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A B S T R A C T

In this paper we formulate a model for assessing the interaction between the phytopathogen Spilocaea oleaginea
and the phyllosphere microorganisms that are present in the olive tree leaves. The model describes the evolution
in time of the foliage of the olive tree and the two different microorganisms, the phytopathogen fungi, that
negatively affect the plant causing spots in the leaves, and the beneficial phyllosphere microorganisms, that help
in keeping in check the invasion of the former. The system possesses five equilibria that are suitably analysed for
feasibility and stability. The model shows interesting features: a bistable behavior, exhibited by three different
pairs of equilibria. The separatrix surface of the basins of attraction of one such pair is computed. This allows the
possible assessment of human intervention for control of the disease. Persistent oscillations via Hopf bifurcation
are also discovered.

1. Introduction

The olive tree (Olea europaea L.) has a great economic importance in
the Mediterranean region [1]. This has been relevant all throughout
history since very ancient times, dating back up to at least the classical
Greek civilisation [2].

This plant however may be subject to several diseases that can
hinder its growth, reducing the olives production and even cause its
death [3]. These facts entail considerable economic losses for the
farmers. The main diseases that affect olive trees are mostly caused by
fungi and bacteria, which can infect several parts of the plant (roots,
stem, fruits and leaves) [3]. Nowadays, olive diseases control programs
rely mostly on chemical control by application of copper-based fungi-
cides [3]. Besides having limited efficacy, this control measure is not
compatible with sustainable production systems (organic and in-
tegrated production) which are the pillars of the European Model for
Agriculture, according the Directive 2009/128/EC. In olives produc-
tion, the plant protection strategy must follow the Guidelines for in-
tegrated production of olives [4]. Thus, a need to develop novel and
environment-friendly control strategies for the biological management
of olive diseases has recently become an important issue, involving both
biological issues as well as applied mathematics concepts and is leading
to an interesting research topic.

The aerial parts of the olive plants (phyllosphere) are colonized by a
diverse microbial community (mostly bacteria and filamentous fungi),
which can grow both epiphytically on the surface of plant tissues and
endophytically within the tissues [5]. These microorganisms interact
with each other and with the host plant, mediating several ecosystem
processes by altering plant traits [6], including disease resistance traits
[7]. Phyllosphere microorganisms can reduce the infection of plant
tissues by pathogens either directly, through the production of antag-
onistic molecules and competition for resources, or indirectly by in-
duction of plant resistance response [8]. Because of the importance of
the microbiome for host fitness and function, there is a growing desire
to model and manage host-microbiome interactions [9], to improve
crop yields [10,11]. In this way, the development of the so-called
“microbiome-driven cropping systems” might result in the next re-
volution in agriculture, resulting in a more sustainable system for plant
production [10,11].

Phyllosphere-associated microorganisms may be explored, in an
integrative perspective, for designing new strategies for the biological
control of olive diseases. Indeed, in the laboratory the salient compo-
nents of the antagonistic molecules of these microorganisms can be
artificially produced and then sprayed on the infected trees, to control
the infection. However, the assessment of the impact that such possible
strategies have on the cultures cannot be evaluated easily in the field.
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This kind of assay requires artificial inoculation of olive tree leaves with
the pathogen Spilocaea oleaginea (syn. Venturia oleaginea) and with the
“good” native fungi. Several explanations for the difficulty in studying
such microbial interactions in the phyllosphere may be considered. One
is related to the pathogen which is a recalcitrant fungus to manipulate
due to the difficulty in culturing it, and additionally shows also a slow
growth rate. A second explanation is related to the complexity of the
microorganisms that inhabit the phyllosphere. Not only their identity
remains largely unknown, but in particular their adaptations to the
habitat and their potential role with respect to modulating population
sizes of pathogens. Moreover, most of the microorganisms existing on
plant leaves are uncultivated, a fact which can jeopardize plant in-
oculations. Last but not least, the olive tree used in the assays must be
sterile (not colonized by microorganisms), which is impossible to obtain
in nature. Taken together, these challenges mean that a comprehensive
field analysis of interactions between pathogen and “good” fungi in the
olive tree leaves is far from being trivial. Hence, it is effectively im-
possible to design an experimental approach that can validate it.
Nevertheless, even some partial information on such kind of topic may
be of relevance for plant health, giving the farmers a way of preventing
foliar fungal pathogens. Thus, the response provided by the mathema-
tical model developed in this work represents an elegant way of de-
scribing interactions between the pathogen and beneficial fungi that
would otherwise be very difficult to demonstrate on real leaf surfaces.
We further remind the reader that, generally, in ecological terms, ex-
periments performed for e.g. one year, provide in general just a few
measurements for the relevant parameters sought. To obtain a statisti-
cally significant sample of values may require in some instances even
decades.

This of course implies also an extremely high cost for carrying out
these experiments.

Thus the need of an alternative approach is evident. In this respect,
mathematical modeling may help in conducting in-silico experiments.
The computer replaces the environment, while showing the behavior in
time of an ecosystem suitably modeled via a set of differential equa-
tions.

In this work, the potential role played by phyllosphere micro-
organisms in the protection of host olive trees from phytopathogen
infection is explored. This involves both situations of the phyllosphere
microorganisms seen as direct biological control agents or through their
management in order to reduce phytopathogens.

The paper is organized as follows. In the next section we present the
mathematical model. The possible ecosystem outcomes are explored
and discussed in Section 3. Then, numerical simulations are carried out,
outlining interesting features of the possible ecosystem configurations.
A final discussion of the results obtained concludes the paper.

2. The model

Specific models for tree and crop pathogens and their induced dis-
ease propagation are present in the literature, see for instance [14,21],
addressing either the disease itself [12] and the ways for its possible
control [13], their influence on crops and possible alternative cultiva-
tion ways to curbe them [15]. A specific example of a fungus heavily
affecting vineyards is in particular considered in [16].

We consider a single olive tree that is affected by a disease caused
by fungi, identified as the “bad” fungi from now on. We assume that
among the phyllosphere microorganisms on the olive tree there is
present another type of fungi, called the “good” ones, that have a
double positive effect.

