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A B S T R A C T

The recovery of bio-wastes to obtain high added value compounds is of great interest for the pharmaceutical,
medicinal and food industries. Therefore, the aerial parts of turnip (Brassica rapa L.), radish (Raphanus sativus L.)
and leaf blade of wild cardoon (Cynara cardunculus L. var. sylvestris (Lamk) Fiori) were characterized regarding
their nutritional composition, as also their content in soluble sugars, organic acids, fatty acids, and tocopherols.
Furthermore, their hydroethanolic extracts and infusion preparations, were profiled regarding individual phe-
nolic compounds by HPLC-DAD/ESI-MS and their antioxidant, antibacterial and hepatotoxic activities were
evaluated. Regarding the nutritional content, wild cardoon revealed the best results, however it was radish and
turnip that showed higher values for organic acids and phenolic compounds. The hydroethanolic extract and
infusion preparation of wild cardoon stood out for its antioxidant and antibacterial activity. Overall, the hy-
droethanolic extracts seemed more effective (regarding antioxidant and antibacterial activity) than the infusions.
Total phenolic acids proved to be strongly correlated with the antioxidant and antibacterial (against Morganella
morganii) activities. This study showed that the discarded parts of these plants can be used as an important
natural source of valuable nutrient content and new and safe bioactive compounds, beneficial for human health.
Moreover, the extraction of those compounds from underused parts of turnip, radish and cardoon could be used
to preserve foods, avoiding artificial additives and thus, contributing to the development of new natural in-
gredients.

1. Introduction

Consumption of vegetables can reduce the incidence of many dis-
eases, which may be due to their high content in bioactive phenolic
compounds and nutritional properties (Sun, Simon, & Tanumihardjo,
2009). To meet the consumers expectations, researchers and industry
are increasingly searching for new recovery techniques of high added-
value compounds from food wastes, applying also conventional and
emerging technologies to overcome the technological and scale-up
boundaries for the commercialization of these type of compounds
(Galanakis, 2012, 2013). Many Brassicacea crops (crucifers) are widely
recognized for their contribution to human nutrition and other health
benefits (Singh, Upadhyay, Prasad, Bahadur, & Rai, 2007), representing
also one of the most economically important vegetables in the global
agriculture and markets, since The Organization for Food and Agri-
culture of the United Nations (FAO) reported that 92million tons of

brassica plants are being grown in>150 countries, occupying
5.4 million hectares of land (70% only in Asia, China) (Francisco et al.,
2017). Brassica rapa L., commonly known as turnip, is a very popular
crop that has been used all over the world for human consumption since
ancient times (Liang et al., 2006). Its edible or useful parts are found in
large quantities, which are normally consumed as a boiled vegetable
and in the preparation of soups and stews (Takuno, Kawahara, &
Ohnishi, 2007). B. rapa leaves are also eaten in some countries; how-
ever, their use is comparatively less common compared to the root
bulbs (Azam, Khan, Mahmood, & Hameed, 2013). Raphanus sativus L.,
radish, is grown worldwide, being mostly eaten raw in salads and in a
less usual way they can be also cooked, dried and even pickled. Many
studies proved the richness of the aerial parts of radish in bioactive
compounds, such as phenolic compounds (Goyeneche, Fanovich,
Rodriguez Rodrigues, Nicolao, & Di Scala, 2018), which could be
exploited for further uses. The wild cardoon (Cynara cardunculus L. var.
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sylvestris (Lamk) Fiori) is another highly perishable vegetable (Foti
et al., 1999; Ierna & Mauromicale, 2010; Portis, Barchi, Acquadro,
Macua, & Lanteri, 2005), and has been used in food preparations and
for its folklore therapeutical uses, due to its diuretic and choleretic
properties, and also antioxidant and antimicrobial activities (Durazzo
et al., 2013; Falleh et al., 2008; Pandino, Lombardo, Mauromicale, &
Williamson, 2011b). Wild cardoon is widely recognized for its richness
in phenolic compounds (Falleh et al., 2008; Pandino et al., 2011b;
Pinelli et al., 2007; Venere, Linsalata, Calabrese, Cardinali, & Sergio,
2015), and also for its nutritional value (Venere et al., 2015). However,
the leaves and floral stems are usually considered as waste (Pandino
et al., 2011b), and therefore could be considered a valuable residue
resource.

There are few studies regarding the nutritional value, as also the
phenolic compounds characterization of the hydroethanolic extracts
and infusion preparations of the aerial parts of B. rapa and R. sativus and
the leaf blade of C. cardunculus var. sylvestris. Therefore, this study will
contribute in adding a higher knowledge dealing with the nutritional
and chemical composition in terms of sugars, fatty acids, tocopherols,
organic acids and phenolic compounds of bio-wastes of the three
mentioned plant species, and also evaluate their antioxidant, anti-
bacterial and cytotoxic potential, in their hydroethanolic and infusions
extracts. Furthermore, a Pearson's correlation was performed to un-
derstand the possible interaction between the presence of some phe-
nolic compounds and the bioactivities studied. The results obtained
could add value to these by-products, with the potential to be applied in
different industrial sectors.

2. Material and methods

2.1. Samples

The aerial tops (leaves and stems) of Brassica rapa L. (turnip) and
Raphanus sativus L. (radish), and the leaf blade of Cynara cardunculus L.
var. sylvestris (Lamk) Fiori (wild cardoon) were purchased (1 kg of each
plant) from farmers after the root harvest in January of 2017 in
Monastir (centre eastern coastline of Tunisia). Their botanical identi-
fication was confirmed by Professor Fathia Harzallah-Shkiri and vou-
cher specimens (N° 130–132) were deposited in the herbarium of the
laboratory of Botany, High Institute of Biotechnology of Monastir. The
fresh material was oven dried at 40 °C for 48 h (performed immediately
after harvesting and until obtaining constant weight) and then reduced
to a fine powder (~ 40 mesh).

2.2. Chemical composition

2.2.1. Macronutrients
Proteins, fat, carbohydrates, and ash were determined using de-

scribed AOAC analytical methods (AOAC, 2016). The macro-Kjeldahl
method was used to determine the nitrogen content (AOAC 978.04), the
protein content was calculated as N×6.25. Crude fat was determined
using a Soxhlet apparatus with petroleum ether (AOAC 920.85). Ash
content was determined by incineration at 600 °C until a constant mass
was achieved (AOAC 923.03). Total carbohydrates were calculated by
difference and energy was calculated following the equation: Energy
(kcal)= 4× (g protein)+ 4× (g carbohydrate)+ 9× (g fat)
(Regulation (EC) No 1169/2011, 2011).

2.2.2. Sugars
Free sugars were determined by high performance liquid chroma-

tography coupled to a refractive index detector (HPLC-RI, Knauer,
Smartline system 1000, Berlin, Germany) as previously described by the
authors Barros et al. (2013). Sugar identification was made by com-
paring the relative retention times of sample peaks with authentic
standards and quantification was performed by the internal normal-
ization of the chromatographic peak area using melezitose. The results

were expressed in g per 100 g of plant dry weight.

2.2.3. Organic acids
The organic acids were analysed by ultra-fast liquid chromato-

graphy coupled to photodiode array detector programmed to record at
215 nm as the preferred wavelength (UFLC-PDA; Shimadzu Coperation,
Kyoto, Japan) as previously described procedure Barros et al. (2013).
The identification and quantification of the individual organic acids
was performed by comparison to authentic standards, by comparison of
the peak area in the programmed wavelength. The results were ex-
pressed in g per 100 g of plant dry weight.

2.2.4. Fatty acids
The fatty acids characterization was performed by gas–liquid

chromatography with flame ionization detection (GC-FID, DANI model
GC 1000 instrument, Milan, Italy) as previously described (Barros et al.,
2013). The results were recorded and processed using Clarity Software
(DataApex, Prague, The Czech Republic) and expressed in g/100 g dw.

2.2.5. Tocopherols
The extraction procedure and chromatographic characterization

was performed following a procedure described by Barros et al. (2013).
A high performance liquid chromatography coupled to a fluorescence
detector (Knauer, Smartline system 1000, Berlin, Germany) was used,
and the compounds were identified by comparisons with authentic
standards. Identification and quantification was based on the fluores-
cence signal response of each standard, using the internal standard
method (tocol) and by using calibration curves obtained from com-
mercial standards of each compound. The results were expressed as mg
per 100 g of dry weight.

