans et al.,
2002). Rivers typically show an abrupt transition from gravel to sandy bottoms as chan-
nel slopes decrease and, in many cases, seasonal and perennial gravel-bed rivers exhaust
the supply of sediment their streams can entrain. In such cases, the finer sediment is mo-
bilised as bedload transport while the mean grain size becomes coarser at the bed surface
and, as such, poorly sorted river beds subject to periods of low flows or discharge waves
undergo a transient degradation until they are fully armoured (Parker et al., 1982). Whereby
an armour layer develops, but finer sediment continues to be available, a definable suite
of starved bedforms develops. As the sediment supply from upstream increases, a gradual
transition occurs starting from longitudinal sand ribbons to three-dimensional barchans that
eventually coalesce onto amorphous sandy mounds ultimately leading to the appearance of
two-dimensional transverse dunes (Kleinhans et al., 2002). By means of a very simple phe-
nomenological experiment, Venditti et al. (2017) revealed that this sequence of bedforms
emerges in steady currents as the sediment supply increases. They fed fine sand to a Plexi-
glas channel showing that the aforementioned gradual transition can be observed even under
the simplest experimental conditions. In particular, it is the volume of sediment supply that
sets the types of the emerging bedforms (Figure 2.3).

However, in the case of fluvial dunes, how sediment starvation affects the morphology of
the bedforms is still unclear. Only a few observations of starved bedforms generated by steady
currents in subaqueous environments are available and measurements do not indicate a clear
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Figure 2.3: Sequence of supply limited patterns generated by a steady flow over a Plexiglas
rigid bottom with increasing sediment supply (Venditti et al., 2017). Panel 1: sand patches
akin to longitudinal sand ribbons; Panel 2: fully three-dimensional barchans; Panel 3: inter-
connected barchanoid dunes; Panel 4: two-dimensional transverse dunes.

trend. Carling et al. (2000) described the geometry of the starved dunes observed in a supply-
limited reach of the Rhine river (Germany), showing the presence of different morphological
patterns: ripples, small dunes and large dunes. Their data suggest that sediment starvation
manifested itself by giving rise to isolated, amorphous dunes interspersed with plane gravel
lags. Moreover small transverse dunes are observed, the crest-to-crest distance of which
changed as they migrate from the gravel lags to the stoss side of the isolated mounds. In
particular, similarly to the observations of Le Bot (2001), the spacing of the small dunes is
longer when they move above the gravel lags. In contrast, the laboratory measurements
carried out by Tuijnder et al. (2009) seem to indicate the opposite: bedform size (both length
and height) decreases as the volume of mobile fine sediment decreases and the immobile
coarse bottom is exposed.

The laboratory experiments described in the following were designed to provide further
data on the effects of sediment starvation on the formation of sand dunes generated by steady
currents in subaqueous environments. Three sets of experiments were performed by fixing
all the hydrodynamic and morphodynamic parameters except the thickness of the layer of
sediment initially available for transport, thus allowing for a consistent comparison between
the geometric characteristics of the starved bedforms and that of the alluvial bedforms. The
duration of the experiments was kept fixed in order to investigate only the effects of sediment
starvation on the dune morphology.

In the next sections the experimental apparatus, the different methods apply to collect
measurements and the adopted experimental procedure are respectively described. The ex-
perimental results are summarised in Section 4.3 and a thorough discussion of the compar-
isons with previous field and laboratory observations is made in Section 2.6. The conclusions
are drawn in the final section.

2.2 Experimental Apparatus

The experiments were made in a laboratory flume 12 m long, 0.4 m wide and 0.3 m deep
which was mounted on a beam, the slope (S) of which could be easily adjusted even during
a single experiment. The water flowed along the flume from a head tank filled by a 100
mm pipe. The pipe line was equipped with a 70 mm flow nozzle connected to a differential
manometer which allowed the measurement of the flow discharge (Q) that was generated
by a pump and regulated by a special valve. A sluice gate was placed at the end of the
flume to control the water level (H) in order to generate a uniform flow along the channel
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Figure 2.4: Sketch of the experimental apparatus.

according to a rating curve established through some preliminary fixed-bed runs. In all these
preliminary tests that are thoroughly described in the following, the free surface and the fixed
bed were indeed remarkably parallel, up to the accuracy of the water level measurements (<
1 mm). Hence, the water flowed over the gate to fall in a second tank from which the supply
pipe departed.

Well sorted sand grains characterised by a mean diameter ds equal to 1.12 mm were glued
on 6 PVC slabs 200 cm long, 40 cm wide and 2 mm thick which, in turn, were fixed to the
flume bottom thus creating a rough bed. Before the pump was switched on and the water
started to flow throughout the channel, the same sand was spread on the rough fixed bottom
to generate a layer of sediment with a constant initial thickness ∆ throughout the entire
length of the flume.
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Figure 2.5: Grain size distribution evaluated by the sieve analysis of the well sorted sand.
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2.3 Experimental Measurements

2.3.1 Side Wall Correction

When open channel flows and sediment transport are investigated in narrow flumes,
the evaluation of the shear stress at the bottom is decisive. Because of the flume width is
usually narrow compared with the flow depth, the side walls affect the bottom shear stress.
If the bottom is rougher than the side walls, as in the present experimental investigation,
the distribution of the shear along the wetted perimeter of the channel is nonuniform. All
this being said, experimental outcome cannot be expected to correspond to field observations
unless a correction for the shear stress at the side walls is made. An equivalent roughness
length characterising the sediment glued on the bottom of the flume and its relative flow
scale, which is the description of the uniform flow depth as function of the flow discharge
and the channel slope (c.f. Figure 2.7), were evaluated by dividing the shear stress in a wall
and a bottom part by accounting for the side wall correction.

Einstein (1934) determined an equation for the side wall correction based on the flow
resistance making some special assumptions. Essentially, the procedure outlined by Johnson
(1942), later simplified by Vanoni and Brooks (1957), was employed. The entire cross-
section is partitioned into two sub-regions ΩB and ΩW corresponding to the bottom and
the side walls, respectively. Hereinafter subscript B and W refer to bottom and side walls,
respectively, while the variables without subscript are referred to the entire cross-section.
These different sub-regions are thought as two independent parallel channels with the same
mean velocity U and longitudinal slope S (c.f. Figure 2.6).

Flow measurements were performed for different channel slopes by adjusting the level of
the downstream sluice gate depending on the imposed flow discharge Q once uniform flow
conditions were established. The critical flow conditions were determined directly from the
geometry of the flume cross-section for any realised couple of flow discharge and channel
slope. Initially, assuming an uniform distribution of the roughness along the wetted perime-
ter, a preliminary estimate of the uniform flow was performed. A comparison in terms of uni-
form flow depth H between the roughly predicted values and the measurements supported
the reliability of the experimental apparatus. At this early stage of the physical modelling,
the cross-sectional roughness length ks was assumed to be a given multiple of the mean grain
size ds of the sediment, accordingly to the Nikuradse sand roughness (ks ∼ 2.5ds). The mean
flow velocity U was evaluated simply dividing the imposed discharge by the measured flow
depth and the channel width B.

Figure 2.6: Sketch describing the side wall correction modus operandi.
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Figure 2.7: Flow scale curve of the slope varying flume with sediment (ds = 1.12 mm)
cemented at the bottom giving an equivalent roughness length ks,eq = 4.85 mm computed by
means of the side wall correction. Points are experimental measurements.

The Rouse equation relates the hydraulic radius R = BH/(B+2H) with the conductance
coefficient C, or alternatively with the friction factor F , which is an indirect measurement
of the total shear stress. Analogously to the mean flow velocity and the channel slope, the
Rouse equation was applied to both sub-regions.

U = C
√
gRS =

√
8

F
gRS =

Q

BH
⇒ U2

8gS
=
R

F
=
RW
FW

=
RB
FB

(2.1)

The PVC side walls were considered hydrodynamically smooth, their conductance coefficient
(friction factor) was related to the corresponding hydraulic radius by the Keulegan equation
for smooth flow regime

CW =

√
8

FW
=

1

κ
log

ReW
√
FW

3.41
, (2.2)

where κ is the von Karman constant and ReW = ReRW /R, Re = UH/ν is the Reynolds
number of the flow. In analogy with the flow cross-section, the wetted perimeter can be
partitioned into a bottom-related part, which equals the channel width, and a wall-related
part, which is equal to twice the mean flow depth. Consequently the water continuity requires
that

F =
BFB + 2HFW

B + 2H
⇒ FB =

F (B + 2H)− 2HFW
B

. (2.3)

Once the Keulegan equation for the rough flow regime was applied to the sandy bed, the
evaluation of the bottom friction factor by means of the above relationship translated into
the estimate of the effective roughness length ks,eff .
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CB =

√
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κ
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(2.4)

The effective roughness length was then calculated for each measured triple Q, S, H.
Thus, an equivalent roughness length ks,eq ∼ 4.3ds was obtained by simply averaging the
outcome of the above procedure. The equation system composed by (2.1)-(2.4), where the
effective value of the roughness length is substituted with its equivalent counterpart, con-
stitutes an implicit set in the unknowns FW , RW , FB, RB. Solving the system of implicit
equations iteratively, the flow scale of the channel was deduced (c.f. Figure 2.7), and the
principal unknowns of interest were found. Thereby, a uniform rough wide open channel
flow was determined, which is related to the uniform flow realised in the narrow flume, by
interpreting the bottom hydraulic radius as its mean water depth D = RB that is related to its
Froude number FR = U/

√
gD and allows to evaluate the dimensionless equivalent sediment

grain size d = ds/D, which, in turn, is related to the representative bottom conductance
coefficient

C =
1

κ
log

11.09D

ks,eq
=

1

κ
log

2.58

d
(2.5)

Of note, the Froude number characterising the uniform rough wide open channel flow related
to the individual experiment turns out to be larger than its measured value. It is then possible
to evaluate the bottom shear stress τ and its related Shields parameter Θ to be associated with
the uniform rough wide open channel flow as follows

τ = ρu2τ = ρgDS = ρ
U2

C2
, Θ =

τ

ρg(s− 1)ds
, (2.6)

where the relative density of the sediment s = ρs/ρ is introduced. This experimental post-
process is crucial in order to generalize the results of the present physical model by defining
global dimensionless quantities of interest (e.g. FR, d, C, Θ) which are independent on the
flume width. All that being said, the side-wall correction allows to extend the results of the
flume experiments described in the following to real rough wide open channel flows and
related theoretical models (see Chapter 3).

2.3.2 Laser Scanning

Accurate measurements of the geometrical characteristics of the morphological patterns
generated by the open channel flow were made by means of laser scanning surveys. The
effective length suitable for the measurements was approximately the downstream half of
the 12 m long channel, where the irregularity of the incoming flow and the related upstream
scour did not affect the formation of the dunes. The accuracy of the measurements strongly
depends on the distance between the location of the laser scanner and the farthest position
at which the three-dimensional coordinates of the bed elevation were evaluated. In order to
achieve a high resolution, three different scans of each final bottom configuration were made
placing the laser instrument roughly over the centerline of the channel at the beginning, in
the middle and at the end of a 5 m downstream test section. The resolution range of the laser
system was equal to 0.1 mm. Therefore, detailed measurements of the bed elevation were
obtained.
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2.3.3 Fourier Analysis

In most of the experiments, the mean geometrical features of the emerging patterns did
not vary significantly throughout the downstream half of the flume. The downstream stretch
of the channel suitable for the measurement of the geometric characteristics of the bedforms
was approximately the downstream half of the channel (test section), where the irregularities
of the incoming flow and the related upstream scour did not affect the formation of the mor-
phological patterns. Consequently a preliminary rough estimation of the average wavelength
(crest-to-crest distance) of the bedforms was performed by simply dividing the distance be-
tween the most upstream and the most downstream crests by the number of crests observed
therein minus one.

However, in some experiments, the increased flow discharge forcing the progressively de-
creasing initial sand layer thickness leads to strong sediment starvation that ultimately results
in the appearance of very three-dimensional bottom configurations. Thus the aforementioned
simple procedure can become questionable for describing three-dimensional bedforms, when
the definition of their crests and troughs is less clear. Hence, a detailed topographic survey
of the bed was acquired by laser scanning. In particular, the Imager 5006i phase-based laser
scanner, manufactured by Zoller + Frohlich, was used to measure the bottom profile from
three different measuring stations, thus obtaining three sets of values of the bottom elevation
which were interpolated on a regular grid by means of a MATLAB subroutine. The accuracy
of the measurement procedure was quite high and the measurements of the bed elevation
were affected by an error smaller than 1 mm, mainly due to the random position of the sand
grains. In order to gain reliable information on size and shape of the bottom forms in both
the streamwise and the spanwise directions, a two-dimensional Fourier analysis was applied
to a selected stretch of the downstream test section. Data were mirrored with respect to one
bank to handle diagonal fronts, so that the first transverse mode turns out to have a wave-
length which is twice the channel width, thus corresponding to an alternate pattern. The
stretch of the downstream test section was selected in the streamwise direction so as to in-

Figure 2.8: Sketch of the laser scanning.
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clude only complete bedforms, i.e., the bottom elevation (with respect to the mean value) at
the beginning of the stretch is approximately equal to that at the end. This condition makes
the length of the selected stretch slightly different from one experiment to another. The
two-dimensional Fourier analysis is based on the expansion of the measured bed elevation as
follows

η = η0,0 +
N∑
n=0

M∑
m=−M

ηn,me
i 2πnx

L ei
2πmy
2B + c.c.,

where η0,0 is the averaged thickness of the initial sand layer, x is the streamwise coordinate
while y is the spanwise coordinate, L is the length of the selected stretch, B is the measured
part of the width of the flume and c.c. indicates the complex conjugate of the quantity that
precedes it. The amplitudes ηn,m have been evaluated by means of a MATLAB routine. Typical
values of the truncation numbers N and M are respectively 500 and 75. Such a description of
the bed morphology allows an accurate quantitative measure of the harmonic content charac-
terising both the streamwise and spanwise evolution of the bottom elevation and then a more
accurate estimate of the average wavelength of the emerging patterns that was performed by
simply dividing the longitudinal length of the selected stretch by the peak streamwise har-
monic component (i.e. the harmonic component in streamwise direction characterised by the
largest amplitude).

2.4 Experimental Procedure

Three series of experiments were performed, setting the flow discharge Q equal to 20
l/s, 22.5 l/s and 25 l/s, respectively (Table 2.1). In all the experiments, the uniform water
depth H over the cohensionless bottom was slightly larger than 0.1 m, and, more precisely,
0.11 m in Series 1 and 2 and 0.12 m in Series 3. It follows that the depth averaged velocity
U was about 0.45 m/s, 0.51 m/s and 0.52 m/s, respectively. The reader should notice that
the value of U in the third series of experiments is not significantly different from that of
the second series because the increase of Q is partially balanced by the increase of the water
depth h. The initial thickness ∆ of the sand layer was decreased in regular steps starting from
a maximum value equal to 2.5 cm down to 0.5 cm. The flow was stopped after 30 minutes
from the beginning of each experiment and then the resulting bottom configuration was
measured. This duration was chosen on the basis of preliminary tests which showed that,
after such time, well-developed bedforms were observed under both alluvial and supply-
limited conditions throughout the entire length of the flume. The shear stress τB induced
by the flowing water on the sandy bed was large enough to cause sediment transport in
the form of bed-load and, although clouds of sand occasionally swirled of the crests of the
growing patterns, no suspended load was observed.

2.5 Experimental Results

The first experiment S1N1 of the first series was characterised by a value of the thickness
∆ of the initial sand layer equal to 2.5 cm and 12 almost two-dimensional dunes were ob-
served at the end of the experiment with an average crest-to-crest distance of 0.47 m. The left
panel of Figure 2.9 show a top view of the final bottom configuration of experiment S1N1,
where a stick 1 m long allows a rough estimate of the dune length. Top-left panel of Figure
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Figure 2.9: From left to right top views of the laboratory flume after 30 minutes from the
beginning of the experiments S1N1, S1N4 and S1N5. The photos clearly show the bottom
topography and the presence of the dunes, the crests of which are highlighted by dashed
white lines. A stick 1 m long allows a rough estimate of the crest-to-crest distance.

2.11 shows the bottom profile measured along the selected stretch of the channel for exper-
iment S1N1. The typical triangular dune shape, with a gently sloping stoss side and a steep
lee side, can be easily recognised. In the top panel of Figure 2.12, the modulus of the complex
amplitude of each harmonic component of the two-dimensional Fourier transform of the bot-
tom elevation |ηn,m| both in the streamwise and spanwise directions is plotted. The spectrum
clearly shows that the 10th streamwise component is characterised by the largest amplitude
and, as the length of the selected stretch is approximately equal to 4.5 m, it confirms that the
average wavelength of the alluvial dunes is about 0.45 m. Although the harmonic compo-
nents characterised by a transverse wavelength equal to the channel width and its multiples
have a non-vanishing amplitude, the bottom configuration is practically two-dimensional.

Similar bottom configurations were observed at the end of experiments S1N2 and S1N3
which were characterised by the same values of Q and H but values of ∆ equal to 2 and
1.5 cm, respectively. Indeed, for these experiments, the amplitude of the bottom forms,
which were generated by the flowing water, was not large enough to bare the rigid bottom.
Hence, for both the experiments, the average wavelength of the dunes was equal to about

Q H U D τ FR C Θ
[ls−1] [cm] [ms−1] [cm] [Nm−2] [−] [−] [−]

20.0 11 0.45 8.8 0.94 0.48 14.7 0.052

22.5 11 0.51 9.4 1.19 0.52 14.8 0.065

25.0 12 0.52 9.8 1.22 0.53 15.0 0.067

Table 2.1: Overview of the hydraulic conditions imposed in the experimental series and the
uniform rough wide open channel flow parameters determined by the side-wall correction.
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0.47 m. In experiment S1N4, where the thickness ∆ was equal to 1 cm, the rigid bottom
was exposed and the geometrical characteristics of the bottom forms changed. In particular
only 9 bottom forms were observed with an average crest-to-crest distance equal to 0.65 m.
The first series of experiments includes one further experiment which was made with an
initial uniform thickness of the sand layer equal to 0.5 cm. In this case only 6 bedforms
were observed within the downstream half of the channel and the estimated wavelength of
the dunes was equal to 0.92 m. The right panel of Figure 2.9 show a top view of the flume
and of the bottom configuration at the end of the experiment S1N5. A rough comparison
with the final bottom configuration of experiment S1N1 (left panel) confirms that the dune
length measured at the end of the last experiment of the series is nearly twice that of the
first experiment. The left panel of Figure 2.10 shows the scans of the bottom profile along a
stretch of the channel, which is 5 meter long, for the first five experiments. The morphological
patterns can be readily identified and the lengthening of the bedforms with a decreasing
initial sand layer thickness is clearly visible. Most of the final bottom configurations are
characterised by the presence of a longitudinal sand ridge along the channel axis, which is
particularly evident in the experiments of the first series. The mechanism which gives rise
to these longitudinal sand ridges can be related to the existence of secondary cellular flows
in the plane perpendicular to the channel axis that are generated by the imbalance of the
normal Reynolds stresses in the cross-sectional plane and in particular in the corners of the
rectangular section (Gerard, 1978). Figure 2.11 represents the bottom elevation with respect
to the rigid bottom of the flume measured along downstream selected stretches of the channel
for each experiment of the first series. Left panels of this figure show the bottom profiles
recorded at a distance of 10 cm from the right sidewall of the flume, this choice has been
made in order to neglect the presence of the sand ridge at the centerline. Right panels of the
figures show the histograms of the distribution of the bed elevations, which allow a rough
evaluation of the average height of the bedforms and, more importantly, an estimation of
how often the rigid bottom of the flume is exposed by the bedform development. Figure 2.12
shows the two-dimensional spectra of the final bottom configurations for all the experiments
of the first series. The results show that the peak harmonic component in the streamwise
direction shifts towards lower frequencies as the thickness of the initial sand layer decreases
confirming the lengthening of the starved dunes. The spectra of experiments S1N4 and S1N5
show that, in the transverse direction, the largest harmonic component is the second one,
which represents the longitudinal sand ridge appearing along the axis of the channel. When
looking at the results of Figure 2.12, the reader should realise that the length L of the selected
stretch where the Fourier decomposition is applied differs from experiment to experiment.
By evaluating L from Figure 2.11, it is important to note that the 10th harmonic component
of experiment S1N1 has approximately the same wavelength of the 8th harmonic component
of experiment S1N3.