Good fungi control plant diseases caused by pathogenic fungi di-
rectly by antibiosis, mycoparasitism and competition for space and
nutrients, thereby removing them from the environment and the tree’s
canopy. In doing so they also obtain a reward, gaining more space and
more food directly from the plant. Secondly, they are bioprotectant for
the tree, exerting on it a further direct beneficial effect. Therefore these

two types of fungi and the tree are linked by complex mutual interac-
tions that are both of competition or predator-prey type, as well as of
symbiotic nature. The purpose of our model is the elucidation of the
role that these interactions play for the whole tree health, and possible
ways for improving it. Therefore, even though this may somewhat
complicate the shape of the resulting dynamical system, we want to
consider all the possible interactions that may occur among the selected
ecosystem variables because of the several possible ways of influencing
each other.

The four populations (all measurable by biomass or extent of sur-
face) that are taken into account in the ecosystem are

• S: the healthy branches and leaves of the olive tree.
• I: the branches and leaves of the same olive tree that are infected by
the pathogenic fungi. We assume that the infected branches and
leaves do not reproduce.
• F: the pathogenic filamentous fungi, attacking and infecting the
olive branches and leaves. This is a fundamental variable in the
system, that must be taken into account, because it is responsible for
the infection process. Since it has in general a negative effect on the
ecosystem, to simplify the model formulation, one may at first think
to replace it by a kind of “harvesting” term in the relevant equation,
which has for the corresponding dependent variable the same det-
rimental effect. But in this way the possible outgrowth of these
pathogens would be completely omitted in the model description,
and therefore the model from the start would not be able to shed any
light on biological ways of keeping these pathogens in check.
• G: the phyllosphere microorganisms; they essentially remove the F’s,
benefiting then by getting more space for their growth and more
food directly from the plant, with this behavior they also further
contribute directly to the benefit of the healthy parts of the plant, S.
This variable is also relevant, because, as previously illustrated, if its
role in the ecosystem is clarified, a kind of “artificial” antagonistic
molecules could be produced in the laboratory and then used on the
cultures.

The model reads:
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In the first equation the evolution of healthy leaves is described. They
reproduce following a logistic growth, with net reproduction rate s and
carrying capacity K. They may become infected at rate λ by the action
of the bad fungi, whose spores are transported by wind and rain to all
parts of the tree, assuming well mixing. Finally they get benefit at rate b
from the good fungi, that are their bioprotectants as stated above. In
fact this term, coupled with a similar one that appears in the last
equation, indicates the symbiotic relationship existing between healthy
branches and good fungi, which will also be studied more at depth
when the specific submodel will be investigated.

The second equation for the infected leaves shows that they become
so when they are attacked at rate λ by the bad fungi. As for the re-
maining terms, recall that we want to consider all possible interactions
that may occur among the ecosystem variables. When, as is in this
specific case, all of them are detrimental for the population in con-
sideration, they act as additional deaths for it. It is true that then, they
could in principle be conglobated into just one single mortality term,
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simplifying the model formulation, but in this way the mutual popu-
lation influences would be missed. Thus, despite the complications, we
prefer to deal with this more elaborated version of the model. The in-
fected leaves experience natural mortality at rate g. When infected by
the pathogenic fungi F’s, the infected leaves’ abundance is reduced at
rate q, which constitutes an additional, disease-related, mortality, and
also are subject to intraspecific competition because the healthy and
infected olive leaves and branches subtract resources to I’s, at rate sK 1.
Note that introducing intraspecific competition among these infected
leaves allows something more. Indeed note that defining the total
leaves of the tree, = +L S I , by summing the first two equations in the
system (1), one obtains a basic logistic growth for the canopy L, in
which the effects of the microorganisms and of the infection are also
accounted for, namely

= +

= + + + +

dL
dt

s L I s
K

L bG L I qIF gI

s L
K

L bGL qF b g s I

( ) ( )

1 ( ) .

2

In the third equation we model the pathogenic filamentous fungi.
Here there are more relationships to be taken into account, that com-
plicate the formulation. In particular the adverse mechanisms against
these agents should all be considered, as they would perhaps provide
key elements for their control. Natural and intraspecific competition are
the basic elements, to which the antagonistic effects must be added.
Finally, because the infected tree loses the diseased leaves, we should
also account for the fact that the fungi on those leaves disappear from
the tree as well. To be more specific, consider each term in the equa-
tion, as follows. The pathogens extract nutrients from the infected
leaves, as already mentioned at rate q, with a conversion factor h. They
die because they are killed by the good fungi, at rate a, and also
naturally at rate m, possibly very very small. Bad fungi can die also by
intraspecific competition, at rate r. In addition, they are removed from
the foliage when the leave dies and falls via disease-related, mortality
and also by the intraspecific competition with other leaves. Note
however that when the leave falls, it carries with it an average content
of fungi denoted by Fav. Because the leave falls when it dies, we find the
two mortality terms appearing in the second equation for infected
leaves in this equation for fungi as well. Note that the term in q that in
the equation for the infected parts of the tree represents a hindering of
the leaves growth, is not accounted here as a mortality for the bad
fungi, but rather it is the benefit they get from the leaves, contributing
positively to the F’s growth, as said above. Indeed it represents their
gain in energy by nutrients extraction from the leaves.

The good fungi in the phyllosphere are modeled in the fourth
equation. We stress again that the aim of this study is the clarification of
the relationships among all the system variables. Therefore one should
once more expect that this equation, as well as the former one, is rather
complicated, in view of their rewarding interactions of the good phyl-
losphere organisms with healthy branches and bad fungi, as well as to
the detrimental one due to natural deaths and intraspecific competition,
and to their loss when the leaves on which they thrive drop. They get
food from their beneficial relationship with the healthy leaves, at rate b,
scaled by the conversion factor e, and also by killing the bad fungi at
rate a. In this way they have two types of benefit, directly getting more
space for their growth, and also more food. Here u represents another
conversion factor. Good fungi also die naturally at rate n and experience
intraspecific competition at rate p as well. In the last two terms, we
model the fact that they also are removed from the foliage when an
infected leave dies and falls, if they happen to be on it. This mortality
could be induced by the action of the bad fungi, firth term, but also by
the leaves’ intraspecific competition, last term. Here Gav stands for the
average content of the good fungi on a leave. Note indeed that good
fungi are present both on infected and healthy plant units. As it occurs
for the equation of bad fungi, we find the two mortality terms appearing

in the second equation for infected leaves to appear in this one also,
when the leave falls, i.e. when it dies. Similarly as for the third equa-
tion, we do not account among the mortalities the term in q appearing
in the second equation for infected leaves, because it represents the
process of extracting nutrients from the F’s as said above and does not
therefore represent a real mortality for the leaves, but only their da-
mage due to F’s.