2.3. Bioactivities and phenolic profile of the hydroethanolic extract and
infusion

2.3.1. Extracts preparation
The hydroethanolic extracts (ethanol:water, 80:20, v/v) were pre-

pared by maceration using 1 g of the dried samples in 30mL of solvent
for 1 h. Thereafter, filtered using Whatman no.4 filter paper and re-
extracted using the same volume of solvent and the same time. The
combined extracts were evaporated to dryness of the ethanol under
vacuum at 35 °C by using a rotary evaporator (Buchi, 3000 series,
Switzerland), and the aqueous phase was frozen and further lyophi-
lized.

For infusion preparation 1 g of dried samples were added to 100mL
of boiling distilled water, left to stand for 5min, filtered, and then
frozen and lyophilized (FreeZone 4.5, Labconco, Kansas City, MO,
USA). The lyophilized hydroethanolic and aqueous extracts were stored
in a sealed plastic container at room temperature (25 °C) under vacuum
until further assays.

2.3.2. Antioxidant activity
The lyophilized hydroethanolic and aqueous extracts were re-dis-

solved in ethanol:water (80:20, v/v) mixture and water, respectively, to
obtain stock solutions of 5mg/mL, which were further diluted to obtain
a range of six concentrations below the stock solution. The antioxidant
activity was evaluated through the DPPH radical-scavenging activity,
reducing power, inhibition of β-carotene bleaching and lipid perox-
idation inhibition in porcine brain homogenates by using the TBARS
assay (Sarmento, Barros, Fernandes, Carvalho, & Ferreira, 2015). The
final results were expressed as EC50 values (μg/mL), Trolox was used as
positive control.

2.3.3. Antibacterial activity
The lyophilized hydroethanolic and aqueous extracts were re-dis-

solved in ethanol:water (80:20, v/v) mixture and water, respectively, to
obtain stock solutions of 100mg/mL, which were further diluted to

W. Chihoub, et al. Food Research International 126 (2019) 108651

2



obtain a range of 7 concentrations below the stock solutions. The an-
tibacterial activity was evaluated using six Gram-negative bacteria:
Escherichia coli, Escherichia coli ESBL (broad-spectrum enterobacteria
producing beta-lactamases), Klebsiella pneumoniae, Klebsiella pneumo-
niae ESBL, Morganella morganii, and Pseudomonas aeruginosa; and four
Gram-positive bacteria: Enterococcus faecalis, Listeria monocytogenes,
MRSA (Methicillin resistant Staphylococcus aureus), and MSSA
(Methicillin susceptible Staphylococcus aureus). The Minimal Inhibitory
Concentration (MIC) determination was performed following the
method previously described by Svobodova et al. (2017), using the
colorimetric assay of p-iodonitrotetrazolium. Ampicillin and imipenem
were used as positive controls for the Gram-negative bacteria, while
ampicillin and vancomycin were used for Gram-positive bacteria. Three
negative controls were prepared: (i) with the Mueller-Hinton Broth
(MHB); (ii) with the extract, and (iii) with medium and antibiotic. One
positive control was prepared for each inoculum with MHB.

2.3.4. Hepatotoxic activity
The lyophilized hydroethanolic and aqueous extracts were re-dis-

solved in ethanol:water (80:20, v/v) mixture and water, respectively, to
obtain a stock solution of 4mg/mL, which were further diluted to ob-
tain a range of six concentrations below the stock solution. Non-tumour
cells were also tested; a cell culture (named as PLP2, porcine liver
primary cells) was prepared from a freshly harvested porcine liver ob-
tained from a local slaughterhouse, according to a procedure estab-
lished by the authors (Abreu et al., 2011). Sulforhodamine B assay was
performed according to a procedure previously described by the au-
thors (Barros et al., 2013). Ellipticine was used as a positive control and
the results were expressed in GI50 values (correspond to the sample
concentration achieving 50% of growth inhibition in liver primary
culture PLP2).

2.4. Phenolic compounds profile

The lyophilized extracts and infusions were redissolved in etha-
nol:water (80:20, v/v) and pure water, respectively, to determine the
phenolic profiles by chromatographic analysis using a Dionex Ultimate
3000 UPLC (Thermo Scientific, San Jose, CA, USA), as previously de-
scribed by Bessada, Barreira, Barros, Ferreira, and Oliveira (2016).
Detection was carried out with a diode array detector (DAD) using
280 nm and 370 nm as the preferred wavelengths and connected in line
with a Linear Ion Trap LTQ XL mass spectrometer (Thermo Finnigan,
San Jose, CA, USA) equipped with an ESI source and working in ne-
gative mode. Data acquisition was carried out with Xcalibur® data
system (Thermo Finnigan, San Jose, CA, USA). The phenolic com-
pounds were identified through the available standard compounds and
by using literature information regarding the fragmentation pattern.
Quantification was performed using 5-level calibration curves obtained
from commercial standard compounds. The results were expressed in
mg per g of extract.

2.5. Statistical analysis

Three replicates of each plant part and all the assays described
above were independently analysed in triplicate (n=9). The results
were expressed as mean values and standard deviation (SD) and ana-
lysed using one-way analysis of variance (ANOVA) followed by Tukey's
HSD Test with p= .05. For phenolic compounds quantification and
comparison between hydroethanolic extract and infusion preparation, a
Student's t-test was used to determine the significant difference between
the two different samples, with p= .05. Furthermore, a Pearson's cor-
relation analysis between the bioactivities and all the sum contents of
the analysed compounds (total phenolic acids, total flavonoids, and
total phenolic compounds) was carried out, with a 95% confidence
level. The analyses were carried out using IBM SPSS Statistics for
Windows, Version 22.0. (IBM Corp., Armonk, New York, USA).

3. Results and discussion

Prior to the presentation and discussion of the obtained results, it is
important to underline the importance of bio-waste revalorization,
justifying the importance of such studies and also some of the applied
methodologies in this study. Firstly, we must address the problem of
bio-waste in today's society. Tons of bio-waste are produced every year,
and the vast majority of them are not exploited for food and non-food
purposes (Mahro & Timm, 2007). In addition to the obvious future use
of these bio-wastes as energy sources and for the production of bio-
materials, it is also obvious that they could be used as non-conventional
food resources due to food scarcities. As these bio-residues are sources
of compounds with high nutritional and bioactive value, as described
below, it should be highlight their potential use for the food sector, not
only for direct consumption, but also after processing in the develop-
ment of new functional foods and as a source of natural ingredients.
Therefore, it is very important to study the proximate composition, free
sugars and fatty acids (nutritional sources and with high beneficial ef-
fects on health) content of bio-waste material, as well as tocopherols,
organic acids, and phenolic compounds (molecules recognized for their
high antioxidant and antibacterial properties, among others). Following
an exhaustive discussion of the results obtained for the chemical com-
position and bioactive activity of three wildly appreciated plant species,
turnip, radish and wild cardoon, will be performed.

3.1. Chemical composition of turnip, radish and wild cardoon

The chemical composition regarding macronutrients, free sugars
and organic acids of the aerial parts of turnip, radish, and wild cardoon
are presented in Table 1. As expected, carbohydrates were the major
macronutrient found in all three samples. Wild cardoon revealed higher
amounts of fat (1.5 ± 0.1 g/100 g dw) and carbohydrates
(71.0 ± 0.5 g/100 g dw), while for proteins and ash it was turnip

Table 1
Proximate composition, soluble sugars and organic acids composition in turnip,
wild cardoon, and radish (mean ± SD results expressed on dry weight basis).

