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Abstract A library of C3–C5 unsaturated 6-O-sucrose
esters have been investigated for their antibacterial, anti-
fungal, and cytotoxic activities. Most of the target com-
pounds showed good inhibitory activity against a variety of
clinically and food contaminant important microbial
pathogens. In particular, 6-O-methacryloyl sucrose 2 and
1′,2,3,3′,4,4′,6′-hepta-O-acetyl-6-O-methacryloyl sucrose 9
were the most active bactericides against all the tested
bacteria with minimal inhibitory concentrations (MICs)
ranging between 0.24 and 1.40 μM. The compound 9
showed also the highest antifungal activity with MICs from
0.28 to 1.10 μM. The synthesized compounds possessed
low cytotoxicity against human breast, lung, cervical, and
hepatocellular carcinoma cell lines without showing toxicity
for non-tumor liver cells. Thus, this library of short carbon
chain unsaturated sucrose esters represent promising leads
for the development of new generation of sucrose-based
antimicrobial agents.

Keywords Unsaturated esters ● Sucrose ● Antibacterial
activity ● Antifungal activity ● Cytotoxic activity

Introduction

The alarming rates of emerging and reemerging microbial
threats coupled with the growing antimicrobial resistance to
current antibiotics are major concerns to the public health
and scientific communities worldwide (He et al. 2010;
Butler and Cooper 2011). These trends have emphasized the
urgent need for designing and developing new classes of
antimicrobial agents with different chemical structures and
mechanism of action compared with traditional drugs, in
order to improve their activities while retaining good
bioavailability and safety profiles (Ziemska et al. 2013).

Antitumor agents for chemotherapy also attract a lot of
attention, since cancer is responsible for many lethal out-
comes worldwide (Avendaño and Menéndez 2008). Var-
ious sugar esters, isolated from natural sources were tested
as cancer inhibitors and could be applied as therapeutic or
preventive compounds (Xu 2016). For example,
saccharide–fatty acid esters were investigated for their
antimicrobial, antitumor, and anti-human immunodefi-
ciency virus (HIV) activity (Shen et al. 2012; Ye et al.
2016); and have been employed to form drug-delivery
systems (Kitaoka et al. 2014). Several O-decanoyl sucrose
esters were isolated from the natural sticky coating of
tomatillo fruits and showed antiinflammatory activity as
confirmed by in vitro cyclooxygenase enzymes inhibitory
assays (Zhang et al. 2015).

Various glycosides can be found in natural resources,
mainly in the form of glycoconjugates, such as glycopep-
tides, glycolipids, and nucleic acids, where the saccharide
moiety plays important role for their biological activity
(Crucho et al. 2015). Considering that sugar moieties with
multiple hydroxyl groups have been extensively employed
in drug design with the view to improve water solubility and
to increase the interaction between receptors and guests for
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molecular recognition (Dwek 1996; Peça et al. 2012; Car-
doso et al. 2016) various novel saccharide-derived com-
pounds were synthesized and their antimicrobial properties
were tested (Potewar et al. 2013; Petrova et al. 2015b;
Raposo et al. 2016).

Sucrose esters of fatty acids have found applications as
emulsifiers, which have been approved for use in the food
industry under the code E437 (Aguilar et al. 2010), and their
antimicrobial properties were well documented in the lit-
erature (Marshall and Bullerman 1986; Yang et al. 2003).
Their use have been extended to oral care, as they represents
a non-toxic and non-allergenic means of controlling the
acidogenic organisms associated with dental caries (Iwami
et al. 1995). All this have lead to the synthesis of novel
analogues and more extensive study of their properties and
structure–activity relationships (SAR) (Xin 2014; Zhao
et al. 2015). Also, it was shown that esters of sucrose with
short-chain branched carboxylic acids-like 2-methylpropa-
noic, 2-methylbutyric, and 8-methylnonanoic acids, are
produced by some plants to increase their resistance to
insects (Neal et al. 1990). C6–C12 aliphatic acid sucrose
esters, analogues to the natural sucrose esters isolated from
various Nicotiana species were prepared and were shown to
be potent whitefly insecticides (Chortyk et al. 1996).