Substituting =F FIav
1 and = +G G S I( )av

1 in the last two equa-
tions of the system (1), after simplifications the model becomes
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For this final model, we provide in Fig. 1 a sketch of the ecosystem,
to illustrate the mutual relationships among these populations. The
arrows mean that the population at the root is negatively affected by
the interaction with the population that is at the head of it, which in-
stead receives a benefit. Outgoing arrows denote losses, essentially due
to deaths, either intrinsic or essentially due to competition or predation,
if depending from another population. To each arrow one or more
parameter are associated, describing the rate at which the underlying
interaction occurs. In red is depicted the arc that is related to the in-
fection process.

3. Ecosystem’s steady states

For a deeper understanding of the full model (S, I, F, G) we will start
by analysing the two particular cases: the disease-free model (S, G) and
the phyllosphere microorganisms-free model (S, I, F) respectively.

3.1. The disease-free subsystem

From model (2) one can get the disease-free model (S, G)

= +

=

dS
dt

s S
K

S bGS

dG
dt

ebGS nG pG s S
K

G

1

.2
(3)

Here we characterize all the possible steady state system’s out-
comes, deferring to the Appendix A the mathematical details. The re-
sults of the dynamical system analysis of (3) are:

Fig. 1. Schematic representation of the ecosystem relations, with the notation
referring to model (2).
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• The trivial equilibrium point =E (0, 0)0 is always feasible but un-
stable.
• The good fungi-free point =E K( , 0)1 is always feasible and is stable
if the carrying capacity of S is suitably bounded from above,

< +K n s
be

. (4)

Note that the higher the benefit the phyllosphere microorganisms
get from the tree, parameters b and e, the lower the bound is, and
conversely the larger their mortality n and the net reproduction rate
s are, the larger the bound.
• The coexistence equilibrium (for this model), i.e. the point where
the tree is healthy and only the phyllosphere microorganisms thrive
in it,

= +E K bn ps
Kb e bs ps

s n s bKe
Kb e bs ps

( ) , ( ) ,2 2 2 (5)

is feasible if either one of the two alternative sets:

+ +b n s b eK s b p( ) ( );2 (6)

+ +b n s b eK s b p( ) ( ).2 (7)

Stability of this equilibrium is easily established, reducing just to the
condition

< +Kb e s p b( ),2 (8)

which shows that it is always stable only in case of the feasibility
conditions (6), as they are the only ones compatible with (8). Thus,
whenever it is feasible, E2 is always stable.

Remark 1. Note that (6) are easily seen to be the necessary conditions
for which the two nullclines meet; in the opposite case, (7), the
trajectories of the symbiotic system would diverge to infinity. Thus
(8) rules out possible unbounded solutions of this subsystem.

3.2. The phyllosphere microorganisms-free subsystem

From the general model (2) the phyllosphere microorganisms-free
model (S, I, F) can be obtained

= +

= +

= +

dS
dt

s S I
K

S SF

dI
dt

SF qIF gI s S I
K

I

dF
dt

hqIF mF rF gF s S I
K

F

1

.2
(9)

We now sum up the main results of the steady states of model (9)
and analyze their stability . For the analytical results see Appendix B.
The results of the dynamical system analysis are:

• The result for the trivial equilibrium E0 is the same as for the dis-
ease-free model (3), namely unconditional instability.
• E1 exists also in this case but here it is always stable.
• Again there is the coexistence equilibrium (in which the phyllo-
sphere microorganisms are absent, though)

= + + +E K
s

s s
K

I F m g s r F
hq

F, ( ) ,3 3 3
3

3
(10)

where F3 is the positive root of a quadratic equation, see
Proposition 2 in Appendix B, so that there can be none at all, in
which case E3 would not exist, or either one or two. Further feasi-
bility conditions come from the nonnegativity of the remaining
populations, S3≥ 0, I3≥ 0. Combined, they extensively read

+ + +m g s r F hqK
s

s F0 ( ) ( ) ( )3 3 (11)

and in turn imply further restrictions on the size of the bad fungi.
Necessarily, from the nonnegativity requirements of (11), we must
have for λ< r

F s
3 (12)

for λ> r instead

+ +{ }F s m g s
r

min , .3 (13)

But also from the right inequality in (11) it follows

+ +s m g s hqK s sr hqK F( ) ( ) 3

which is always satisfied for

+ + +m g s hqK s sr hqK, (14)

while conversely it gives two more conditions on the size of F3,
respectively

+ + + + +m g s hqK s sr hqK F s m g s hqK
s sr hqK

, , ( )
3

(15)

and

+ + + + +m g s hqK s sr hqK F s m g s hqK
s sr hqK

, , ( )
3

(16)

For the stability of E3 the Routh–Hurwitz criterion must hold, but it
is quite complicated, for more details see Appendix B.

Remark 2. This seems to be a rather interesting result, as it shows that
even when it is endemically infected, a tree cannot support more than a
maximal quantity of pathogens. Once more, if F were not taken as a
system variable, this remark probably would have escaped the
investigation.

3.3. The complete system

The equilibria found for models (3) and (9) are so also in this case
for the system (2). In particular the origin continues to be always un-
stable, while the healthy-tree-only E1 and the disease-free E2 points
remain unconditionally stable in this larger phase space. The infected
tree situation E3, instead, in this case possesses an additional eigenvalue
that produces the following additional stability condition

+ < +
+

+ +ebS uaF n g I
S I

s S I
K

.3 3
3

3 3

3 3

(17)

Thus the introduction of the “good fungi” may destabilize the en-
demic equilibrium, a positive effect, and might render the tree disease-
free, if E3 becomes unstable and trajectories tend then to E1 or E2. The
disease would remain endemic instead if they approach the coexistence
equilibrium.

Remark 3. Once again this result stresses the importance of considering
among the ecosystem variables also the good phyllosphere antagonists,
as it is seen, even analytically, that they can fight back the tree
infestation by pathogens. This points out also the fact that artificial
measures like spraying the synthesized antagonistic molecules can help
the natural phyllosphere fungi in their task.

