
Universitat Autònoma de Barcelona

Escola d’Enginyeria

Computer Architecture and Operating Systems

Department

M.Sc. in High Performance Computing, Information Theory

and Security

Master Thesis

Parallelizing remote sensing image geometric

correction

by

Gerard Bernabeu

Date: July 3, 2012

Directed by: Ana Cortés Fité
Llúıs Pesquer Mayos

Master Thesis

M.Sc. in High Performance Computing, Information Theory and
Security

Course 2011-12

Parallelizing remote sensing image geometric correction

Author: Gerard Bernabeu Altayó

Directors: Ana Cortés Fité
Llúıs Pesquer Mayos

Computer Architecture and Operating Systems
Escola d’Enginyeria
Universitat Autònoma de Barcelona

Signatures

Author Directors

Abstract

Remote sensing spatial, spectral, and temporal resolutions of images, acquired
over a reasonably sized image extent, result in imagery that can be processed to
represent land cover over large areas with an amount of spatial detail that is very
attractive for monitoring, management, and scientific activities.

With Moore’s Law alive and well, more and more parallelism is introduced into
all computing platforms, at all levels of integration and programming to achieve
higher performance and energy efficiency.

Being the geometric calibration process one of the most time consuming
processes when using remote sensing images, the aim of this work is to accelerate
this process by taking advantage of new computing architectures and technologies,
specially focusing in exploiting computation over shared memory multi-threading
hardware.

A parallel implementation of the most time consuming process in the remote
sensing geometric correction has been implemented using OpenMP directives. This
work compares the performance of the original serial binary versus the parallelized
implementation, using several multi-threaded modern CPU architectures, discussing
about the approach to find the optimum hardware for a cost-effective execution.

Keywords

Parallel Computing, HPC, OpenMP, co-processor, GIS, Landsat, Geometric Cor-
rection

Resumen

Las resoluciones espaciales, espectrales y temporales de imágenes de teledetección,
adquiridas a un tamaño razonable, dan como resultado imágenes que se pueden
procesar para representar grandes áreas de terreno con un nivel de detalle espacial
que es muy atractivo para la observación y la gestión, aśı como para actividades
cient́ıficas.

Con la ley de Moore aún vigente, más y más paralelismo es introducido a cada
nueva generación para todas las plataformas de computación. El paralelismo está
presente en todos los niveles de integracion y en la programación, con el fin de
obtener un mayor rendimiento y eficiencia energética.

Siendo el proceso de calibración geométrica uno de los procesos más costosos
computacional y temporalmente cuando utilizamos imágenes de teledetección, el
objetivo de este trabajo es acelerar este proceso mediante el aprovechamiento de
las nuevas tecnoloǵıas y arquitecturas de computación, haciendo especial hincapié
en la explotación de hardware paralelo con memoria compartida.

Mediante el uso de directivas OpenMP se ha paralelizado la etapa más costosa
y lenta del proceso de corrección geométrica de imágenes de teledetección. Este
trabajo compara el rendimiento de la aplicación original serie con la versión
parelelizada mediante pruebas en distintos sistema multiprocesador, proponiendo
varios enfoques para escoger el hardware más adequado para una ejecución óptima.

Palabras claves

Computación paralela, HPC, OpenMP, co-procesador, GIS, Landsat, corrección
geométrica

Resum

Les resolucions espacials, espectrals i temporals d’imatges de teledetecció, adquiri-
des a una mida raonable, donen com a resultat imatges que es poden processar
per a representar grans àrees de terreny amb un nivell de detall espacial que és
molt atractiu per a l’observació i la gestió, aix́ı com per a les activitats i recerca
cient́ıfiques.

Amb la llei de Moore encara vigent, més i més paral·lelisme és introdüıt a
cada nova generació per a totes les plataformes de computació. El paral·lelisme és
present en tots els nivells d’integració i també en la programació, amb la finalitat
d’obtenir un millor rendiment i eficiència energètica.

Éssent el procés de calibració geomètrica un dels processos més costosos
computacional i temporalment quan utilitzem imatges de teledetecció, l’objectiu
d’aquest treball és accelerar aquest procés mitjançant l’aprofitament de les noves
tecnologies i arquitectures de computació, fent especial èmfasi en l’explotació de
maquinari paral·lel amb memòria compartida.

Mitjançant l’ús de directives OpenMP s’ha paral·lelitzat l’etapa més costosa
i lenta del procés de correcció geomètrica d’imatges de teledetecció. Aquest
treball compara el rendiment de l’aplicació original sèrie amb la versió parelelizada
mitjançant proves en diferents sistemes multiprocessador, proposant diversos
enfocaments per tal d’escollir el maquinari més adequat per a una execució òptima.

Paraules claus

Computació paralela, HPC, OpenMP, co-processador, GIS, Landsat, correcció
geomètrica

Contents

Contents 6

1 Introduction 8
1.1 Motivation . 8
1.2 Automatic matching of orthorectified imagery 8
1.3 High Performance Computing architecture trends 9
1.4 Software parallelization approaches 10
1.5 Contributions and Outline . 10

2 Autotmatic matching of orthorectified images 12
2.1 Overview . 12
2.2 AfinaPC . 13
2.3 Ground Control Points . 14
2.4 SLC-off imagery . 15

3 Modern CPU architecture 17
3.1 Intel . 18
3.2 Advanced Micro Devices (AMD) . 19

4 Parallelizing AfinaPC 22
4.1 Port to linux . 22
4.2 Profiling serial AfinaPC implementation 23

4.2.1 CPU utilization . 24
4.2.2 Memory Requirements . 25

4.3 Automated Paralelization . 27
4.4 MPI . 28
4.5 GPU - CUDA . 28
4.6 OpenMP . 29

4.6.1 Exploiting AfinaPC concurrency with OpenMP 30

5 Measured Results 34
5.1 Performance metrics . 36
5.2 Benchmarking hardware . 37
5.3 Intel Core i5-2400 . 39

6

CONTENTS

5.4 Intel Xeon E5-2643 . 41
5.5 Intel Xeon L5630 . 41
5.6 AMD Opteron 290 . 43
5.7 AMD Opteron Model 6276 . 43
5.8 CPU benchmarking comparison . 46