Turnip Wild cardoon Radish

Humidity (%) 86.43b 84.64c 88.54a

Nutritional values (g/
100 g dw)

Fat 0.67 ± 0.03c 1.5 ± 0.1a 0.95 ± 0.01b

Proteins 21.9 ± 0.2a 15.7 ± 0.1c 21.6 ± 0.4b

Ash 19.03 ± 0.04b 11.8 ± 0.5c 27.7 ± 0.2a

Total available
carbohydrates

58.4 ± 0.1b 71.0 ± 0.5a 49.75 ± 0.04c

Energy contribution
(kcal/100 g dw)

327.24 ± 0.01b 360.03 ± 1.09a 293.21 ± 0.02c

Soluble sugars (g/100 g
dw)

Fructose 0.22 ± 0.01c 2.4 ± 0.2a 0.79 ± 0.01b

Glucose 0.45 ± 0.03b 1.14 ± 0.10a nd
Sucrose 0.9 ± 0.1b 4.7 ± 0.2a nd
Trehalose 1.4 ± 0.1b 2.57 ± 0.02a 0.57 ± 0.03c

Sum 2.9 ± 0.1b 10.8 ± 0.5a 1.36 ± 0.04c

Organic acids (g/100 g
dw)

Oxalic acid 4.38 ± 0.03a 2.32 ± 0.07c 3.38 ± 0.04b

Quinic acid nd 0.45 ± 0.05 nd
Shikimic acid 0.04 ± 0.01a 0.010 ± 0.001c 0.02 ± 0.001b

Citric acid 1.31 ± 0.03b nd 6.57 ± 0.33a

Fumaric acid 0.04 ± 0.01a tr 0.002 ± 0.0004b

Sum 5.8 ± 0.1b 2.78 ± 0.03c 9.9 ± 0.4a

dw – dry weight basis; nd – not detected; Calibration curves for organic acids:
Oxalic acid (y=9×106x + 45,973, R2= 0.9901); Quinic acid (y=610607x
+ 46,061, R2= 0.9995); Shikimic acid (y=7×107x + 175,156,
R2= 0.9999); Citric acid (y=1×106x + 45,682, R2= 0.9997); and Fumaric
acid (y=154,862x + 1×106, R2= 0.9977). In each row different letters
mean significant differences between species (p <0.05)
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(21.9 ± 0.2 g/100 g dw) and radish (27.7 ± 0.2 g/100 g dw) that re-
vealed the highest contents, respectively. In a similar study, performed
with radish from Argentina, its leaves showed higher concentration of
proteins (36.3 ± 0.32 g/100 g dw) in comparison to our results, but a
lower concentration in carbohydrates (38.5 g/100 g dw) and ash
(16.2 ± 0.06 g/100 g dw) (Goyeneche et al., 2015). Comparing to the
roots, also studied by the same author, radish leaves showed higher
contents in proteins, ash, carbohydrates, which emphasizes their va-
lorisation (Goyeneche et al., 2015; Lu et al., 2008). The results obtained
for radish were also considerably higher than those reported by Azam
et al. (2013) and Lu et al. (2008) in radish root tuber. Regarding fat
content, the aerial parts studied by Goyeneche et al. (2015) contained
3.52 ± 0.07 g/100 g dw, which represents a lipid fraction of 73%
higher in comparison with the herein studied sample of radish. These
differences between the studied samples, and taking into account lit-
erature data reported by other authors, can be explained by the geo-
graphic difference of the samples and with the biotic and abiotic dif-
ference inherent in its growth and production (Aires et al., 2011).

For turnip samples the protein content reported (21.95 ± 0.2 g/
100 g dw) was considerable higher than those reported on turnip from
Pakistan (5.54 ± 0.88 g/100 g dw) (Azam et al., 2013); however, the
lipid content reported by the same author for turnip was higher
(1.56 ± 0.21 g/100 g dw). These differences could be also explained
by the geographical differences and the inherent edaphoclimatic con-
ditions of its grow and production, but also to the differences in the
cultivar of B. rapa studied (Aires et al., 2011).

For wild cardoon samples the results for protein content were in the
same range of the ones reported in the flower heads of C. cardunculus L.
var. altilis DC cv. Biango Avorio from Italy (15.95 ± 0.02 g/100 g dw;
Petropoulos, Pereira, Tzortzakis, Barros, & Ferreira, 2018), and con-
siderably higher than the ones reported in the biomass of wild cardoon
C. cardunculus from Sicily (8.0 g/100 g dw; Foti et al., 1999).

Furthermore, the lipid fraction was also lower that the ones reported by
Petropoulos et al. (2018) in the flower heads of C. cardunculus. As far as
the authors knowledge, no previous studies have reported the energy
contribution of the three studied species., however wild cardoon gave
the highest energetic contribution (360.03 ± 1.09 kcal/100 g dw),
preceded by turnip and radish (327.24 ± 0.01 and
293.21 ± 0.02 kcal/100 g dw, respectively).

Regarding the content in soluble sugars (Table 1), turnip and wild
cardoon presented a similar profile, with the presence of fructose,
glucose, sucrose, and trehalose. Wild cardoon revealed the highest
amount of total soluble sugars (10.8 ± 0.5 g/100 g dw) among the
three studied samples. On the other hand, radish sample only presented
fructose and treahalose, and as expected the lowest amount of total
soluble sugars (1.36 ± 0.04 g/100 g dw). The results reported by
Venere et al. (2015) in leaves of wild cardoon from Italy showed lower
amounts in fructose (~ 3 g/100 g dw), glucose (~ 1.40 g/100 g dw),
and sucrose (~ 6 g/100 g dw). However, for radish and turnip, Azam
et al. (2013) reported higher amounts in total sugars (19.6 g/100 g dw
and 25.7 g/100 g dw, radish and turnip, respectively); Lu et al. (2008)
also reported higher amounts of total soluble sugars in different culti-
vars of radish ranging from 2.233 to 15.457 g/100 g dw. The different
edaphoclimatic conditions in which the plants were grown could ex-
plained the substantial differences between the studied plants and the
reported values by other authors (Roshani, A. Sahari, Amirkaveei, & G.
Ardabili, 2016).

Unlike the soluble sugars, for organic acids the profile between
samples was very different. Overall five organic acids were identified
(oxalic, quinic, shikimic, citric, and fumaric acid). Radish leaves pre-
sented the highest content in total organic acids (9.9 ± 0.4 g/100 g
dw) followed by turnip (5.8 ± 0.1 g/100 g dw), and cardoon
(2.78 ± 0.03 g/100 g dw). Oxalic acid was present as the major or-
ganic acid found in turnip (4.38 ± 0.03 g/100 g dw) and wild cardoon

Table 2
Fatty acids and tocopherols composition of turnip, wild cardoon, and radish (mean ± SD).

Turnip Wild cardoon Radish

Fatty acids (g/100 g dw)
Caproic acid (C6:0) 0.0003 ± 0.0001b 0.0010 ± 0.0001a 0.00030 ± 0.00001c

Caprylic acid (C8:0) nd 0.00040 ± 0.00001b 0.00030 ± 0.00001a

Capric acid (C10:0) 0.0007 ± 0.0001a 0.00040 ± 0.00001c 0.00040 ± 0.00001b

Lauric acid (C12:0) 0.0020 ± 0.0001a 0.0020 ± 0.0001c 0.0011 ± 0.0001b

Myristic acid (C14:0) 0.0068 ± 0.0003a 0.0060 ± 0.0002c 0.0043 ± 0.0001b

Myristoleic acid (C14:1) 0.0005 ± 0.0001a nd 0.00030 ± 0.00001b

Pentadecanoic acid (C15:0) 0.011 ± 0.004a 0.0089 ± 0.0004b 0.0032 ± 0.0001c

Palmitic acid (C16:0) 0.136 ± 0.001a 0.19 ± 0.01b 0.120 ± 0.002c

Palmitoleic acid (C16:1) 0.0098 ± 0.0001a 0.0079 ± 0.0001b 0.0025 ± 0.0001c

Heptadecanoic acid (C17:0) 0.0047 ± 0.0001a 0.0045 ± 0.0003c 0.0032 ± 0.0001b

Stearic acid (C18:0) 0.034 ± 0.001a 0.0282 ± 0.0001b 0.0145 ± 0.0003c

Oleic acid (C18:1n9) 0.031 ± 0.001a 0.053 ± 0.005b 0.0273 ± 0.0002c

Linoleic acid (C18:2n6) 0.0600 ± 0.0002c 0.265 ± 0.006a 0.1128 ± 0.0001b

α-Linolenic acid (C18:3n3) 0.33 ± 0.01c 0.843 ± 0.001b 0.638 ± 0.003a

Arachidic acid (C20:0) 0.0072 ± 0.0001a 0.0132 ± 0.0002b 0.0040 ± 0.0001c

cis-11-Eicosenoic acid (C20:1) nd 0.0013 ± 0.0001 nd
cis-11,14,17-Eicosatrienoic acid and Heneicosanoic acid (C20:3n3) 0.0020 ± 0.0001a 0.0016 ± 0.0001c 0.0018 ± 0.0001b

Eicosapentaenoic acid (C20:5n3) 0.0023 ± 0.0001 nd nd
Behenic acid (C22:0) 0.0120 ± 0.0001a 0.023 ± 0.001b 0.0096 ± 0.0001c

Erucic acid (C22:1n9) nd nd 0.0014 ± 0.0001
Lignoceric acid (C24:0) 0.0050 ± 0.0001a 0.0079 ± 0.0003b 0.0048 ± 0.0002c