The disease endemicity in the general model (2) is also a possible
outcome, with all the ecosystem populations thriving,
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= + +E S I F F K I s Ks S s
Kb* *, *, *, * * * ,

with

= + +G F K I s Ks S s
Kb* * * * ,

(18)

= +
+

F I Kbhq I as I bs Kas Kbg Kbm S as S bs
a br K* * * * * *

( )
,

(19)

and where S* and I* are the positive coordinates of the intersection
point between the curves H(S, I) and M(S, I), defined inAppendix C.
Here the stability is ensured by the Routh–Hurwitz conditions (C.2) that
are quite involved to be made explicit. For more details see Appendix C.

4. Numerical simulations

In all simulations for the system (2) the intrinsic ode45 routine of
Matlab2016a is used. We found interesting dynamics that can arise, and
report our results according to these features: bistability phenomena
and transcritical bifurcations. We then investigate the sensitivity of the
system with respect of some relevant model parameters. In doing so,
Hopf bifurcations are also discovered around the coexistence states of
the S I F submodel and of the whole ecosystem, which are hard to
be shown analytically, as observed in analysing the stability of these
equilibria in the previous section.

4.1. Bistability configurations

Our numerical simulations show that for chosen set of parameters
two different possible system’s outcomes exist, if the initial conditions
are suitably chosen. In particular the following pairs of bistable equi-
libria are found: E1 and E*, E2 and E3, E1 and E2.

More specifically, for the set of hypothetical parameters

= = = = = =
=

= = = = = =
=

s b q g h
m

a e u n K r
p

4.1, 8.5, 7.0, 9.9, 0.1, 0.9,
0.3,

8.2, 0.05, 0.6, 0.6, 6.8, 9.6,
6.9

(20)

and the initial conditions [0.01, 0.4, 0.8, 0.6] and [0.7, 0.5, 0.7, 0.6] we
respectively get the two stable equilibria

= =E E[6.8, 0.0, 0.0, 0.0] and * [1.2, 0.8, 0.4, 0.1].1

Instead, setting =g 1 in the above same set of parameters (20), with
the initial conditions [0.01, 0.4, 0.8, 0.6] and [3, 2, 0.5, 0] the system
respectively sets to the stable points

= =E E[6.8, 0.0, 0.0, 0.0] and [1.1, 0.6, 0.3, 0.0].1 3

In Fig. 2 the trajectories converging to E1 and E3 are visually re-
presented in the phase space.

For the following set of hypothetical parameter values

= = = = = =
=

= = = = = =
=

s b q g h
m

a e u n K r
p

1.5, 2.7, 2.3, 5.9, 0.1, 0.8,
0.4,

2.1, 0.2, 0.3, 1.7, 8.6, 6.1,
7.7

(21)

and the initial conditions [3, 2, 0.5, 0] and [3, 0, 0, 2] the stable
equilibria are instead achieved

= =E E[1.1, 0.6, 0.3, 0.0] and [40.9, 0.0, 0.0, 2.4].3 2

Remark 4. Looking at the above pairs of points, it thus appears that the
system can always attain a disease-free equilibrium, at E1, or the
phyllosphere microorganisms-free point E3, or instead settle at an
endemic state. The outcome is regulated only by the present state of
the system, namely the initial conditions. It becomes very much
important indeed to be able to assess whether the latter will lead to
disease eradication or not. This issue has been dealt with also in other
similar circumstances and accurate and state-of-the-art approximation
theoretic tools have been devised to assess the basins of attraction of
each equilibrium of the dynamical system, [17–20]. Using these
algorithms, in Fig. 3, we show the surface that separates the basins of
attraction of E1 and of E2.

This information is useful for the administration of the ecological
situation, in that it may provide guidelines on how to act on the system
in order to push it into the domain in which it will naturally settle to the
disease-free equilibrium.

4.2. Transcritical bifurcations

We further investigate the transition of one equilibrium into a dif-
ferent one by a smooth change of one or more system parameters. In
Fig. 4 the transcritical bifurcation that arises varying the parameter
λ∈ [0, 30] is seen, using the same set of parameters (20) and the initial
conditions [1, 1, 1, 1]. For λ∈ [0, 5] the system sets to the healthy tree
equilibrium configuration E1, in the range λ∈ (5, 19], it achieves co-
existence E* and finally for λ∈ (19, 30] the phyllosphere microorgan-
isms-free point E2 is attained.

Fig. 5 shows instead the transcritical bifurcation arising by varying
the parameter λ∈ [0, 30], using the same set of parameters (21) and the
initial condition [1, 1, 1, 1]. For λ∈ [0, 3] ∪ (10, 30] the system
achieves the disease-free equilibrium E2, while for λ∈ (3, 10], it settles
to E3.

Remark 5. In this context it is thus apparent that a lower disease
transmission rate helps in keeping the disease in check. This remark
may be useful in the context of climatic changes, since the disease
transmission rate λ might be dependent on external factors, in
particular might increase with a raise of the environmental
temperature.

4.3. Equilibria sensitivity to two parameters variations

So far we have analysed the behavior of the equilibrium points
keeping the parameters fixed, while changing the initial conditions. We
discovered bistability among at least tree pairs of equilibria, in one case
also plotting the separatrix surface, Fig. 3. We now investigate the
question of what happens to the ecosystem instead if pairs of model
parameters change. We thus analyse the behavior of the populations
when two of the parameters are simultaneously varying. At first we
consider the three pairs of parameters: (g, λ), (g, b) and (λ, b), because
these are ecologically the most relevant. Indeed, g represents the nat-
ural mortality rate of the infected parts of the olive tree, but extending
the interpretation it can also be seen as an external human action on the
ecosystem, the pruning of the infected parts of the tree; λ is the infec-
tion rate, that may well be temperature-dependent and b represents the
mutual benefit between phyllosphere microorganisms and the olive
tree. In addition, these pairs of parameters also give the most significant
results.

For the set of parameters (21) varying the parameters g∈ [0.1, 4]
and λ∈ [0.1, 11], and with the initial conditions [1, 1, 1, 1] the system
outcomes are shown in Fig. 6.