Another widespread class of sucrose esters are bearing
phenyl groups (Panda et al. 2011). Some examples are
niruriside (1′,2,4,6-tetra-O-acetyl-3′,6′-O-cinnamoyl
sucrose), which was a HIV REV/RRE-binding inhibitor
(Duynstee et al. 1996; Qian-Cutrone et al. 1996); lapatho-
side D (3′,6′-O-coumaroyl sucrose) (Panda et al. 2012a);
helonioside A (3′,6′-di-O-feruloyl sucrose), 3′,4′,6′-tri-O-
feruloyl sucrose; and lapathoside C (6-O-feruloyl-3’,6’-O-
coumaroyl sucrose) (Panda et al. 2012b), studied for their
antitumor activity, demonstrating the interest in the phar-
macological properties of these compounds.

Saccharide-containing synthetic polymers have attracted
great attention because of their potentials as biotechnolo-
gical, pharmacological, and medical materials (Kobayashi
et al. 1985; Carneiro et al. 2001). The most widely used
method for the synthesis of poly (vinylsaccharide)s was
based on the free radical polymerizations of vinyl sugars
(Klein et al. 1990). An extensive review of the preparation
and applications of this type of polymers is available
(Varma et al. 2004). Synthetic carbohydrate-based polymers
having pendant sugar residues are of great interest, not only
as simplified models for biopolymers bearing oligo-
saccharides, but also as artificial glycoconjugates in bio-
chemistry and medicine.

The introduction of sugars into polymeric molecules can
bestow new properties, such as increased polarity, chirality,
biodegradability, and biocompatibility. Sucrose-containing
polymers, having a polyvinyl backbone and pendant

sucrose moieties, have been obtained by polymerization or
copolymerization of sucrose derivatives—esters, ethers, and
acetals, bearing a carbon–carbon double bond (Patil et al.
1991; Fanton et al. 1992; Jhurry et al. 1992; Ferreira et al.
2000). The monomers have been prepared either by multi-
step synthesis, leading to defined compounds and subse-
quently a well-defined polymerization processes, or by
direct functionalization of unprotected sucrose, leading to
mixtures of isomers and therefore to more complex poly-
mers (Crucho et al. 2008; Petrova et al. 2014a).

Sucrose, being a biorenewable, biocompatible, and bio-
degradable raw material with relatively low cost (Lich-
tenthaler and Peters 2004), is a promising starting material
for the synthesis of new compounds with biological activity
(Queneau et al. 2008). Our research group has been focused
on the applications of sucrose for the synthesis of new
compounds with potential applications either industrial or in
academia. In this sense, we have developed chemoselective
methods for the derivatization of sucrose (Petrova et al.
2014a; Raposo et al. 2014), the synthesis of sucrose-based
biodegradable polymers (Barros and Petrova 2009; Barros
et al. 2010; Petrova et al. 2014b) and nanoparticles(Petrova
et al. 2015a; Raposo et al. 2015). To the best of our
knowledge, the biological activities of the short-carbon-
chain unsaturated sucrose esters have not been tested.

Based on these literature data and the features described
previously, we have created a small library of C3–C5
unsaturated 6-O-sucrose esters, as previously described
(Barros et al. 2011), to be screened for their biological
activities. Their antimicrobial and antifungal activities were
tested and compared with the ones of some commercial
antibiotics. Cytotoxicity against a number of human tumor
cell lines and non-tumor liver cells primary culture was
studied as well.

Materials and methods

Standards and reagents

Ampicillin, bifonazole, and ketoconazole were purchased
by Panfarma (Belgrade, Serbia), Srbolek (Belgrade, Serbia)
and Zorkapharma (Šabac, Serbia), respectively. Fetal
bovine serum (FBS), L-glutamine, Hank’s balanced salt
solution (HBSS), trypsin–EDTA (ethylenediaminete-
traacetic acid), penincillin/streptomycin solution (100 U/mL
and 100 mg/mL, respectively), and RPMI-1640 were from
Hyclone (Logan, USA). Streptomycin, acetic acid, ellipti-
cine, sulforhodamine B (SRB), trypan blue, trichloroacetic
acid (TCA), and Tris were purchased from Sigma Chemical
Co. (Saint Louis, USA).
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Chemistry

Compounds 1–14 were synthesized as previously described
(Barros et al. 2011). Their structures and purity were con-
firmed by common analytical techniques.

Stock solutions of the compounds were prepared in 5%
DMSO and kept at −20 °C. Prior to the assays, appropriate
dilutions were prepared.