Nervonic acid (C24:1) 0.009 ± 0.001a 0.0056 ± 0.0003c 0.0104 ± 0.0001b

SFA 0.379 ± 0.003a 0.29 ± 0.01b 0.166 ± 0.003c

MUFA 0.087 ± 0.002a 0.068 ± 0.004b 0.042 ± 0.001c

PUFA 0.684 ± 0.001c 1.11 ± 0.01b 0.752 ± 0.003a

Tocopherols (mg/100 g dw)
α-Tocopherol 0.10 ± 0.01c 2.16 ± 0.04b 2.85 ± 0.03a

β-Tocopherol nd 2.31 ± 0.01 nd
γ-Tocopherol 2.13 ± 0.13b 2.36 ± 0.01a 0.48 ± 0.01c

δ-Tocopherol nd 2.8 ± 0.1 nd
Sum 2.22 ± 0.14c 9.6 ± 0.1a 3.33 ± 0.03b

nd – not detected; dw – dry weight. SFA – saturated fatty acids; MUFA – monounsaturated fatty acids; PUFA – polyunsaturated fatty acids. In each row different
letters mean significant differences between species (p < .05).
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(2.32 ± 0.07 g/100 g dw). However, in radish sample the major or-
ganic acid found was citric acid (6.57 ± 0.33 g/100 g dw). Quinic acid
was only detected in cardoon, and fumaric acid was found in trace
amounts in wild cardoon samples. Despite the important role played by
these organic acids in human health (Olthof, Hollman, & Katan, 2001),
as far as the authors knowledge they have not been previously identi-
fied in the studied species.

Regarding the lipid fraction of the three studied samples, data on
the individual fatty acid profile and tocopherol composition are de-
scribed in Table 2. Up to twenty-three fatty acids were identified in the
samples, which presented a very similar profile among them, apart from
some minor compounds that were not detected (cis-11-eicosenoic acid
(C20:1) in turnip and radish; eicosapentaenoic acid (C20:5n3) in wild
cardoon and radish; and erucic acid (C22:1n9) in turnip and wild car-
doon). In all samples, α-linolenic acid (C18:3n-3, PUFA) was the major
fatty acid, followed by palmitic acid (C16:0, SFA) in turnip samples,
and linoleic acid (C18:2n-6c, PUFA) in wild cardoon and radish sam-
ples. Wild cardoon gave the highest levels of PUFA (1.11 ± 0.01 g/
100 g dw) with α-linolenic acid (0.843 ± 0.001 g/100 g dw) as the
major compound. On the other hand, turnip presented the lowest
amounts of PUFA, but still represented 59.5% of the fatty acid fraction,
and showed the highest levels of SFA (0.379 ± 0.003 g/100 g dw),
with the important contribution of palmitic acid (0.136 ± 0.001 g/
100 g dw), and MUFA (0.087 ± 0.002 g/100 g dw), mainly due to oleic
acid (C18:1n9, 0.031 ± 0.001 g/100 g dw). The results obtained for
wild cardoon were very different to those mentioned by Petropoulos
et al. (2018), in the immature capitule (edible part) of cultivated car-
doon, in which saturated fatty acid were the most abundant group
found (palmitic, behenic, stearic and myristic acids). The results pub-
lished by Azam et al. (2013) also showed differences in fatty acids
profile, since it presented palmitic acid as the main compound identi-
fied in the roots of radish, and linoleic acid as the main compound in
turnip. The differences found regarding the fatty acid profile can be
explained by the different environmental conditions of the region
during harvest, such as edaphic and climatic conditions, and also due to
the different cultivars and plants harvest time (Roshani et al., 2016).

All the samples presented PUFA/SFA ratio much higher than 0.45

(1.08, 3.80 and 4.54 for turnip, wild cardoon and radish, respectively),
which is essential for a high nutritional value of food products
(Petropoulos et al., 2018), and confirms the beneficial use of bio-re-
sidues of the studied species for human health. In addition, epidemio-
logic studies and clinical trials have provided consistent evidence that
replacing saturated fat with polyunsaturated fat is beneficial for cor-
onary heart disease (Siri-Tarino, Sun, Hu, & Krauss, 2010). In parti-
cular, in all samples α-linolenic acid represented> 49% of the total
fatty acids fraction, being this compound an essential omega-3 poly-
unsaturated fatty acid. This fatty acid is defined as a fundamental factor
for brain and visual function in humans (Sakayori et al., 2016), and its
deficiency could led to many health problems, because it cannot be
synthesized in humans, therefore it must be supplied through the diet
(Schettino et al., 2017).

For tocopherols composition, wild cardoon presented all the dif-
ferent isoforms of tocopherol (α-, β-, γ- and δ) and, as expected, the
highest amount of total tocopherol (9.6 ± 0.1 mg/100 g dw), being δ-
tocopherol the most abundant isoform followed by γ-tocopherol
(2.8 ± 0.1 and 2.36 ± 0.01mg/100 g dw, respectively). However, in
radish and turnip, only α- and γ- tocopherols were detected.
Tocopherols, with different isoforms, presents high antioxidant poten-
tial and specific biological activities. Until now, and as far as the au-
thors knowledge, there is no previous reports regarding tocopherols
composition in the studied samples. Tocopherols play a very important
role for human health, showing several very important biological ac-
tivities, such as anti-inflammatory (Reiter, Jiang, & Christen, 2007).

3.2. Bioactivity of the hydroethanolic and infusion extracts

The results for the antioxidant properties of the hydroethanolic
extract and infusion preparations of turnip, wild cardoon and radish,
are shown in Table 3. In general, wild cardoon hydroethanolic extracts
and infusion preparations revealed the lowest EC50 values (higher an-
tioxidant activity) for all the assays performed, in comparison with
turnip and radish. Regarding the type of extract, the hydroethanolic
extracts also showed lower EC50 values than the corresponding infu-
sions. Moreover, the hydroethanolic extracts of wild cardoon presented

Table 3
Bioactive properties of the hydroethanolic extracts and infusions preparations of turnip, wild cardoon, and radish (mean ± SD).

Hydroethanolic Infusion

Turnip Wild cardoon Radish Turnip Wild cardoon Radish

Antioxidant activity (EC50 values, mg/mL)
DPPH scavenging activity 1.57 ± 0.06b 0.07 ± 0.00f 0.14 ± 0.01e 1.90 ± 0.06a 0.22 ± 0.03d 0.64 ± 0.06c

Reducing power 1.07 ± 0.29b 0.27 ± 0.09e 0.58 ± 0.07c 1.21 ± 0.07a 0.22 ± 0.00e 0.50 ± 0.00d

β-carotene bleaching inhibition 0.67 ± 0.15bc 0.19 ± 0.05c 0.48 ± 0.02c 1.63 ± 0.31a 0.30 ± 0.04ab 1.21 ± 0.74ab

TBARS inhibition 0.60 ± 0.12a 0.05 ± 0.01c 0.43 ± 0.07b 0.43 ± 0.05b 0.40 ± 0.04b 0.69 ± 0.13a

Antibacterial activity (MIC values, mg/mL)
Gram-negative bacteria

Escherichia coli 20 2.5 20 > 20 2.5 20
Escherichia coli ESBL 20 10 20 >20 5 >20
Klebsiella pneumoniae >20 20 >20 >20 20 >20
Klebsiella pneumoniae ESBL >20 20 >20 >20 20 >20
Morganella morganii 20 10 10 20 2.5 20
Pseudomonas aeruginosa 20 10 20 >20 20 >20

Gram-positive bacteria
Enterococcus faecalis 20 5 20 20 10 >20
Listeria monocytogenes >20 10 20 10 10 10
MRSA >20 5 20 20 5 20
MSSA >20 5 >20 20 5 >20

Hepatotoxicity
PLP2 (GI50 values, μg/mL) >400 >400 >400 >400 >400 >400

EC50 values correspond to the extract concentration achieving 50% of antioxidant activity or 0.5 of absorbance in reducing power assay. Trolox EC50 values:
43.03 ± 1.71 μg/mL (DDPH), 29.62 ± 3.15 μg/mL (reducing power), 2.63 ± 0.14 μg/mL (β-carotene bleaching inhibition) and 3.73 ± 1.9 μg/mL (TBARS in-
hibition). MIC values correspond to the minimal extract concentration that inhibited the bacterial growth. ESBL – extended spectrum β-lactamases. MRSA –
Methicillin-resistant Staphylococcus aureus. MSSA – Methicillin-susceptible Staphylococcus aureus. GI50 values correspond to the sample concentration achieving 50%
of growth inhibition in liver primary culture PLP2. Ellipticine GI50 values: 2.29mg/mL. In each row different letters mean significant differences (p < .005).
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the lowest EC50 values for DPPH scavenging activity (0.07 ± 0.01mg/
mL), β-carotene bleaching inhibition (0.19 ± 0.05mg/mL), and
TBARS inhibition (0.05 ± 0.01mg/mL). For reducing power assay, the
hydromethanolic extract and infusion preparation of wild cardoon re-
vealed similar EC50 value (0.27 ± 0.09 and 0.22 ± 0.01mg/mL, re-
spectively) without statistically significant differences between them.