As it is apparent from Fig. 6, I and F vanish if g is larger than a
certain threshold, in which case the stable disease-free point E2 is
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attained. There is a kind of semicircular region for 2≲ λ≲ 3 where the
infection is endemic, while the healthy parts of the tree and the phyl-
losphere microorganisms settle to very low values.

For the set of parameters (20) varying the parameters g∈ [0.1, 4]
and b∈ [0.1, 15], and with the initial conditions [1, 1, 1, 1] the results
appear in Fig. 7.

Keeping for the time being a fixed value of b, it can be seen from
Fig. 7 that for g≲ 0.5 the four populations coexist, E*. In the range
g≳ 1.5 only the healthy parts of the tree S survive at carrying capacity,
E1. Increasing b, for g≲ 0.5, the system populations S, I, F and G all
increase.

Remark 6. This result is relevant, because it shows that a high
filamentous fungi mortality rate, natural or human induced via
pruning, induces the recovery of the plants, almost independently of
the disease transmission rate.

Again, for the set of parameters (20) but this time varying the pair of
parameters λ∈ [0.1, 4] and b∈ [0.1, 15], and with the initial condition
[1, 1, 1, 1], Fig. 8 contains the simulations results.

The pictures in Fig. 8 are almost independent of the value of b, with
the exception that an increase in the latter is beneficial for the phyl-
losphere microorganisms. For λ≲ 4 we get the disease-free equilibrium
E1, in the range 4≲ λ≲ 22 the system attains coexistence, but for λ past
a certain value, around 15, oscillations are triggered via a Hopf bi-
furcation. The two surfaces in each frame represent respectively the
minimum and the maximum values of the oscillating solutions.

From Fig. 9, the results in the parameter space (λ, a) are similar as
those obtained for (λ, b), with the only difference that for small values
of a the phyllosphere microorganisms-free point is stable. For large
values of a instead the same behavior is exhibited as in Fig. 8.

Fig. 10 shows that varying n together with λ does not affect any
population except for the phyllosphere microorganisms, that vanish for
a high enough n. Thus the intrinsic mortality rate of phyllosphere mi-
croorganisms cannot help in fighting the disease; rather, a high n
compromises their survival, as it should be expected. The limit cycles
are once more found for a large disease contact rate λ.

Fig. 11 contains the simulations in the (r, λ) parameter space:
combinations of large λ and low r or low λ and high values of r also
entail disease eradication. The parameter r represents the intraspecific
competition among filamentous fungi and is therefore an intrinsic

Fig. 2. In the subspace =G 0 of the phase space we represent the projections of two different trajectories converging to E1 and E3 respectively. Blue dots: the initial
conditions, [1, 0.1, 0.1, 1] and [3, 0.3, 1, 1], for the right frame and [1, 0.1, 0.1, 1] and [0.3, 0.3, 1, 1], for the left frame; Black squares: the stable equilibrium points
to which the trajectories tend; they respectively are =E [6.8, 0, 0, 0]1 and =E [1.1, 0.6, 0.3, 0]3 . Blue line: the trajectory tending to E1; Red line: the trajectory tending
to E3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. In the =G 0 subspace of the phase space, we represent the projection of
the separatrix hypersurface partitioning the phase space into the basin of at-
traction of =E [6.8, 0.0, 0.0, 0.0],1 on the left and below it and the one of

=E [1.1, 0.6, 0.3, 0.0],3 lying instead above it and to its right. The two equilibria
are indicated with blue dots. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. The transcritical bifurcation bringing the ecosystem from the equili-
brium E1 to the coexistence point E* and finally to E2, varying λ∈ [0, 30]. The
initial condition used is [1, 1, 1, 1].
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parameter of the ecosystem. In this case, to act on it via external
measures might perhaps be a bit of a problem. Hence this result is most
likely not practically usable.

Further, Fig. 12 shows the system behavior in the (q, λ) parameter
space. Even for highly transmissible infection, large λ it would be
possible to eradicate the disease if q, the feeding rate of filamentous
fungi on infected leaves, can be kept at very low values. This perhaps
might be enhanced by some external measures, possibly to be devised
ad hoc.

Finally in Fig. 13 we graphically illustrate the onset of sustained
oscillations for the set of suitably chosen parameters: =s 3.5, = 9,

=b 5.4, =q 8.3, =g 0.8, =h 0.9, =m 0.05, =a 7.8, =e 0.2, =u 0.1,
=n 4.6, =K 9.1, =r 5.5, =p 5.8.
In order to better understand the ecosystem behavior, we have

checked for each set of parameter values whether the surface re-
presented in the previous pictures corresponds or not to a single
stable equilibrium point. Thus we ran simulations fixing the para-
meter at the values used to generate the surface, and fixing the two
parameters that appear in the domain of each surface to their mean
value, i.e. at the center of the rectangle in the domain of the surface.
Then we took 50 randomly generated initial conditions, in the hy-
percube with center given by the initial condition used for generating

Fig. 5. Left frame: The transcritical bifurcation taking the system from E2 to E3 and then finally to E2. It is obtained by varying λ∈ [0, 30]. The initial condition is [1,
1, 1, 1]. Right frame: the zoomed version to better illustrate the details for low values of λ.

Fig. 6. The surfaces represent the population equilibrium values. Clockwise: the healthy parts of the olive tree, S, the infected parts, I, the good fungi, G and the bad
fungi, F. The plots are obtained varying the parameters g∈ [0.1, 4] and λ∈ [0.1, 11]. The initial condition is [1, 1, 1, 1].
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the surface, namely [1,1,1,1] and of side 2. Integrating the system,
only one equilibrium was found except for two cases that gave bist-
ability between E3 and E⁎, corresponding to the parameter spaces

q and r . Repeating the simulation in the same way but in the

hypercube of side 10, also the parameter space b shows bistability
between E3 and E⁎. In Figs. 14–17 we show these previously discussed
three instances and one sample for which only one equilibrium exists,
namely g .

Fig. 7. The surfaces represent the population equilibrium values. Clockwise: the healthy parts of the olive tree, S, the infected parts, I, the good fungi, G and the bad
fungi, F, varying the parameters g∈ [0.1, 4] and b∈ [0.1, 15]. The initial condition is [1, 1, 1, 1].