The second series of experiments was carried out by increasing the flow discharge but
keeping fixed all the other parameters and progressively decreasing the sediment supply. In
this series, the rigid bottom was not exposed at the end of the experiments with ∆ equal
to 2.5 and 2 cm and the average wavelength of the dunes which shaped the alluvial bed
was equal to about 0.50 m. Experiment S2N3 was characterised by the same hydrodynamic
parameters but ∆ was equal to 1.5 cm. The larger flow discharge of this series led to the
baring of the rigid bottom even for such sand layer thickness and to the lengthening of the
bedforms. In particular, a smaller number of bottom forms was observed at the end of this
experiment and the average crest-to-crest distance was about 0.57 m. This second series
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Figure 2.10: Laser scans representing the final bottom configuration within the 5 m down-
stream stretch of the channel at the end of each experiment. Bottom elevation is shown in
shades of grey, lighter colours corresponding to higher values. Rigid bottom level is black.
Flow is from bottom to top.

of experiments includes two further experiments which were made with an initial uniform
thickness of the sand layer equal to 1.0 cm and 0.5 cm, respectively. In the former case,
8 bedforms were detected along the downstream part of the channel, while, in the latter,
approximately 5 bedforms were identified. The estimated wavelength of the dunes was about
0.68 m and 1.12 m, respectively. The central panel of Figure 2.10 shows the sequence of scans
of a 5 m long stretch of the channel for the different experiments of the second series. The
data show also that, for the smallest value of the sand layer thickness ∆, the bottom profile
became quite irregular and barchan dunes appear. Figure 2.13 shows the bottom profile
measured at the end of all the experiments of the second series along with the histograms of
the distribution of the bed elevations. The results of the two-dimensional Fourier analysis are
presented for the experiments of the second series in Figure 2.14. In line with the previous
series of experiments, the results show that the peak harmonic component in the streamwise
direction shifts towards lower frequencies as the initial volume of mobile sediment decreases.
Furthermore, as the sediment starvation increases, the amplitude of the spanwise harmonic
components becomes comparable with the amplitude of the streamwise components and,
in some case, even larger. Indeed, the increased flow discharge of this series makes the
resulting bottom configurations more three-dimensional. The regularly spaced transverse
dunes progressively disappear, leading to barchan dunes, the transverse dimension of which
is approximately equal to the channel width.

In the third series of experiments, the rigid bottom of the flume was not exposed by the
formation of the dunes only for the largest value of the thickness ∆ of the initial sand layer,
which was equal to 2.5 cm. As already pointed out, the bulk velocity in these experiments did
not significantly differ from that of the second series because the increase of Q was balanced
by an increase of the water depth H. Hence, the final average wavelength of the dunes was
slightly smaller than 0.50 m, a value close to the wavelength of the alluvial bedforms observed
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in the experiments of the second series. The rigid bottom was exposed at the end of all the
other experiments of series 3. Experiments S3N2, S3N3 and S3N4 show an increasing value
of the mean crest-to-crest distance λ which increased to 0.55 m, to 0.60 m and to about 0.73
m, respectively. Experiment S3N5 was characterised by strongly limited supply conditions.
The largest value of the flow discharge along with the smallest value of the initial thickness of
the sand layer led to the appearance of markedly three-dimensional bottom forms. The high
degree of irregularity, which characterised the observed bottom forms, made it difficult to
estimate an average wavelength. The right panel of Figure 2.10 shows the sequence of scans
of a 5 m long stretch of the channel. Figures 2.15 and 2.16 show the bottom profile and the
results of the two-dimensional Fourier analysis for all experiments of the third series. The
results are similar to those of the previous series, even though a few qualitative differences
are present. Indeed, for the smallest value of ∆, amorphous three-dimensional bottom forms
(sandy mounds) appear and the bedforms become more irregular in the streamwise direction.
In fact the bottom panel of Figure 2.16 shows a wide spectrum both in the streamwise and
spanwise directions. Figure 2.17, where the average streamwise wavelength of the dunes is
plotted versus the initial sand layer thickness for each experiment, and Table 2.2 summarise
the experimental results.

Series Exp. ∆ Q h λ
[cm] [ls−1] [cm] [cm]

1

S1N1 2.5 20 11 0.47

S1N2 2.0 20 11 0.47

S1N3 1.5 20 11 0.47

S1N4 1.0 20 11 0.65

S1N5 0.5 20 11 0.92

2

S2N1 2.5 22.5 11 0.52

S2N2 2.0 22.5 11 0.53

S2N3 1.5 22.5 11 0.57

S2N4 1.0 22.5 11 0.68

S2N5 0.5 22.5 11 1.12

3

S3N1 2.5 25 12 0.49

S3N2 2.0 25 12 0.55

S3N3 1.5 25 12 0.60

S3N4 1.0 25 12 0.73

S3N5 0.5 25 12 2.05

Table 2.2: Summary of the key variables measured at the end of each experiments.
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Figure 2.11: Left panels: bed elevation along a selected stretch of the channel (thin black
line), for each experiment of Series 1. The rigid bottom of the flume is represented by the
thick line while the initial level of the sand layer is represented by the thick grey line. Right
panels: histogram of the distribution of the bed elevation. The label at the top of the panels
indicate the experiment number listed in table 2.2.
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Figure 2.12: Results of the two-dimensional Fourier analysis of the bottom profile observed
along the selected stretch at the end of each experiment of Series 1 (the reader should notice
that, as pointed out in the text and shown in figure 2.11, the length of the selected stretches
changes from experiment to experiment). The modulus of the Fourier components is plotted
versus both the streamwise and the spanwise harmonics.
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Figure 2.13: Left panels: bed elevation along a selected stretch of the channel (thin black
line), for each experiment of Series 2. The rigid bottom of the flume is represented by the
thick line while the initial level of the sand layer is represented by the thick grey line. Right
panels: histogram of the distribution of the bed elevation. The label at the top of the panels
indicate the experiment number listed in table 2.2.
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Figure 2.14: Results of the two-dimensional Fourier analysis of the bottom profile observed
along the selected stretch at the end of each experiment of Series 2 (the reader should notice
that, as pointed out in the text and shown in figure 2.13, the length of the selected stretches
changes from experiment to experiment). The modulus of the Fourier components is plotted
versus both the streamwise and the spanwise harmonics.
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Figure 2.15: Left panels: bed elevation along a selected stretch of the channel (thin black
line), for each experiment of Series 3. The rigid bottom of the flume is represented by the
thick line while the initial level of the sand layer is represented by the thick grey line. Right
panels: histogram of the distribution of the bed elevation. The label at the top of the panels
indicate the experiment number listed in table 2.2.
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Figure 2.16: Results of the two-dimensional Fourier analysis of the bottom profile observed
along the selected stretch at the end of each experiment of Series 3 (the reader should notice
that, as pointed out in the text and shown in figure 2.15, the length of the selected stretches
changes from experiment to experiment). The modulus of the Fourier components is plotted
versus both the streamwise and the spanwise harmonics.
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2.6 Discussions

The experimental measurements described in the previous section indicate that, when
the rigid bottom of the flume is exposed by the formation of sand dunes, sediment starvation
strongly affects the dune morphology. In particular, the average crest-to-crest distance of the
dunes tends to increase as soon as the rigid bottom of the flume is exposed by their forma-
tion, the stronger the sediment starvation, the larger their average spacing. Furthermore,
progressively decreasing the initial sand layer thickness, regularly spaced alluvial dunes are
replaced by amorphous sandy mounds that are more irregularly spaced in the longitudinal
direction. A further decrease of the initial sand layer thickness eventually results in the ap-
pearance of three-dimensional barchan dunes. These findings are in agreement with the field
observations of Kleinhans et al. (2002) and Carling et al. (2000) and with those of Le Bot and
Trentesaux (2004), even though the latter were carried out in a coastal region dominated by
oscillatory tidal currents.

Kleinhans et al. (2002) described the observations and measurements of several type of
bedforms in the gravel-bed river Allier (Moulis, France) over a period of low flow during
which the river bed was fully armoured. Sand wave fields of fine sand (ds = 0.5 mm), the
area of which ranges from few squared metres to few hundreds of metres, were found to
migrate over the armour layer (85% gravel, ds = 18 mm) as a result of bank erosion and
detachment of sand from meander pools. These sand waves provided a spatially varying
supply of mobile sediment for the formation of bedforms in equal hydrodynamic conditions
and sediment parameters. Regularly spaced transverse dunes appeared in the inner part of
these sand deposits, where the thickness of the sand coverage attains its maximum value,
and thus gradually changed in both the upstream and the downstream directions resulting
into amorphous bedforms with more sinuous crests (Figure 2.18). At the front and rear edge
of each sand wave field the armour layer was fully exposed and barchan dunes concurrently
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Figure 2.17: Wavelength λ of the bottom forms plotted versus the thickness ∆ of the sand
layer initially present over the rigid bottom.

35



2.6 DISCUSSIONS 2 EXPERIMENTAL INVESTIGATION

with sand ribbons were observed. Analogously to the laboratory measurements described in
the previous section, the field observations of Kleinhans et al. (2002) suggest that the main
factor in determining the geometric characteristics of the emerging bedforms is the thickness
of the layer of sediment available for transport. The gradual transition from two-dimensional
transverse dunes to strongly three-dimensional barchan dunes is the same as that observed
through the present experimental investigation.

Carling et al. (2000) described the dynamics of sand dunes in a supply limited reach of
the river Rhine (Mainz, Germany). Well sorted medium sand (ds = 0.9 mm) was present in
the form of different morphological patterns migrating over gravel lags mainly composed of
pebbles and cobbles (ds = 10 mm). Two distinct populations of dunes were identified: two-
dimensional small dunes (λ = 1÷5 m) with relatively straight crest lines, which were roughly
transverse to the primary flow direction, and three-dimensional large dunes (λ = 20÷ 50 m)
with either amorphous or barchanoid planforms. Carling et al. (2000) described in detail
two isolated dunes very different in terms of morphology and dimensions (Figure 2.19).
During the observations, the river bed upstream and downstream of these isolated large
dunes consisted of starved small dunes whose crest-to-crest distance was approximately 2 m.
When these small dunes were found to migrate over the stoss side of the parent isolated
dunes, they decreased in length (λ ∼ 1 m). These small dunes then attained an equilibrium
geometry growing in dimensions (λ ≥ 1.5 m) across the gentle stoss side of the parent
isolated dunes up to their crestal regions, where the transition to upper-stage plane bed
was observed. Furthermore, where the lee side angles of the isolated dunes were small,
small dunes often reformed and they progressively increased in length moving downstream
towards the intervening gravel lags. All that being said, these field observations seem to
indicate that sediment starvation manifests itself by forming isolated barchan dunes as well
as by affecting the dimensions of the small dunes. In particular, the lengthening of the small
dunes as they migrate from the gentle lee side of isolated barchan dunes to the gravel lags is
consistent with the lengthening of the starved dunes observed in the present experiments.

In contrast, the laboratory observations of Tuijnder et al. (2009) indicate that the sandy
patterns interspersed with exposed parts of the rigid bottom of their flume are shorter than
the alluvial ones that develop for similar values of the flow and sediment parameters (Fig-
ure 2.20). There are several possible explanations to this contradiction between laboratory
experiments that present many similarities.

Figure 2.18: Observations of sand waves migrating over an immobile armour layer in the
river Allier (Kleinhans et al., 2002). Panel A: Supply limited bottom forms emerging from a
sand deposit in a meander pool. Panel B: Bottom forms in a migrating wave of sand. Crests
are denoted by solid lines, sand is represented by stippled patches.
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Figure 2.19: Plan views of the bed of River Rhine derived from acoustic reflection surveys
(Carling et al., 2000). Arrows represents the direction of the river flows. Grey banding
represents small dunes crossing the gravel lags (black areas). These dunes traverse onto the
stoss of large isolated dunes, where they appear as light banding separated by grey portions.
Tonal variations near the arrows represents secondary dunes of increasing length. Grey and
black areas at the bottom of the figures represent gravels lags largely devoid of sand.

Figure 2.20: Laser surface scans from the experimental work by Tuijnder et al. (2009), situa-
tion after their experiments of Series 1. The level of grey indicates the height. The mean bed
level is grey. Flow is from bottom to top.
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Firstly, the duration of the experiments of Tuijnder et al. (2009) was remarkably different,
depending on the amount of supply limitation. For strong supply-limited conditions, their
experiments lasted for a few hours, whereas they were stopped after more than one day
when the coarse layer was completely covered. It is likely that the size of the dunes increased
in time reaching equilibrium wavelengths typically larger than those at the first stage of their
formation. It is worth noting that alluvial dunes, which develop for extended periods of
time, experience longitudinal elongation as a result of different physical mechanisms. These
mechanisms have been extensively addressed by prior researches. At the very first stage of
each experiment of the present investigation, small indentations, similar to those observed by
Bagnold (1956), appear throughout the sandy bed and these patterns subsequently elongate
as described by the laboratory observations of Coleman and Melville (1994). As discussed
in Camporeale and Ridolfi (2011), this initial progressive elongation can be interpreted as
a transient growth which can be predicted by a non-modal linear stability analysis, even
neglecting nonlinear effects. All that being said, in the present study the formation of sand
dunes was monitored during half an hour from the beginning of each experiment. The choice
of fixing the same duration of the experiments for both the alluvial and the supply limited
case was made to compare final bottom configurations obtained at the same stage of the
evolution, thus highlighting the effect of supply limitation. A time interval of half an hour
was set because the dunes, which were observed under both alluvial and supply limited
conditions, can be readily identified and their further time development turned out to be
relatively slow.

Secondly, two different grain sizes were employed in the experiments of Tuijnder et al.
(2009): a coarser one for the substrate and a finer one for the mobile layer. The two sand
diameters were chosen so as to be sure that the coarser fraction, when exposed to the flow, re-
mained still. As a consequence, the more substrate was exposed, the higher the averaged bed
roughness and the lower the averaged Shields stress, for the same Froude number. Although
it is not clear how the bedform wavelength evolves due to a change of roughness, this effect
can be so strong to reserve that of supply limitation. On the contrary, in the present experi-
ments the substrate was made with the same sand, glued to the bottom of the flume. Once
again, this was made purposely in order to enhance the effect of supply limitation alone.

Thirdly, the width of the flow cross-section in the experiments of Tuijnder et al. (2009)
was more than twice that of the present experiments. Such a difference can strongly affect the
emergence of bedforms at the bottom of laboratory steady streams. Colombini and Stocchino
(2012), within the linear framework of sand dune formation, described the transition from
transverse dunes to alternate bars owing to three-dimensional effects. In particular, as the
width-to-depth ratio of the forcing flow increases, the most unstable mode predicted by their
stability analysis and corresponding to transverse dunes is shown to loose stability towards
three-dimensional configurations resulting into alternate bars, the longitudinal wavelength
of which turns out to be much larger than those of typical sand dunes.

Finally, for the sake of clarity, it is worth specifying the nature of the leading mechanism
for the appearance of the longitudinal sand ridges observed in most of the experiments. Sec-
ondary motions in the plane perpendicular to the main flow direction characterise turbulent
flows in straight channels having turbulence as driving mechanism. These turbulence driven
motions are induced by an imbalance of the normal Reynolds stresses in the cross-sectional
plane that, in channels with rectangular cross-sections, is caused by the presence of the side-
walls and the corners they form with the bottom and the free surface. As a result, turbulent
open channel flows host naturally an integer number of corner vortices extended from each
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side of the walls to the centerline of the channel, the preferential locations of which are im-
posed by the aspect ratio (AR) between the channel span and the mean water depth. Sakai
and Uhlmann (2016) performed direct numerical simulations of open channel flows with
rectangular cross-sections describing different secondary motions depending on the aspect
ratio (AR) and the flow Reynolds number (Re). Figure 2.21 shows the streamlines for a ge-
ometrical configuration similar to the present experiments and a fully developed turbulent
flow. When the bottom of the channel is covered by an uniform sandy bed, it is likely that the
weak transverse flow produces a continuous sediment transport that leads to the formation
of longitudinal sand ridges along the channel axis (Nezu and Nakagawa, 1984).

Figure 2.21: Streamlines of an open duct flow with AR=4 and Re=5000 in the left-half cross-
section. Minus sign corresponds to counter-clockwise motion (Sakai and Uhlmann, 2016).
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2.7 Conclusions

Laboratory experiments were carefully designed to investigate the formation of starved
dunes in steady currents in order to focus only on the role played by sediment starva-
tion neglecting effects due to sediment sorting, three-dimensionality and amplitude time-
development. The main outcome of the experimental investigation are the following.

• Laboratory measurements of the bottom profile of both alluvial dunes and starved
dunes, for the same values of the hydrodynamic and morphodynamic parameters and,
in particular, for the same duration of the experiments, show that starved dunes at-
tained longer wavelengths than alluvial dunes. This is consistent with previous field
observations.

• When strong sediment starvation is enforced, three-dimensional bedforms characterised
by a high irregularity appear, making it difficult to identify a well defined wavelength
of the patterns. As the sediment starvation increases, alluvial two-dimensional dunes
are replaced by more irregular starved dunes that then disperse in the form of amor-
phous sandy mounds eventually leading to the emergence of three-dimensional barchan
dunes.
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Chapter 3

A Numerical Investigation
on the Formation of Starved Dunes
in Steady Currents

Abstract

The formation of fluvial dunes is a non-trivial problem which has been thoroughly in-
vestigated by prior researches using theoretical and physical models that assume an infinite
availability of mobile sediments. Field observations and laboratory experiments nevertheless
indicate that the volume of sediment available for transport affects the formation of sand
dunes. The present investigation is intended to be a contribution to the stability theory of
sand dunes in steady currents that accounts for the effect of sediment starvation on the for-
mation of fluvial dunes. An idealised process-based model is presented which consists of a
hydrodynamic module, that is based on a perturbation approach and considers a steady tur-
bulent free-surface flow interacting with small amplitude undulations of a sandy bottom, and
a morphodynamic module, that is based on a numerical integration of the sediment conti-
nuity equation and accounts for the possibility of the exposition of a motionless substratum.
The main outcome of the theoretical investigation is that, when the motionless substratum
is exposed by the formation of the dunes, the lack of sand affect the sediment transport and,
in turn, the dune morphology. As the motionless substratum is progressively exposed by the
growth of the dunes, numerical results predict the lengthening of the starved bedforms and
an increasing irregularity in their spacing. The reliability of the idealised model is supported
by comparisons of the theoretical findings with both field observations and the laboratory
measurements described in the preceding chapter.
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3.1 Introduction

As described in 1.1, river beds are seldom flat and those that contain sand generally ex-
hibit a fascinating variety of bedforms, ranging from small scale ripples to large scale dunes.
Whenever the bed shear stress is larger than its threshold value for sediment motion, sedi-
ment particles begin to move and, in response to this movement, sediment patterns might
appear. On the one hand, flow and sediment transport produce sandy patterns, on the other
hand, sandy pattern appearance profoundly influences flow and sediment transport. These
bedforms have crests that are perpendicular to the main direction of the fluvial stream and,
as such, their presence is a primary source of flow roughness and therefore a major factor
in determining water levels. As a consequence, unravelling the processes underlying their
appearance is a subject of great concern to river engineering. Fluvial ripples develop when
viscosity affects the vertical velocity profile of the fluvial stream in the near-bed region (hy-
draulically smooth and transitional flows) and, in turn, the bed shear stress and the related
sediment transport, inducing a particular bed wave instability that ultimately leads to the
appearance of the aforementioned bedforms. These small-scale patterns exhibit asymmetric
profiles with fairly regular crests that migrate invariably downstream and their formation is
characteristic of subcritical flows in the Reynolds sense: they are likely to emerge when the
grain Reynolds number is lower than a certain critical value (Sumer and Bakioglu, 1984).
Ripples play an important role in sediment transport and mixing processes at the river bed
as flow separation occurs at their crests eventually inducing coherent flow structures (vor-
tices) that locally affect mass and momentum transfer. For practical purposes, the effect that
these small-scale bedforms have on large-scale phenomena can be modelled by assimilating
their presence as a hydraulic roughness of appropriate size. Differently, fluvial dunes develop
where coarser sediment disrupts the viscous sub-layer (hydraulically rough flows) and, as a
result, their formation differs substantially from that of ripples (Colombini and Stocchino,
2011), although they exhibit many comparable characteristics. The typical crest-to-crest dis-
tance of fluvial dunes scales with the flow depth and they are characteristic of subcritical
flows in the Froude sense. Antidunes are a distinct class of bedforms, which scale with the
flow depth and emerge from sediment mixtures forced by supercritical streams and, unlike
dunes, may migrate either upstream or downstream. Because of their significance in formu-
lating depth-discharge relations for river flows and predictor formulae for sediment transport,
bedforms in general, and dunes in particular, received extensive attention from engineers and
geomorphologists.