For turnip leaves, our results were consistent with those presented
by Aires et al. (2011) with EC50 values of 1.32mg/mL in water extracts
from turnip leaves and roots from Portugal. Regarding wild cardoon,
our results showed better antioxidant activity for DPPH scavenging
activity assay, than the ethanolic extracts of (96% v/v) of the leaf blade
of cardoon from Slovenia, reported by Kukić et al. (2008), that pre-
sented higher EC50 values (EC50 values= 0.157mg/mL), and therefore
a poorer antioxidant activity. However, the opposite was observed for
the infusion preparations were the EC50 values from the Slovenian
plants were lower for DPPH scavenging activity (EC50 va-
lues= 0.173mg/mL). The results reported by Petropoulos et al. (2018)
in the leaf blade of cultivated cardoon from Greece, showed that the
hydromethanolic extracts presented lower antioxidant potential for
DPPH and TBARS assays (EC50= 0.2 and 0.11mg/mL, respectively),
and similar results for reducing power and β-carotene bleaching in-
hibition (EC50= 0.27 and 0.114mg/mL, respectively). For radish aerial
parts, the methanolic and aqueous extracts of Indian radish leaves and
stems, presented lower EC50 values for DPPH scavenging activity
(EC50= 0.031 and 0.216mg/mL, respectively), than the ones reported
herein (Beevi, Narasu, & Gowda, 2010).

The effects of the hydroethanolic extracts and infusions on the
Gram-negative bacteria (Escherichia coli, Escherichia coli ESBL, Klebsiella
pneumonia, Klebsiella pneumonia ESBL, Morganella morganii,
Pseudomonas aeruginosa) and Gram-positive bacteria (Enterococcus fae-
calis, Listeria monocytogenes, MRSA and MSSA) were also evaluated and
reported in Table 3. Overall, the hydroethanolic extracts and infusion
preparations of wild cardoon revealed the lowest MIC values for all
tested bacteria; except for Listeria monocytogenes, were the infusions of
turnip and radish presented equal MIC values than the two preparations
of wild cardoon (10mg/mL). The lowest MIC values (2.5 mg/mL) were
observed against the Gram-negative bacteria, E. coli (hydroethanolic
and infusion of wild cardoon) and M.morganii (infusion of wild car-
doon). Regarding the Gram-positive bacteria, the lowest MIC values
(5 mg/mL) were observed for MRSA, MSSA (hydroethanolic and infu-
sion of wild cardoon), and E. faecalis (hydroethanolic of wild cardoon).

As far as the author's knowledge, the antibacterial activity of the
aerial parts of turnip and radish have not been reported. However for
wild cardoon, previous studies reported good antibacterial activity in
other parts of wild cardoon, thus also bio-wastes (Dias et al., 2018).
Kukić et al. (2008) reported lower MIC values in the hydroethanolic
and aqueous extracts of fresh involucre bracts of cardoon from Bra-
tislava against E. coli and Staphylococcus aureus (1.0 mg/mL and 1.5 mg/
mL, respectively); however is important to state that the bacteria strains
used were ATCC, which present a lower resistance profile when com-
pared to the ones studied herein (clinical isolates with high resistance
profile).

The hepatoxicity was also evaluated for all the samples (Table 3),
and a concentration higher than 400 μg/mL was observed in all hy-
droethanolic extracts and infusion preparations, which means that no
sample reveal toxicity against PLP2 cells, being also important to
mention that this is the first hepatoxicity study is these samples, as far
as the author's knowledge.

3.3. Phenolic profile of the hydroethanolic extract and infusion

Chromatographic data, including retention time, λmáx, pseudomo-
lecular ion, and fragmentation pattern, was used to tentatively identify
the phenolic compounds present in the hydroethanolic extracts and
infusions preparations of turnip, wild cardoon and radish (Table 4).
Quantification of the phenolic compounds was also performed

(Table 4). Overall, twenty-two phenolic compounds were tentatively
identified in turnip (eight phenolic acids and fourteen flavonoids),
twelve in wild cardoon (nine phenolic acids, two flavonoids, and one
lignan), and thirteen in radish (five phenolic acids and eight flavo-
noids).

Peaks 1CC, 3CC, 4CC, and 2BR ([M-H]− at m/z 353) and 9CC/10CC

([M-H]− at m/z 515) were identified as caffeoylquinic and di-
caffeoylquinic acid derivatives, respectively. Peaks 1CC and 2BR were
assigned as 3-O-caffeoylquinic acid, yielding the base peak at m/z 191
and m/z 179, as reported by Clifford, Johnston, Knight, and Kuhnert
(2003) and Clifford, Knight, and Kuhnert (2005). Peak 3CC was dis-
tinguished from other isomers by its base peak at m/z 173 [quinic acid-
H-H2O]−, accompanied by a secondary fragment ion at m/z 191 with
approximately 80% abundance of base peak, which allowed assigning it
as 4-O-caffeoylquinic acid according to the fragmentation pattern pre-
viously described (Clifford et al., 2003, 2005). 5-O-caffeoylquinic acid
(peak 4CC) was positively identified according to its UV spectra (λmáx

322 nm) and pseudomolecular ion in comparision with the commercial
standard. Peaks 9CC and 10CC ([M-H]− at m/z 515) were assigned to
3,4-O– and 3,5-O– dicaffeoylquinic acids, respectively, taking into ac-
count the hierarchical fragmentation pattern previously reported by
Clifford et al. (2003) and Clifford et al. (2005). Three compounds (1BR,
2RS, and 3RS) were tentatively identified as caffeic acid derivatives,
peak 1BR showed a UV spectrum similar to caffeic acid with λmáx at
326 nm, but eluted at a different retention time. It presented a mole-
cular ion [M-H]− at m/z 323 corresponding to caffeic acid; this re-
presents a loss of−132 u, that could be attributed to a pentosyl moiety,
and thus the compound was tentatively identified as a caffeic acid
pentoside, which was coherent with its earlier elution (greater polarity)
with regard to caffeic acid. Peaks 2 RS and 3RS ([M-H]− at m/z 295)
were tentatively identified as caffeoyl malate, revealing fragments
characteristic of a caffeic acid (m/z 179 and at m/z 135), with the loss
of 116 u (malate moiety), as previously described by Afzan et al.
(2012). Another large group of identified phenolic acids were ferulic
acid (peak 13BR, positively identified with the standard compound) and
its derivatives (peaks 5RS, 2CC, 5CC, and 6CC). Peak 5RS ([M-H]− at m/z
309) was tentatively identified as feruloyl malate, yielding a base peak
at m/z 193 [ferulic acid-H]− and a fragment at m/z 133, corresponding
to the malic acid fragment (Harbaum et al., 2007). Peaks 2CC ([M-H]−

at m/z 371) presented MS2 fragments at m/z 209 (yielding 50% of the
base peak) and at m/z 193 (yielding 100% of the base peak), corre-
sponding to the loss of a glucosyl unit and the ferulic acid fragment,
respectively, being tentatively identified as 5-hydroxyferuloylglycoside
(Harbaum et al., 2007). Peaks 5CC and 6CC ([M-H]− at m/z 367) were
tentatively identified as 3-O-feruloylquinic acid and 5-O-feruloylquinic
acid, taking into account the hierarchical keys previously reported by
Clifford et al. (2003, 2005) allowing to distinguish the two oxygen
position in the two peaks.