Antimicrobial activity

Antibacterial activity

The Gram-positive bacteria Staphylococcus aureus (ATCC
6538), Bacillus cereus (clinical isolate), Micrococcus flavus
(ATCC 10240), and Listeria monocytogenes (NCTC 7973),
and the Gram-negative bacteria Pseudomonas aeruginosa
(ATCC 27853), Salmonella typhimurium (ATCC 13311),
Escherichia coli (ATCC 35210), and Enterobacter cloacae
(human isolate), were used. The antibacterial assay was
carried out by a microdilution method (Clinical and
Laboratory Standards Institute. Methods for dilution anti-
microbial susceptibility tests for bacteria that grow
aerobically. Approved standard, 8th ed. CLSI publication
M07-A8. Clinical and Laboratory Standards Institute 2009;
Tsukatani et al. 2012). The bacterial suspensions were
adjusted with sterile saline to a concentration of
1.0× 105 CFU/mL. Compound solutions were added to the
Tryptic Soy broth (TSB) medium (100 µL) with bacterial
inoculum (1.0× 104 CFU per well). The lowest con-
centrations without visible growth (at the binocular micro-
scope) were defined as concentrations that completely
inhibited bacterial growth (minimal inhibitory concentra-
tions (MICs)). The MICs obtained from the susceptibility
testing of various bacteria to tested extracts were determined
also by a colorimetric microbial viability assay based on
reduction of an INT ((p-iodonitrotetrazolium violet) [2-(4-
iodophenyl)-3-(4-nitrphenyl)-5-phenyltetrazolium chloride;
Sigma]) color and compared with positive control for each
bacterial strains. The minimum bactericidal concentrations
(MBCs) were determined by serial sub-cultivation of 2 µL
into microtitre plates containing 100 µL of broth per well
and further incubation for 24 h. The lowest concentration
with no visible growth was defined as the MBC, indicating
99.5% killing of the original inoculum. The optical density
of each well was measured at a wavelength of 655 nm by
Microplate manager 4.0 (Bio-Rad Laboratories) and com-
pared with a blank (broth medium plus diluted extracts) and
the positive control. Streptomycin and ampicillin were used
as positive controls. Five percent DMSO was used as a
negative control.

Antifungal activity

Aspergillus fumigatus (human isolate), Aspergillus versi-
color (ATCC 11730), Aspergillus ochraceus (ATCC
12066), Aspergillus niger (ATCC 6275), Trichoderma vir-
ide (IAM 5061), Penicillium funiculosum (ATCC 36839),
Penicillium ochrochloron (ATCC 9112), and Penicillium
verrucosum var. cyclopium (food isolate), were used. In
order to investigate the antifungal activity of the com-
pounds, a modified microdilution technique was used
(Espinel-Ingroff 2001). The fungal spores were washed
from the surface of agar plates with sterile 0.85% saline
containing 0.1% Tween 80 (v/v) and spore suspension was
adjusted with sterile saline to a concentration of 1.0× 105.
Compound solutions were added to the broth Malt medium
with inoculum. The lowest concentrations without visible
growth (at the binocular microscope) were defined as MICs.
The minimal fungicidal concentrations (MFCs) were
determined by serial subcultivation of a 2 µL of tested
compounds dissolved in medium and incubated for 72 h at
28 °C. The lowest concentration with no visible growth was
defined as MFC indicating 99.5% killing of the original
inoculum. Five percent DMSO was used as a negative
control, and commercial fungicides, bifonazole, and keto-
conazole were used as positive controls.

Cytotoxic activity

Cytotoxicity in human tumor cell lines

Four human tumor cell lines were used: MCF-7 (breast
adenocarcinoma), NCI-H460 (non-small cell lung carci-
noma), HeLa (cervical carcinoma), and HepG2 (hepatocel-
lular carcinoma) from DSMZ (Leibniz-Institut DSMZ—
Deutsche Sammlung von Mikroorganismen und Zellk-
ulturen GmbH). Cells were routinely maintained as adher-
ent cell cultures in RPMI-1640 medium containing 10%
heat-inactivated FBS and 2 mM glutamine at 37 °C, in a
humidified air incubator containing 5% CO2. Each cell line
was plated at an appropriate density (1.0× 104 cells/well) in
96-well plates and allowed to attach for 24 h. Cells were
then treated for 48 h with various concentrations of the
compounds. Following this incubation period, the adherent
cells were fixed by adding cold 10% TCA (100 µL) and
incubated for 60 min at 4 °C. Plates were then washed with
deionized water and dried; SRB solution (0.1% in 1% acetic
acid, 100 µL) was then added to each plate well and incu-
bated for 30 min at room temperature. Unbound SRB was
removed by washing with 1% acetic acid. Plates were air
dried, the bound SRB was solubilized with 10 mM Tris
(200 µL) and the absorbance was measured at 540 nm in
ELX800 Microplate Reader (Bio-Tek Instruments, Inc.;
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Winooski, USA) (Abreu et al. 2011). The results were
expressed in GI50 values (compound concentration that
inhibited 50% of the net cell growth). Ellipticine was used
as positive control. The absence of DMSO toxicity was
confirmed by treating cells with the maximum concentration
of DMSO used in the assays (0.25%).