As pointed out in 2.1, in many natural environments, the morphological patterns which
are commonly observed where large amounts of mobile sediment are available (i.e. alluvial
bedforms) differ from those which form where the mobile sediment is insufficient to cover an
underlying body of sediment which can not be moved by the flowing fluid (i.e. starved bed-
forms). In fluvial environments sediment starvation is common. As channel slopes decrease,
rivers typically exhibit abrupt transitions from gravel to sandy bottoms. In many cases, sea-
sonal and perennial streams subject to periods of low flow or discharge waves undergo a
transient degradation until they are fully armoured (Parker et al., 1982). Then the natural
formation of such a motionless substratum inhibits the entrainment of finer sediment from
the bed, eventually resulting in sediment starvation. Whereby the armoured bed is developed
and finer material continues to be supplied to the river stream, starved dunes are observed
but how sediment starvation affects their morphology is still unclear. Carling et al. (2000)
describe the dynamics of fluvial dunes migrating over a gravel lag layer within a sediment
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starved reach of the Rhine river (Germany). Their data show the existence of two distinct
population of dunes, two-dimensional small-scale transverse dunes with lengths of several
meters and three-dimensional large-scale amorphous dunes with lengths of several tens of
meters. Their data suggest that sediment starvation manifested itself by giving rise to these
isolated, amorphous sandy dunes interspersed with plane gravel lags. The data also indicate
that the crest-to-crest distance of the small dunes changes as they move from the immobile
gravel lags to the stoss and lee sides of the large dunes where mobile sediment is largely
available. In particular, the wavelength of the small dunes is longer when they move above
the gravel lag layer.

The formation of fluvial dunes is a non-trivial problem which has been investigated in
great details by prior researches. A first theoretical approach to the study of sand dune for-
mation was proposed by Kennedy (1969), who’s contribution proved that fluvial dunes can
be interpreted as a free instability of perturbed alluvial beds forced by uniform steady flows.
Later, Engelund (1970), described dune instability as a result of the balance between the
stabilising effects of gravity and the destabilising effects of friction leading to a phase shift
between the bottom perturbation and the perturbation of the shear stress which drives the
instability process. By using suitable flow models and the sediment continuity equation, pro-
gresses were made in the modelling of the formation of fluvial dunes within the framework
of linear stability encompassing various lines of research (Richards, 1980). An extensive re-
view of the linear theory of fluvial dune formation can be found in Colombini (2004), who
revisited it by overcoming some deficiencies in the state-of-the-art modelling through the use
of a more refined description of both hydrodynamics and sediment transport.

All these theoretical investigations consider an infinite availability of mobile sediment
and, as such, if the availability of the mobile sediment is limited they are not valid. Blondeaux
et al. (2016) performed numerical and experimental investigations on the effects of sediment
starvation on the formation of sea-wave-ripples. They investigated the formation of ripples
in oscillatory currents by means of an idealised process-based model that accounts for the
effects of sediment starvation. The present investigation is intended to be an extension of
the linear stability analysis by Colombini (2004) which comprises the effect of sediment
starvation on the formation of fluvial dunes. The main hypothesis of this study is that when
a motionless substratum is exposed by the formation of dunes, the lack of sand affects the
sediment transport, and, in turn, the dune morphology. By following the numerical approach
outlined in Blondeaux et al. (2016), this hypothesis is formulated through numerical means.

The next section is devoted to the description of the linear stability analysis of the for-
mation of alluvial dunes in steady currents and its analytic results are discussed in Section
??. A numerical model of the formation of starved dunes in steady currents is subsequently
presented in Section 3.4 and its numerical results are presented in Section 3.5. Numerical
results which comprises the effect of sediment starvation are compared with the analytic re-
sults of the standard stability analysis of alluvial dunes. Furthermore, theoretical findings are
compared with both field observations and laboratory measurements. The conclusions are
drawn in the final section.
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3.2 Linear stability analysis

3.2.1 Hydrodynamic model

Let us consider the motion of water as that of a viscous incompressible fluid flowing due
to gravity through a domain bounded by a bed interface and a free surface. Since seasonal
and perennial rivers are characterised by high fluid speeds and large spatial scales, the flow
of water in fluvial streams is turbulent; hence the involved hydrodynamics can be described
by the Reynolds-Averaged-Navier-Stokes equations which read

∂v∗i
∂x∗i

= 0 , (3.1)

ρ∗
Dv∗i
Dt∗

= ρ∗

(
∂v∗i
∂t∗

+ v∗j
∂v∗i
∂x∗j

)
= −∂p

∗

∂x∗i
− ρ∗g∗ẑi∗ + µ∗

∂2v∗i
∂x∗l ∂x

∗
l

− ρ∗
∂v′i
∗v′l
∗

∂x∗l
, (3.2)

where x∗i denotes the generic coordinate of a three-dimensional Cartesian frame of reference,
v∗i represents the ensemble averaged fluid velocity component along x∗i , while v

′∗
i is the

random velocity fluctuation along the same coordinate and p∗ is the pressure (an asterisk
denotes dimensional quantities). The density of water ρ∗ and its dynamic viscosity µ∗ are
assumed to be constant in space and time. Finally g∗ is the gravitational acceleration and ẑi∗

is the component along x∗i of the vertical unit vector ẑ∗, which is pointing upwards.
Because of the nonlinearity of convective terms of the governing equations, Reynolds

stresses arise accounting for the turbulent diffusion of momentum. Once the dynamic tur-
bulent eddy viscosity µ∗T is introduced, it is possible to model the Reynolds stresses by a
Boussinesq type closure, neglecting the viscous stresses (µ∗T � µ∗)

T ∗il = −ρ∗v′i∗v′l∗ = µ∗T

(
∂v∗i
∂x∗l

+
∂v∗l
∂x∗i

)
− ρ∗ 2

3
K∗δil , K∗ =

v′l
∗v′l
∗

2
. (3.3)

Figure 3.1: Sketch of the problem.
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Since the objective of the present analysis is the investigation of the formation of fluvial
dunes under simple hydrodynamic conditions, a steady flow in a wide straight channel with
uniform slope S (≡ tan(β)) is considered. As fluvial dunes usually show crests almost per-
pendicular to the main flow direction, the steady turbulent free-surface flow is studied in a
two-dimensional frame of reference (x∗, y∗) with the x∗-axis along the channel axis and the
y∗-axis pointing upwards with the origin at the average bottom (see Figure 3.1). The free
surface is represented by the curve y∗ = R∗ + D∗, where D∗ is the local value of the stream
depth, while the interface between the sandy bottom and the fluid flow is set at the reference
level, i.e. the average level at which conventionally the mean logarithmic velocity profile
vanishes, which is related to the bottom roughness. Considering small values of the uniform
channel slope (cos(β) ' 1) along with an appropriate modified pressure p∗ = P ∗ − ρ∗ 23K

∗,
the hydrodynamic model reads

∂U∗

∂x∗
+
∂V ∗

∂y∗
= 0 (3.4)

U∗
∂U∗

∂x∗
+ V ∗

∂U∗
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= − 1

ρ∗
∂P ∗
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+ g∗S +

1

ρ∗

(
∂T ∗xx
∂x∗

+
∂T ∗xy
∂y∗

)
(3.5)
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∂V ∗

∂x∗
+ V ∗

∂V ∗
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= − 1
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∂P ∗

∂y∗
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1

ρ∗

(
∂T ∗yx
∂x∗

+
∂T ∗yy
∂y∗

)
(3.6)

where T ∗ij are the components of the Reynolds stress tensor

T∗ =

[
T ∗xx T ∗xy
T ∗yx T ∗yy

]
=

 2µ∗T
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∂x∗ µ∗T

(
∂U∗
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)
µ∗T

(
∂U∗

∂y∗ + ∂V ∗

∂x∗

)
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∂y∗

 . (3.7)

A self-similar solution for the turbulent kinematic eddy viscosity is assumed

ν∗T =
µ∗T
ρ∗

= L2(y∗)
∂U∗

∂y∗
. (3.8)

The problem is then closed by appropriate boundary conditions. Laboratory measurements
show that the vanishing of the flow velocity should be forced at y∗ = R∗ = k∗s/30 ' 2.5d∗s/30,
where k∗s is the equivalent roughness length which is proportional to the mean grain size d∗s

U∗ = 0 , V ∗ = 0 at y∗ = R∗ . (3.9)

Accounting for the free surface equation F ∗ = y∗ − (R∗ + D∗) = 0, the kinematic boundary
condition is imposed at the free surface

DF ∗

Dt∗
= −U∗

(
∂R∗

∂x∗
+
∂D∗

∂x∗

)
+ V ∗ = 0 at y∗ = R∗ +D∗ . (3.10)

Introducing the unit vector normal to the free surface n̄ ≡ ∇∗F ∗/|∇∗F ∗|, the dynamic bound-
ary conditions can be expressed which force the vanishing of both normal t∗N and tangential
t∗T stresses to the free surface

t∗N = n̄ · T∗ · n̄ = −2

(
∂R∗

∂x∗
+
∂D∗

∂x∗

)
µ∗T

(
∂U∗

∂y∗
+
∂V ∗

∂x∗

)
− P ∗ + 2µ∗T

∂V ∗

∂y∗
= 0 , (3.11)

t∗T = |t̄∗ − t∗N n̄| = µ∗T

(
∂U∗

∂y∗
+
∂V ∗

∂x∗

)
= 0 at y∗ = R∗ +D∗ . (3.12)
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The problem is formulated in dimensionless form by introducing the following dimen-
sionless variables

(x, y) =
(x∗, y∗)

D∗0
, (R,D) =

(R∗, D∗)

D∗0
, (U, V ) =

(U∗, V ∗)

u∗τ0
, P =

P ∗

ρ∗u∗2τ0
. (3.13)

The mean water depth D∗0 is chosen as length scale for both horizontal and vertical coordi-
nates because the model has to be applied to study the formation of sand dunes which usually
are found to scale with the mean water depth. The mean shear velocity u∗τ0 is chosen as scale
of flow velocity. Since a rough steady flow in a wide straight channel is being considered,
the mean shear velocity can be related to the averaged flow velocity Ū∗0 and the mean water
depth D∗0 by the Chezy relationship

u∗τ0 =
U∗0
C
'
√
g∗D∗0S ⇒ C =

U∗0
u∗τ0
' FR√

S
, (3.14)

where C is the conductance coefficient, FR = U∗0 /
√
gD∗0 is the characteristic Froude number

of the flow, i.e., the ratio of the flow inertia to the external gravitational field, and S is the
mean longitudinal slope of the channel.

The dimensionless Reynolds-Averaged-Navier-Stokes equations read

∂U

∂x
+
∂V

∂y
= 0 , (3.15)

U
∂U

∂x
+ V

∂U

∂y
= −∂P

∂x
+ 1 +

∂Txx
∂x

+
∂Txy
∂y

, (3.16)

∂P

∂y
= − 1

S
, (3.17)

where Tij are the dimensionless Reynolds stresses

T =

[
Txx Txy
Tyx Tyy

]
=

 2νT
∂U
∂x νT

(
∂U
∂y + ∂V

∂x

)
νT

(
∂U
∂y + ∂V

∂x

)
2νT

∂V
∂y

 , (3.18)

and νT is the dimensionless turbulent eddy viscosity

νT =
ν∗T (x∗, y∗)

D∗0u
∗
τ0

=
[D∗(x∗)L(y∗)]2

(D∗0u
∗
τ0)

∂U∗

∂y∗
D∗0
D∗0

= [D(x)L(y)]2
∂U

∂y
. (3.19)

The dimensionless boundary conditions read

U = 0 , V = 0 at y = R(x) , (3.20)

−U
(
∂R

∂x
+
∂D

∂x

)
+ V = 0 at y = R(x) +D(x) , (3.21)

tN = −2

(
∂R

∂x
+
∂D

∂x

)
νT

(
∂U

∂y
+
∂V

∂x

)
− P + 2νT

∂V

∂y
= 0 at y = R(x) +D(x) , (3.22)

tT = νT

(
∂U

∂y
+
∂V

∂x

)
= 0 at y = R(x) +D(x) . (3.23)
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Figure 3.2: Sketch of the coordinate transformation.

Presently the problem is solved by introducing the following coordinate transformationξ = x

η = y−R(x)
D(x)

(3.24)

such that the flow domain y ∈ [R(x, t), R(x, t) + D(x, t)] is transformed into η ∈ [0, 1]. The
turbulent kinematic eddy viscosity is assumed to depend on the distance from the bed. A
quadratic law with vanishing values at the reference level and at the free surface is employed

νT = D
∂U

∂η
L(η)2 , L(η) = κ(η + ηR)(1− η)1/2 , ηR =

R(ξ, t)

D(ξ, t)
' 2.5ds

30
, (3.25)

where ds is the dimensionless mean grain size of the homogeneous sandy bed.
Assuming that the height of the sandy patterns is much smaller than the local water depth,

the flow field can be evaluated by means of a perturbation approach. The hydrodynamic
problem can be split into the evaluation of a basic flow field, which describes a uniform
water flow over a flat sandy bottom, and the flow field perturbations owing to the presence
of small amplitude dunes: 

U
V
P
R
D
νT
tN
tT


=



U0(η)
0

P0(η)
R0

1
νT0(η)
tN0(η)
tT0(η)


+ ε



U1(ξ, η, t)
V1(ξ, η, t)
P1(ξ, η, t)
R1(ξ, t)
D1(ξ, t)
νT1(ξ, η, t)
tN1(ξ, η, t)
tT1(ξ, η, t)


(3.26)

where ε << 1 is the ratio between the small amplitude of the bottom perturbations and the
mean water depth.

At the leading order of approximation, the continuity equation along with the no-slip
condition lead to the vanishing of the vertical velocity component:

dV0
dη

= 0 , (3.27)

V0 = 0 at η = 0 . (3.28)
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Momentum equations and boundary conditions constitute a system of ordinary differential
equations which reads

1 +
dνT0
dη

dU0

dη
+ νT0

d2U0

dη2
= 0 (3.29)

dP0

dη
= − 1

S
(3.30)

U0 = 0 at η = 0 (3.31)

tN0 = −P0 = 0 at η = 1 (3.32)

tT0 = νT0
dU0

dη
= 0 at η = 1 (3.33)

The vertical momentum equation along with the vertical dynamic condition at the free sur-
face give the hydrostatic pressure distribution

P0 =
1− η
S

, (3.34)

while the horizontal momentum equation along with the remaining boundary conditions
at the free surface lead to the well-known logarithmic law for the profile of the horizontal
velocity component

U0 =
1

κ
log

(
η + ηR
ηR

)
. (3.35)

It turns out that the kinematic turbulent eddy viscosity is consistent with the logarithmic
velocity profile

νT0 = κ(η + ηR)(1− η) . (3.36)

Once the dimensionless mean grain size of the homogeneous sandy bed is given, the equiva-
lent roughness length can be evaluated, and, in turn, the vertical profile of both the uniform
flow velocity and turbulent eddy viscosity at the leading order of approximation can be found
(Figure 3.3).
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Figure 3.3: Dimensionless horizontal velocity component (left panel) and kinematic eddy
viscosity (right panel) over the transformed vertical coordinate considering a dimensionless
mean grain size ds = 0.01, a value close to the physical modelling presented in Chapter 1.
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As far as the formation of regularly spaced dunes is concerned, it is possible to assume
the periodicity of the bottom geometry. The sandy bottom is expressed as superposition of
different spatial components and the flow field perturbations, owing to the presence of each
spatial component, can be expressed in the following form:

U
V
P
R
D
νT
tN
tT


=



U0(η)
0

P0(η)
R0

1
νT0(η)
tN0(η)
tT0(η)


+ ε



u(η, t)
v(η, t)
p(η, t)
r(t)
d(t)
νt(η, t)
tn(η, t)
tt(η, t)


eiαξ + c.c. , (3.37)

where α denotes the longitudinal dimensionless wavenumber of the bottom waviness.
At order O(ε), a set of linearly independent first order ordinary differential problems

describes the flow field perturbations:

du

dη
+
iα

2
v − tt

2νT0
= 0 (3.38)

iαu+
dv

dη
= iα(r + ηd)

dU0

dη
(3.39)

−iαU0u−4νT0α
2u− dU0

dη
v+

dtt
dη

+iαtn =

[
−iαU0

dU0

dη
+
iα

S
− 2α2(1− η)

]
(r+ηd)−d (3.40)

−iαU0v + iαtt +
dtn
dη

=
d

S
+ iα(r + ηd)− 2iα(1− η)d (3.41)

The boundary conditions read

u = 0 , v = 0 at η = 0 (3.42)

tt = 0 , tn = 0 at η = 1 (3.43)

v = iα(r + ηd)U0 at η = 1 (3.44)
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3.2.2 Morphodynamic model

From the knowledge of the flow field, it is possible to obtain an estimate of the net
sediment transport. In the present formulation, suspended sediment transport is neglected
and only the bed-load transport is considered, i.e. sliding, rolling and saltating grain particles.
Such assumption seems reasonable since sand dunes are more likely to appear in sub-critical
flows (Fredsøe, 1974), the bottom shear stress generated by which turns out to be too weak
to produce large suspension of the sediment.

A common and useful approach to the quantification of bed-load transport is to empir-
ically relate the sediment transport rate q∗B with both the bottom shear stress t∗TB and its
critical threshold value for incipient motion t∗TC . A large number of empirical relations have
been derived using flume data from many laboratory experiments. Most of the available
relations posed in a suitable dimensionless form share the structure

q∗S√
(s− 1)g∗d∗3s

= Φ(ΘB,ΘC) , (3.45)

where s represents the relative density of the sediment, Φ is the dimensionless bed-load
transport rate and ΘB is the Shields parameter, which represents the dimensionless shear
stress at the bottom

ΘB =
t∗TB

g∗ρ∗(s− 1)d∗s
. (3.46)

The Shields parameter is evaluated at the saltation level B(ξ, t), which is the interface be-
tween the flowing fluid and the very thin saltation layer where grains are involved in bed-
load transport processes (Colombini, 2004). The saltation level is assumed parallel to the
reference level at a distance equal to the saltation layer thickness, which, under uniform
flow condition, is estimated on the basis of some empirical formulae by Sekine and Kikkawa
(1992)

B(ξ, t) = R(ξ, t) + hB , hB = lBds =

{
1 +AB

(
t∗TR − t∗TC

t∗TC

)mB}
ds. (3.47)

where t∗TR is the shear stress evaluated at the reference level and AB, mB are empirical
parameters. Such a slight modification of the absolute value of the shear stress leads to a re-
markable difference in terms of the phase of the shear stress relative to the bottom elevation,
which drives the instability of the sandy bed forced by the fluid flow (Colombini, 2004).

Figure 3.4: Sketch of the bed-load level and the thickness of the saltation layer.
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Figure 3.5: Shields threshold value versus the mean grain size of the sediment. Grey line rep-
resents the fitted curve by Brownlie (1981), while black line represents the modified Shields
threshold by Parker et al. (2003).