Sinapic acid derivatives also represented one of the main phenolic
acids group identified, however they were only found in turnip tops
(peaks 14BR, 20BR, 21BR, and 22BR). These compounds were character-
ized as synapoylmalic acid (14BR), sinapoyl-feruloylgentiobiose (21BR),
di-sinapoyl-gentiobiose (20BR), and tri-sinapoyl-gentiobiose (22BR),
being from the same type of those previously described in shoots of
Brassica oleracea L. (Ferreres et al., 2009). Two coumaric acid deriva-
tives were tentatively identified (peaks 4RS and 3BR), peak 4RS was as-
signed as p-coumaric acid by comparison with its UV–visible spectra
and MS2 fragmentation pattern to the standard compound, while, peak
3BR ([M–H]− at m/z 337) showed a MS2 fragment at m/z 191, which
represents quinic acid molecule after the neutral loss of a coumaroyl
moiety (−146 u), and was tentatively identified as 3-p-coumar-
oylquinic acid. Citric acid was only found in radish (peak 1RS), and the
tentatively identification was based on the comparison of the ESI–MS/
MS data with standards and literature (Elsadig Karar & Kuhnert, 2016),
this is also in agreement with its high content found in this study, in the
dry sample of radish.
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Table 4
Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, tentative identification and quantification (mg/g of extract)
of the phenolic compounds present in the hydroethanolic extracts and infusions preparations of B. rapa, C. cardunculus and R. sativus.

Peak Rt (min) λmax (nm) [M-H]−

(m/z)
MS2 (m/z) Tentative identification Hydroethanolic Infusion t-Students

test p-value

Turnip
1BR 4.43 326 323 191(10), 179(63),173(5),161(39),149(8) Caffeic acid pentoside 0.47 ± 0.01 0.351 ± 0.003 < .001
2BR 4.68 320 353 191(100),179(45),161(15),135(10) 3-O-Caffeolyquinic acid 0.69 ± 0.01 1.30 ± 0.02 < .001
3BR 6.01 312 337 191(5), 163(100), 119(10) 3-p-Coumaroylquinic acid 1.30 ± 0.06 0.57 ± 0.03 < .001
4BR 6.58 328 933 771(100),609(5),447(5),429(6),285(5) Kaempherol-3-O-caffeoyl-di-

glucoside-7-O-glucoside
1.237 ± 0.003 1.08 ± 0.01 < .001

5BR 6.92 350 625 463(32),301(95) Quercetin-3-O-sophoroside 1.11 ± 0.01 1.05 ± 0.01 .039
6BR 7.27 316 963 801(100),787(30),625(15) Kaempherol-3-O-

hydroxyferuloylsophoroside-7-O-
glucoside

1.01 ± 0.02 0.98 ± 0.01 .588

7BR 8.49 332 977 815(100),623(100),609(80) Kaempherol-3-O-
sinapoylsophoroside-7-O-glucoside

1.9 ± 0.1 1.49 ± 0.01 < .001

8BR 9.16 344 609 447(100),285(15) Kaempherol-O-dihexoside 1.85 ± 0.04 1.50 ± 0.03 < .001
9BR 10.09 319 917 755(100),609(100),591(23),429(5),285(5) Kaempherol-3-p-

coumaroylsophoroside-7-O-glucoside
1.06 ± 0.01 1.01 ± 0.02 .135

10BR 10.57 353 639 477(100),315(10) Isorhametin-O-dihexoside 2.8 ± 0.1 2.11 ± 0.01 < .001
11BR 13.61 350 625 463(32),301(95) Quercetin-O-sophoroside 0.99 ± 0.01 1.01 ± 0.01 .554
12BR 15.29 325 801 609(100),429(5),285(5) Kaempherol-3-O-

hydroxyferuloylsophoroside
1.05 ± 0.01 1.18 ± 0.01 .001

13BR 15.53 323 193 179(100),149(5),133(5) Ferulic acid 0.48 ± 0.01 0.50 ± 0.01 .928
14BR 15.99 329 339 223(100),208(5),179(5),164(6) Synapoylmalic acid 2.8 ± 0.1 1.29 ± 0.03 < .001
15BR 17.59 331 815 623(100),609(95),591(36) Kaempherol-3-O-(synapoyl)-

sophoroside
1.29 ± 0.03 1.01 ± 0.01 < .001

16BR 18.31 356 463 301(100) Quercetin-3-O-glucoside 0.99 ± 0.01 nd –
17BR 19.17 326 785 623(100),591(98),461(17),443(22),285(39) Kaempherol-O-feruloylhexoside-O-

hexoside
1.09 ± 0.01 nd –

18BR 21.68 340 447 285(100) Kaempherol-3-O-glucoside 1.068 ± 0.004 0.99 ± 0.02 .011
19BR 22.61 352 447 315(100) Isorhamnetin-O-pentoside 1.34 ± 0.04 1.02 ± 0.02 < .001
20BR 25.06 328 753 529(100),205(70) Di-sinapoyl-gentiobiose tr tr –
21BR 25.69 326 723 529(17),499(100),223(5) Sinapoyl-feruloylgentiobiose tr tr –
22BR 29.55 324 959 735(100),529(11),511(17) Tri-sinapoyl-gentiobiose tr tr –

Total phenolic acids 5.8 ± 0.2 4.01 ± 0.03 < .001
Total flavonoids 18.8 ± 0.4 14.44 ± 0.01 < .001
Total phenolic compounds 25 ± 1 18.45 ± 0.03 < .001

Wild cardoon
1CC 4.41 327 353 191(100),179(10),161(5),135(5) 3-O-Caffeoylquinic acid 0.48 ± 0.01 0.66 ± 0.01 < .001
2CC 6.37 266 371 209(50),193(100),191(36),179(11) 5-Hydroxyferuloylglycoside 1.3 ± 0.1 0.95 ± 0.01 < .001
3CC 6.81 320 353 191(80),179(12),173(100),161(5),135(5) 4-O-Caffeoylquinic acid 13.6 ± 0.1 10.2 ± 0.1 < .001
4CC 7.99 322 353 191(100),179(10),161(5),135(5) 5-O-Caffeoylquinic acid 0.179 ± 0.001 0.185 ± 0.003 .027
5CC 12.74 323 367 193(5),191(100),173(4),135(5) 3-O-Feruloylquinic acid 0.32 ± 0.01 0.25 ± 0.1 < .001
6CC 13.07 320 367 193(15),191(100),173(9),135(5) 5-O-Feruloylquinic acid 0.53 ± 0.01 0.39 ± 0.01 < .001
7CC 12.45 347 447 285(100) Luteolin-O-hexoside 5.5 ± 0.1 1.6 ± 0.1 < .001
8CC 18.78 270,345 519 357(50),151(100),135(35) Pinoresinol-O-hexoside 0.37 ± 0.01 0.21 ± 0.01 –
9CC 19.85 327 515 353(100),191(8),179(7),161(5),135(5) 3,4-O-Dicaffeoylquinic acid 6.492 ± 0.002 3.5 ± 0.2 < .001
10CC 22.05 326 515 353(100),191(10),179(8),161(5),135(5) 3,5-O-Dicaffeoylquinic acid 0.331 ± 0.001 0.319 ± 0.001 < .001
11CC 22.99 347 533 489(10),285(100) Luteolin-O-malonylhexoside 7.39 ± 0.02 5.8 ± 0.2 < .001
12CC 27.53 335 473 269(100) Acetylapigenin-O-hexoside 1.85 ± 0.01 4.73 ± 0.04 < .001

Total phenolic acids 23.6 ± 0.2 16. ± 0.3 < .001
Total flavonoids 14.7 ± 0.1 12.1 ± 0.2 < .001
Total phenolic compounds 38.3 ± 0.3 29 ± 1 < .001

Radish
1RS 4.79 206 133 115(100) Citric acid 1.4 ± 0.1 1.2 ± 0.1 < .001
2RS 9.11 327 295 179(100),135(20) Caffeoyl malate 4.00 ± 0.02 3.7 ± 0.1 < .001
3RS 9.4 327 295 179(100),135(20) Caffeoyl malate 1.5 ± 0.1 0.514 ± 0.004 < .001
4RS 13.87 313 163 133(100) p-Coumaric acid 16.5 ± 0.1 3.2 ± 0.1 < .001
5RS 15.64 327 309 193(100),133(5) Feruloyl malate 2.48 ± 0.03 0.968 ± 0.004 < .001
6RS 16.22 346 593 447(100),285(15) Kaempherol-O-rutinoside 7.1 ± 0.1 3.9 ± 0.1 < .001
7RS 17.13 346 593 447(100),285(25) Kaempherol-3-O-rutinoside 7.26 ± 0.03 3.9 ± 0.2 < .001
8RS 18.13 346 563 417(100),285(12) Kaempherol-O-rhamnoside-O-

pentoside
5.85 ± 0.03 3.3 ± 0.1 < .001

9RS 20.89 343 577 431(100),285(20) Kaempherol-O-dirhamnoside 5.74 ± 0.03 3.1 ± 0.1 < .001
10RS 21.47 330 769 285(100) Kaempherol-O-glucuronyl-rutinoside 1.24 ± 0.01 1.056 ± 0.001 < .001
11RS 22.48 330 901 755(100),285(55) Kaempferol-3-O-(2,6-di-O-

rhamnosyl-glucoside)-7-O-
rhamnoside

1.74 ± 0.03 1.289 ± 0.002 < .001

12RS 23.94 328 901 285(100) Kaempherol-O-
hydroxyferuloylglucoronide-O-
malonylhexoside