6 Conclusions and future work 49
6.1 Conclusions . 49
6.2 Future work . 50

A Abbreviations 52

Bibliography 53

7

Chapter 1

Introduction

1.1 Motivation

Started in 1972, the Landsat program has been providing a continuous record of
Earth Observation. Spatial, spectral, and temporal resolutions of Landsat, acquired
over a reasonably sized image extent, result in imagery that can be processed to
represent land cover over large areas with an amount of spatial detail that is very
attractive for monitoring, management, and scientific activities. Since 2008 USGS
distributes Landsat images for free1.

U.S. Geological Survey (USGS) and other image providers offer several pre-
processed images but further image processing is required to achieve the degree
of image refinement required by many use cases. To this purpose CREAF has
developed MiraMon[1], a modular software tool-kit that is used to improve and
analyse remote sensing images.

One of the most time consuming processes when using remote sensing images is
the geometric calibration process. The aim of this work is to accelerate this process
by taking advantage of new computing architectures and technologies.

1.2 Automatic matching of orthorectified im-

agery

Automated remote sensing image geometric correction to orthorectified[2] images,
as described by X. Pons et al. [3], is a calculation intensive operation which
can take from many minutes to a few hours, depending on the image complexity
(clouds, cities, mountains, etc).

1http://landsat.usgs.gov/products_data_at_no_charge.php

8

1.3 High Performance Computing architecture trends

The geometric correction is a process which needs to be applied image by
image, therefore big terrain areas need of processing scalability. Being able to
rapidly correct images is critical to enable certain applications like natural disaster
simulation and forecast.

Within a wider project and in order to ensure continuity and a wide range of
potential users, CREAF (Center for Ecological Research and Forestry Applications)
is developing a Web Processing Service[4] (WPS) within the standard protocols of
Open Geospatial Consortium (OGC) which allows to apply the automated remote
sensing image geometric correction.

The objective of this work is to accelerate CREAF’s remote sensing image
geometric correction WPS based Geographic Information Systems (GIS).

The process will be implemented initially using Landsat 7 NASA images, each
one covering an area of 185 km X 172 km, which can be later generalizable to other
image sources (e.g. Satellites SPOT 4, SPOT 5, etc).

1.3 High Performance Computing architecture

trends

With Moore’s Law alive and well, more and more parallelism is introduced into all
computing platforms at all levels of integration and programming to achieve higher
performance and energy efficiency.

In 2012, a regular desktop PC typically has 4 CPU cores or more, as well as
a graphics accelerator (GPU) which might be also able to aid in some specific
computing tasks (e.g. with CUDA). With new server CPU architectures it is
possible to acquire a four socket 64 core shared memory server (e.g. 4x16 core
CPU) with the same budget that a few years ago was required to buy a two socket
2 core machine. Even some high-end smartphones are equipped nowadays with
multi-core CPUs. The multi-core architecture has been around for a few years
already and is here to stay.

The incursion of multi and many-core architectures in all market segments is
also impacting clusters, where it is now more important than ever to be able to
take advantage of all kinds of parallelisms and accelerators.

9

1.4 Software parallelization approaches

1.4 Software parallelization approaches

In order to take advantage of HPC architecture trends, many software solutions
have been, and are, in active development. Especially in the area of High
Performance Computing (HPC) users can entertain a combination of different
hardware and software parallel architectures and programming environments.
Those technologies range from vectorization and SIMD computation over shared
memory multi-threading (e.g. OpenMP) to distributed memory message passing
(e.g. MPI) on cluster systems.

With the purpose to use GPU’s increasing computing power, some non-graphics
oriented programming frameworks for GPU are emerging, like Nvidia’s CUDA.
This frameworks are still under heavy development and different CPU generations
often require software adaptations. Under ideal conditions it is now possible to get
many GigaFLOPS2 from a single GPU with a very competitive flop/price ratio. On
the other hand, heavy software redesign and recoding processes are still required to
take full advantage of GPU architectures.

1.5 Contributions and Outline

The present work contributes to the optimisation of a widely used real world
application whose enhancements helps to accelerate and improve research in many
fields which require of properly orthorectified images.

Within the scope of the present work I suggest a more robust and above
all scalable approach to store and retrieve the stored map image files, which is
independent of the used orthorectification algorithm. With a better shared storage
system it would be possible to access data faster and therefore improve the overall
geometric correction process. A distributed storage system, like HadoopFS, might
be a good solution providing both high availability and high performance at a
reasonable cost.

The remaining work is organised as follows: The subsequent chapter 2 gives an
introduction to the algorithm used for automatic matching of orthorectified images.
The CREAF’s MiraMon software is presented, followed by an in depth description
of some AfinaPC algorithm specific concepts, which is the basic framework for this
thesis.

2In computing, FLOPS (or flops or flop/s, for floating-point operations per second) is a measure
of a computer’s performance, especially in fields of scientific calculations that make heavy use of
floating-point calculations, similar to the older, simpler, instructions per second. One GigaFLOPS
is 109 FLOPS.

10

1.5 Contributions and Outline

Chapter 3 briefly describes an outline of current mainstream CPUs, covering
the different layers of parallelization implemented in them, as well as some key
architectural aspects like cache hierarchy and effective memory bandwidth.

Chapter 4 analyses the AfinaPC algorithm from the computing point of view
and discusses about different approaches for several parallelization techniques i.e.
MPI, GPU/CUDA and OpenMP.