In the case of an unperturbed flat bed consisting of non-cohesive sediment, Shields (1936)
determined experimentally that a threshold value of the Shields parameter is required to
initiate the motion of the sediment particles. The critical Shields parameter can be estimated
following Brownlie (1981), who fitted a curve to the experimental line of Shields. In the
limit of sufficiently large particle Reynolds number Rp, based on information contained in
Neill (1968), Parker et al. (2003) amended the Brownlie’s relation to

ΘC =
1

2

(
0.22R−0.6p + 0.06e−17.77R

−0.6
p

)
, (3.48)

where Rp is the particle Reynolds number of the sediment

Rp =

√
(s− 1)g∗d∗3s

ν
. (3.49)

Since the problem under formulation accounts for the presence of bottom perturbations,
the bed is far from being flat and the stabilising effect of gravity, which opposes uphill motion
and favour downhill motion, is considered adopting a correction for the threshold Shields
stress (Fredsøe and Deigaard, 1992)

ΘTH = ΘC

[
1−

(
S − ∂B

∂ξ

)
1

µc

]
, (3.50)

where µc is the Coulomb coefficient. A pile of sediment under water at resting at the angle
of repose Ψ represents a threshold condition. Any slight disturbance causes the failure of the
pile, and thus the motion of the sediment. The difference between the gravitational force and
the buoyancy force acting on a single grain particle lying on the slope of the pile results in a
net downslope force. The balance between this destabilising force and the stabilising friction
force requires that µc = tan(Ψ). For natural sediments, the angle of repose Ψ ranges between
30 and 50 resulting in friction coefficient µc ranging between 0.58 and 1.2. Such a static
representation strongly simplify the sediment particle dynamics. It turns out that the dynamic
friction coefficient assumes smaller values than its static counterpart. Since in the literature
no well established values of the dynamic friction coefficient can be found, following the
recommendations by Fredsøe and Deigaard (1992), a dynamic friction coefficient µd has
been employed, the value of which has been set equal to 0.5µc.
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A large assortment of sediment transport predictors based on good data sets exists which
estimates bed-load transport for well-sorted sediment mixtures. The most important relation
from a historical point of view is the classical Meyer-Peter and Müller (1948) formula. The
relation was derived using flume data pertaining to uniform sediment in the gravel sizes (d∗s
ranging between 5.21 mm and 28.65 mm). Later, Wong and Parker (2006) found an error in
the analysis of Meyer-Peter and Müller (1948). A subsequent analysis of the experimental
data used by Meyer-Peter and Müller (1948) resulted in the following corrected relation

Φ = 3.97 (ΘB −ΘC)3/2 with ΘC = 0.0495 . (3.51)

The fixed critical Shields parameter must be considered as only a matter of convenience for
correlating the experimental data. As already pointed out, the critical Shields parameter
should be a function of the mean grain size, and this fact results in some of the scatter
between the existing relations. Among the commonly-quoted bed-load transport predictors
is the Fernandez Luque and Van Beek (1976) formula, which reads

Φ = 5.7 (ΘB −ΘC)3/2 with ΘC = 0.037÷ 0.0455 . (3.52)

The predictor relation appears to contain the main physical ingredients controlling the pro-
cess of sediment transport for values of the Shields parameter close to its threshold. Fur-
thermore, the bed material tested in the experiments on which the above relation is based
included different grain sizes ranging from sand to gravel. The experimental values of the
critical Shields stress generally track the Brownlie’s curve. It is worth pointing out that this
relation has been plotted well outside of the experimental data used to derive it. In the data
used by Fernandez Luque and Van Beek (1976), ΘB never exceeded 0.11, whereas their plot
extends to ΘB = 1.
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Figure 3.6: Bed-load sediment transport rate versus the Shields stress. The thin grey line
represents the original Meyer-Peter and Müller (1948) relation, while the thin black line
represents its modified version Wong and Parker (2006). The thik black line represents the
Fernandez Luque and Van Beek (1976) formula with a critical Shields parameter equal to
0.038 (d∗S ∼ 1 mm), while for a critical Shields parameter equal to 0.045 (d∗S ∼ 3 mm) the
relation is plotted by a dashed black line.
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Finally, the local time development of the bottom configuration can be estimated by the
sediment continuity equation, which simply states that locally the positive (negative) diver-
gence of the sediment transport rate should be balanced by the increase (decrease) of the
bottom elevation,

∂B(ξ, T )

∂T
= −∂Φ(ξ, T )

∂ξ
, T =

t∗
√

(s− 1)g∗d∗3s
D∗20 (1− p)

, (3.53)

where T is a slow morphodynamic time scale.
Linearizing all the above introduced morphodynamic formulae, and coupling them with

the linear hydrodynamics previously described, it is possible to perform a linear stability
analysis. Such stability analysis entails few main steps. First of all, the generic bottom
perturbation of small amplitude is written as an exponential function of the longitudinal
coordinate

B(ξ, T ) = R0 + hB + εB1(ξ, T ) = R0 + hB + εb(T )eiαξ + c.c. . (3.54)

At this point it is worth noting that the time-varying amplitude of the perturbation of the
bed-load level b equals the amplitude of the perturbation of the reference level r.

Directly from the knowledge of the perturbed flow field, it is possible to evaluate the
perturbation of the Shields parameter which is related with the shear stress exerted by the
flow over the perturbed sandy bottom

ΘB(ξ, t) = ΘB0 + εθb(t)e
iαξ + c.c. =

S

(s− 1)ds

[
tTB0 + εttb(t)e

iαξ + c.c.
]

(3.55)

At the leading order of approximation the Shields parameter turns out to be

ΘB0 =
S

(s− 1)ds
tTB0 =

S

(s− 1)ds

[
νT0

dU0

dη

]
ηB

=
S

(s− 1)ds
(1− ηB) , (3.56)

where ηB = ηR + hB represents the dimensionless distance between level B and level R,
while at the first order of approximation the perturbed Shields parameter turns out to be

θb =
S

(s− 1)ds
ttb =

S

(s− 1)ds

[
2νT0

(
du

dη
+
iα

2
v

)]
. (3.57)

Then, accounting for the gradient of the bed level along the longitudinal coordinate, the
perturbation of the threshold Shields stress reads

ΘTH(ξ, t) = ΘTH0 + εθth(t)eiαξ + c.c. = ΘC0 (1− S/µd) + εiαΘC0/µdb(t)e
iαξ + c.c. (3.58)

Finally, it is possible to evaluate the sediment transport rate related with the presence of the
generic bottom perturbation

Φ(ξ, T ) = Φ0 + εφ(t)eiαξ + c.c. = Φ0 + ε

(
∂Φ

∂ΘB

)
0

(θb − θth)eiαξ + c.c. (3.59)

The linearised sediment continuity equation leads to the following dispersion relationship

1

b

db

dT
= −iαφ

b
= −iωα ⇒ b(T ) = e−iωαT = e−iωαRT eωαIT . (3.60)

An exponential dependence of the solution on time emerges, and, in turn, its complex argu-
ment is able to describe the time development of the generic bottom perturbation. It turns
out that the imaginary part of the complex quantity ωαI describes the growth (decay) of the
bottom perturbation related to the wavenumber α, while its real counterpart ωαR describes
its migration.
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3.3 Semi-analytical results

The linear system of coupled ordinary differential equations can be re-written in the gen-
eral form

A x = d Bd + r Br (3.61)

where d is considered as a parameter to be determined and r represents the amplitude of the
perturbation of the reference level. The vector x of the unknowns of the problem is

x = (u, v, tt, tn)T . (3.62)

The linear differential operator A in (3.61) is

A =


d
dη

iα
2 − 1

2νT0
0

iα d
dη 0 0

−iαU0 − 4νT0α
2 −dU0

dη
d
dη iα

0 −iαU0 iα d
dη

 , (3.63)

while the vector Bd and Br are

Bd =


0

iαη dU0
dη[

−iαU0
dU0
dη + iα

S − 2α2(1− η)
]
η − 1

1
S + iαη − 2iα(1− η)

 (3.64)

and

Br =


0

iαdU0
dη

−iαU0
dU0
dη + iα

S − 2α2(1− η)

iα

 . (3.65)

The problem involving the above ordinary differential operators is not completely defined
by its equations. Even more crucial in determining how to attack the problem numerically
is the nature of its boundary conditions. Presently the available boundary conditions are
specified at two different boundaries, which are the mean bottom and the free surface. As
already pointed out these boundary conditions yield the vanishing of u and v at the reference
level (η = 0), the vanishing of tt and tn at the free surface (η = 1), where the kinematic
condition is imposed as well. The solution of the ordinary differential problem is found
with a standard shooting procedure from the bottom up to the free surface. Equations are
numerically integrated by means of a fifth-order Runge-Kutta method with adaptive step-size
control. Linearity of the differential system allows to express its solution in the form

x = c1x1 + c2x2 + dxd + rxr . (3.66)

Thus, x is a linear combination of two linearly independent solutions of the homogeneous
initial value problems

A x1 = 0 , A x2 = 0 , (3.67)

plus particular solutions of the non-homogeneous differential systems

A xd = Bd , A xr = Br , (3.68)
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each satisfying the no-slip boundary conditions at the reference level. Using the splitting
(3.66) on the boundary conditions at the free surface, a linear 3× 3 non-homogeneous alge-
braic system in the three unknowns c1, c2 and d is found, the solution of which is proportional
to r

c = (c1, c2, d, r)
T = r(ttr, tnr, d/r, 1)T = r C (3.69)

where the two linearly independent solutions of the homogeneous problems have been cho-
sen so that c1/r and c2/r are the values of the perturbation of the tangential ttr and normal
tnr stress at the reference level, respectively. The vector C thus provides the forced response
of the flow to a unit reference level perturbation. The amplitude ttb of the perturbation of the
shear stress evaluated at the bed-load level tTB can be expanded as in (3.66),

ttb = c1ttb1 + c2ttb2 + dttbd + rttbr , (3.70)

and the amplitude θb of the perturbation of the Shields stress ΘB can be expanded as well,

θb =
S

(s− 1)ds
ttb =

S

(s− 1)ds
(c1ttb1 + c2ttb2 + dttbd + rttbr) . (3.71)

Analogously the amplitude φ of the perturbation of the bed-load discharge Φ can be expanded
as follows

φ = c1φ1 + c2φ2 + dφd + rφr = φ · c = φ · r C (3.72)

where

φ =


φ1
φ2
φd
φr

 =
S

(s− 1)ds

(
∂Φ

∂ΘB

)
0


ttb1
ttb2
ttbd

ttbr − iαµ
S/(s−1)ds

 . (3.73)

Making use of (3.71) and (3.72), the dispersion relationship can be rewritten in the form

ω = α φ · C , (3.74)

and determining the imaginary part it is possible to obtain an expression for the growth rate

ωI = α2 S

(s− 1)ds

(
∂Φ

∂ΘB

)
0

(
ttbI
α
− ΘC0

µd

(s− 1)ds
S

)
(3.75)

which clearly shows how the emergence of small amplitude bottom perturbations is related
to a balance between the destabilising effect due to the steady current, represented by the
shear stress at the bed-load level, and the stabilising effect due to the gravity, represented by
the dynamic friction coefficient.

The investigation of the dispersion relationship allows possible instability regions to be
isolated in the parameter space. Among the free parameters of the stability-based model are
the unperturbed flow depth D∗0 and the uniform mean grain size of the sediment d∗s, which
determines the equivalent roughness length k∗s , and, in turn, the conductance coefficient
characterising the unperturbed steady stream

C =
1

κ
ln

(
11.09D∗0
k∗s

)
, k∗s = 2.5d∗s . (3.76)

Once the angle of repose of the bed material Ψ is assigned, the dynamic friction coefficient
µd can be evaluated which regulates the effect of gravity.
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Figure 3.7: Growth rate plotted in shades of grey for values of the free parameters C = 20,
Ψ = 40◦. Thick black lines represent the curves of vanishing growth rate, while dashed white
lines represent the curves of vanishing celerity.

Finally, it is possible to compute the growth rate ωαI related with the generic bottom
perturbation represented by its dimensionless wavenumber α by varying the Froude number
FR of the unperturbed flow. Employing the classical Meyer-Peter and Müller (1948) formula
and setting appropriate free parameters (i.e. C = 20, Ψ = 40◦), the model results confirm
the numerical findings by Colombini (2004), which successfully presented an unification of
the stability theory of dune and antidunes formation (see Figure 3.7). Two distinct regions
of instability can be clearly identified. Values of the parameters for which the growth rate
is positive lead to the growth of a limited range of perturbations, indicating instability. The
migration rate ωαR related with the range of unstable modes determines the perturbation
celerity. Positive values of the migration rate result in downstream migration, while negative
values indicate upstream migration. In Figure 3.7, broken white lines represent vanishing
values of the migration rate. Below the lower broken line the celerity of the unstable per-
turbations turns out to be positive (i.e. downstream migration, dunes), while the unstable
perturbations lying above this line has negative celerity (i.e. upstream migration, antidunes).

A comparison of the results of the linear stability analysis with laboratory observations
is difficult because experimental data are usually collected when the bottom perturbations
are fully developed. On the other hand, to perform a classical linear stability analysis, in-
formation on the unperturbed flow are crucial. Colombini (2004) compare the numerical
findings with the experimental data by Guy et al. (1966). In the following, the comparison of
the results of the present linear stability analysis with the same observations is performed by
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Figure 3.8: Growth rate plotted in shades of grey for values of the free parameters C = 19,
Ψ = 40◦. Thick black lines represent the curves of vanishing growth rate, while dashed white
lines represent the curves of vanishing celerity. White points represent the experimental
observations by Guy et al. (1966).

employing the Wong and Parker (2006) transport formula, which allows a better matching
between numerical results and experimental data. Since the growth of bottom perturbations
induces considerable changes of the flow resistance, the mean water depth and the slope of
the final equilibrium state observed in the flumes are considerably different from those char-
acterising the initial uniform flow. Furthermore, another difficulty in the interpretation of
the experimental results arises because of the presence of smooth sidewalls in the laboratory
flumes usually employed for the physical modelling of the problem under investigation. An
equivalent uniform flow in an infinitely wide plane bed channel was evaluated from the ex-
perimental data disregarding information on the measured slope and friction coefficient and
following a procedure similar to the side-wall correction presented in Chapter 2.

Figure 3.8 shows the numerical findings obtained imposing an average value for the con-
ductance coefficient C = 19 characterising the experimental observations by Guy et al. (1966)
and a value of the angle of repose equal to 40◦. The successful agreement between the results
of the present stability analysis and the experimental data is confirmed by the fact that al-
most the whole set of measurements concerning the formation of sand dunes falls within the
appropriate region of instability. Of note, agreement of model predictions with experimental
measurements that confirm the negative growth rates (points outside the solid lines of Figure
3.8: absence of dunes and plane bed or transitional conditions, i.e. upper-stage plane bed)
can be found in Colombini and Stocchino (2008).

57



3.3 SEMI-ANALYTICAL RESULTS 3 NUMERICAL INVESTIGATION

 0.5

 1

 1.5

 0  0.5  1  1.5

FR

α

-0.1

-0.05

 0

 0.05

 0.1

ωI

Figure 3.9: Growth rate plotted in shades of grey for values of the free parameters C = 15,
Ψ = 50◦. Thick black lines represent the curves of vanishing growth rate, dashed white lines
represent the curves of vanishing celerity, white line represents the fastest growing modes.

In order to compare the results of the linear stability analysis with the experimental ob-
servations described in Chapter 2, the value of the mean grain size was set equal to the mean
diameter of the well sorted sediment used in the physical modelling d∗s = 0.1. The value of
the unperturbed mean water depth was set equal to the uniform depth of the wide open chan-
nel flow evaluated by the side-wall correction. Since the experimental work was performed
with low energy flows which lead to weak sediment transport during all the experiments,
the comparison of the results of the present linear stability analysis with the experimental
observations described in the previous chapter is performed by employing the transport pre-
dictor by Fernandez Luque and Van Beek (1976), which allows a better matching between
numerical results and experimental data.

Furthermore, the study of the dispersion relationship allows the fastest growing mode to
be selected among those modes that turn out to be unstable for the assumed hydrodynamic
and morphodynamic conditions. By considering a value of the Froude number of the forcing
flow close to the value measured during the experiments described in Chapter 2, it is possible
to extrapolate from the previous plot the growth curve describing the unstable perturbations
for the hydrodynamic and morphodynamic parameters that characterise the physical mod-
elling. Finally, assuming the most unstable mode to prevail on the other over the short-term
morphodynamic evolution of the sandy bed, the wavelength of the emerging dunes which is
more likely to form can be predicted. Figure 3.10 shows that the present model predicts a
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Figure 3.10: Growth rate of the bottom perturbations plotted versus the perturbation
wavenumber evaluated by means of the linear stability analysis for the following values of
the parameters C = 15, Ψ = 50◦, Fr = 0.5.

fastest growing mode related with the experiments which is associated with the wavenumber
α = 0.6, that corresponds to a value of the dimensional wavelength of the fastest growing
perturbation approximately equal to λ∗ = 1 m, a value which is of the same order of the
wavelengths of the alluvial dunes observed at the end of the experiments.
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3.4 Numerical modelling

Among the main limitations of standard linear stability analyses is the assumption of full
mobility conditions. When a motionless substratum is exposed by the formation of sand
dunes, the lack of sediment affects its transport, and, in turn, the pattern morphology. The
baring of the motionless substratum leads to supply-limited conditions. Local entrainment
of sediment is prevented by the presence of the motionless substratum, and, therefore, the
amount of sediment in motion is smaller than the local transport capacity. All the previously
introduced predictor formulae quantifying the sediment transport rate cannot be applied in
the case of supply-limited conditions unless a suitable numerical procedure is introduced
that is capable of account for the local lack of mobile sediment. Presently the numerical
procedure outlined by Blondeaux et al. (2016) has been employed. Where sand is available,
the sediment transport is thought to be dependent only on the bottom shear stress. If the
shear decreases (increases) in the flow direction, the sediment transport rate can be predicted
by standard predictor formulae and some deposition (erosion) occurs accordingly with the
sediment continuity. Differently, where the motionless substratum is locally exposed (x∗ =
x∗exp), the value of the local sediment transport rate Φ(x∗) depends not only on the local value
of the shear stress ΘB(x∗) but on its spatial derivative as well. If the shear stress increases in
the direction of the flow, the sediment transport rate remains constant since the flow cannot
entrain additional mobile sediment. On the other hand, if the shear stress decreases in the
direction of the flow, two different scenarios are possible depending on the upstream value
of the sediment transport rate. If the upstream value of the sediment transport rate is smaller
than the value predicted locally by standard predictor formulae ΦP (x∗) due to the upstream
baring of the motionless substratum, the local sediment transport rate should be assumed
equal to its upstream value. Otherwise, the local value of the sediment transport rate should
be the value predicted by standard predictor formulae and some deposition of sediment over
the exposed substratum should occur accordingly with the sediment continuity.

Φ(x∗exp) = Φ(x∗exp − dx∗) if
dΘB

dx∗

∣∣∣∣
x∗exp

> 0 , (3.77)

Φ(x∗exp) = Φ(x∗exp − dx∗) if
dΘB

dx∗

∣∣∣∣
x∗exp

< 0 and Φ(x∗exp − dx∗) < ΦP (x∗exp) , (3.78)

Φ(x∗exp) = ΦP (x∗exp) if
dΘB

dx∗

∣∣∣∣
x∗exp

< 0 and Φ(x∗exp − dx∗) > ΦP (x∗exp) . (3.79)

These simple rules (3.77-3.79) introduce strong nonlinearities and the time-development
of the bottom configuration can be obtained only by numerical means. The present numeri-
cal model integrates in time and space the dimensionless sediment continuity equation. The
time-advancement of (3.53) is obtained by means of a Runge-Kutta second-order approach,
while the spatial derivatives are replaced by their second-order finite difference approxima-
tion. A computational domain of length L∗d along the horizontal axis x∗ is considered and
periodic boundary conditions are applied at its ends (x∗ = 0, x∗ = L∗d). The dimension-
less length of the computational domain Ld = L∗d/D

∗
0, the thickness of the initial sand layer

∆ = ∆∗/D∗0, the initial small amplitude of the bottom configurations A0 = A∗0/D
∗
0 and its

wavenumber α∗ = 2πD∗0/λ
∗
α are the free geometrical parameters of the numerical model. At

this point it is worth noting that when sediment starvation leads to the emergence of starved
bedforms which are no longer purely sinusoidal, the conservation of the volume of sand

60



3 NUMERICAL INVESTIGATION 3.5 NUMERICAL RESULTS

forces the amplitude A(T ) = ∆λα/λTT , where λTT is the trough-to-trough distance (chord)
of the emerging starved dunes. The value of Ld is chosen large enough to assume its influ-
ence on the time-development of the bottom configuration to be negligible. Furthermore, Ld
should be large enough to represent fairly well the formation of the fastest growing mode
predicted by the linear stability analysis. Since the time-development of the entire range of
unstable modes has to be described with sufficient accuracy, the spatial discretization should
be accurate enough to represent the smaller wavelength of the unstable modes predicted by
the linear stability analysis with a suitable number of computational points. Of note, in those
regions of transition between the rigid substratum and the sandy bed, oscillations of small
amplitude and wavelength appear that are a spurious output of the numerical approach as a
result of the Gibbs’ effect related with the local discontinuity of the bottom elevation. In its
numerical time stepping, the present numerical model forces the bed elevation to never drop
below the substratum’s level by introducing a filtering procedure which remove the small-
scale spurious oscillations that has to be in accordance with the sediment continuity. Finally,
denoting with ∆x∗ and ∆T the grid size and the time step used in the numerical integration
of equation (3.53), some of the numerical simulations were repeated halving both the grid
size and the time step. The results indicate that the chosen couple of values (∆x∗, ∆T ) does
not affect the time-development of the bottom configuration.

