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Supersymmetric theories provide a promising frame-
work for the solution of the fine-tuning and gauge-
hierarchy problems. ' They are the only known
theories where elementary scalars are naturally light.
The lightness of the Higgs boson can be understood if
supersymmetry remains unbroken down to the weak
scale M~.

In spite of their enlarged symmetry, supersymmetric
theories fail to provide any new information on the
quark and lepton masses. The only model-
independent predictions are those that follow from the
infrared fixed points of the SU(3) S SU(2) U(1)
renormalization-group equations. In ordinary unified
theories, this fixed-point structure implies that the
masses and mixings of heavy quarks are independent
of the details of the short-distance physics. In this
Letter we extend this analysis to supersymmetric grand
unified theories. We find bounds on the spectrum of
heavy fermions and restrictions on the couplings of
the charged Higgs scalar.

Our fundamental hypothesis is that of a SU(3)
jm SU(2) S U(1) desert extending between the weak

scale M~ and the unification scale M~. We require all
couplings to be small enough for perturbation theory
to be valid, and we assume that supersymmetry is un-
broken all the way down to M~. These hypotheses are
valid in most supersymmetric theories that address the
gauge-hierarchy problem. This includes models where
supersymmetry is broken in a hidden sector at an in-
termediate scale of about 10" GeV. In these theories
the effective scale of supersymmetry breaking in the
visible sector is also M~.

Supersymmetric theories contain two Higgs doub-
lets, one giving mass to up-type quarks, and the other
giving mass to their down-type partners. The Yukawa
couplings are as follows:

= GU —3TU —(3 k ++&' Q'),

where

= GD —3TO —TF —(3&"~++ +), (3)
dt

= Gg —TE —3TD —38' 8',1
dg'
dt

Go =
3 g3 +3g2 + 9g] ~ (4)

where k, Q', and 8' are the Yukawa matrices of the
up-, down-, and electron-type fermions, Q and L are
the quark and lepton isodoublets, and u, d, and e are
the corresponding singlet fields.

Heavy-fermion masses are determined by the
infrared-fixed-point structure of the SU(3) S SU(2)
S U(1) renormalization-group equations. These

equations do not receive contributions from soft
supersymmetry-breaking terms. This follows from the
fact that the mass splittings within supermultiplets are
much smaller than the relevant desert momenta. The
soft supersymmetry breakings, however, induce finite
shifts in the fermion masses. These shifts are of mag-
nitude (u/2m. )Mty, and we neglect them here.

In supersymmetric theories, the SU(3) S SU(2)
I3 U(1) gauge couplings evolve as follows:4

dg3/dt = (9—2Nt; )g3, dg2/dt = (5 —2NF )g2s,

dg, /dt = —( —,
' +2Nt;-)gt, (2)

where t = —(I/16' )ln(M/Mg), and Nt; denotes the
number of families. The requirement of perturbative
unification restricts Nz to be less than or equal to 4.
To one-loop order, the evolution of the Yukawa cou-
plings are given by~

~v = tt +0 @ + d~ 0@d + er L 4'd GE 3g2 + 3g Ty = Tr+
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with & = k, &, or 8'. Equation (3) has the follow-
ing fixed points in the t ~ limit: (1) the quark
fixed point, with

G0 8' =0;
3NF+4'

(2) the lepton fixed point, with

GL + =N =0.NF+3'

(5)

(6)

Here G0 denotes an appropriate average of GU and GD
(with gt ——0), and GI represents a similar average over
GE.

For physical gauge couplings, the quark fixed point
determines the low-energy spectrum of quarks and
leptons. Because of the fixed point, all quarks have
the same Yukawa coupling as t ~. All weak mix-
ings and associated CP-nonconserving phases vanish
as well. This implies that both isospin and family sym-
metry are restored in the infrared limit.

In previous work it has been shown that infrared
fixed points are not necessarily reached in realistic
grand unified theories. This is because the physical
range of t is rather short, 0 & t & —,

' . In realistic
theories, fixed points are approached only if the Yu-
kawa couplings are sufficiently large. In what follows,
we restrict our attention to fixed points that are
reached in physical time.