Precisely this last approach is explored in detail in chapter 5. The conducted
experiments to back up the assumptions and expectations of the prior chapters
are presented. Besides the experimentation with different CPU architectures to
measure several performance metrics, it comprises an analysis of the detected
bottlenecks. Finally the work is terminated with conclusions and some proposals
for future enhancements in chapter 6.

11

Chapter 2

Autotmatic matching of
orthorectified images

2.1 Overview

CREAF has developed a protocol to match remote sensing images series with
orthorectified imagery. As described in [3] the objective of the matching is to
automatically find ground control points (GCP) that will be used in a geometric
correction model.

The whole process is composed by three main stages: the creation of a GCP
bank, the matching between the candidate image and the reference image for
each GCP and, finally, the correction stage, which includes the model fitting and
validation with different GCP. Each of the stages is performed by one or more
independent applications, from the MiraMon software tool-kit, that should work in
a pipelined way so that the image is finally orthorectified.

This work means to accelerate the automatic matching process, for this reason
the most time consuming stage was selected as main candidate for the optimization
process; this stage is the second one: the matching between the candidate image
and the reference image for each GCP.

The matching of the GCPs is a crucial and complex step which scales linearly
with the number of GCPs. The application in charge of this process within the
MiraMon toolkit is called AfinaPC.

12

2.2 AfinaPC

Figure 2.1: On top:
reference image (2008).
On bottom: Landsat
1 MSS acquired on
18/8/1972. GCP are
represented by white
points centred in a red
square in order to facil-
itate the visualization.

2.2 AfinaPC

The AfinaPC program precises the recognition of homologue ground control points
(GCP).

Given two images with similar geometry, AfinaPC determines the location of
the provided GCP from a pattern reference image (pattern image) in the image
which needs to be orthorectified (candidate image). The search is performed by
analysing each GCP approximate surrounding areas in both images in order to find
the maximum correlation between two given groups of adjacent points, also called
sub-window matching. The search area size is determined by the search window size
and the size of the GCP is determined by correlation window. In figure 2.1 matching
GCP are shown for two images of the same area, the task of automatically finding
the most approximate match for each point is performed by the AfinaPC application.

Once the required major global image calibration movement has been deter-
mined, fine-grained pixel level shifts are tested to improve the maximum correlation
between the two images and, therefore, obtain a better homologue points identifi-
cation.

Finally the global required orthorectification displacement is calculated using

13

2.3 Ground Control Points

Figure 2.2: 4+5+7
composite of Landsat
5 TM acquired on
3/6/1987. GCPs are
represented as white
points

the desired mode (median or mode) taking the better fitting GCPs found, i.e. the
ones with greater correlation values.

In case some rotation is detected, it is necessary to use another application from
the MiraMon toolkit in order to determine it (CercaRot) and then redefine the new
GCPs (with TraiPC). The AfinaPC software is not able to find correct correlations
with escalated images either.

2.3 Ground Control Points

Traditionally the Ground control Points (GCPs) selection in an image is a manual
process where only a few number of GCP is able to be accurately located, mainly
due to the limitations of human eye to locate GCPs in regions without conspicuous
morphologies.

CREAF’s procedure selects GCPs in the pattern image automatically, this leads
to the selection of hundreds or even thousands of GCPs which in return provide
more accurate image corrections, allowing the system to properly correct images
with significant differences due to many reasons like weather conditions (e.g. snow,
clouds) or very separated in time; i.e. the area has suffered considerable changes
like human buildings. Figure 2.2 show a typical distribution of GCP in a map image.

14

2.4 SLC-off imagery

2.4 SLC-off imagery

The current Thematic Mapper (TM) class of Landsat sensors began with Landsat-4,
which was launched in 1982[5]. This series continued with a similar sensor on
Landsat-5, launched in 1984. The latest sensor in the series is the Landsat-7
Enhanced Thematic Mapper Plus (ETM+), which was carried into orbit in 1999.

As of June 2012, both the Landsat-5 TM and the Landsat-7 ETM+ are
operational and providing data. Despite 20+ years of operation, the TM on
Landsat-5 is still functional, although downlinks for the data are limited and since
November 2011 it’s in a degraded state. Landsat-7 ETM+ experienced a failure of
its Scan Line Corrector (SLC) mechanism in May 2003 and has had some further
issues since then. The status of the Landsat satellite series can be followed at the
Landsat USGS website1.

Figure 2.3: SLC-off effect in Landsat-7 EMT+ images

The consequence of the SLC failure (or SLC-off) is shown in figure 2.3; about
20% of the pixels in an ETM+ image are not scanned. Although there are gaps in
the data coverage, with proper postprocessing the data remain of equivalent quality
to pre-failure data.

1http://landsat.usgs.gov/

15

2.4 SLC-off imagery

In the AfinaPC software, a mode for fine finding GCP correlations in images with
the SLC mechanism broken (also known as SLC-off) has been implemented. The
use of the SLC-off mode, called NODATA in the AfinaPC application, significantly
increases the computational needs of the process, which can last more than twice
the time to search for GCP in the affected areas, thus greatly unbalancing the
computational needs for some GCP. This fact is specially relevant when it comes to
select a proper thread scheduling algorithm, which could be critical in some parallel
architectures like in CUDA GPUs.

Figure 2.4: Detail of SLC-off effect in Landsat-7 EMT+ images

If the NODATA feature is not used in images with SLC-off, then all correlation
windows where data is missing due to SLC-off are discarded, significantly hardening
the GCP matching search and, in most cases, limiting the successful GCP search
to restricted areas that might not be enough for a correct geometric correction.
Please see figure 2.4 for a detailed zoomed view of how SLC-off impacts in the
image information.

As an example of the impact of processing the areas with invalid data, the
4-thread parallel execution without NODATA takes about 900 seconds to run on
this work’s benchmarking reference pair of images but leads to zero GCP matches
and, therefore, no valid calibration data. On the other hand, running with the
NODATA mode (i.e. analysing areas affected by the SLC-off missing data issue)
takes about 78% more (1600s aprox) but leads to valid results.