3.5 Numerical results

3.5.1 Numerical Stability Analysis

In the present subsection, we explore the possibility of performing a stability analysis
of the formation of small amplitude fluvial dunes where the supply limitation affects their
dynamics and morphology. To test whether the numerical model can provide a reliable de-
scription of the nonlinear effects triggered by the baring of a motionless substratum, the time
development of an initial bottom perturbation is numerically integrated in space and time
by considering two different cases. The first case is characterised by an infinite availability
of the sediment, i.e. alluvial conditions, whereas in the second case the formation of sandy
patterns bares a motionless substratum underlying a finite layer of sand of given thickness
∆∗, i.e. supply limited conditions.

In order to compare the numerical results with the analytical findings provided by the
linear stability analysis, small amplitude perturbations of the interface between the sandy
bottom and the flowing fluid are considered in both cases. In alluvial conditions, for values
of the flow and sediment parameters so as the sandy bottom is unstable, the wavelength of
the emerging alluvial dunes can be predicted by means of the linear stability analysis de-
scribed in the previous section. Such analytical findings describe an exponential growth of
the amplitude of the unstable modes [see (3.60)] which takes place on the slow morphody-
namic time scale [see (3.53)], the growth rate of which can be computed for the range of
unstable modes by (3.75).

An alternative description of the exponential growth of the unstable modes predicted
by analytical means can be performed by the present numerical model. Considering the
wavenumber range of the unstable modes, numerical simulations are performed starting from
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an initial bottom perturbation A0cos(αx) and the numerical growth rate ωαN is computed as

ωαN =
ln [A(Tend)α/A0]

Tend
, (3.80)

where A(Tend) represents the amplitude of the generic bottom perturbation at the end of the
simulation time window Tend. If the final amplitude of the growing perturbation is smaller
than the initial thickness of the sand layer (A(Tend) < ∆), the growth of the unstable modes
turn out to be exponential and the growth rates obtained by means of the numerical proce-
dure match the analytical values predicted by the linear stability analysis (see Figure 3.11
and Figure 3.12). On the other hand, if an initial amplitude of the growing perturbations is
considered which is equal to the thickness of the initial sand layer (A0 = ∆), the emerging
bottom perturbations bare the motionless substratum throughout the whole simulation time
window and nonlinear effects modify the exponential growth of the unstable modes. In this
case, in order to quantify the growth of the bottom perturbations and to gain information
on the most unstable mode which is supposed to prevail under supply limited condition, the
following quantity is adopted

ω̄αN =
ln [A(Tend)α/∆]

Tend
. (3.81)

In Figure 3.11 the analytical growth curve predicted by the linear stability analysis is
compared with the numerical results in the case of alluvial conditions and in the case of
supply limited conditions. The values of the flow and sediment parameters are C = 15,
Fr = 0.5, s = 1.65 and µd = 0.6. Such values were chosen because they fall in the range of
the values typical of the physical modelling described in Chapter 2. In particular, these values
correspond to sand grains (ρ∗s = 1650kgm−3) characterised by a mean grain size d∗s equal to
1mm and dragged by a uniform steady current in a mean water depthD∗0 equal to 10 cmwith
a depth averaged velocity Ū∗ equal to 0.5ms−1. Because of the nonlinearities of the sediment
transport the numerical growth rate evaluated in the case of supply limitation depends on
the extension of the simulation time window. Since the experiments described in Chapter
2 were stopped after half an hour from the realisation of an uniform flow which forced the
initial layer of sand with different degrees of supply limitation, results are presented for
different values of the dimensionless time window representing dimensional duration of the
numerical simulations of the same order of the duration of the laboratory experiments. It is
worth nothing that the morphodynamic time scale T ∗m appearing in equation (3.53) turns out
to be much longer than the hydrodynamic time scale of the steady flow and for values of the
parameters replacing the laboratory experiments typical values of T ∗m are of the order of tens
of minutes.

The last model inputs required by the model are the small amplitude A0 of the initial si-
nusoidal undulations, which is presently assumed to be two order of magnitude smaller than
the dimensionless mean water depth, and, the thickness ∆ of the initial sand layer thick-
ness. Values of ∆ of the order of the mean water depth (∆ = 1) lead to the formation of
alluvial dunes, while a value of ∆ equal to the small amplitude of the bottom perturbations
(∆ = A0) leads to supply limited conditions. If the former case is considered, the growth rate
ωαN (white dots in Figure 3.11) of the bottom waviness computed by numerically by means
of the present model and that computed analytically by the linear stability analysis ωαI (solid
line in Figure 3.11) are coincident. In this case, the numerical model predicts a maximum
value of the growth rate for a wavenumber α ' 0.6, which is that of the fastest growing allu-
vial dunes. If the latter case is considered, the motionless substratum becomes exposed and
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Figure 3.11: Growth rate of the bottom perturbations plotted versus the perturbation
wavenumber α for the following values of the parameters C = 15, Ψ = 50◦, Fr = 0.5,
A0 = 0.01. Solid line represents the analytical growth rate ωαI predicted by the linear stabil-
ity analysis. White dots represent the alluvial growth rate ωαN for each numerical simulation
in alluvial conditions (∆ = 1). Black dots represent the supply limited growth rate ω̄αN
for each numerical simulation in supply limited conditions (∆ = A0). Different point shape
indicate different simulation time window Tend reported in the legend.

nonlinear effects modify the growth curve obtained for alluvial conditions. In particular, in
this case, the nonlinear sediment transport damps the growth rate of perturbations, especially
those with large wavenumbers (smaller wavelengths), and, supply limited dunes predicted
by the present numerical stability analysis turn out to be longer than alluvial dunes. This
qualitative finding is in agreement with the experimental measurements presented in Chap-
ter 2. Figure 3.11 shows the quantity ω̄αN for different values of the simulation time Tend
(see legend of Figure 3.11), then for different degrees of the supply limitation. As expected,
as Tend decreases, ω̄αN approaches the values of the growth rate ωαI predicted by the lin-
ear stability analysis. The numerical model predicts a maximum value of the quantity ω̄αN
for a wavenumber α ' 0.55 considering a Tend = 15 and α ' 0.4 considering a Tend = 30
corresponding to dimensionless wavelengths λ∗ equal to 1.1 m and 1.5 m, respectively. The
lengthening of the dunes with an increasing supply limitation is evident. This theoretical
finding is in fair agreement with the laboratory observations described in Chapter 2.

The numerical procedure outlined above has been applied to make quantitative predic-
tions of the characteristics of the fluvial dunes observed by Carling et al. (2000) in a supply
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limited reach of the river Rhine introduced in Chapter 2. In Figure 3.12 the numerical growth
rate of the bottom perturbations which emerge from an infinite layer of sediment (alluvial
conditions) is compared with that of the perturbations which develop through a layer of sed-
iment of finite thickness leading to the baring of a motionless substratum (supply limited
conditions). The values of the flow and sediment parameters are C = 24, Fr = 0.15, s = 1.65
and µd = 0.5. Such values has been chosen because they fall in the range of the values typical
of the field observations by Carling et al. (2000). In particular, these values correspond to
a uniform steady flow with depth averaged velocity Ū∗ equal to 0.8 ms−1 in a mean water
depth D∗0 equal to 3 m which entrains a mobile sediment (ρ∗s = 1650kgm−3) characterised by
a mean grain size d∗s equal to 0.9 mm. For these values of the parameters, the dimensional
morphodynamic time scale T ∗m attains larger values than that corresponding to the flume
experiments of Chapter 2, and, it turns out to be of the order of tens of hours. Since the vari-
ations of the river stage recorder by Carling et al. (2000) occur during periods of the order of
several days, results are presented for a dimensionless time window Tend equal to 15, which
represents a dimensional duration of the numerical simulations of the same order of the pe-
riods through which the river stream can be approximated by a uniform steady flow. The last
model inputs required by the model are the small amplitude A0 of the initial sinusoidal undu-
lations, which is assumed to be two order of magnitude smaller than the mean water depth,
and, the thickness ∆ of the initial sand layer thickness. Different values of ∆ has been chosen
in order to describe the formation of dunes in alluvial conditions and in supply limited condi-
tions as outlined in the previous paragraph. In the former case (grey line of Figure 3.12), the
numerical model predicts a maximum value of ωαN for a perturbation wavenumber α ' 3.5
which is that of the fastest growing dunes supposed to prevail on the other unstable modes
in alluvial conditions. The corresponding dimensional wavelength λ∗ is about 5 m, a value
which fairly reproduces the wavelengths of the two-dimensional small dunes migrating over
the stoss side of larger parent bedforms observed by Carling et al. (2000). In the latter case
(black line of Figure 3.12), the numerical model predicts a maximum value of ω̄αN for a per-
turbation wavenumber α ' 0.5 which is that of the fastest growing dunes supposed to prevail
on the other unstable modes in supply limited conditions. The corresponding dimensional
wavelength λ∗ is about 40 m, a value which falls in the range of the wavelengths of the large
dunes migrating over a gravel lag layer observed by Carling et al. (2000). The numerical
findings turn out to be in qualitative and quantitative agreement with the field observations.

Figure 3.13 shows the time development of the river bed when a thin layer of sediment
is present and the initial profile of the bottom is described by the fastest growing mode pre-
dicted by the present numerical stability analysis in the case of supply limited conditions. As
the initial perturbation grows, the motionless substratum becomes exposed in large regions
and nonlinear effects start to play a significant role in the dynamics of the dunes. The crests
of the supply limited dunes become sharper than the troughs, which in turn are flat because
of the presence of the motionless substratum. Moreover, the bottom profile is asymmetric
with respect to the dune crests which attain an humpback profile similar to those of the very
large dunes observed by Carling et al. (2000).

3.5.2 Time development of an initial random bottom waviness

The present subsection is devoted to test whether the numerical model can provide a
reliable description of the physical processes described by the experimental investigation
presented in Chapter 2. Analogously to the experimental investigation, a series of numeri-
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Figure 3.12: Growth rate of the bottom perturbations plotted versus the perturbation
wavenumber α for the following values of the parameters C = 24, Ψ = 45◦, Fr = 0.15,
A0 = 0.01. Grey line represents the numerical growth curve predicted considering alluvial
conditions (∆ = 1). Black line represents the numerical growth curve predicted considering
supply limited conditions (∆ = A0). Results are presented for a dimensionless time window
Tend equal to 15.

cal simulations is performed computing the time development of an initial random bottom
waviness forced by a uniform steady current by fixing hydrodynamic and morphodynamic
parameters and varying the supply of sediment. Accordingly to the flume experiments, the
sediment supply is decreased by decreasing the dimensionless thickness ∆ of the initial sand
layer through which the dunes develop. Decreasing the amount of mobile sediment, the
motionless substratum is exposed by the growth of the dune leading to supply-limited condi-
tions. The supply limitation leads to nonlinear sediment transport which turns out to strongly
affect the pattern morphology.

The right part of the panels of figure 3.14 show the bottom configurations at the beginning
(grey lines) and at the end (black lines) of each numerical simulation. The values of the flow
and sediment parameters are C = 15, Fr = 0.5, Ψ = 50◦. The dimensionless length of the
computational domain is Ld = 100. The thickness of the initial sand layer is progressively
decreased starting from ∆ = 0.25 (top panel) down to ∆ = 0.05 (bottom panel). Taking into
account that the assumed mean water depth D∗0 is 0.1 m, the first simulation with ∆ = 0.25
(panel A) corresponds to an initial dimensional thickness of the sand layer equal to 2.5 cm.
At the beginning of the simulation, the bottom is flat but for a random perturbation of small
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Figure 3.13: Time development of the river bed starting from a small amplitude bottom per-
turbations (A0 = 0.01) which represents the fastest growing mode predicted by the numerical
model in the case of supply limited conditions (∆ = 0.01, α ' 0.5)

amplitude of the order of mm. At the end of the simulation, 10 well-shaped dunes can be
easily identified through the computational domain with an average wavelength equal to 1 m
which is the alluvial wavelength predicted by the linear stability analysis for the same set of
parameters.

Each numerical simulation is made considering a common simulation time window which
corresponds to values of the final amplitude of the dunes of the same order of those observed
at the end of the flume experiments. The chosen simulation time window turns out to be
of the same order of the duration of the experiments. The left part of the panels of figure
3.14 shows also the bottom profiles through an enlargement of the central part of the com-
putational domain at different time steps for each numerical simulation. It is possible to
observe the rapid decay of the perturbation components characterised by the smallest wave-
lengths. Only the perturbations corresponding to the unstable range of modes predicted by
the linear stability analysis survive. The initial waviness (grey lines), which is generated as
a sequence of random numbers, is characterised by very short wavelengths representing a
physical meaningless description of the bottom. The first part of each numerical simulation
can be thought as a numerical trick which allows to obtain a reasonable initial bottom config-
uration (dotted lines). Left part of panel A of figure 3.14 shows numerical results of the first
simulation which describe the growth of the fastest growing mode predicted by the linear sta-
bility analysis slowly prevailing on the other unstable modes (black solid line). The growth
of the amplitude of the dunes is exponential and it does not bare the motionless substratum.

A similar final bottom configuration is computed by the second numerical simulation
(panel B), which considers a dimensional thickness of the sediment layer equal to 2 cm. The
final amplitude of the emerging patterns at the end of the second simulation is just large
enough to locally bare the motionless substratum and 10 regularly spaced alluvial dunes can
be readily identified, the average wavelength of which is equal to that of the first simulation.
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Figure 3.14: Time development of an initial random bottom waviness for the following values
of the flow and sediment parameters: C = 15, Fr = 0.5, Ψ = 50◦. Left panels: Initial random
waviness and final bottom configurations. Right panels: Bottom profiles at different time
steps.
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Figure 3.15: Comparison between the harmonic content of the final bottom configurations
computed at the end of the numerical simulations varying the supply limitation. The modulus
of the Fourier transform is plotted versus the first harmonic components.

The series includes two further simulations which correspond to an initial sand layer thick-
ness of 1 cm (panel C) and 0.5 cm (panel D), respectively. For these values of the volume of
mobile sediment, numerical results predict the baring of the motionless substratum owing to
the formation of supply limited dunes. The final bottom configurations show an increasing
crest-to-crest distance of the dunes as the initial thickness of the sand layer decreases. The
lengthening of the supply limited dunes and the increasing irregularity of their profile with
an increasing supply limitation is evident.

By considering the harmonic content of each final bottom configuration computed by
the numerical simulations, the spectrum of the bottom profile reveals whether a dominant
wavelength is present or whether the configuration is the result of a superposition of many
different components. In Figure 3.15, the spectra of the final bottom configurations are com-
pared. The modulus of the Fourier transform of each harmonic component is presented. The
numerical results show that the peak harmonic component shifts towards lower frequencies
as the thickness of the sand layer decreases. These numerical findings are in fair agreement
with the experimental measurements presented in Chapter 2.
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3.6 Conclusions

Numerical simulations were performed to investigate the formation of starved dunes in
steady currents by means of an idealised process-based numerical model which consists of
an extension of the linear stability analysis of sand dunes that accounts for the effect of
sediment starvation on the formation of fluvial dunes. The main outcomes of the theoretical
investigation are the following.

• Numerical simulations of the time-development of the bottom profile characterising
both alluvial dunes and starved dunes, for the same values of the hydrodynamic and
morphodynamic parameters and, in particular, for the same duration of the numeri-
cal simulations, predict that starved dunes attained longer wavelengths than alluvial
dunes. This is consistent with the laboratory measurements presented in Chapter 2.

• A stability analysis of starved dunes in steady currents was performed in order to com-
pare the numerical findings with the field observations by Carling et al. (2000). As the
sediment starvation increases, alluvial two-dimensional dunes are replaced by more
irregularly spaced starved dunes that exhibit a larger averaged crest-to-crest distance
than alluvial dunes. This is consistent with the field data collected by Carling et al.
(2000).

69





Chapter 4

A Numerical Investigation
on the Formation of Starved Dunes
in Oscillatory Tidal Currents

Abstract

Field observations in the English Channel through the central part of the Dover Strait,
where strong tidal currents prevent the uniform deposition of sediments ultimately leading
to sediment starvation, show the presence of morphological patterns with geometric and
kinematic characteristics that are similar to, but different from, those of typical tidal dunes.
In particular, these amorphous sandy mounds exhibit an averaged spacing which is larger
than the wavelength of tidal dunes that are observed in the same surveyed area where sand
is abundant. The present investigation is intended to be a contribution to the stability theory
of sand dunes in oscillatory tidal currents that accounts for the effect of sediment starvation
on the formation of tidal dunes. When the volume of sediments available for transport is
limited, classical morphodynamic stability analyses cannot be applied for two main reasons:
firstly, the motionless substratum initially underlying the mobile sediments is exposed by
the emergence of the bedforms and the seabed profile is no longer sinusoidal; secondly, the
predictor relations commonly used to quantify sediment transport are no longer valid because
of the exposition of the motionless substratum. An idealised process-based model is presented
which consists of a hydrodynamic module, that is based on a perturbation approach and
considers an oscillatory turbulent flow interacting with small amplitude sandy mounds, and a
morphodynamic module, that is based on a numerical integration of the sediment continuity
equation and accounts for the possibility of the exposition of a motionless substratum. The
main outcome of the theoretical investigation is that, when the motionless substratum is
exposed by the formation of tidal dunes, the lack of sand affect the sediment transport and,
in turn, the dune morphology. As the motionless substratum is progressively exposed by the
growth of the dunes, numerical results predict the lengthening of the sandy mounds and an
increasing irregularity in their spacing. The reliability of the idealised model is supported by
a comparison of the theoretical findings with the aforementioned field observations in the
central part of the English Channel.
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4.1 Introduction

As described in 1.1, marine environments exhibit a fascinating variety of bedforms, rang-
ing from small scale ripples to large scale sand banks, and unravelling the processes under-
lying their appearance is a subject of great concern to coastal engineers. Sea wave ripples
play an important role in sediment transport and mixing processes at the seafloor as flow
separation occurs at their crests eventually inducing coherent flow structures (vortices) that
increase mass and momentum transfer and sediment transport. For practical purposes, the
effect that these small-scale bedforms have on large-scale phenomena can be modelled by
assimilating their presence as a hydraulic roughness of appropriate size. Differently, tidal
banks evolve on very much larger spatial and temporal scales than ripples, and understand-
ing their long-term dynamics is fundamental for the proper design of offshore structures and
human interventions (such as dredging activities) with special attention to the consequences
that both structures and interventions may have on the surrounding environment. Even more
important from a practical point of view is the very dynamic behaviour of tidal dune fields
widespread over the continental shelf, that should be regularly monitored in order to safe-
guard submarine pipelines and cables whose safety can be compromised by their migration.