Fig. 8. The surfaces represent the po-
pulation equilibrium values or the lar-
gest and smallest values of the popu-
lation oscillations. Clockwise: the
healthy parts of the olive tree, S, the
infected parts, I, the good fungi, G and
the bad fungi, F, varying the para-
meters λ∈ [0.1, 25] and b ∈ [0.1, 6].
The initial condition is [1, 1, 1, 1].
Persistent oscillations arise in this
parameter space for high enough va-
lues of the disease transmission rate λ.
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4.4. Biological interpretation of the simulation results

From a biological point of view it is important to know that
choosing different initial conditions the ecosystem may behave in very

different ways. We have seen that some of them lead the system to
different stable equilibria. For instance in the case of the pair E3 and E2
the choice of the initial conditions influences how the disease ulti-
mately behaves, whether is it eradicated because the trajectories

Fig. 9. The surfaces represent the population equilibrium values or the largest and smallest values of the population oscillations. Clockwise: the healthy parts of the
olive tree, S, the infected parts, I, the good fungi, G and the bad fungi, F, varying the parameters λ∈ [0.1, 25] and a∈ [0.1, 30]. The initial condition is [1, 1, 1, 1].

Fig. 10. The surfaces represent the population equilibrium values or the largest and smallest values of the population oscillations. Clockwise: the healthy parts of the
olive tree, S, the infected parts, I, the good fungi, G and the bad fungi, F, varying the parameters λ∈ [0.1, 25] and n∈ [0.1, 30]. Initial condition: [1, 1, 1, 1].

P. Baptista et al. Mathematical Biosciences 308 (2019) 42–58

50



approach the disease-filamentous fungi-free point or it persists, if the
phyllosphere microorganisms-free point is instead attained. These be-
haviors have clearly huge differences and economic impact. Therefore
in case the ecosystem is at a situation leading to the endemic state of the
disease, devising biological means to push the present state of the
system into another configuration belonging to the basin of attraction

of the disease-free state becomes imperative for disease eradication and
regain a healthy tree environment.

For the pair of bistable equilibria E1 and E3 we also know the se-
paratrix surface, thereby it is possible to assess precisely the actions to
take to remove the disease. This can practically be achieved by spraying
the infected tree with more phyllosphere microorganisms or

Fig. 11. The surfaces represent the population equilibrium values. Clockwise: the healthy parts of the olive tree, S, the infected parts, I, the good fungi, G and the bad
fungi, F, varying the parameters λ∈ [0.1, 25] and r ∈ [0.1, 30]. The initial condition is [1, 1, 1, 1].

Fig. 12. The surfaces represent the
population equilibrium values.
Clockwise: the healthy parts of the
olive tree, S, the infected parts, I, the
good fungi, G and the bad fungi, F,
varying the parameters λ∈ [0.1, 25]
and q∈ [0.1, 30]. The initial condition
is [1, 1, 1, 1]. (Note that the axes in this
frame are rotated to better show the
equilibrium surfaces, so that the origin
is in front and not on the left as in the
other figures).
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alternatively by pruning the infected branches. In this case a counter-
intuitive result is obtained, in fact it seems that by choosing a high
value of F, the filamentous fungi, and in case of high infection of the
leaves I as well, and if both the healthy foliage S and the filamentous
fungi F increase, the situation of a stable healthy tree can still be
achieved. This result can be obtained if the carrying capacity of the
olive tree foliage is suitably bounded above, see (4). This however may
be difficult to obtain in the real life situations. Another more intuitive
result obtained from Fig. 3, is that for a chosen set of parameters and
values of F small enough the healthy tree-only point can be attained in a
stable way.

From the transcritical bifurcation diagrams, Figs. 4 and 5, varying
the same parameter λ, the infection rate, and for two different sets of
parameters, two completely different results can be reached. Fig. 4
shows that for values of the infection rate small enough the healthy tree

equilibrium is stable; increasing λ the system first experiences the dis-
ease infection, at coexistence, and finally the situation worsens up to
the point where phyllosphere microorganisms are completely wiped
out. From Fig. 5 instead the healthy tree configuration is stably ob-
tained either by a low disease transmission rate, or for high enough
values of the same parameter, in this case λ>10. For intermediate
values of the disease transmission rate, typically 1< λ<10, the system
attains the stable good fungi-free state, with endemic disease. Biologi-
cally this means that if the infection rate is very weak or really strong
the olive tree can be freed from the disease and from the filamentous
fungi too. This result makes sense: for a weak infection the phyllosphere
microorganisms are able to repel the filamentous fungi invasion before
they attain large values, while for a strong infection it means that the
filamentous fungi will quickly exhaust the tree resources, and thereafter
will not be able to survive themselves, while the tree instead is still able

Fig. 13. The sustained oscillations around the endemic equilibrium E3, with initial condition [1, 1, 1, 1]. Clockwise: the healthy parts of the olive tree, S, the infected
parts, I, the good fungi, G and the bad fungi, F.

Fig. 14. Simulations with the same parameter values as of the corresponding equilibrium surface cases. The chosen parameter space is g ; the initial conditions
are taken in the hypercube of side 10 with center [1,1,1,1].

P. Baptista et al. Mathematical Biosciences 308 (2019) 42–58

52



to recover. Note indeed that a high value of the infected branches po-
pulation I induces also a high reduction in the filamentous fungi po-
pulation, F, for which the latter may very well be fast depleted and
therefore free the tree from the infection.

It is interesting to observe that for λ<5 in Fig. 4 the tree is healthy,
while in Fig. 5 in the same range for the disease transmission, up to
λ>1, the ecosystem is still in the endemic state, while for λ<1 the
infection vanishes. Therefore the minimal threshold for disease eradi-
cation depends not only on disease transmission, but also from the re-
maining parameters of the model.

Several transcritical bifurcations arise the surfaces plotted in
Figs. 6–11 illustrating smooth transitions among the ecosystem equili-
bria, depending on some of the model parameters. In addition these
figures indicate that the system may also enter into a state of sustained
oscillations via suitable Hopf bifurcations, indicating periods of high

and low infections on the tree. This information would be important for
the external treatments with fungicides, as they would result most ef-
fective during the periods of low infection. Indeed an external addi-
tional filamentous fungi human-induced mortality, administered when
this population is low, could make it vanish altogether, thereby eradi-
cating the disease.