16

Chapter 3

Modern CPU architecture

Computers can be roughly divided in four different categories: (1) personal mobile
devices (PMD), (2) desktops, (3) servers and clusters/warehouse-scale computers
and (4) embedded systems. Parallelism at multiple levels is now the driving force
of computer design across all four classes of computers, with energy and cost being
the primary constraints. There are basically to kinds of parallelism in applications:

1. Data-Level Parallelism (DLP): this is when there are many data items that
can be operated on at the same time.

2. Task-Level Parallelism (TLP): is when tasks of work are created that can
operate independently and in parallel.

The Hennessy and Patterson Computer Architecture[6] book editions is a com-
plete guide that has evolved over the time, giving a current and with perspective
view of modern computer architectures. After industry left the single-core frequency
ramp up a few years ago (around 2001) to focus in the multi-core architecture,
the emphasis on instruction-level parallelism (ILP) started moving to the thread-
level parallelism which lately has been enriched with enhanced data-level parallelism.

Even though we are still in the middle of the multi-core technology shift, cloud
computing is showing up as what appears to be the next major step, leaded by the
GRID in the scientific computing area. It is important to keep in mind the new
paradigms whenever designing software.

The two kinds of application parallelism can be exploited by hardware in four
major ways:

1. Instruction Level Parallelism: implemented in forms of pipelining and spec-
ulative execution. Present in microprocessor architectures since many years,
long before dual core processors became a reality.

17

3.1 Intel

2. Request Level Parallelism: mainly exploited by the programmer or the oper-
ating system consists in running largely decoupled tasks in parallel (i.e. two
different applications). This is the only parallelism available when running the
serial version of AfinaPC, where parallelism could be achieved by running two
different runs of the application in a multi-core processor.

3. Vector Architectures and GPUs: apply a single instruction to a collection of
data in parallel. The use of GPUs within the AfinaPC application might lead
to great performance improvements, further discussion about this comes in
Chapter 4.

4. Thread Level Parallelism: exploits data-level and task-level parallelism in a
tightly coupled hardware model, allowing interaction among parallel threads,
usually in a shared memory space. Thread level parallelism has been widely
exploited in this work’s AfinaPC parallel implementation, for a deep analysis
please refer to Chapter 4.

In the following sections an outline of the current CPU panorama for the two
mainstream major desktop and server microprocessor vendors will be described.

3.1 Intel

In 2012 all laptop, desktop and server CPUs manufactured by Intel R©provide
multiple cores[7]. Laptop and desktop CPUs usually range from 2 to 4 cores
while the server branch is packing from 2 (E3 series) to 10 cores (E7 series) in
each processor. Even on the mobility market, with the AtomTMfamily, Intel is
implementing multiple cores in the same chip.

On top of multiple cores, Intel implements Hyper-Threading Technology
(HT or HTT) in the cores of some of their CPUs. Intel’s proprietary HT
Technology[8] is used to improve parallelization of computations performed on
PC microprocessors by doing multiple tasks at once. For each processor core
that is physically present, the operating system addresses two virtual or logical
cores, and shares the workload between them when possible. The main function of
hyper-threading is to decrease the number of dependent instructions on the pipeline.

Hyper-threading works by duplicating certain sections of the processor -those
that store the architectural state- but not duplicating the main execution resources.
This allows a hyper-threading processor to appear as two ”logical” processors to
the host operating system, allowing the operating system to schedule two threads
or processes simultaneously. When execution resources would not be used by
the current task in a processor without hyper-threading, and especially when the

18

3.2 Advanced Micro Devices (AMD)

processor is stalled1, a hyper-threading equipped processor can use those execution
resources to execute another scheduled task.

With HT technologies the latest Intel CPU Xeon E7 series provide up to 20
threads to the system, that the OS usually represent as 20 cores in the server.
Teaming up to eight of this processors in a 8-way socket leads to a server with up
to 80 cores and 160 threads.

At the same time that core performance has increased thanks to improved
instruction level parallelism and frequency, many efforts have been devoted to
improve the memory bandwidth to keep pace and feed the execution units.
According to David Kanter[10], the new Xeon family (Sandy Bridge) Intel is using
an improved 3 level cache-coherent memory hierarchy similar to the one used in
the previous core generation (Nehalem), with a core private L1 and L2 caches and
a shared L3 cache. For more detail please see figure 3.1.

Intel recently announced new Intel Many Integrated Core (MIC)[9] architecture
for highly-parallel workloads and general purpose, energy efficient TFLOPS perfor-
mance. This new architecture is an extension of multi-cores focused on an increased
number of cores while reducing the frequency of each core in order to be highly
energy efficient. As shown in figure 3.2 with this new processor architecture Intel
intends to greatly improve the performance per chip for highly parallel workloads.
The system is designed so that current multi-core software tools and technologies
can be reused with MIC, providing access to a cache coherent shared memory.

The first production MIC, the KnightsCorner is a 22nm +50 core energy efficient
system that will provide about 1TFlop and have two different operating modes; as
an offload co-processor or as a native Linux node programming that will be able to
natively execute C/C++ and Fortran code compiled with the Intel compiler.

3.2 Advanced Micro Devices (AMD)

After the merger between AMD and ATI the company has worked in a product
named accelerated processing unit (APU), a processor where some of the computing
tasks originally done on the CPU moved to a shared in-chip GPU, which is better
optimized for calculations such as floating-point unit calculations.

Bulldozer is the latest AMD core achitecture for server and desktop processors.
As happens with all new Intel processors, the AMD Bulldozer based processors
contain multiple cores; actually AMD processors include even more cores than the

1the processor may stall due to a cache miss, branch misprediction, or data dependency

19

3.2 Advanced Micro Devices (AMD)

Figure 3.1: Sandy Bridge memory subsys-
tem and comparison with Intel’s previous
generation Nehalem and AMD’s Bulldozer
core. Image from realworldtech.com[10]

20

3.2 Advanced Micro Devices (AMD)

Figure 3.2: Intel processor performance estimated evolution

Intel’s, scaling up to the 16 cores of the Interlagos CPU in the AMD OpteronTM6200
series.