The present theoretical investigation on the formation of starved dunes in oscillatory tidal
flows is based on the field observations of Le Bot et al. (2000), Le Bot (2001), Le Bot and
Trentesaux (2004), which were carried out in the English Channel through the central part
of the Calis-Dover Strait at the southern end of the ‘South Falls’ and ‘Sandettié’ banks. The
presence of these huge converging sand deposits has a strong influence on the sediment avail-
ability through the surveyed area. In the northern part of the area, sediment is abundant as
a result of the erosion in progress of the ‘South Falls’ (Smith and Rijkswaterstaat, 1988),
whereas, in the southern part, tidal currents accelerate as a consequence of banks’ conver-
gence so as to prevent a uniform deposition of sediment leading ultimately to local sediment
starvation. Two morphologically contrasted sectors were identified by Le Bot (2001), namely
the North-West and the South-East sector. In the former, a underlying motionless substratum
is entirely covered by a uniform mixture of sand with mean grain size equal to 0.35 mm and
very regular tidal dunes were observed that exhibit typical features of an environment rich
of sand. The rate and direction of the migration of these bedforms vary depending on the
time-scale of the field observations showing a strong correlation with the wind regime and
the occurrence of sea storms. Conversely, in the South-East sector, a bimodal mixture of fine
gravel and sand (mean grain size equal to 0.35 mm) is transported by tidal currents in the
form of periodic sandy mounds with finite extent in the transverse direction interspersed with
exposed pebble lags that exhibit geometric and kinematic characteristics different from tidal
dunes of the North-West sector. In this sector, the sequence of mounds migrate invariably
towards the South-West, which is the direction of the tidal ebb that here dominates with re-
spect to the tidal flood. In particular, the in-situ measurements indicate that the crest-to-crest
distance of tidal dunes in the North-West sector is smaller than the mound-to-mound distance
of starved bedforms in the South-East sector (see Figure 4.1). As the hydrodynamic param-
eters and the characteristics of the mobile sediment of the two sectors are similar, a possible
explanation for the existing differences between tidal dunes and sandy mounds is the effect
of sediment starvation on the morphology of tidal dunes.

The objective of the present study is to provide a detailed description of the flow field
generated by the interaction of an oscillatory tidal current with periodic sandy mounds su-
perimposed on pebble lags and to explain the mechanisms that lead to their appearance.
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Figure 4.1: Left panel: Location of the field observation of Le Bot & Trentesaux (2004). The
dashed rectangle represents the surveyed area. Right Panel: Sketch of the measured crests of
tidal dunes and sandy mounds. The broken line encloses the part of the surveyed area where
mobile sediment is abundant. Outside this part, sediment starvation leads to the exposition
of relict pebble lags. Adapted from Le Bot (2001).

Since previous models of the formation of tidal dunes explain their appearance as a re-
sult of steady recirculating flows which continually drag sediments towards the crest of the
bedforms Hulscher (1996), at the first stage of the modelling, attention is focused on the
steady stream that is generated by the harmonic interaction of an oscillatory tidal flow with a
sequence of periodic sandy mounds. Then, directly from the knowledge of the steady velocity
components, the bottom shear stress is determined, along with the net sediment transport
rate. Finally, an idealised process-based model of the formation of starved dunes in oscillatory
tidal currents is presented. The linear stability analysis by Besio et al. (2006) is extended to
account for the effect of sediment starvation on the formation of tidal dunes by including the
numerical procedure outlined by Blondeaux et al. (2016), who investigated the formation of
starved ripples under surface-gravity waves when only a thin layer of mobile sediments cover
a motionless substratum. Presently, the approach of Blondeaux et al. (2016) is employed to
quantify sediment transport wherever the growth of the sand dunes leads to the exposition of
a motionless substratum that represents the pebble lags. However, the present investigation
differs from that of Blondeaux et al. (2016) because the oscillatory tidal flow is inherently
turbulent and thus vorticity pervades the whole water column.

The next section is devoted to the description of the idealised process-based model of the
formation of starved dunes in tidal currents. Hydrodynamic results of the model are pre-
sented in Section 4.3 in terms of the steady recirculating stream and the related net sediment
transport that leads to the accretion of sandy mounds interacting with oscillatory tidal cur-
rents. Furthermore, model results on the linear stability analysis of starved tidal dunes are
compared with those obtained by means of standard models devised for environments with
sediment abundance. Section 4.4 is then devoted to the discussion of the application of the
model to the site in the English Channel where the measurements of Le Bot and Trentesaux
(2004) are available. The conclusions are drawn in the final section.
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4.2 The model

Taking advantage of the assumption that the mixture of water and sediment flowing in
the vicinity of the bottom is sufficiently dilute, its average concentration is presently neglect
with respect to the concentration of the packed particles resting at the bottom and the hy-
drodynamics of the oscillatory water flow is thought to be not affected by the presence of
the sediments (one-way coupling). In addition, it is possible to demonstrate directly from
the sediment continuity equation through purely dimensional arguments that the morpho-
dynamic evolution of the liquid-solid interface evolves on a morphological time-scale which
turns out to be very larger than the time-scale of the hydrodynamic response, namely the time
required for the tidal wave to propagate in shallow water seas. As a physical consequence,
the tidal flow adjust quasi-instantaneously to the evolution of the seafloor and, as such, ac-
counting for perturbations of the flow field only driven by perturbations of the seafloor the
morphodynamics can be decoupled from the hydrodynamics (de-coupling). As a result, the
model described in the following is made up of two modules: the hydrodynamic module and
the morphodynamic module. In the first subsection, the so-called basic flow field is identified
as the propagation of a tidal wave over a plane rough seafloor and then an appropriate small
amplitude periodic perturbation of the plane configuration is superimposed on the basic mor-
phology in order to determine the effects that a sequence of periodic sandy mounds has on
the tidal-averaged flow field. In the second subsection, the morphodynamic module of the
model is described that account for the effect of sediment starvation on the time-development
of the bottom configuration.

4.2.1 The hydrodynamic module

We consider the flow field generated by the propagation of a tidal wave over a horizontal
sandy bottom and we introduce a local Cartesian coordinate system (x∗, y∗, z∗) with the x∗-
axis aligned with the direction of the tidal current, the z∗-axis vertical and pointing upwards
and the origin at the free surface. Hereinafter a star is used to denote dimensional quantities.

Although, in the English Channel, the semi-diurnal constituent is dominant with respect to
the other tidal constituents and a fair description of the tidal flow can be made just accounting
for the propagation of its associated tidal wave, presently the tidal current is assumed to be
generated by the superposition of the semi-diurnal (M2) with the quarter-diurnal (M4) tidal
constituent and a residual current (Z0). The quarter-diurnal constituent and the residual
current, are added so as to show, in the following, the effects of their harmonic interaction
on the migration of tidal dunes and sandy mounds. If the amplitude of the free surface
oscillations induced by the tide propagation is assumed to be much smaller than the local
water depth, the velocity profile generated by the propagation of a tidal wave over a plane,
horizontal bottom can be expressed as follows

u∗(z∗, t∗) =

[
U∗M2(z

∗)

2
exp (iω∗t∗) + c.c.

]
+

[
U∗M4(z

∗)

2
exp (2iω∗t∗) + c.c.

]
+ U∗Z0(z

∗). (4.1)

where ω∗ is the angular frequency of the M2 tidal constituent. In (4.1), the dependence of
U∗M2, U

∗
M4 and U∗Z0 on x∗ is neglected because the area of interest has the size of the sandy

mounds and turns out to be much smaller than the tidal wavelength. Moreover, the functions
U∗M2(z

∗), U∗M4(z
∗), U∗Z0(z

∗) are each independent on the other and the gradient of the free
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surface, which drives the flow, is provided by

∂η∗

∂x∗
=

[
1

2

∂H∗M2

∂x∗
exp (iω∗M2t

∗) + c.c.

]
+

[
1

2

∂H∗M4

∂x∗
exp (iω∗M4t

∗) + c.c.

]
+
∂H∗Z0
∂x∗

. (4.2)

Typically, Field measurements typically provide the local depth-averaged values Û∗M4,
Û∗M2, Û

∗
Z0 of U∗M4, U

∗
M2 and U∗Z0, while the present hydrodynamic model requires the eval-

uation of the velocity profile over the vertical direction as it concerns the tidal-averaged
recirculating stream throughout the water column owing to the interaction of the oscillatory
tidal current with periodic bedforms. The functions U∗M2(z

∗), U∗M4(z
∗), U∗Z0(z

∗) and their
relationship with the free surface oscillations can be determined by considering momentum
and continuity equation. Because of the high values of the Reynolds number, the flow regime
turns out to be turbulent and Reynolds averaged equations should be considered for the
different tide constituents

d

dz∗

[
ν∗T
dU∗M2(z

∗)

dz∗

]
= iω∗M2U

∗
M2(z

∗) + g∗
dH∗M2

dx∗
, (4.3)

d

dz∗

[
ν∗T
dU∗M4(z

∗)

dz∗

]
= iω∗M4U

∗
M4(z

∗) + g∗
dH∗M4

dx∗
, (4.4)

d

dz∗

[
ν∗T
dU∗Z0(z

∗)

dz∗

]
= g∗

dH∗Z0
dx∗

, (4.5)

where the values of dH∗M2
dx∗ ,

dH∗M4
dx∗ ,

dH∗Z0
dx∗ , which are assumed to be constant, should take ap-

propriate values to generate the required depth-averaged velocity oscillations. The determi-
nation of the velocity profiles calls for the introduction of an appropriate turbulence model.
Presently, turbulence is assumed to be isotropic and thus Reynolds stresses are quantified by
using Boussinesq hypothesis and by considering a self-similar solution for the kinematic eddy
viscosity, denoted by ν∗T in (4.3)-(4.5). Moreover, since turbulent stresses are much larger
than viscous stresses, the kinematic viscosity of the sea water is neglected.

Some existing models assume a constant value of the eddy viscosity. A turbulence model
that assumes a constant eddy viscosity provides an acceptable description of the flow field
only if the no-slip condition at the bottom is replaced by a partial slip condition, but, as the
fluid is thought to slip over the bottom, the large values of the velocity gradient at the bottom
cannot be reliably reproduced. Because of the unsteady nature of the tidal flow, the eddy vis-
cosity should depend also on time (Roos and Schuttelaars, 2013). However, Gerkema (2000)
pointed out that a time-independent eddy viscosity fails to describe the mixing processes due
to turbulence mainly at flow reversal, when the transport of any quantity, and in particular
of fluid momentum, is very weak. Herein, the vertical profile of the kinematic eddy viscosity
is assumed to be independent on time and reads

ν∗T (z∗) = κ
Û∗M2h

∗
0

C
F (ξ); with ξ =

z∗ − η∗

h∗0 + η∗
, (4.6)

where κ is the von Karman constant (κ = 0.4) and h∗0 is the average water depth.
In (4.6) the eddy viscosity is assumed to be proportional to the amplitude of the friction

velocity induced by the semi-diurnal tidal constituent, which is evaluated by means of the
friction factor C. Since the Reynolds number of the tidal flow is typically very large, the
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friction factor C is assumed to depend only on the dimensionless roughness zr = z∗r/h
∗
0 and is

evaluated by means of the standard relationship proposed by Fredsøe and Deigaard (1992)

C = 5.75 log10

(
10.9h∗0
z∗r

)
. (4.7)

In the present model, the eddy viscosity profile proposed by Dean (1974) is employed.
The resulting eddy viscosity has a finite value at the free surface that increases down through
the water column reaching its maximum value and then progressively decreases until it finally
vanishes at the sea bottom. The function F (ξ) in (4.6) provides the spatial dependence of
the eddy viscosity and reads

F (ξ) =
−ξ(1 + ξ)

1 + 2A(1 + ξ)2 + 3B(1 + ξ)3
with A = 1.84 , B = −1.56 (4.8)

It follows that the eddy viscosity can be written in the form

ν∗T (z∗) = ν∗T0νT (ξ) (4.9)

where

ν∗T0 =
κU∗M2h

∗
0

C

∫ 0

−1
F (ξ) dξ and νT (ξ) =

F (ξ)∫ 0
−1 F (ξ) dξ

.

and, of course, the depth-averaged value of νT (ξ) is equal to 1.
Assuming that the sea bottom is hydrodynamically rough, the no-slip condition impose

the vanishing of the velocity at a distance from the sea bottom equal to z∗r/29.8 and, assuming
that no wind stress acts on the free surface, the vanishing of the velocity gradient should be
enforced at the free surface. Equations (4.3)-(4.5) are then numerically integrated by means
of a standard shooting procedure similar to those outlined by Blondeaux and Vittori (2005).
Firstly, a particular solution of the equation system (4.3)-(4.5) is obtained by forcing a unitary
value of the forcing term and imposing vanishing values of the velocity and its derivative at
the free surface. Secondly, another particular solution is determined by forcing vanishing
values of both the velocity derivative and the forcing term but assuming a unitary value of
the velocity at the free surface. Finally, a solution of the equations (4.3)-(4.5) is obtained that
satisfies the no-slip condition at the bottom and that attains the desired value of the depth
averaged velocity by simply linearly combining the two aforementioned solutions.

The numerical integration is carried out with a standard second-order Runge-Kutta method
that makes use of a coordinate stretching to increase the number of grid points close to the
bottom, where the velocity gradients attain their larger values. Numerical preliminary tests
with successive grid refinements allow the evaluation of the minimum number of grid points
that assures the accuracy of the numerical results.

Now, let us consider the interaction of the tidal current with a periodic sequence of sandy
mounds, with a spatial periodicity L∗. The crests of the bottom forms are assumed to be
orthogonal to the direction of the tidal current and interspersed by flat areas made up of relict
pebble lags. Considering a spatially periodic flow domain of extent L∗ in the x∗ direction, the
bottom profile can be modelled as (see figure 4.2):

z∗ =− h∗0 −∆∗ for 0 < x∗ <
L∗ − λ∗

2
and

L∗ + λ∗

2
< x∗ < L∗

z∗ =− h∗0 −∆∗ + a∗F(x∗) for
L∗ − λ∗

2
≤ x ≤ L∗ + λ∗

2

(4.10)
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where L∗, λ∗ and ∆∗ are free parameters. Moreover, in (4.10) F(x∗) indicates a function that
describes the bottom profile at the considered time and assumes values of order one. At this
stage the exact form of F(x∗) is not relevant. In the model, similarly to Roos et al. (2005),
a Fourier decomposition of (4.10) is used, which allows any bottom profile to be considered.
Presently, to discuss the influence of sandy mounds on the tidal current only, we consider:

F(x∗) =

[
1 + cos

(
2π (x∗ − L∗/2)

λ∗

)]
,

which is a fair approximation of the profile of the sandy mounds.
Since the sequence of sandy mounds is thought to be generated by the time development

of a thin layer of sand of thickness ∆∗ superimposed to a rigid substratum and L∗ denotes the
crest-to-crest distance of the sandy mounds, the conservation of the volume of sand forces a∗

to be equal to ∆∗L∗/λ∗.
At this stage it is convenient to introduce the following dimensionless variables:

(x, z) =
(x∗, z∗)

h∗0
, t = t∗ω∗ , (u,w) =

(u∗, w∗)

Û∗M2

, p =
p∗

ρ∗ω∗h∗0Û
∗
M2

, (4.11)

where ρ∗ is the density of the sea water, p∗ is pressure and (u∗, w∗) are the velocity compo-
nents along the x∗, z∗-axes, respectively.

The dimensionless continuity and momentum equations, read:

∂u

∂x
+
∂w

∂z
= 0 (4.12)

1

r̂

∂u

∂t
+u

∂u

∂x
+w

∂u

∂z
= −1

r̂

∂P

∂x
− 1

Fr2
∂η

∂x
+D̂

{
∂

∂x

[
2νT

∂u

∂x

]
+

∂

∂z

[
νT

(
∂u

∂z
+
∂w

∂x

)]}
(4.13)
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Figure 4.2: Sketch of the bottom profile

77



4.2 THE MODEL 4 NUMERICAL INVESTIGATION

1

r̂

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

r̂

∂P

∂z
+ D̂

{
∂

∂x

[
νT

(
∂u

∂z
+
∂w

∂x

)]
+

∂

∂z

[
2νT

∂w

∂z

]}
(4.14)

where the modified pressure P

P = p+
g∗

Û∗M2ω
∗

(z − η) (4.15)

is introduced. Presently the eddy viscosity is modelled as in Besio et al. (2006) by using the
friction factor C and the function F (ξ), that describes the vertical distribution. In (4.13)-
(4.14), the following dimensionless parameters appear:

r̂ =
Û∗M2

ω∗h∗0
, D̂ =

k
∫ 0
−1 F (ξ)dξ

C
, F r =

Û∗M2√
g∗h∗0

. (4.16)

The parameter r̂ is proportional to the ratio between the amplitude of horizontal fluid dis-
placement oscillations and the local water depth. A rough estimate shows that r̂ is of order
102 and D̂ and Fr are of order 10−2.

The hydrodynamic problem is closed by the kinematic and dynamic boundary conditions
at the free surface and at the bottom. At the free surface (z = η(x, y, t)), the dynamic
boundary condition forces the vanishing of the stress (the stress related to the wind is not
considered). At the bottom, the velocity should vanish at z = −h + zr/29.8 (Fredsøe and
Deigaard, 1992). Finally, the kinematic boundary condition at the free surface should be
imposed.

The local water depth, which can be easily derived from (4.10), can be expressed as the
superposition of different spatial harmonic components

h(x) = 1 + ε

N∑
n=1

(
hne

iαnx + c.c.
)

(4.17)

where ε is a measure of the ratio between the amplitude of the bottom forms and the lo-
cal water depth. As long as the hydrodynamic problem is considered, the assumption of a
rigid bottom is more than reasonable since the morphodynamic time scale T ∗m, which will be
introduced in the next section, is typically much longer than the tide period. For example,
considering values of the physical quantities typical of the English Channel (e.g. a water
depth equal to 30 m, a sediment size equal 0.35 mm, ρ∗s/ρ

∗ equal to 2.65 and the bed porosity
por equal to 0.4), T ∗m turns out to be of order 103 days. In other words the interaction of the
tidal current with the bottom forms can be studied by neglecting the small variations of the
bottom profile taking place during the tidal period. The value of N is chosen, on the basis
of numerical experiments, to be sufficiently large to obtain an accurate description of the
bottom profile both at the early and at the final stages of the bottom development.

The assumption that ε is much smaller than 1 allows the solution of the hydrodynamic
problem to be obtained by means of a perturbation approach and to be written in the form:

[u,w, P, η] =

[
u0, 0, 0,

a∗

h∗0
e0

]
+ ε

[
N∑
n=1

(
u
(n)
1 , w

(n)
1 , r̂P

(n)
1 , 0

)
hne

iαnx + c.c.

]
+O(ε2) (4.18)

The eddy viscosity (νT ) is expressed as:

νT = νT0 + ε
N∑
n=1

(
ν
(n)
T1 hne

iαnx + c.c.
)

+O(ε2) (4.19)
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The functions νT0 and ν(n)T1 can be easily computed by expanding the formulae in Appendix
A, where ξ = (z∗ − η∗)/(h∗ + η∗) (note that in the definition of ξ, h∗0 is replaced by h∗). The
quantities u0, e0 and νT0 are related to the flow field generated by a tidal wave propagating
over a horizontal bottom and are computed following Besio et al. (2006).

When (4.18) is substituted into (4.12)-(4.14) and only the terms of order ε are consid-
ered, the following system of linear differential equations for u(n)1 , w

(n)
1 , P

(n)
1 is obtained:

iαnu
(n)
1 +

∂w
(n)
1

∂z
= 0 (4.20)

1

r̂

∂u
(n)
1

∂t
+iαnu0u

(n)
1 +w

(n)
1

∂u0
∂z

= −iαnP (n)
1

(4.21)

+D̂

[
νT0

(
∂2u

(n)
1

∂z2
− α2

nu
(n)
1

)
+
∂νT0
∂z

(
∂u

(n)
1

∂z
+ iαnw

(n)
1

)
+ ν

(n)
T1

∂2u0
∂z2

+
∂ν

(n)
T1

∂z

∂u0
∂z

]

1

r̂

∂w
(n)
1

∂t
+ iαnu0w

(n)
1 = −∂P

(n)
1
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+D̂

[
νT0

(
∂2w

(n)
1

∂z2
− α2

nw
(n)
1

)
+ iν

(n)
T1 αn

∂u0
∂z

+ 2
∂νT0
∂z

∂w
(n)
1

∂z

]
.