One further point that we remark here is that the equilibrium sur-
faces depicted in Figs. 6–12 do not show the only possible equilibrium,
as indicated by the results of the further simulations using random in-
itial conditions. Bistability can indeed occur. In particular it involves
the equilibrium E3 in addition to coexistence, which entails the possible
loss of the phyllosphere good fungi. Once more, the importance of the
assessment of the separatrix between these equilibria basins of attrac-
tion is apparent. But also, in spite of the bistability, the shapes of the
equilibrium surfaces should provide means of intervening to the

Fig. 15. Simulations with the same parameter values as of the corresponding equilibrium surface cases. The chosen parameter space is q; the initial conditions
are taken in the hypercube of side 10 with center [1,1,1,1].

Fig. 16. Simulations with the same parameter values as of the corresponding equilibrium surface cases. The chosen parameter space is r ; the initial conditions
are taken in the hypercube of side 10 with center [1,1,1,1].
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ecologist that wants to control the pathogens that cause the disease
outbreak. First of all, by seeking parameter configurations that contain,
even at coexistence, the bad fungi and the infected branches popula-
tions at low levels. Secondly, looking for high values of the good
phyllosphere microorganisms and operating on the suitable parameters
accordingly. In this respect, as already mentioned in the introduction,
synthesizing in the laboratory the antagonistic molecules could also
provide a substantial help.

5. Conclusions

We have presented a model for disease infection and eradication of
the olive tree, due to the action of two kinds of fungi, the pathogenic
ones and the beneficial ones.

The findings of the analysis and simulations show that from a bio-
logical point of view the most important equilibria are E2 healthy tree
with phyllosphere microorganisms as well as E1, the purely healthy
tree. At this point indeed only the healthy olive tree thrives, with no
other microorganisms in it; this is most likely impossible in the real
world. At E2 instead the healthy tree contains also the phyllosphere
microorganisms, which help in repelling the possible attacks of patho-
genous agents. This is a better goal to achieve, as the latter represent a
natural way of fighting filamentous fungi invasions. On the other hand,
the equilibrium E3 is the most dangerous one since it corresponds to
endemic disease. In it the infected parts of the tree and the invading
filamentous fungi are present, while the phyllosphere microorganisms
are wiped out. The qualitative analysis of the model (2) states that E2 is
feasible and stable if the carrying capacity of the olive tree, K, does not
exceed a certain threshold. Our extensive numerical simulations have
revealed the existence of some special cases, in which bistability of
three pairs of equilibria occurs. The most important one is obtained for
the set of parameters (21) for which E2 and E3 are both stable. Thus
starting from different initial conditions the system can respectively
either be freed from the disease, or invaded by the filamentous fungi. A
way to force the ecosystem to attain a state belonging to the right basin
of attraction, the one of the healthy tree configuration, would in
practice be implemented by using pruning, thus simultaneously redu-
cing the amounts of the infected foliage and of the filamentous fungi
respectively. Note indeed that in the model g represents disease-related
mortality, but with a wider interpretation it can become a control

parameter, represented indeed by pruning. If applied with a high
measure, it can effectively contribute to disease eradication, as in-
dicated by our numerical experiments. Here it is seen once more the
importance of keeping the various mortality terms distinct from each
other in the model formulation, as it is just one of them that we need to
use for the benefit of the tree. A complementary or alternative measure
could be given by adding more phyllosphere microorganisms to the
olive tree. This can be achieved by sythesizing in the laboratory the
antagonistic molecules that they produce, and then spray them on the
tree.

In addition we have discovered that E1 can be stable together with
E3 or E* respectively. E1 is the equilibrium where only the healthy parts
of the olive tree thrive while in the other two, E* being the coexistence
equilibrium, invasion of the filamentous fungi occurs, in spite of the
presence of the phyllosphere microorganisms.

Further important information arises from the Figs. 6–8. In parti-
cular keeping the same initial conditions, thus assuming that no
pruning or adding good fungi is performed, the values of a pair of two
parameters of the model are simultaneously changed. In Fig. 6 varying
λ, the infection rate, and g, the mortality rate of the infected parts, two
different equilibrium points can be attained, E2 or E3. The same occurs
in Fig. 7, with the equilibria E* or E1. Furthermore Figs. 8–11 show that
the system may present sustained oscillations for values of λ greater
than 18. As previously remarked, an application of fungicides at the
throughs of these oscillations may wipe out the filamentous fungi and
thereby free the tree from the infection.

From the more applied side, what happens in reality is not really
known, because of the difficulty of studying such microbial interactions
in the phyllosphere. Thus, data about the effect of the application of
microorganims on olive tree leaves under natural conditions are
lacking. There are several reasons for this missing information. The data
obtained in the field situation are quite different from the response that
can be gathered in the laboratory under very carefully designed side
conditions. First of all, the pathogens are indeed very resistant to being
cultivated in vitro. Moreover, as mentioned in the introduction, it is
indeed very difficult if not impossible to investigate this situation in the
open environment, as the trees must be sterilized, before starting the
experiments to assess what happens on the real leaves, and kept so,
otherwise the other microorganisms present in the phyllosphere may
alter the experiments results. Even to the biologists in our team then,

Fig. 17. Simulations with the same parameter values as of the corresponding equilibrium surface cases. The chosen parameter space is b; here initial conditions
are taken in the hypercube instead of side 10 with center [1,1,1,1].
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this mathematical model appears to be if not the best way, at least a
very useful tool that allows at least a qualitative mean of investigation
for providing speculative information on the interactions that can arise
between the pathogen and beneficial fungi.
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Appendix A

Analysis of model (3).

Proposition 1.

(i) The trivial equilibrium point =E (0, 0)0 is always feasible but unstable.
(ii) The good fungi-free point =E K( , 0)1 is always feasible and is stable if the carrying capacity of S is suitably bounded from above, as stated in (4).
(iii) The coexistence equilibrium point E2, where the tree is healthy and the phyllosphere microorganisms thrive in it, (5) is feasible if either one of the two

alternative sets (6) or (7) holds.
Stability of E2 is given by Eq. (8).