As shown in figure 3.1, and unlike Intel cores, the Bulldozer has a shared L2
cache. Despite of this memory hierarchy difference, the declared memory bandwidth
for the AMD Bulldozer based Opteron 6200 family achieves the same 51.2GB/s as
the Intel Sandy-bridge based E5 CPUs, more technical specifications about this
and other processors is shown in Chapter 5.

21

Chapter 4

Parallelizing AfinaPC

Serial algorithms are one of the main burdens to achieve efficient parallel computa-
tions. Therefore a good understanding of the serial parts in a given piece of code
sets the basis for performant parallel programming.

The AfinaPC program precises the recognition of homologue ground control
points (GCP). The matching of the GCP is a crucial complex step which scales
linearly with the number of GCPs. The application in charge of this process within
the MiraMon toolkit is called AfinaPC. For further information on the AfinaPC
internals please refer to Chapter 2.

4.1 Port to linux

The first step of the process has been porting the application from its original
environment, a Windows 32 bit Borland C compiler, to a GCC free and open Linux
friendly framework.

Moving the application from it’s original Windows32 environment to a UNIX
like has been also useful to make it more independent, removing many dependencies
on the AfinaPC application with the rest of the MiraMon software tool-kit. This
process eased the software profiling and optimization process but also restricted the
amount of supported image formats, i.e. only decompressed images are supported
in the ported version. The porting process was also necessary because only the
AfinaPC code of the MiraMon code was available, as well as some other required
functions upon request.

Having a UNIX capable software enables many possibilities like running it in
non-proprietary OS (e.g. Linux) or in the GRID[16], where extensive resources are
available to the scientific community, enabling the use of thousands of computers
to do in a few minutes all the computing that otherwise could take weeks to do

22

4.2 Profiling serial AfinaPC implementation

with in-house resources.

The work required to eliminate Windows dependencies was reasonably simple
since only a few windows library functions used to parse some ini files where used.
Where some hard debugging and coding efforts necessary was to remove many
of the existing dependencies with code from the MiraMon tool-kit that was not
available for the project like message dictionary functions, metadata read functions
or many defines and typedef which required several iterations with the original
software developers at CREAF. All this work was also very useful to understand the
internals of the application, easing the future analysis of parallelization alternatives.

Finally, after the serial code compiled and worked as expected, substantial
performance differences between different GCC versions were observed. Taking as
reference the original Windows 32 bit execution time, just recompiling with GCC
in 64 bits improved approximately 10 times the execution, i.e. finding the matching
GCP in the same pair of images, with the same search and calibration parameters,
requires 10 times less computing time with the 64 bit GCC binary.

This work has been developed manly with GCC version 4.4.6 20110731 (Red Hat
4.4.6-3). For portability testing purposes and to see how more modern compiler can
still improve CPU utilization, lowering execution time even more, a test with one
of the CPUs (Intel i5-2400) was repeated with GCC version 4.6.3 (Ubuntu/Linaro
4.6.3-1ubuntu5). With the newer GCC version the execution speedup with regards
to the original Windows32 execution time is approximately 12, this is about 20%
improvement compared with the 4.4.6 GCC version, and this speedUP comes at
zero cost; the very same code was used with both GCC versions, as well as the
same optimization level (3).

4.2 Profiling serial AfinaPC implementation

After having the first operational serial version of the AfinaPC code, having studied
it analytically and before starting any parallel implementation, a profiling task was
carried out.

The main target when profiling the application is to determine in which
functions and operations CPU time is spent mostly. Finding out the memory
requirements, as well as the memory access pattern, is also very rellevant since it
can represent additional constrains that should be taken in account when looking
for a suitable hardware architecture, and/or parallelizing the application.

23

4.2 Profiling serial AfinaPC implementation

4.2.1 CPU utilization

Analysing the AfinaPC code it is possible to divide the application in three major
stages:

1. Memory allocation and data load stage
this includes reading the map images and some consistency checks on both
the parameters and the images.

2. Ground Control Points (GCP) search
this stage is mainly driven by a for loop that, for each given GCP, searches
in two images (memory arrays) for the best correlation window. This search
process consists of several loops that read data from the images, calculate
correlations and, finally, compare and order the best matching positions using
a quicksort.

At the end of the main for loop the matched GCP; as well as the required
displacement to fit the match, are saved in a unique array of successfully
correlated GCPs.

3. Calculation of the global required orthorectification

the global required orthorectification displacement is calculated using the
desired mode (median or mode) taking the better fitting GCPs found in the
previous stage. This is, the unique array filled at the end of the loop from the
last stage is accessed and some calculations are performed.

The gprof [18] tool tells where a program spends its time and which functions
called which other functions during the execution. This tool was used to obtain
some empiric measurements profiling the AfinaPC application. The run-time
figures that gprof provide are based on a sampling process, so they are subject
to statistical inaccuracy. By contrast, the number-of-calls figures are derived by
counting, not sampling. They are completely accurate and will not vary from run
to run, if the profiled program is deterministic.

. . .
Each sample counts as 0 .01 seconds .

% cumulat ive s e l f s e l f t o t a l
time seconds seconds c a l l s s / c a l l s / c a l l name
95 .05 36 .25 36 .25 4438978 0 .00 0 .00 compara co r r e l a c i on s
4 .93 38 .13 1 .88 13 0 .14 2 .93 SaltaDoc
0 .03 38 .14 0 .01 6959950 0 .00 0 .00 InterpolVeiMesProperByte
0 .00 38 .14 0 .00 2477 0 .00 0 .00 In t e rpo lDoub l eB i l i n ea lByte

. .