We begin by considering the renormalization of the
overall scale of heavy quarks, given by TU and TD.
From the general equations (3) it is easy to show that
TU and TD evolve as follows:

(v/v„) & 160 (or v„& 14 GeV);

(v/ud) & 160 (or vd & 14 GeV).

(12a)

(12b)

Here we have used the fact that m, , and m, are greater

than 23 GeV. [If there are only three families, the
limit (12a) still holds. ] The bounds on the vacuum
expectation values are more stringent for heavier
quarks. For quarks of mass m, and m „we find

The bounds for NF ——3 are even more stringent, so
that the limits (9) and (10) are valid for any number
of families.

To convert (9) into bounds on the quark masses, we

introduce vacuum expectation values v„and vd for the
scalar fields @„and Qd. By using EMU ——(v„) TU and

gMD = (ud) TD, we place limits on the quark mass
spectrum:

EMU & (v„/v) (290 GeV),

XMD & (vd/v) (290 GeV)~, (11)

QM0 & (290 GeV)~,

where v„+ed = v = (175 GeV), and all masses are
evaluated at the weak scale M~. In Eq. (11), the sum
over Q runs over both up- and down-type quarks.

Equation (9) can also be used to bound the ratio of
the vacuum expectation values v„/vd. To see this,
suppose that there is a fourth family, whose top- and
bottom-type quarks have masses m, and m „respec-
tively. The corresponding Yukawa couplings are given
by g, =m, /u„and g„,=m, /vd. The fact that g, and

g, satisfy (9) sets limits on v„and vd.'

dTU = 2(GU —3TU) TU —6Tr(W k ) 2

df

—2 Tr(+ uS' '6'),

mI

290 GeV &u

290 GeV
m r

(13)

= 2(GD —3TD —TF) TD —6Tr(P &)
(7)

—2 Tr (& '& & + ) .

These equations can be used to bound the scale of the
heavy quarks,

dTU/dt ~ 2(GU —3TU) TU,

dTD/dt ~ 2(GD —3TD) TD.

The ratio vd/u„governs the coupling of the charged
Higgs boson to fermions. Therefore, our limits (12)
and (13) bound the charged-Higgs couplings in super-
symmetric theories. They suppress the one-loop
charged-Higgs contributions to K -K, D -D, and
B -B mixing.

Finally, we examine the special case of a fourth fam-
ily that is decoupled from its lighter counterparts. The
evolution equations for g, , and g, become

—lng, , = GU —3TU —(3g', +g', ),
dt

Equation (8) gives upper bounds on TU and TD at the
weak scale M~. Using the gauge couplings corre-
sponding to Nz ——4, we find

—lng, = G~ —3 TD —TE —(3g, +g ~ ),
(14)

TU, TD & 2.7.

A similar analysis in the lepton sector gives

T~ & 3.8.

(9)

(10)

where Gr and Tr are given in (4). In Fig. 1 we plot
the evolution of g, , and g, . Figure 1(a) indicates that

the fixed point is reached in physical time for a wide
range of initial conditions. Figure 1(b) shows that the
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The bounds (15) imply that the lightest quark in the
fourth family must have a mass of less than 150 GeV.
This is in accord with the results of Tabata, Umemura,
and Yamamoto.
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FIG. 1. (a) The evolution of g, and g, with energy for

various initial conditions. We have neglected the contribu-
tions of the three light families to T~ and TD. The arrows
indicate the flow of increasing t (decreasing energy). (b)
The evolution of g, with energy for the same initial condi-

tions.

fixed point is reached very quickly.
Equation (14) can be used to obtain tighter bounds

for the masses of the fourth family. A bound on the
value of g, , can be obtained by setting TU =g, , and

g, = 0 (and likewise for g, ). This gives g, „g, & 1.17,
which in turn implies

m, , & (v„/v)205 GeV, ma, & (vd/v)205 GeV. (15)
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