Cytotoxicity in a porcine liver primary cell culture (PLP2)

A cell culture was prepared from a freshly harvested porcine
liver obtained from a local slaughter house, and it was
designed as PLP2. Briefly, the liver tissues were rinsed in
HBSS containing 100 U/mL penicillin, 100 µg/mL strepto-
mycin and divided into 1× 1 mm3 explants. Some of these
explants were placed in 25 cm2 tissue flasks in DMEM
medium supplemented with 10% FBS, 2 mM nonessential
amino acids and 100 U/mL penicillin, 100 mg/mL strepto-
mycin and incubated at 37 °C with a humidified atmosphere
containing 5% CO2. The medium was changed every
2 days. Cultivation of the cells was continued with direct
monitoring every 2–3 days using a phase contrast micro-
scope. Before confluence was reached, cells were sub-
cultured and plated in 96-well plates at a density of 1.0×
104 cells/well, and cultivated in DMEM medium with 10%
FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin.
SRB assay was performed according to a procedure pre-
viously described (Abreu et al. 2011). The results were
expressed in GI50 values (compound concentration that
inhibited 50% of the net cell growth). Ellipticine was used
as positive control. The absence of DMSO toxicity was
confirmed by treating cells with the maximum concentration
of DMSO used in the assays (0.25%).

Statistical analysis

For all the experiments three solutions were prepared from
each compound concentration, and all the assays were
carried out in triplicate. The results were analysed using
one-way analysis of variance (ANOVA) followed by
Tukey’s HSD Test with α= 0.05. This analysis was carried

out using SPSS v. 22.0 program (IBM Corp., Armonk, NY,
USA).

Results and discussion

Chemistry

The library of C3–C5 unsaturated 6-O-sucrose esters is
presented in Fig. 1 and has been synthesized as previously
described (Barros et al. 2011). The antimicrobial and
cytotoxic activities of the unsaturated 6-O-sucrose esters
have been studied in their peracetylated form as well
(compounds 8–14). There are indications in the literature
that the presence of hydrophobic groups as acetyls increases
the molecule’s tendency to aggregate on the cell membrane
and facilitate its permeability. On the other hand, the pre-
sence of the acetyl groups can influence the enzymatic
activity, triggering higher or lower affinity of the compound
towards various enzymes involved in the processes (Liu
et al. 2004).

Antibacterial activity

The results of the antibacterial activity, evaluated by the
microdilution method, of the synthesized C3–C5 unsatu-
rated 6-O-sucrose esters and standard antibiotics are pre-
sented in Table 1. All derivatives showed antibacterial
activity against all the tested bacteria with MICs ranging
between 0.24 and 10.60 μM and bactericidal concentrations
(MBCs) from 0.44 to 14.00 μM. In general, the antibacterial
inhibitory activity of the tested compounds could be pre-
sented as follows: 2> 3> 1> 9> 10> 8> 11> 13> 14
> 12> 5> 4> 7> 6, but lower than the tested commercial
drugs streptomycin and ampicillin. Regarding SAR, it was
possible to conclude that the shorter carbon-chain esters
with C3 and C4 (1–3 and 8–10) were more active than the
longer ones with C5 (4–7 and 11–14). For the shorter
carbon-chain esters with C3 and C4 (1–3) the free-hydroxyl
groups form was more active than the acetylated (8–10),

Fig. 1 General structure and
library of the synthesized C3–C5
unsaturated 6-O-sucrose esters
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while for the longer ones with C5 this relation was inverse
and the acetylated forms (11–14) were more active than the
free-hydroxyl groups forms (4–7). Between the esters with
C5 carbon chain, the most active was 6-O-(2-pentenoyl)
sucrose ester 5. The methacryloyl esters, both with free
hydroxyl groups 2 and acetylated 9, were the most active
compounds in this library, even more efficient than Ampi-
cillin against M. flavus, L. monocytogenes, E. coli, and En.
cloacae.