Listing 4.1: AfinaPC serial execution gprof profiling with a reduced sample

24

4.2 Profiling serial AfinaPC implementation

Analysing the linux ported serial implementation running on a pair of test
images with gprof, as shown in listing 4.1 clearly shows that there is a function
called compara correlacions (correlation comparison) which takes most of the
execution time.

int compara co r r e l a c i on s (const void ∗a , const void ∗b)
{

i f (((struct RESULTATS CORRELACIO ∗) a)−>c o r r e l a c i o < ((struct
RESULTATS CORRELACIO ∗)b)−>c o r r e l a c i o)

return 1 ;
i f (((struct RESULTATS CORRELACIO ∗) a)−>c o r r e l a c i o > ((struct

RESULTATS CORRELACIO ∗)b)−>c o r r e l a c i o)
return −1;

return 0 ;
}

Listing 4.2: Most CPU consuming function from AfinaPC: compara correlacions

Inspecting the code, as well as the function call graph generated by gprof, it is
possible to see how the most CPU consuming, shown in listing 4.2, is a simple and
not much optimizable function that is called many times from a quicksort function
within the Ground Control Points (GCP) search main for loop.

There is also a piece of code at the end of the main for loop where the matched
GCP as well as the required displacement to fit the match, are saved in a unique
array of successfully correlated GCPs. This means that within the main loop
there is an array that needs to be updated by all loop executions, and this update
depends on former updates performed by the same loop. Fortunately the order in
which the array is filled is not critical to obtain the proper AfinaPC results; thanks
to this it is possible to overcome this potential parallelization difficulty by updating
the array in an atomic way.

4.2.2 Memory Requirements

Memory requirements in AfinaPC are very dynamic and the best way to estimate
them is with an analytic study of the source code, as well as some tests to verify
the analysis.

va l o r s p a t r o=c a l l o c (dens subp ixe l ∗ dens subp ixe l ∗mida f i n e s t r a pa t r o ∗
mida f i n e s t r a pa t r o , s izeof (∗ va l o r s p a t r o)))

c op i a v a l o r s p a t r o=mal loc (m ida f i n e s t r a pa t r o ∗mida f i n e s t r a pa t r o ∗ s izeof (∗
c op i a v a l o r s p a t r o)))

sub matr iu cand idat=c a l l o c (m ida f i n e s t r a pa t r o ∗mida f i n e s t r a pa t r o , s izeof (∗
sub matr iu cand idat)))

va l o r s c and ida t=c a l l o c (m ida f i n e s t r a c and ida t ∗mida f i n e s t r a cand ida t , s izeof (∗
va l o r s c and ida t)))

Listing 4.3: Per thread major memory allocations

25

4.2 Profiling serial AfinaPC implementation

Memory needs depend on the selected images, the calibration window sizes and,
in the parallelized case, also in the number of threads. Memory requirements for
the serial part of the code are dominated by the memory allocated images; since
images are loaded and stored in memory as a float array, the uncompressed images
size should be taken as reference (instead of the compressed disk size). A rough
approximation to the memory requirements of each thread is shown in listing 4.3.
With the parameters used in our real case benchmarking test this means that each
thread requires 2,47 MB1.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200 1400 1600

R
u

n
 t

im
e

 (
s
)

Memory (MB)

4 Thread memory and CPU usage over time

CPU

VMEM

RMEM

Figure 4.1: Physical memory, virtual memory and CPU usage by this work’s
OpenMP parallelized version of AfinaPC with the benchmarking real example on a
quad-core server (2*2 AMD Opteron 290). When GCP matches are found one can
see how RMEM (physical memory) increases. A CPU usage of 400 means that all
4 cores are fully used.

It is crucial to take in account that depending on if a correct match for the
CGP if found or not, the physical memory required by the execution grows as
the GCP search moves forward; this is because at each run of the main for loop
(there is one run execution per GCP) results are stored in a dynamically allocated
memory structure that needs up to 251000 bytes per GCP with standard search

1(5 ∗ 5 ∗ 41 ∗ 251 ∗ 8) + (41 ∗ 41 ∗ 8) + (41 ∗ 41 ∗ 8) + (251 ∗ 251 ∗ 8) = 2589104 bytes

26

4.3 Automated Paralelization

parameters2. This means that, as shown in figure 4.1, if there are approximately
3500 GGP (like in the benchmarking real example) at the end of the execution the
AfinaPC program memory requirements will grow up to 837,8 MB plus the size of
the pattern and candidate image, which sum 414MB in this case. Therefore the
final memory requirements for the benchmarking real example, if all GCP where
properly matched would grow from an initial 414MB up to 1251MB just with a
single thread, for a 64 thread execution up to 1409 MB of physical memory might
be necessary if GCPs are found.

The total amount of virtual memory used by the task is proportional to the
non-swaped physical memory requirements, it is roughly 60-70% greater than the
physical memory used by the task all over the execution but, again, this depends
on the number of properly matched GCPs. Virtual memory includes all code, data
and shared libraries plus pages that have been swapped out and pages that have
been mapped but not used.

4.3 Automated Paralelization

As an academic work, and due to the high complexity of the software (roughly 6500
lines), the first approach for parallelizing the software was tried using automated
parallelization tools. This initial effort determined that none of the tested tools
were able to provide real parallelization improvements with the linux ported serial
version of AfinaPC.

Automating the parallelization of applications from the source code at a high
level is still a challenge. Some of the tested tools were unable to work with C
ISO/IEC 9899:1999 code enhacement (also known as C99), but the main issue for
the many tested parallelization tools was the manual memory management3 present
in the serial version of the program. This is, the tools could not properly determine
which variables should be private or shared neither could reserve memory (i.e.
malloc et al.) for those that required so in private threads.