The no-slip condition at the bottom and the vanishing of the stress at the free surface provide
the boundary condition at order ε:

u
(n)
1 = −∂u0

∂z
, w

(n)
1 = 0 at z = −h+

zr
29.8

(4.23)

∂u
(n)
1

∂z
= 0 , 2D̂νT0

∂w
(n)
1

∂z
= 0 at z = 0 (4.24)

Since the parameter r̂ assumes values of O(102), the terms proportional to the local time
derivatives can be neglected in (4.13)-(4.14) and t becomes just a parameter. It is worth
pointing out that the terms in (4.13)-(4.14) proportional to D̂ should be retained, notwith-
standing the small value of D̂, since they become significant in a boundary layer close to the
bottom because of the larger values the velocity gradient. Indeed, their presence is necessary
to force the no-slip condition at the bottom.

79



4.2 THE MODEL 4 NUMERICAL INVESTIGATION

4.2.2 The morphodynamic module

The sediments at the sea bottom are moved by the currents induced by tide propagation
and by the sea waves. Qualitative information on the amount and direction of the sediment
moved by the tidal currents can be obtained by evaluating the bottom shear stress while
quantitative results can be obtained only by using a sediment transport predictor.

In relatively large water depths, such as the ones presently considered, sea waves induce
significant sediment transport only during strong storms, i.e. for a small number of days per
year. Hence, the effect of sea waves is not presently taken into account and only the effects of
tidal currents are considered. Le Bot and Trentesaux (2004) showed that the suspended-load
provides a significant contribution, in particularly during spring tidal conditions. Therefore,
both the bed load and the suspended load are taken into account by the model.

Bed load (q∗B) is obtained by means of Van Rijn (1991) formula:

qB =
q∗B√(

ρ∗s
ρ∗ − 1

)
g∗(d∗)3

=
0.25

R0.2
p

(
θ − θcrit
θcrit

)1.5√
θ, (4.25)

where d∗ is the mean grain size of the mobile sediment and θ = τ̃∗x
(ρ∗s−ρ∗)g∗d∗

is the Shields
parameter (τ̃∗x is the bottom shear stress related to the skin friction only).

In (4.25) the critical value of the Shields parameter (θcrit) is evaluated using Brownlie
(1981) formula and Rp is the Reynolds number of the sediment:

Rp =

√
(ρ∗s/ρ

∗ − 1)g∗d∗3

ν∗
. (4.26)

Following Colombini (2004), the bottom shear stress is evaluated at the top of the bed-
load layer, the thickness h∗b of which is proportional either to the grain size d∗ or to the
roughness size z∗r (if ripples are present). Experimental data show that the proportionality
constant lb, necessary to compute h∗b , depends on the bed shear stress (e.g. Sekine & Kikkawa,
1992)

lb = 1 + 1.3

(
θ − θcrit
θcrit

)0.55

. (4.27)

To account for the effects of the bottom slope, we follow Seminara (1998) and add the
following contribution to the sediment transport rate

qP =
q∗P√(

ρ∗s
ρ∗ − 1

)
g∗(d∗)3

= −qBG
∂h

∂x
(4.28)

where G is a dimensionless constant which is evaluated following Seminara (1998) and
Talmon et al. (1995)

G = − 1

µd

θcrit
qB

dqB
dθ

(4.29)

In (4.29), µd is the dynamic friction coefficient of the sediment which assumes values close
to 0.5µs (Fredsøe and Deigaard, 1992), µs being the static friction coefficient.

The suspended sediment transport rate qS is evaluated as the flux of the sediment concen-
tration c = c(x∗, z∗, t∗). The temporal and spatial distribution of c is obtained by solving the
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standard convection-diffusion equation where the diffusion coefficient of sediment particles
is assumed to be equal to the eddy viscosity (Van Rijn, 1991).

Because of the assumption ε � 1, the concentration of the suspended sediment can be
written in the form:

c = c0 + εc1 = c0 + ε
N∑
n=1

(
c
(n)
1 hne

iαnx + c.c.
)

+O(ε2). (4.30)

When (4.30) is substituted into sediment concentration equation, at the leading order of
approximation, the following equation is obtained:

1

r̂

∂c0
∂t
− ws

r̂

√
ψ̂d

∂c0
∂z

= D̂ ∂

∂z

(
νT
∂c0
∂z

)
(4.31)

where the sediment mobility number ψ̂d is defined by

ψ̂d =
ω∗h∗0(

ρ∗s
ρ∗ − 1

)
g∗d∗

.

Equation (4.31) is solved by means of the numerical procedure previously described, after
neglecting the terms proportional to 1/r̂ and expanding the function c0 as a Fourier series of
time because of the time dependence forced by the bottom boundary condition (4.34).

Then, the contribution of c1 in equation (4.30) is determined by solving the following
differential equation: [

iαxu0c1 + w1
∂c0
∂z

]
− ws

r̂

√
ψ̂d

∂c1
∂z

= (4.32)

D̂
[
νT0

(
∂2c1
∂z2

− α2
xc1

)
+
∂νT0
∂z

(
∂c1
∂z

)
+ νT1

∂2c0
∂z2

+
∂νT1
∂z

∂c0
∂z

]
Once more, the solution of (4.32) is obtained with the numerical procedure previously

outlined. The boundary conditions at the free surface for equations (4.31) and (4.32), require
the vanishing of the sediment flux in the direction normal-to-surface (n̂)

(ν∗T∇c+ w∗sck̂) · n̂ = 0, (4.33)

where k̂ is the unit vector in the vertical direction. Since, in the case under consideration,
the bottom roughness is certainly much smaller than 0.01h∗0, the sediment concentration is
forced equal to the reference concentration cζ∗ at ζ∗ = 0.01h∗ (Van Rijn, 1984):

cζ∗ = 0.015
d∗

ζ∗R0.2
p

(
θ − θcrit
θcrit

)3/2

. (4.34)

The relationships (4.33) and (4.34) should be expanded in terms of the small parameter ε,
in order to obtain the boundary conditions for c0 and c1.

Once the spatial and temporal distribution of the sediment concentration is obtained, the
transport rate of sediment in suspension (q∗S) is evaluated as the flux of sediment concentra-
tion:

qS =
q∗S√(

ρ∗s
ρ∗ − 1

)
g∗(d∗)3

=
r̂

√
ψ̂dh

∗
0

d∗

∫ η

−h+ζ
uc dz. (4.35)

81



4.2 THE MODEL 4 NUMERICAL INVESTIGATION

Relationships (4.25), (4.28) and (4.35) provide the different components of the sediment
transport if there is an unlimited supply of sand at the sea bottom. On the other hand, if a
small amount of sediment is available and the rigid substratum of the sea bottom becomes
exposed, no sediment can be mobilised at the considered location and the sediment transport
depends on the upstream values, i.e. on the spatial derivative of the bottom shear stress.

Following Blondeaux et al. (2016), let us consider position xP , where no sand is available
and a time interval during which the bottom shear stress is positive and the Shields param-
eter θ(x, t) is larger than its critical value. If ∂θ(x, t)/∂x is positive, i.e. the bottom shear
stress increases as x is increased, the sediment transport rate cannot increase because no fur-
ther sediment is available. Hence, the sediment transport rate at xP should be equal to the
sediment transport rate at the upstream location. On the other hand, if ∂θ(x)/∂x is negative
at xP , i.e. the bottom shear stress decreases as x is increased, two situations are possible. If
the upstream value of the sediment transport q is smaller than that computed at xP , because
also the region upstream is exposed of sediment, the sediment transport rate at xP should be
taken equal to the upstream value. If, on the other hand, the upstream value of the sediment
transport rate is larger than that computed at xP , the local sediment transport rate at xP is
that provided by the sediment transport predictor at xP and some sand is deposited on the
bottom.

Finally, in order to evaluate the bottom time development, it is necessary to consider the
sediment balance equation averaged over the tide period

∂h

∂tm
= −∂qT

∂x
= −∂ (qB + qP + qS)

∂x
with tm =

t∗

T ∗m
(4.36)

where

(qB, qT , qS) =
1

2π

∫ 2π

0
(qB, qP , qS) dt.

The morphodynamic time scale T ∗m appearing in (4.36) is defined by:

T ∗m =
(1− por)h∗20√

(ρ∗s/ρ
∗ − 1) g∗ (d∗)3

, (4.37)

and turns out to be much longer than the period of the tide T ∗, since typical values of T ∗m
are of the order of months. Of course equation (4.36), that can be applied only in the
regions where the bottom is covered with sediment and the bottom profile can change, is
integrated in time by means of a second order Runge-Kutta scheme and the spatial derivatives
are approximated by means of centred finite differences.
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4.3 Results

4.3.1 Flow field and sediment transport over sand waves and sandy mounds

An oscillatory flow close to a wavy bottom generates steady recirculating cells, the form
and strength of which depend on the flow parameters and on the wavelength and amplitude
of the bottom waviness. The steady streaming which is generated by the oscillatory flow
over ripples was studied by Vittori (1989); Blondeaux (1990); Hara and Mei (1990). Con-
sidering larger spatial and temporal scales, also an oscillating tidal current over sand waves
or sandy mounds causes the formation of steady recirculating cells (Hulscher, 1996, Besio
et al., 2006). An exhaustive investigation of the phenomenon in the parameter space is not
possible because of the large number of governing parameters so that, in the following, only
the effects of some of these parameters are shown.

The steady recirculating cells which form over a sequence of sand waves, for values of the
parameters typical of field observations in the North Sea, is shown in Figure 4.3a, where the
steady component of the stream function ψ is plotted (the stream function ψ is such that u =
∂ψ
∂z and w = −∂ψ

∂x ). Two symmetric recirculating cells per wavelength can be observed. The
left cell is characterised by negative values of ψ while the right cell is characterised by positive
values of ψ. The crest of the sand wave is located at the centre of the computational domain
and two troughs are located at x = 0 and x = L. Figure 4.3 shows also the streamlines over
sandy mounds (panels b to f), for assigned values of the crest-to-crest distance L and of the
volume of sand, i.e. for a fixed value of ∆. Because of the conservation of the sand volume,
the value of the height of the sandy mounds is related to the value of λ by

a =
L∆

λ
. (4.38)

The direction of the steady flow component is always toward the crest and the left and
right recirculating cells are characterised by negative and positive values of ψ, respectively.
Moreover, as the value of λ is decreased and the amplitude of the mound is increased, the
intensity of the steady velocity component increases, particularly close to the crest of the
mound (see figure 4.3e,f).

The analysis of the time-averaged value of the shear stress at the bottom shows that it
is always directed towards the crest both for sand waves and sandy mounds. Moreover, the
value of the shear stress increases as the value of λ is decreased and the amplitude of the
bottom forms increases. Even though the analysis of the bottom shear stress could provide
indications on the sediment transport rate, the time average of the bottom shear stress differs
from the time average of the sediment transport rate because of the nonlinear relationship
between qT and θ and because of the effects of the bottom slope on sediment dynamics.
Figure 4.4 shows the time-averaged components qT , qB, qP , qS of the total sediment trans-
port rate and its different contributions, as function of x for the different bottom profiles
previously considered. For values of λ just smaller than L, the net sediment transport rate
is directed towards the crests of the mounds and the bottom forms are expected to grow.
However for decreasing values of λ and close to the crest, the total sediment transport rate
reverses its direction and is directed from the crests to the troughs of the bottom forms. As
a consequence, the growth of the sandy mounds is expected to stop (see figure 4.4f). The
analysis of the different components of qT in figure 4.4 shows that the component related
to suspended transport is smaller than the others for all values of λ, while the component
related to the effect of slope increases its intensity as λ is decreased. For the smallest values
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Figure 4.3: Isolines of the stream function ψ describing the steady velocity component for
h∗0 = 30 m, Û∗M2 = 0.9 m s−1 Û∗M4 = 0 m s−1, Ẑ∗0 = 0 m s−1, L∗ = 600m, ∆∗=0.05 h∗0, and the
geometrical configuration plotted in figure 4.2. a) λ = L, a=0.05 (sand waves); b) λ = L/2,
a=0.1; c) λ = L/3, a=0.15; d) λ = L/4, a=0.2; e) λ = L/5, a=0.25; f) λ = L/6, a=0.3
(ψn = n∆ψ + 1 with ∆ψ = 2 and n = ±1,±2, ...)

of λ, the sediment transport due to slope effects becomes even larger than that related to
bed-load. Figure 4.4 shows oscillations of the sediment transport rate of small amplitude and
wavelength, located in the regions of transition between the rigid substratum and the sandy
mounds. These oscillations give rise to a sequence of very short bedforms characterised by a
quite small amplitude. These small scale bedforms have no physical meaning, since they are
a spurious output of the numerical approach, but their influence on the dynamics of the large
scale bottom forms is negligible. Indeed the results, which can be obtained by introducing a
filtering procedure which removes the small scale oscillations, are practically coincident with
those obtained without the use of any filter.

Figure 4.5 shows the time averaged value of the total sediment transport rate qT =
qB + qP + qS both for sand waves and sandy mounds for different values of L∗. The steady
component of the sediment transport rate is directed from the troughs towards the crests of
the bottom waviness (we remind to the reader that the crest of the bottom profile is located
at x = L/2). For sinusoidal sand waves (panel a), the maximum value of qT is attained for
a wavelength of the bottom forms falling around 35h∗0. Hence, the results plotted in Figure
4.5a suggest that, in a site characterised by abundance of sand and values of the parameters
similar to those of figure 4.5, the sand waves are characterised by a wavelength of about 1000
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Figure 4.4: Time-averaged components of the sediment transport rate for h∗0 = 30 m, Û∗M2 =

0.9 ms−1 Û∗M4 = 0 ms−1, Ẑ∗0 = 0 ms−1, L∗ = 600 m, d∗ = 0.6 mm, ρ∗s = 2650 kgm−3,
∆∗ = 0.05 h∗0, µd = 0.23. Bottom configuration as sketched in Figure 4.2 with a) λ = L,
a = 0.05; b) λ = L/2, a = 0.1; c) λ = L/3, a = 0.15; d) λ = L/4, a = 0.2; e) λ = L/5,
a = 0.25; f) λ = L/6, a = 0.3.

m. If a sand mound is considered (see panel b of figure 4.5) and the values of the parameters
are the same as those of panel a, the analysis of the sediment transport indicates that the
mounds that will develop and which will be identified in the next section, are characterised
by a larger crest-to-crest distance.

Figure 4.6 is similar to Figure 4.5 but the results are obtained for a larger value of the
amplitude Û∗M2 of the velocity oscillations induced by the semi-diurnal constituent. The
results of Figure 4.6a show that stronger tidal currents lead to the formation of shorter sand
waves. Indeed, by comparing the results shown in Figure 4.5a with those of Figure 4.6a, it
can be seen that the wavelength of sand waves which are likely to appear decreases from
1000 m to about 720 m, as Û∗M2 is increased from 0.7 m/s to 0.9 m/s. If sandy mounds
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Figure 4.5: Time-averaged sediment transport rate for h∗0 = 30 m, Û∗M2 = 0.7 m s−1, Û∗M4 = 0

m s−1, Ẑ∗0 = 0 m s−1, d∗ = 0.4 mm, ρ∗s = 2650 kg m−3, ∆∗ = 0.05h∗0, µd = 0.26, Panel a):
sand waves (λ=L); panel b): sandy mounds λ = L/2.

0 50 100

x

-0.01

0

0.01

qT

(a)

L=200

L=100

L=50

L=33

L=20

L=13.33

0 50 100

x

-0.04

-0.02

0

0.02

0.04

qT

(b)

λ=L

λ=L/2

λ=L/4

λ=L/5

λ=L/6

λ=L/10

λ=L/15

Figure 4.6: Time-averaged sediment transport rate for h∗0 = 30 m, Û∗M2 = 0.9 m s−1 Û∗M4 = 0

m s−1, Ẑ∗0 = 0 m s−1, d∗ = 0.4 mm, ρ∗s = 2650 kg m−3, µd = 0.26, ∆ = 0.05. Panel a):
sinusoidal bottom profile (L=λ); panel b): geometrical configuration plotted in figure 4.2
with different values of λ.

are considered, no qualitative difference is found as Û∗M2 is varied (Figure 4.5b and 4.6b).
Further results obtained for different values of the water depth and of the grain size show
that the crest-to-crest distance of the sandy mounds is always longer than the wavelength of
the sand waves. In other words the bedforms, which appear when only a thin layer of sand
is available and the bedform development bares the rigid substratum, are longer than those
which are generated by tidal currents flowing over a layer of sand of “infinite” thickness.
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4.3.2 Formation of sand waves and sandy mounds

The analysis of the steady recirculating cells and of the net sediment transport rate pro-
vides qualitative information on the evolution of the sea bottom. However, quantitative re-
sults can be obtained only by using the morphodynamic module and by considering the time
development of the bottom profile. In the present section, we describe the results of a series
of numerical simulations of the formation of sand waves and sandy mounds. The values of
the parameters used in the simulations are reported in Table 4.1.

Figure 4.7 shows the time development of the sea bottom when an infinite layer of sedi-
ment is present and the initial profile of the sea bottom is A0 cos (αx), with A0 equal to 0.005
h∗0 (Case A1 in Table 4.1). At the early stages of formation of sand waves, linear effects dom-
inate and, in accordance to the theory by Besio et al. (2006), the growth of the amplitude of
the bottom waviness is exponential.

Figure 4.8 shows the time development of the initial bottom perturbation considered
previously, when the sea bottom is covered with a layer of sand of dimensionless thickness
∆ = 0.01. As the initial disturbance grows, at t = 60 (i.e after about 10 tidal cycles), the
sea bottom becomes exposed of sediment in large regions and nonlinear effects start to play
a significant role. The crests of the bottom forms become sharper than the troughs, which
in turn are flat because of the presence of the rigid substratum. Moreover, because of the
symmetry of the forcing flow, the bottom profile is symmetric with respect to the crests and
troughs and no migration of the bedforms is observed.

If a residual current is present, the bottom forms migrate in the direction of the residual
current, as found by Németh et al. (2002). Moreover, the bottom profile at equilibrium is no
longer sinusoidal and symmetric with respect to the central crest but it is characterised by
larger slopes of the forward flanks (Figure 4.9).

When an infinite amount of sand is available and for values of the parameters such that
the sea bottom is unstable, the wavelength of the sand waves that tend to appear can be pre-
dicted by means of stability-based models as those of Hulscher (1996) or Besio et al. (2006).
Such models show that, during the early stages of formation, when nonlinear effects are
weak, the growth of the amplitude of the sand waves that takes place on the slow morpho-
dynamic time scale T ∗m (see (4.37)) is exponential and can be quantified by its growth rate
Γ. As the aforementioned models, the present model allows computation of the growth rate
of sand waves following the procedure outlined below. We perform numerical simulations of

case h∗0 ∆∗ ω∗ Û∗M2 Û∗M4 Ẑ∗0 d∗ L∗

[m] [m] [sec−1] [m/s] [m/s] [m/s] [m ×10−3] [m]

A1 30 ∞ 7.5× 10−5 0.7 0. 0. 0.4 546
A2 30 0.3 7.5× 10−5 0.7 0. 0. 0.4 546
A3 30 0.3 7.5× 10−5 0.7 0. 0.1 0.4 546
B0a 30 ∞ 7.5× 10−5 0.8 0. 0. 0.35 355
B0b 30 0.6 7.5× 10−5 0.8 0. 0. 0.35 415
B1a 30 0.6 7.5× 10−5 0.8 0. 0.05 0.35 375
B1b 30 0.6 7.5× 10−5 0.8 0. 0.1 0.35 375
B2 30 0.6 7.5× 10−5 0.8 0.15 0.05 0.35 375

Table 4.1: Data used in the cases discussed.

87



4.3 RESULTS 4 NUMERICAL INVESTIGATION

Figure 4.7: Time development of sandy mounds within a sand layer of average thickness
∆ = 0.01 starting from a sinusoidal undulation of the bottom surface with a dimensionless
initial amplitude equal to 0.005 (Case A2, Table 4.1).