1.37 ± 0.01 1.159 ± 0.001 < .001

13RS 25.49 329 915 769(100),285(28) Kampferol-O-deoxyhexoside-O-
feruloylrutinoside

1.09 ± 0.01 1.02 ± 0.01 < .001

Total phenolic acids 26.2 ± 0.2 9.5 ± 0.3 < .001

(continued on next page)
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The group of flavonoids is undoubtedly the one with the highest
number of compounds identified, the majority of them (seventeen
compounds) were assigned as kaempferol derivatives (peaks 18BR, 8RS,
9RS, 6RS, 7RS, 8BR, 10RS, 17BR, 12BR, 15BR, 11RS, 12RS, 13RS, 9BR, 4BR, 6BR,
and 7BR) according to their UV–visible spectra and MS2 fragmentation
pattern (Table 4). Peak 18BR was positively identified as kaempferol-3-
O-glycoside by comparison of its UV spectrum (λmáx 340 nm) and re-
tention time with the commercial standard. Peaks 8RS, 9RS, 6RS, 7RS,
8BR, 10RS, and 11RS were tentatively identified as kaempferol linked to
different sugar moieties, rhamnoside-pentoside ([M–H]− at m/z 563),
dirhamnoside ([M–H]− at m/z 577), rutinoside ([M–H]− at m/z 593),
dihexoside ([M–H]− at m/z 609), glucoronyl-rutinoside ([M–H]− at m/
z 769), and rhamonosyl-glucosisde-rhamnoside ([M–H]− at m/z 901),
respectively (Lillian Barros, Dueñas, Ferreira, Carvalho, & Santos-
Buelga, 2011; Kachlicki, Piasecka, Stobiecki, & Marczak, 2016). Peaks
17BR, 12BR, 15BR, 12RS, 13RS, 9BR, 4BR, 6BR, 7BR were tentatively iden-
tified as kaempferol linked to sugar moieties and phenolic acids (ferulic,
malonic, sinapic, and p-coumaric acids). In some cases, the connection
to the phenolic acid decrease the polarity of the molecule, which in-
creased the retention time. Peaks 17BR, 12BR, 12RS, 13RS, and 6BR were
linked to ferulic acid moieties (except for peak 12RS that also presented
a malonyl moiety), ands were tentatively identified as kaempherol-O-
feruloylhexoside-O-hexoside ([M–H]− at m/z 785), kaempherol-3-O-
hydroxyferuloylsophoroside ([M–H]− at m/z 801), kaempferol-O-
deoxyhexoside-O-feruloylrutinoside ([M–H]− at m/z 915), kaempherol-
3-O-hydroxyferuloylsophoroside-7-O-glucoside ([M–H]− at m/z 963),
and kaempherol-O-hydroxyferuloylglucoronide-O-malonylhexoside
([M–H]− at m/z 901), respectively (Pinela et al., 2018; Xiao et al.,
2013). Peak13RS was described for the first time, as far as the author's
knowledge, and presented a pseudomolecular ion [M–H]− at m/z 915
and two main MS2 fragments at m/z 769 ([M-H-146]−) and at m/z 285
([M-H-176-308]−), that corresponded to the loss of a deoxyhexoside
moiety and the subsequent loss of a ferulic and rutinoside moieties,
respectively. Peaks 15BR and 7BR were linked to sinapic acid, previously
reported by Xiao et al. (2013), and tentatively identified as kaempherol-
3-O-(synapoyl)-sophoroside ([M–H]− at m/z 815) and kaempherol-3-O-
sinapoylsophoroside-7-O-glucoside ([M–H]− at m/z 977), respectively.
Xiao et al. (2013) also reported peaks 9BR and 4BR, linked to coumaric
and caffeic acids, respectively, being tentatively identified as kaem-
pherol-3-p-coumaroylsophoroside-7-O-glucoside ([M–H]− at m/z 917)
and kaempherol-3-O-caffeoyl-di-glucoside-7-O-glucoside ([M–H]− at
m/z 933), respectively.

Quercetin (peaks 16BR, 5BR, and 11BR) and isorhamnetin (peaks
10BR and 19BR) derivatives were also detected, but only on turnip tops.
Peak 16BR was identified as quercetin-3-O-glucoside in comparison with
the commercial standard. Peaks 5BR and 11BR presented a pseudomo-
lecular ion [M–H]− at m/z 625, and MS2 fragments at m/z 463 and at
m/z 301, that correspond to the subsequent loss of two hexosyl units,
being tentatively identified as quercetin-3-O-sophoroside, previously
identified in turnip tops by Romani, Vignolini, Isolani, Ieri, and Heimler
(2006). Peaks 10BR presented a pseudomolecular ion [M–H]− at m/z

639 two MS2 fragments at m/z 447 and at m/z 315, that correspond to
the subsequent loss of two hexosyl units, being tentatively identified as
isorhametin-O-dihexoside (Romani et al., 2006). Peak 19BR presented a
pseudomolecular ion [M–H]− at m/z 639 and a unique MS2 fragment at
m/z 315 (132mu), being tentatively identified as isorhamnetin-O-
pentoside.

Finally, luteolin (peaks 7CC and 11CC) and apigenin (peaks 12CC)
derivatives were only found in wild cardoon leaves. Peak 7CC, tenta-
tively identified as luteolin-O-hexoside, presented a pseudomolecular
ion [M–H]− at m/z 447 and a unique MS2 fragment at m/z 285
(162mu); while peak 11CC |([M–H]− at m/z 533) was tentatively
identified as luteolin-O-malonylhexoside, presenting MS2 fragments at
m/z 489 ([M-H-44]−) and at m/z 285 ([M-H-42-162]−), that corre-
sponded to the loss of the malonyl moiety (86 mu) and the hexosyl
moiety (Dias et al., 2018). Peak 12CC ([M–H]− at m/z 473) was ten-
tatively identified as acetylapigenin-O-hexoside presenting a unique
MS2 fragment at m/z 269, corresponding to the loss acetyl and hexosyl
moieties, respectively. This compounds was previously identified in
cardoon samples (Dias et al., 2018).

Finally, the lignin derivative found in cardoon samples, previously
reported by Petropoulos et al. (2018) in the leaf blead of cardoon, was
tentatively as pinoresinol-O-hexoside ([M–H]− at m/z 519).

For turnip tops, the most abundant class of phenolic compounds
were flavonoids, in both hydroethanolic extracts and infusion pre-
paration (18.8 ± 0.4 and 14.44 ± 0.01mg/g of extract, respectively),
being glycosylated derivatives of kaempferol, quercetin and iso-
rhamnetin the most abundant, especially isorhamnetin-O-dihexoside
both in hydroethanolic extract and infusion preparation (2.8 ± 0.1 and
2.11 ± 0.01mg/g of extract, respectively). These results are in ac-
cordance with the ones reported by Romani et al. (2006) in the hy-
droethanolic extract of different cultivars of turnip tops from Italy,
where isorhamnetin derivatives were the highest flavonols, especially
isorhamnetin-O-dihexoside in the hydroethanolic extract
(2.8 ± 0.1 mg/g of extract) and infusions (2.11 ± 0.01mg/g of ex-
tract). It has been suggested, that isorhamnetin glycosides may be the
primary flavonoids in the B. rapa group that plays an important role as a
nectar guide (Romani et al., 2006; Sasaki & Takahashi, 2002). In ad-
dition, hydroxycinnamic acid derivatives were also detected in the
studied samples, being synapoylmalic acid the major one in the class of
phenolic acids (2.8 ± 0.1 and 1.29 ± 0.03mg/g in the hydro-
ethanolic extract and infusion preparation, respectively), being de-
scribed for the first time in turnip samples. This compound has many
biological activities namely antioxidant, antimicrobial, anti-in-
flammatory, anticancer and anti-anxiety, suggesting the potential use of
this plant in food processing, cosmetics, and in the pharmaceutical in-
dustry (Nićiforović & Abramovič, 2014), giving a high add value to this
bio-residue from turnip.