The most resistant bacteria to these compounds were L.
monocytogenes and S. typhimurium, while the most sus-
ceptible bacteria were B. cereus and S. aureus. According to
the bactericidal activities (MBC values), the most active

compounds were 1, 2, and 3, while the least active were 4,
6, and 7.

Antifungal activity

All the synthesized sucrose esters 1–14 showed antifungal
activity, which was also evaluated by the microdilution
method, with MICs from 0.28 to 7 μM and MFCs ranging
between 0.55 and 14 μM (Table 2). The antifungal activity
could be presented as follows: 9> 1> 3> 12> 14> 11> 8
> 10> 13> 2> 7> 6> 4> 5, which was in some cases
higher than the tested standards, bifonazole and ketocona-
zole. The highest activity was verified against T. viride,

Table 2 Antifungal activity of compounds 1–14 (MIC and MFC in μM)

Compound [μM] Aspergillus
fumigatus

Aspergillus
versicolor

Aspergillus
ochraceus

Aspergillus
niger

Trichoderma
viride

Penicillium
funiculosum

Penicillium
ochrochloron

Penicillium
verrucosum

1 MIC 1.40 0.90 0.75 2.50 0.45 0.90 0.90 1.40

MFC 1.80 1.80 1.80 3.60 0.90 1.80 1.80 1.80

2 MIC 3.50 2.40 1.75 2.40 1.36 1.75 1.75 1.75

MFC 7.00 3.50 3.50 3.50 1.75 3.50 3.50 3.50

3 MIC 1.75 0.88 0.88 1.75 0.44 1.36 0.88 1.36

MFC 3.50 1.75 3.50 3.50 0.88 3.50 1.75 3.50

4 MIC 5.30 3.50 3.50 7.00 2.35 5.30 3.50 5.30

MFC 7.00 7.00 7.00 14.00 3.50 7.00 7.00 7.00

5 MIC 7.00 5.30 5.30 7.00 1.75 5.30 5.30 7.00

MFC 10.60 7.00 7.00 10.60 3.50 7.00 7.00 10.60

6 MIC 5.30 2.35 3.50 7.00 2.35 3.50 3.50 2.35

MFC 7.00 5.30 7.00 10.60 3.50 7.00 7.00 3.50

7 MIC 5.30 2.35 2.35 5.30 2.35 2.35 2.35 2.35

MFC 7.00 3.50 3.50 7.00 3.50 3.50 3.50 3.50

8 MIC 2.20 1.10 1.45 2.20 0.80 1.45 1.10 1.45

MFC 4.40 2.20 2.20 4.40 2.20 2.20 2.20 2.20

9 MIC 1.10 0.28 0.55 0.55 0.40 0.28 0.28 0.55

MFC 2.20 0.55 1.10 1.10 0.55 0.55 0.55 1.10

10 MIC 2.20 1.10 1.10 2.20 1.10 1.40 1.40 1.40

MFC 4.40 2.20 2.20 4.40 2.20 2.20 2.20 2.20

11 MIC 2.10 1.05 1.05 2.10 0.78 1.40 1.40 2.10

MFC 4.20 2.10 2.10 4.20 2.10 2.10 2.10 4.20

12 MIC 2.10 1.05 0.78 1.05 0.50 1.05 0.78 1.05

MFC 4.20 2.10 1.05 2.10 1.05 2.10 1.05 2.10

13 MIC 2.25 1.05 2.10 2.25 1.05 1.40 1.40 1.40

MFC 3.00 2.10 4.20 3.00 2.10 3.10 2.10 2.10

14 MIC 2.10 1.05 0.78 1.05 0.50 0.78 0.78 1.05

MFC 4.20 2.10 1.05 2.10 1.05 1.05 1.05 2.10

15. Ketoconazole MIC 0.38 2.85 0.38 0.38 4.75 0.38 3.80 0.38

MFC 0.95 3.80 0.95 0.95 5.70 0.95 3.80 0.57

16. Bifonazole MIC 0.48 0.48 0.48 0.48 0.64 0.64 0.48 0.48

MFC 0.64 0.64 0.80 0.64 0.80 0.80 0.64 0.64

MIC minimum inhibitory concentration, MFC minimum fungicidal concentration, expressed in μM
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while A. fumigatus and A. niger were the most resistant
fungi. Fungi were in general more sensitive to the tested
compounds than bacteria species.