After a few unsuccessful attempts to obtain a parallelized version of AfinaPC
using automated parallelization tools the efforts shifted to a manual approach,
discussed in the following sections.

2It depends on two arguments of the application: dens subpixel (5 in the benchmarking real
example) and mida finestra candidat (251 in the benchmarking real example), the formula is:
200*dens subpixel*dens subpixel*mida finestra candidat

3by the use of the malloc, calloc, realloc and recalloc functions

27

4.4 MPI

4.4 MPI

In order to efficiently solve the problem presented by the AfinaPC algorithm, the
main issue of MPI is the intensive data communication required by the application;
at least one portion of the pattern and the candidate map image should be delivered
to each MPI node through the network before any computing could start.

With current many-core architectures, scaling up to many tens of cores in the
same shared memory space, it is possible to overcome the communication overheads
while using a high number of cores to calibrate the same set of images; therefore
the complexity of an MPI implementation of AfinaPC versus the potential obtained
gains needs is analytically not convincing enough.

Under the need of calibrating a series of images, by using other parallelization
techniques and a batch system one could beat the performance gains of an AfinaPC
MPI implementation at a fraction of the cost for both the application (re)design
and the computing platform infrastructure.

4.5 GPU - CUDA

Along with multi-core processors, we have seen the rise of many-core processors
(having 32 or more cores) in the consumer market. GPUs from nVIDIA and AMD
plus the forthcoming MIC line from Intel all fit this category.

The computational needs explored by the AfinaPC profiling show a great usage
of decoupled tasks (each CGP search) acting in a shared memory area (the candi-
date and pattern images). This is a computing model that fits great with current
GPU architectures although might present high coding cost of reimplementing part
of the AfinaPC algorithm in CUDA[11] or a CUDA-like language. Reimplementing
part of the code in a different language might compromise portability and be
against a general trend of using highly standard programming languages to keep
developers with a short learning curve.

An alternate option to recoding part of the AfinaPC algorithm could be to
take advantage of already implemented GPU quicksort library[12] or any other
efficient sorting algorithms for manycore GPUs[13]. In order to overcome some
limitations inherent in the GPU architecture, like the memory limitations, an image
partitioning system should be implemented so that only a restricted number of
GCPs, allocated in certain GPU memory loaded area of the maps, are processed
at a time; this could also show some throughput limitations that could become a
potential bottleneck for the AfinaPC application performance.

28

4.6 OpenMP

Although taking advantage of GPU highly parallel architecture performance
could be greatly beneficial, it would also add some hardware constrains in the
platforms where the GPU (e.g. CUDA) parallel version of AfinaPC could run.
Besides running in dedicated servers, AfinaPC has currently many users running
the application in desktops, laptops and general purpose servers. AfinaPC requiring
any specific GPU hardware would undesirably restrict the range of potential users
and therefore should be avoided.

Another disadvantage that a GPU implementation might show is portability
among GPU versions, which could restrict the efficient execution of the application
to a narrow range of compatible GPUs. Also moving a GPU implementation to
the GRID, as it is today, would be a challenge due to the lack of highly performant
GPUs in most of the GRID computing elements.

4.6 OpenMP

About ten years ago, multi-core processors were just on the horizon. Today
they are mainstream and have become the impetus for a revolution in computer
programming that can make best use of the minimum two cores any new processor
has up to the 16 cores the latest4 AMD Opteron 6200 CPU series offer.

The OpenMP[14] Application Program Interface (API) supports multi-platform
shared-memory parallel programming in C/C++ and Fortran on all architectures,
including Unix platforms and Windows NT platforms. Jointly defined by a
group of major computer hardware and software vendors, OpenMP is a portable,
scalable model that gives shared-memory parallel programmers a simple and
flexible interface for developing parallel applications for platforms ranging from the
desktop to the supercomputer. The changes applied to the code while parallelizing
AfinaPC under a Linux environment should be essentially the same for any other
environment (e.g. Windows).

Another point in favour for parallelizing using OpenMP, instead of adapting the
software to run in a GPU, is the incoming Intel MIC architecture that, as pointed in
chapter 3.1, promises to provide many cores within a x86 software compatible model.

OpenMP simplifies the complex task of code parallelization, letting even
beginners move gradually from serial programming styles to parallel programming.
OpenMP extends serial code by using compiler directives. A programmer familiar
with a language (such as C/C++) needs to learn only a small set of directives.
Adding them doesn’t change the serial code’s logical behaviour. It tells the compiler

4as of June 2012 general market availability

29

4.6 OpenMP

only which piece of code to parallelize and how to do it, and the compiler handles
the entire multi-threaded task. As opposed to a GPU implementation, OpenMP
allows a wide range of compatible hardware; it just requires a shared memory
multi-threaded architecture.

Message passing interfaces (e.g. MPI) use multiple processes that run in parallel,
and communicate via special I/O channels; their memory is entirely separate and
local to where the process runs, which is why that is called distributed-memory
processing. On the other hand, multi-threaded shared memory programs (like
OpenMP) have a single process, with mutiple threads of execution that run in
parallel, and all the threads have access to all of the process’s memory. In contrast
with MPI potential implementations of the application, with OpenMP it is not
necessary to specify all communication between the parallel tasks, which in return
means a less invasive approach when parallelizing the application. This is simpler
in some ways, but more complex in others.

4.6.1 Exploiting AfinaPC concurrency with OpenMP

When moving from the serial to the OpenMP parallel paradigm there are some
aspects that must be taken into account, shared memory programming is generally
not about the syntax and coding (i.e. getting a program to compile, link and run
simple tests), but is far more about knowing what to do and what not to do. While
moving AfinaPC to an OpenMP parallel implementation special efforts have been
devoted in the following topics:

1. Memory handling in serial versus parallel regions of the application. In
AfinaPC many arrays use dynamic memory allocation with malloc-like
primitives, this implies that memory allocation for non-shared variables must
be handled in the parallel region, as well as the memory freeing process.