Figure 4.8: Time development of sandy mounds within a sand layer of average thickness
∆ = 0.01 starting from a sinusoidal undulation of the bottom surface with a dimensionless
initial amplitude equal to 0.005 (Case A2, Table 4.1).
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Figure 4.9: Time development of sandy mounds within a sand layer of average thickness
∆ = 0.01 starting from a sinusoidal undulation of the bottom surface with a dimensionless
initial amplitude equal to 0.005 (Case A3, Table 4.1).
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Figure 4.10: Analytic growth rate evaluated by standard stability analysis (thin line), nu-
merical growth rate Γα for an ‘infinite’ sand layer (white dots) and quantity Γ̂α for an initial
sand layer thickness ∆ equal to 0.05 (black dots) versus the perturbation wavenumber α for
h∗0 = 30 m, Û∗M2 = 0.8 m s−1 Û∗M4 = 0 m s−1, Ẑ∗0 = 0 m s−1, d∗ = 0.35 mm, µd = 0.21.
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the bottom time development starting from initial bottom configurations described as

h = 1−A0 cos (αx)

and compute the growth rate of the sinusoidal undulation Γα as

Γα =
ln [A(Tm,fin)/A0]

Tm,fin
, (4.39)

where A(Tm,fin) indicates the amplitude of the sand wave computed at t = Tm,fin. If sand
waves develop, the growth of an initial disturbance for small values of Tm,fin is exponential
and the computed value of Γα matches the growth rate obtained by using the stability-based
model by Besio et al. (2006). Figure 4.10 shows the growth rate Γα as function of the
wavenumber α = 2π

L of the initial bottom undulation for values of the parameters chosen to
reproduce typical conditions in the North Sea, so as to compare the values of the growth rate
Γα computed analytically by the stability analysis by Besio et al. (2006) (thin solid line) with
those computed numerically by means of the present model (white dots). The numerical
and the analytic results are coincident. The growth curves predicted by the models show a
maximum value for α ' 0.47, that is the wavenumber featuring the fastest growing sand
wave which is more likely to occur. The predicted fastest growing mode corresponds to a
dimensional wavelength of about 400 m, a value in the range of the wavelengths of the very
regular sand waves observed in the field by Le Bot and Trentesaux (2004).

On the other hand, if a sand layer of finite thickness ∆ is considered and the emergence
of sand waves exposes a motionless substratum, nonlinear effects modify the exponential
growth of the bedforms. In this case, to quantify the growth of the sandy mounds and to have
information on the bottom perturbation which grows most quickly, the following quantity is
employed

Γ̄α =
ln [A(Tm,fin)/∆]

Tm,fin
, (4.40)

where the initial profile is described by:

h = 1−∆ cos (αx) .

Because of the nonlinearity of the sediment transport predictor, the value of Γ̂α depends on
the duration Tm,fin of the numerical simulation, that has to be chosen appropriately. As
Tm,fin decreases indeed, Γ̂α approaches the values predicted by the linear stability analysis.
Presently the value of Tm,fin is chosen in such a way that A(Tm,fin)/∆ is equal to 1.5, where
A (t) is half the height of the bedforms (the vertical distance from the crests to the rigid
substratum). Smaller/larger values of the ratio A (Tm,fin) /∆ lead to larger/smaller values
of Γ̂α. For this reason, the numerical results presented in the following provide only an
indication of the effects that a motionless substratum has on the growth of sandy mounds
but they cannot be used for quantitative forecasting of bedform features. The thick solid line
with black dots in Figure 4.10 shows values of Γ̂α computed for a dimensionless sand layer
thickness ∆∗ equal to 0.05 and different values of the parameter L (α = 2π/L), the other
parameters being equal to the ‘infinite thickness’ case. The maximum growth rate is observed
for α ' 0.37, corresponding to a dimensional crest-to-crest distance of about 510 m, which is
similar to the mound distance observed by Le Bot and Trentesaux (2004).
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4.4 Discussion of the results

In the previous section we showed that the evolution of an initial disturbance in a sand-
starved environment generates bedforms, named sandy mounds, with a wavelength larger
than that of the sand waves that develop for the same conditions but in presence of abundant
sediments.

At this stage it is worthwhile pointing out that, while the wavelength of sand waves can be
predicted by using a linear stability analysis assuming that the bedforms are generated by the
time development of the fastest growing mode, the present model can only compute the time
development of an initial bottom profile considering the nonlinear effects due to the sediment
transport predictor. In order to use the present model for predictive purposes, it would be
necessary to run a large number of simulations with random initial topographies setting a
computational domain of very large extent (in principle, the length of the computational
domain should be much larger than the wavelength of the expected equilibrium bedforms).
However, such a procedure is highly demanding in terms of computational resources and, for
this reason, is not presently pursued.

On the other hand, we compute the time development of initially sinusoidal bottom per-
turbations characterised by different wavelength and we assume that the sandy mounds are
generated by the growth of the perturbation that has the largest value of Γ̂α. Despite the
aforementioned limitation, the model reproduces field observations fairly well. In particular,
we use the model to make quantitative predictions of the characteristics of the sandy mounds
observed in the English Channel by Le Bot and Trentesaux (2004). It is worth keeping in mind
that the idealised model introduces some simplifications (such as constant water depth, uni-
form grain size, currents due to a few tidal constituents only) and only a rough agreement
between the characteristics of the bedforms observed in the field and those predicted by the
model is expected.

Field observations show that a reasonable value of the water depth is 30 m and the hy-
drodynamics of the channel is dominated by semi-diurnal tidal currents. Moreover the ec-
centricity of the tidal ellipse is very low, the currents being almost rectilinear because of the
geometrical constraints. The tidal current can therefore be assumed unidirectional and dom-
inated by the M2 constituent. The intensity of the currents in the channel increases moving
towards the Calais-Dover strait, where it attains its maximum values which are larger than
1 m/s at the sea surface during mean spring tides (SHOM, 1968). However, taking into ac-
count that: 1) field data collected in the North Sea (along the Dutch coast) indicate that the
amplitude of the velocity oscillations induced by the M2-constituent is roughly equal to 50%
of the maximum value of the current observed during the spring tide; 2) the measurements
of the tidal current reported by Le Bot and Trentesaux (2004) were carried out 1 m above the
bottom, while the model requires the depth-averaged value of the velocity, all in all, a value
of Û∗M2 equal to 0.8 m/s appears reasonable.

Field data indicate as well that the grain size distribution is characterised by significant
variations in the area of the field surveys. At locations where the sand completely covers the
pebble lags, the mean grain size is about 0.35 mm (Le Bot and Trentesaux, 2004), while at
the other locations, where the pebble lags are exposed, larger values of the mean grain size
are found. Hence, we run the model with a mean grain size of the mobile layer of sand equal
to 0.35 mm and we consider the pebble lags as a rigid substratum.

The last model input, which is required by the model, is the thickness of the layer of
sand (∆∗), which initially covers the rigid substratum. From the sections of the bottom forms
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Figure 4.11: Growth rate Γα and Γ̂α plotted versus the dimensional crest-to-crest distance
of the bottom forms for h∗0 = 30 m, Û∗M2 = 0.8 m s−1 Û∗M4 = 0 m s−1, Ẑ∗0 = 0 m s−1,
d∗ = 0.35 mm, ρ∗s = 2650 kg m−3, µd = 0.29, considering respectively a layer of sand of
‘infinite’ thickness (solid thick line) and of finite thickness ∆∗ equal to 0.6 m (solid line with
dots).

shown in Le Bot and Trentesaux (2004), considering their relative distance and assuming the
conservation of the volume of sand, it is possible to estimate that ∆∗ is close to 0.6 m. Table
4.1 contains the values of the parameters for cases B0a and B0b, which respectively refer to
the values chosen to represent sectors A and B (Le Bot and Trentesaux, 2004).

Figure 4.11 shows the growth rate Γα of bottom forms over a substratum of ‘infinite’
thickness (solid thick line, Case B0a in Table 4.1) and the quantity Γ̂α computed for a sand
layer of thickness equal to 0.6 m (Case B0b in Table 4.1). In order to allow an easier inter-
pretation of the results shown in figure 4.11, Γα and Γ̂α are plotted versus the dimensional
crest-to-crest distance L∗. The results show that the wavelength of the sand waves predicted
by the model, that is the fastest growing mode, is about 355 m, a value which fairly agrees
with the wavelength of the bedforms observed by Le Bot and Trentesaux (2004) in Sector A
where the sand is abundant. Their data, collected during the field survey carried out in 1996
and represented in Figure 9 of Le Bot and Trentesaux (2004), show that the fairly regular
wavelength of the sand waves is about 300 m. On the other hand, the crest-to-crest distance
of the sandy mounds predicted by the model turns out to be about 415 m, a value which
is larger than the wavelength of the sand waves and again it is in fair agreement with the
field observations carried out in Sector B where the crest-to-crest distance of the observed
bedforms appears to have an average value of about 425 m. However, it is worth pointing
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out that field values change over time. For example, in 1998 further sand waves appeared
in Sector A and their average wavelength significantly decreased. Hence, the comparison
between model predictions and field measurements should be considered more qualitative
than quantitative.

Since both U∗Z0 and U∗M4 are set equal to zero in the model run, the bottom forms do not
migrate. The migration of the bedforms observed in the field is induced by the asymmetry of
the forcing flow. This tidal asymmetry can be enforced by accounting for a residual current
or the superposition of diverse tidal constituents in suitable phase with the semi-diurnal one.
The model accounts for the presence of both the residual current and the M4 constituent.
However, the data contained in the paper by Le Bot and Trentesaux (2004) do not allow
an accurate estimate of these constituents. Moreover, the field measurements clearly show
that the migration of the bottom forms is certainly affected also by other effects, such as the
velocity profile induced by the wind action, which are not considered in the present idealised
model.

To provide information on the migration speed of the sandy mounds, the effects of the
residual current and of the M4 constituent are investigated using U∗M4 and Z∗0 as free param-
eters. Panels a and b of Figure 4.12 respectively shows the effect of adding a steady current
with a depth averaged velocity equal to 5 cm s−1 and 10 cm s−1 (Case B1a and B1b in Ta-
ble 4.1), to the base, starved case (Case B0b in Table 4.1). As expected, the bottom forms
move in the direction of the steady current and larger values of U∗Z0 lead to larger migration
speeds. Once the equilibrium conditions are attained, a migration of the bottom forms in the
direction of the residual current (the positive direction) takes place and the migration speed
of the bedforms is about 16 m year−1 for Z∗0 = 5 cm/s and 32 m year−1 for Z∗0 = 10 cm/s, that
are values falling close to the measurements carried out by Le Bot and Trentesaux (2004).

Field surveys show that at some locations the direction of migration of the bedforms de-
pends on the observation period. The current due to the wind action or the presence of more
tidal constituents are possible explanations of these field observations. Figure 4.13 shows the
effect of adding a M4 tidal constituent with U∗M4 = 15 cm s−1 to the case characterised by
U∗M2 = 0.8 m s−1 and Z∗0 = 5 cm s−1. The results show that the U∗M4 constituent can cause
the migration of the bottom forms in the direction which is opposite to that of the residual
current. Of course the effect of the U∗M4 constituent depends of its phase. In figure 4.13 the
phase ϕ is such that the maximum value of the tidal current is in the negative direction even
if the time averaged value of the tidal constituent is positive and equal to 5 cm s−1. If the
phase is set equal to ϕ + π, the other parameters being fixed, the bedforms not only reverse
the direction of migration but their migration speed increases.
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Figure 4.12: Time development of the bottom starting from a sinusoidal bottom perturbation
with an initial amplitude equal to 30 cm until an equilibrium amplitude is attained for a)
Case B1a and b) Case B1b (see Table 4.1).
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Figure 4.13: Time development of the bottom starting from a sinusoidal bottom perturbation
of initial amplitude equal to 30 cm until an equilibrium amplitude is attained for case B2 (see
Table 4.1)
.
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4.5 Conclusions

Numerical simulations were performed to investigate the formation of starved dunes in
oscillatory tidal currents by means of an idealised process-based numerical model which
consists of an extension of the linear stability analysis of sand dunes that accounts for the
effect of sediment starvation on the formation of tidal dunes. The main outcome of the
theoretical investigation are the following.

• Model predictions of the tidal averaged flow field generated by an oscillatory tidal
current interacting with a sequence of isolated sandy mounds show that steady recir-
culating cells form as a result of the harmonic interaction of the forcing flow with the
seabed and that this steady stream strongly depends on the geometry of the bed profile.

• Numerical simulations of the time-development of the bottom profile characterising
both tidal dunes and sandy mounds, for the same values of the hydrodynamic and mor-
phodynamic parameters, predict that starved sandy mounds attain longer wavelengths
than tidal dunes. This is consistent with the field data collected by Le Bot (2001).

• When the symmetry of the flow due to the semi-diurnal tidal constituent is broken by ac-
counting for the presence of more tidal constituents, the migration of sandy mounds is
predicted by the model. If only a residual current is added to the semi-diurnal tidal con-
stituent, mound migration takes place in the direction of this residual current, whereas
if a quarter-diurnal tidal constituent is further included, the mounds can migrate even
in the opposite direction depending on the phase shift between the different tidal con-
stituents. A comparison of these theoretical results with the field data collected by
Le Bot and Trentesaux (2004) supports the reliability of the idealised model in predict-
ing the migration of the sandy mounds observed in the English Channel.
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Chapter 5

Conclusions and Future Developments

5.1 Conclusions

The objectives of this thesis were as follows: (1) to get insights into the effects of sediment
starvation on the formation of subaqueous sand dunes, (2) to describe the phenomenon by
means of an experimental investigation, (3) to formulate a theory capable of including sedi-
ment starvation in the framework of the stability theory of sand dunes by numerical means,
and (4) to implement and validate a numerical model capable of predicting the formation
of fluvial dunes and tidal dunes wherever sediment starvation affects the dynamics of these
morphological patterns. This section is devoted to answering the research questions posed in
the Introduction (Section 1.4) that were formulated to achieve the above listed objectives.

Q1. What is known about the effect of sediment starvation on the formation of sand dunes?

The literature study has revealed that the available knowledge comes mostly from field
observations and also from laboratory experiments. However, available data on this topic is
limited and an apparent contradiction exists in the literature between laboratory measure-
ments and field surveys. Therefore, how sediment starvation potentially affects the formation
of sand dunes is still an unresolved issue. Furthermore, according to the examined literature,
existing modelling efforts on the formation of subaqueous sand dunes usually consider an
infinite availability of mobile sediment and, as such, they cannot predict the formation of
subaqueous starved dunes.

Q2. Can the effect of sediment starvation on sand dune formation (Q1) be reproduced by
laboratory experiments that simulate the appearance of fluvial dunes in steady cur-
rents, and how do the experimental findings then compare to the outcome of previous
laboratory and field observations?

As shown in Chapter 2, the initial stage of sand dune formation has been successfully
reproduced in a laboratory flume. A set of laboratory experiments has been presented that
investigate the relationship between dune morphology and sediment starvation. Laboratory
measurements indicate that the exposition of the rigid bottom of the flume strongly affects
the characteristics of starved dunes, the average spacing of which increases and becomes
more irregular with a decreasing sediment availability.
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Q3. Can the effect of sediment starvation on sand dune formation (Q1) be reproduced by an
idealised process-based model, and how do the model results compare to the results of
the laboratory experiments (Q2)?

As shown in Chapter 3, the initial stage of fluvial dune formation has been successfully
reproduced by means of an idealised process-based model that accounts for the effects of
sediment starvation. The theoretical investigation assumes that the dunes are of small am-
plitude so as to linearise the hydrodynamic problem. However, even though the dunes are
characterised by small amplitudes, their dynamics turns out to be highly nonlinear when the
motionless substratum is exposed as a result of sediment starvation. Indeed, the sediment
transport predictor should take into account that no sediment can be further mobilised when
even high shear stresses act on the motionless substratum. Both the model results and the
experimental observations show that the dunes, which are generated by a uniform steady
current over a layer of sand so thin that the appearance of the morphological patterns bares
an underlying motionless substratum, are longer than those which are generated for the same
hydrodynamic conditions when the thickness of the sediment layer is so thick that the under-
lying motionless substratum is always covered by the sand. The lengthening of fluvial dunes
predicted by the idealised model showed good agreement with field data on starved dunes
observed through a sediment starved reach of the Rhine river (Germany).

Q4. Can the idealised modelling of the starved dune formation in steady currents (Q3) be
extended to reproduce the effect of sediment starvation on the formation of tidal dunes,
and, if so, how do the results of the model compare to field observations?

As shown in Chapter 4, the initial stage of tidal dune formation has been successfully
reproduced by means of an idealised process-based model that accounts for the effects of
sediment starvation. The interaction of tidal currents with a sequence of isolated starved
dunes generates steady recirculating cells which appear even when the forcing flow is purely
oscillatory. The model results show that the steady streaming depends on the geometry of
the starved dunes, whose profile turns out to differ from that of typical tidal dunes, and on
the characteristics of the semi-diurnal tidal constituent, but it is also affected by the presence
of a residual current and/or a quarter-diurnal tidal constituent. The results show that, in
sand-starved environments, the spacing between successive crests of the bedforms is larger
than the wavelength of the tidal dunes that would form if an infinite supply of sand would
be present. When the symmetry of the tidal flow due to the semi-diurnal constituent is
broken by accounting for the presence of more tidal constituents, the migration of starved
dunes is predicted by the model. If only a residual current is added to the semi-diurnal tidal
constituent, dune migration takes place in the direction of this residual current, whereas if a
quarter-diurnal tidal constituent is further included, the starved dunes can migrate even in
the opposite direction depending on the phase shift between the different tidal constituents.
The lengthening and migration of tidal dunes predicted by the idealised model showed good
agreement with field data on starved dunes observed in the English Channel where sediment
starvation affects the dynamics of these morphological patterns.
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5.2 Possible Future Developments

Differently modelling techniques have been successfully applied to study the formation
and dynamics of hydraulic sand dunes in case of limited sand supply, conducting laboratory
experiments and implementing a process-based idealised model.

The performed laboratory experiments, described in Chapter 2, provide controlled empir-
ical foundations for the simplified analytical and numerical modelling, developed in Chapter
3. The laboratory measurements of Chapter 2 raise the following question: what happens
if a much longer duration of the experiments is chosen? Non-modal dynamics of hydraulic
sand dunes, three-dimensional effects and long-term nonlinearities control the equilibrium
configurations of these patterns giving rise to a very complex phenomenon which asks for
further physical and theoretical modelling.

The presented stability-based model is capable of describing the formation of starved
dunes in fluvial and marine environments. The stability properties of the short-term dynamics
of these bedforms require further attention and upgrading the model to make it applicable
on time-scales exceeding the initial-stages of their formation may require a thorough revision
of the description of both the hydrodynamic and the morphodynamic processes involved.
The results of Chapter 3 and Chapter 4 seem to call for an extension of the model, which
presently allows only an essential ‘small-amplitude’ and ‘low-steepness’ description of the
dynamics of starved dunes, that comprises the nonlinear effects due to gravity and their
implications on sediment transport. As a consequence, the extended model should be able to
deal with the long-term dynamics of starved dunes and, as such, to describe their equilibrium
configuration. As far as possible, this research could be substantially improved by further
describing the physical insights that came from our modelling exercise from a mechanistically
point of view. Clearly, the sediment transport rate crossing the exposed immobile substratum
to its covered portions is different, the former being lower than the latter because of sediment
starvation. However, how this influences the morphology of the emerging sandy patterns
is an open question difficult to address as the phenomenon under investigation is strongly
nonlinear. Finally, it would be worthwhile to investigate whether the physical description of
the morphodynamic processes underlying the formation of starved dunes can be improved
by including mechanisms that have been neglected so far (viscous effects, sediment sorting
and so on).

All that being said, our modelling exercises have successfully aimed at investigating the
effects of sediment starvation on the morphology of subaqueous sand dunes in a very wide
sense. Two different geomorphological features have been dealt with: hydraulic sand dunes
in rivers and tidal dunes in shallow seas. In order to place this work within a broader field
of research, the (2DV) hydrodynamic model could be straightforwardly extended in the third
direction. There is a body of work that shows that eolian dune size and spacing can emerge
from finite-amplitude interactions and how these interactions, including substantial bedform
lengthening, can cause desert barchan dunes to evolve (Hersen et al., 2004, Worman et al.,
2013, Khosronejad and Sotiropoulos, 2017). However, an extension of the present stability
analysis to account for three-dimensional effects could be used for discussing subaqueous
barchan dunes as a prominent example of dunes in a sediment-limited environment, rather
than necessarily reflecting only finite-amplitude interactions. Hopefully, the flow module
of the model could also be extended to study the atmospheric boundary layer making the
present stability analysis be able to investigate the effects of sediment starvation on the mor-
phology of eolian sandy patterns.
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