According to the obtained results, the compound 9
(acetylated 6-O-methacryloylsucrose ester) showed the
highest antifungal activity, with MICs higher than the both
standard fungicides against the species A. versicolor,
T. viride, P. funiculosum, and P. ochrochloron. All of the
tested sucrose esters 1–14 were more potent fungi inhibitors
than ketoconazole against A. versicolor, T. viride, and
P. ochrochloron.

As it was the case for the antibacterial activity, again the
shorter carbon-chain esters with C3 and C4 (1–3) were
more active than the longer ones with C5 (4–7), for which
the acetylated forms (11–14) were more active than the free-
hydroxyl groups forms (4–7).

Cytotoxicity

The compounds cytotoxicity was evaluated through the
SRB assay against four human tumor cell lines (breast—
MCF7, non-small cell lung—NCI-H460, cervical—HeLa
and hepatocellular—HepG2 carcinomas), and in a PLP2,
established by some of us (Table 3). The tested compounds
showed low activity against human breast, colon, and cer-
vical carcinoma cell lines, being the first (MCF7) the most
susceptible one, followed by the latter (HepG2). The
obtained GI50 values were higher (lower antitumor activity)
than the ones of the ellipticine (used standard). Never-
theless, it was noted that the tested compounds did not show

toxicity for non-tumor cells (PLP2), while the standard
proved to be strongly hepatotoxic (3.69 μg/mL).

At the maximum tested concentration (400 μg/mL),
compounds 8 and 14 did not present any activity; but the
compounds 10, 11, and 13 inhibited the growth of all the
tested tumor cell lines. Compound 11 was the most efficient
inhibitor against MCF7 and HepG2.

Looking into compounds’ structure, only the per-
acetylated derivatives showed activity against NCI-H460
and HeLa (with exception of 7), while the compounds with
free hydroxyl groups were not active against these cell lines.

Conclusions

In summary, a small library of C3–C5 unsaturated sucrose
esters has been synthesized as previously reported and
screened for their antibacterial, antifungal, and cytotoxic
activities in order to identify lead compounds for the
pharmacology. The experimental results showed that all the
derivatives showed antibacterial activity against all the
tested bacteria with MICs ranging between 0.24 and 10.60
μM and antifungal activity with MICs from 0.28 to 7 μM.
The shorter carbon-chain esters with C3 and C4 (1–3 and 8–
10) were more active than the longer ones with C5 (4–7 and
11–14). For the shorter carbon-chain esters with C3 and C4
(1–3) the free-hydroxyl groups form was more active than
the acetylated (8–10), while for the longer ones with C5 this
relation was inverse, and the acetylated forms (11–14) were
more active than the free-hydroxyl groups forms (4–7). The
methacryloyl esters, both with free hydroxyl groups 2 and

Table 3 Cytotoxicity and
hepatotoxicity of the synthesized
compounds 1–14 (GI50 values in
μM)

Compounds MCF7 NCI-H460 HeLa HepG2 PLP2

1 188± 15.20 >400 >400 201.13± 13.21 >400

2 92.56± 4.93 >400 >400 274.78± 17.40 >400

3 252.86± 10.73 >400 >400 306.94± 18.96 >400

4 247.21± 10.52 >400 >400 233.53± 15.46 >400

5 62.70± 1.90 >400 >400 84.64± 1.76 >400

6 240.89± 8.49 >400 >400 212.36± 21.38 >400

7 215.79± 9.27 >400 277.73± 26.31 >400 >400

8 >400 >400 >400 >400 >400

9 305.49± 19.02 >400 >400 >400 >400

10 236.93± 14.42 286.82± 10.28 250.29± 8.56 180.52± 15.48 >400

11 61.30± 0.46 304.04± 7.86 318.30± 15.21 67.97± 3.30 >400

12 70.95± 3.60 >400 >400 82.65± 4.20 >400

13 248.20± 15.90 320.21± 12.29 283.31± 7.57 241.99± 23.15 >400

14 >400 >400 >400 >400 >400

Ellipticine 3.69± 0.16 7.96± 0.25 4.75± 0.05 13± 1 3.69± 0.16

GI50 values correspond to the compound concentration achieving 50% of growth inhibition in human tumor
cell lines or in liver primary culture PLP2
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acetylated 9, were the most active compounds in this
library. In general, the tested compounds exhibited a wide
spectrum of activity, depending on the bacterial and fungal
species.

The compounds showed low antitumor potential (espe-
cially towards human breast and hepatocellular carcinoma
cell lines, MCF7 and HepG2 cells, respectively), but
without hepatotoxicity towards non-tumor porcine liver
primary cells, PLP2.
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