Proof. The equilibrium points are easily obtained from the corresponding equilibrium equations of (3). For the study of their stability we need the
Jacobian of (3):

=
+ +

J

sS
K

s S
K

bG bS

beG sG
K

beS pG n sS
K

1

2
(A.1)

evaluates at each equilibrium point. Specifically:

(i) E0 is a trivial solution of the homogeneous system; it is unstable, in view of the Jacobian eigenvalues <n 0 and s>0.
(ii) For =G 0 the first equilibrium equation of (3) gives =S K . The Jacobian’s eigenvalues are <s 0 and Kbe n s, from which the stability

condition (4) follows.
(iii) Solving the equilibrium system for nonvanishing populations provides the coexistence point (5), which is feasible if the populations are non-

negative, giving the alternative conditions
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from which (6) and (7) follow. Using the equilibrium equations, the diagonal entries of the Jacobian in this case simplify:
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Hence, using the Routh–Hurwitz conditions,
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The latter is positive whenever (8) holds. If follows that the feasibility conditions (7) are incompatible with the stability requirement.

□

Appendix B

Here we provide some details of the analysis of the model (9). The Jacobian matrix of (9) is
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For the origin, the instability follows as in the former model by the positive eigenvalue s, while the other ones are g and g m.
The healthy branches-only point E1, contrary to the case of the (S, G) model, in this case possesses the eigenvalues s, g s and m g s.

Since they are all negative, its unconditional stability follows.

Proposition 2. The population values at coexistence equilibrium of model (9) are given in (10). F3 is the positive root of the quadratic equation

= + + = =

= + + + + = + + + <

F UF VF Z U q
s

s r hK

V qh K q m g s r g s Z s g m g s

( ): 0, [ ( ) ],

( ) ( )( ), ( )( ) 0.

2 2

(B.3)

The conditions for exactly one and two such roots are respectively

> < >U U V V UZ0; 0, 0, 4 .2 (B.4)

In addition, further feasibility conditions are (11). Stability hinges on the Routh–Hurwitz conditions for a cubic polynomial, that are indicated in the proof.

Proof. The coexistence equilibrium is obtained by solving the first equation of (9) with respect to S and then substituting it into the second and third
equations respectively. The last equation provides I, and its substitution into the second one gives the quadratic equation in F, (B.3) Since ψ(0)< 0,
one positive root exists if the first condition in (B.4) holds. Instead, to have two, the second set of conditions (B.4) must be satisfied. Feasibility
conditions hinges further on the nonnegativity of the remaining populations, (11). The case U<0, V>0, V2< 4UZ instead does not give any
equilibrium point of this type.

Note that at coexistence the diagonal entries (B.2) of the Jacobian simplify to
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Now, R1> 0 while the signs of R2 and R3 depend on the parameters values. If 0< R3< R1R2 then E3 is stable. Explicitly this condition becomes:

= +
+ + + +
+ +

+ +
+ +
+ + +
+ + +

+ +
+ +

R R R F I K hq r F I K S h q F I K S h qr
F I K S r F K S r I Khq s F I S s
I KS hq s I KS h qs F I Kqrs F I Kr s
F I KS qs F I KS rs F I KS r s

F I KS rs F I KS h q F KS s I qs
I S s I S qs I S rs I S s
I S h qs I S hq s I S s I S h qs
F I S rs F S s F S rs I S rs
F I KS s F I K S h q I rs I KS h qs

3
3

2 2

.

1 2 3 3 3
3 2 2

3 3
2 2

3
2

3 3
2 2

3

3
2

3
2

3
2

3
2 2

3
2 2

3
4 2

3 3
2

3
3

3
2

3
2

3
2

3 3
3

3 3
3 2

3 3
2

3 3 3
2

3 3 3
2

3
2

3 3 3
2

3 3 3
2

3
3 2

3
4 2

3
3

3
2

3
3

3
2

3
3

3
2

3
2

3
2 2

3
2

3 3
2

3
2

3 3
3 2

3 3
2

3 3 3 3 3
2 2

3 3
2

3
2

3
2 2

3 3 3
2 2

3 3
2

3
2 2

3
4 2

3
3

3

□

Appendix C

Analysis of model (2).

Proposition 2. Assuming to have two feasible values for S* and I* (it was shown numerically that a set of parameters exists for which S*> 0 and I*> 0), the
coexistence equilibrium

= + +E S I F F K I s Ks S s
Kb* *, *, *, * * * ,

with

= +
+

F I Kbhq I as I bs Kas Kbg Kbm S as S bs
a br K* * * * * *
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is stable if the Routh–Hurwitz conditions
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3
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hold.

Proof. The coexistence equilibrium E* is obtained following the next steps:

• Step 1: Solve for G the first equation of (2) to get G*, (18).
• Step 2: Substitute G obtained in Step 1 into the third equation of (2) to get F*, (19).
• Step 3: Evaluate the second and the fourth equations using the values F* and G* from Steps 1 and 2, to get
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with A1, A2 and A3 defined as follows
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and
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• Step 4: The intersection of these curves H(S, I) and M(S, I) provides the values of the remaining populations, S* ,I*.

The Jacobian of (2) is

=

+
+ +

+
+

J
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(C.5)

with
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+

+
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2 ,

2
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Now at the origin one eigenvalue is s>0 showing its instability. At E1, they are s, g s, g m s, n s, so that this point remains
unconditionally stable also in the enlarged four-dimensional phase space. For E2, we find the eigenvalues of the S G subsystem and in addition the
negative ones

g s S
K

aG m g s S
K

, ,2
2

2

which do not alter the stability of this equilibrium obtained in the S G subsystem. Finally for E3, the phyllosphere microorganisms-free point,
corresponding to the coexistence equilibrium of the S I F subsystem, there is one additional eigenvalue, J44, which provides the additional
stability condition (17).

To study the stability of the coexistence equilibrium we evaluate (C.5) at E*. Note the simplifications in the diagonal entries: =J E rF( *) *,33
=J E pG( *) *44 and

= =J E sS
K

J E S F
I

sI
K

( *) * , ( *) * *
*

* .11 22

Stability of the equilibrium E* can be studied, at least in principle, by assessing the positive definiteness of J E( *). Now >J 0,11 while the
principal minor of order 2 provides already the stability condition
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The principal minor of order 3 is actually R3 given in (B.5). Finally the positivity of J Edet( ( *)) must be ensured.
Alternatively, the Routh–Hurwitz conditions (C.2) can be used, where the above quantities are the coefficients of the characteristic polynomial of

J(E*),

+ + + +µ P µ P µ P µ P .4
1

3
2

2
3 4

□
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