The leaf blade of wild cardoon showed higher contents in phenolic
acids (23.6 ± 0.2 and 16 ± 0.3mg/g in the hydroethanolic extract
and infusion preparations, respectively), then in flavonoids
(14.7 ± 0.1 and 12.1 ± 0.2, mg/g in the hydroethanolic extract and

Table 4 (continued)

Peak Rt (min) λmax (nm) [M-H]−

(m/z)
MS2 (m/z) Tentative identification Hydroethanolic Infusion t-Students

test p-value

Total flavonoids 31.4 ± 0.1 18.8 ± 0.4 < .001
Total phenolic compounds 57.6 ± 0.2 28 ± 1 < .001

tr – traces, nd – not detected. Standard calibration curves: Apigenin-7-O-glucoside (y=10,683x – 45,794, R2= 0.9906, LOD (136.95 μg/mL) and LOQ (414.98 μg/
mL), peak 12CC); Caffeic acid (y=388,345x+406,369, R2= 0.9939, LOD (8.57 μg/mL) and LOQ (25.57 μg/mL), peaks 1BR, 20BR, 21BR, 22BR, 2BR, 3BR, 2RS, 3RS, 1CC,
3CC, 4CC, 9CC, and 10CC); Chlorogenic acid (y=168,823x – 161,172, R2= 0.9999, LOD (0.83 μg/mL) and LOQ (2.50 μg/mL), peaks 2BR and 1RS); Ferulic acid
(y=633,126x – 185,462, R2= 0.999, LOD (1.85 μg/mL) and LOQ (5.61 μg/mL), 13BR, 5RS, 2CC, 5CC, and 6CC); p-coumaric acid (y=301,950x+6966.7,
R2= 0.9999, LOD (1.10 μg/mL) and LOQ (3.32 μg/mL), peak 3BR, 4RS); Quercetine-3-O-glucoside (y=34,843x – 160,173, R2= 0.9998, LOD (17.01 μg/mL) and
LOQ (51.54 μg/mL), peaks 4BR, 5BR, 6BR, 7BR, 8BR, 9BR, 10BR, 11BR, 12BR, 15BR, 16BR, 17BR, 18BR, 19BR, 6RS, 7RS, 8RS, 9RS, 10RS, 11RS, 12RS, 13RS, 7CC, and 11CC);
Sinapic acid (y=197,337x+30,036, R2= 0.9997, LOD (1.91 μg/mL) and LOQ (6.01 μg/mL), peak 14BR).
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infusion preparations, respectively); and revealed better results than
the ones reported for the inflorescence parts of wild cardoon (Dias
et al., 2018). These incongruities are notable especially regarding caf-
feoylquinic acid derivatives, namely 4-O-caffeoylquinic acid and 3,4-O-
dicaffeoylquinic acid. This same inconsistency was also observed in the
results reported by Pandino, Lombardo, Mauromicale, and Williamson
(2011a); Pandino et al. (2011b) where it reports smaller amounts of
these type of compounds in the leaves of wild cardoon from Italy. It is
also important to underline the abundance of glycosylated luteolin
derivatives in wild cardoon, both in hydroethanolic extracts and infu-
sion preparation, especially luteolin-O-malonylhexoside (7.39 ± 0.02
and 5.81 ± 0.24mg/g of extract, respectively), followed by glycosy-
lated apigenin derivatives. Likewise, many authors reported apigenin
derivatives as the major flavonoids present in the leaves of wild car-
doon (Pandino et al., 2011a) and luteolin derivatives were only de-
tected in var. scolymus (Pandino et al., 2011b). These differences could
be explained by the different geographical origin, as also due to dif-
ferent geo-climatic conditions and the different harvest times (Dias
et al., 2018).

Regarding the phenolic profile of radish aerial parts, this sample
presented the highest content in total phenolic compounds (57.6 ± 0.2
and 28 ± 1mg/g in the hydroethanolic extract and infusion prepara-
tions, respectively). The most abundant phenolic compound in this
sample was p-coumaric acid, especially in the hydroethanolic extract
(16.5 ± 0.1mg/g of extract). In contrast, Beevi et al. (2010) showed
that the most abundant phenolic compounds in the methanolic extract
of radish leaves was vanillic acid, followed by catechin and sinapic acid.
However, Goyeneche, Di Scala, and Roura (2013) found that epica-
techin was the most abundant phenolic compound found, followed by
coumaric acid in the hydromethanolic extract of radish.

Finally, a Pearson's correlation analysis between the bioactivities
and the sum of total phenolic acids, total flavonoids, and total phenolic
compounds (results not shown) was performed in order to prove the
relationship between the structure of the compounds and their activity.
The results with a confidence level higher than 90% were classified as
very strong; between 70% and 90% strong, 50%–70% as moderate,
50%–30% as weak and negligible correlations between 30% and 0%.

Regarding antioxidant activity, it was possible to observe that the
phenolic acids were the molecules that had the highest correlations
(strong and moderate negative correlations), with the DPPH scavenging
activity, reducing power, and TBARS inhibition (r2=−0.899, −0.736,
and− 0.572, respectively). The negative correlation is an indicator of
the phenolic/bioactivity ratio, since the higher the concentration of
these bioactive compounds, lower the EC50 value concentration to
achieve 50% of the antioxidant activity. Total phenolic compounds also
presented a strong correlation with the DPPH scavenging activity assay
(r2=−0.724). As previously stated, chlorogenic acid derivatives were,
among the phenolic acid derivatives group, presenting the highest
amounts. The in vitro and in vivo antioxidant effects of chlorogenic acid
derivatives have been extensively studied and reported by several au-
thors (Kweon, Hwang, & Sung, 2001; Sato et al., 2011; Xiang & Ning,
2008), all reporting the high capacity of this type of compounds in
chelating reactive oxygen species in both water soluble and fat soluble
systems.

Regarding the antibacterial activity, only Morganella morganii pre-
sented promising results, showing a negative strong correlation with
the group of total phenolic acids (r2=−0.740). Feruloylquinic acid
derivatives are also an important fraction of the phenolic compounds
found in all samples, and recent studies shown that the presence of
ferulic acid has an inhibitory effect on the growth of these bacteria.
Thus, the results presented herein are in accordance with the previously
described in literature by Chatterjee et al. (2015).

The results for Pearson's correlation have fallen short of what would
be expected in a natural extract, as the phenolic compound-bioactivities
relationship has been intensively studied and proven by several au-
thors. However, it is noteworthy that while studying un-purified natural

extracts, we may have other types of compounds, also bioactive, that
may have some influence on the bioactivity of these plant samples and
therefore further studies to determine this relationship have to be
performed.

4. Conclusion

The leaf blade of wild cardoon gave higher contents of fat, total
available carbohydrates, energetic value, total soluble sugars (sucrose,
fructose, trehalose and glucose), polyunsaturated fatty acids (mainly α-
linolenic acid), tocopherols (α-, β-, δ-, and γ-isoforms), and phenolic
acids (mainly 4-O-caffeoylquinic acid). However, both turnip and
radish were richer in protein, ash, total organic acids (including oxalic,
shikimic, citric, fumaric and quinic acids), and flavonoids. For instance,
radish top revealed higher levels of total phenolic compounds (mainly
p-coumaric acid and kaempferol glycoside derivatives), while, turnip
tops gave higher content of saturated and monounsaturated fatty acids
(palmitic and oleic acids, respectively). The hydroethanolic extract and
infusion preparation of wild cardoon stood out in comparison to the
other two samples in relation to its antioxidant and antibacterial ac-
tivity. None of the samples showed hepatotoxicity effect against PLP2
cells.

For phenolic compounds, the hydroethanolic extracts were richer
than infusion preparations and the results of the biological activities of
the different samples showed that the hydroethanolic extracts seemed
more effective (regarding antioxidant and antibacterial activity) than
the infusions. The antioxidant activities of DPPH scavenging activity,
reducing power and TBARS inhibition, as also the antibacterial effect
against Morganella morganii have proven to be strongly correlated with
the presence of phenolic acids. However, further studies need to be
conducted to better understand this correlation, and clarify and identify
the specific compounds responsible for the distinct bioactivities in the
samples.

This study showed that the discarded parts of these plants, can be
used as an important natural source of valuable nutrient contents and
new and safer bioactive compound, beneficial to human health.
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