Is is also important to understand what the algorithm does in order to prop-
erly define the data sharing attributes[15] for the parallel region. AfinaPC
uses many variables, with both static and dynamic memory allocation.

#pragma omp p a r a l l e l default (shared) p r i va t e (va l o r s pa t r o , q , va l o r s cand ida t ,
s tad candidat , despXY , sub matr iu candidat , i banda , i banda2 , f i l c o l PC , k , l ,
i , j , x , y , x0 , y0 , x2 , y2) f i r s t p r i v a t e (c op i a va l o r s pa t r o , nodata)

. . .
#pragma omp for schedu le (runtime) l a s t p r i v a t e (r e s u l t a t s r e s e r v a t s , s tad patro ,

p)

Listing 4.4: AfinaPC parallel region data sharing attributes

30

4.6 OpenMP

As one can see in listing 4.4 the data sharing attributes must be defined at the
beginning of the parallel region, in the AfinaPC application all variables are
shared by all threads by default, some are private which means that should
be initialized in each thread independently and some others are firstprivate
which means that they are independent in each thread but are initialized
with the common value that comes from the serial region. More data sharing
attributes are defined when the main for loop starts (in the parallel region),
here lastprivate attributes are used so that the final value of the variable after
the parallel loop matches the one from the last run of the loop in a serial
equivalent execution.

2. Error handling required some adaptations within the parallel loop region.
Due to the lack of synchronization in the OpenMP parallel execution it is
necessary to adapt the code to properly throw an exception out of a parallel
loop in OpenMP5. The code has been changed so that exceptions are not
really thrown from within the parallel loop region anymore but avoid the
loop execution for all threads and after it the exception is thrown. This need
arised to properly handle memory allocation errors.

3. Some variable type issues arised with some size t variables when compiling
with the openmp flag under certain environments. This errors are fairly easy
to solve by moving from size t to int or any other ”more standard” data type.
This might also be a non-issue under certain environments, it’s all about the
compiler version and the libraries in the system. Catching this errors is not
too difficult because AfinaPC never produces valid results when the issue
arises.

4. Aliasing refers to the case when two variables overlap, either in whole or in
part. The most common form is two names for the same location, but there
are many others once one uses compound objects like C structures, which are
widely used in the AfinaPC code. Aliasing bugs are illegal in serial code, but
often show up only when the code is run in parallel.

The number one approach for ensuring correctness is to avoid even correct
aliasing as much as possible – i.e. avoid two threads accessing the same loca-
tion, except when all of those accesses are read-only. To do this, minimise the
update of global objects, which includes anything not passed as arguments;
this includes global variables, any pointers and so on. And, most of all, never
access anything both globally and via arguments unless you can guarantee

5http://www.thinkingparallel.com/2007/06/29/breaking-out-of-loops-in-openmp/

31

4.6 OpenMP

both accesses are read-only to the whole object.

5. Atomic operations. Atomic means that an action does not overlap with
another atomic action; it does not always imply consistency, and the rules for
how atomic actions interact with non-atomic ones are complicated. A data
race is caused when two non-atomic actions overlap, or often when an atomic
one overlaps with a non-atomic one. The effect is completely undefined, and
often lead to invalid results.

In AfinaPC initially an atomic approach for certain operations (e.g. global
counter update) was tried but finally a critical area within the main parallel
for loop was introduced. This is implemented with the #pragma omp critical
OpenMP directive when updating the shared array of matched GCPs and
since it is quite reduced does not significantly slow down the parallel execution
of AfinaPC; figure 4.1 show a complete 4-thread execution of this work’s
OpenMP parallel implementation of AfinaPC and, after the initial data load
stage, the CPU usage is almost 400 until the end, completely using all server’s
CPU cores. Without the critical area race conditions showed up whenever a
GCP was found at the same time in different threads, this could not be easily
spotted since many times this situation does not happen but whenever it does
despF and despC arrays end up with inconsistent information that leads to
incorrect calibrations.

6. The compiler version is relevant when compiling the AfinaPC code so that all
used OpenMP directives and C primitives are supported. With GCC version
4.1.2 the code does not compile but it does in GCC version 4.4.5 and higher.

In order to compile an application with the OpenMP directives taken into
account the flag -fopenmp should be enabled. The same code without the flag
will compile in most cases, but the OpenMP directives, also known and code-
referred as pragmas, will not be taken into account and therefore the execution
will be serial. For instance, the exact GCC options used to compile AfinaPC
parallel implementation are: gcc AfinaPC.c fcorauto-omp.c -o AfinaPC2-
omp.exe -fopenmp -DOMP=2 -lm -O3, without -fopenmp -DOMP=2 the serial
version is obtained.

r e a l 1624 .27
user 6418.51
sys 1 .36
AMB NODATA
[root@dc065 OrtoPNOA 15m]# gpro f . . / . . / code/AfinaPC2−omp . exe
Flat p r o f i l e :

32

4.6 OpenMP

Each sample counts as 0 .01 seconds .
% cumulat ive s e l f s e l f t o t a l
time seconds seconds c a l l s Ks/ c a l l Ks/ c a l l name
65 .44 4111.23 4111.23 99709368 0 .00 0 .00 CalculaCorrelacioAmbNodata
34 .52 6279.96 2168.74 1 2 .17 6 .28 moda dwords
0 .05 6282.99 3 .03 8916 0 .00 0 .00 InverMat2Xerra ire
0 .00 6283.01 0 .02 2314 0 .00 0 .00

OmpleEstadist iquesNumeriquesFi ltrantNoData
0 .00 6283.03 0 .02 Ca l cu l aCor r e l a c i o
0 .00 6283.04 0 .01 632593 0 .00 0 .00 compara co r r e l a c i on s
0 .00 6283.05 0 .01 3386 0 .00 0 .00 QuickSort
0 .00 6283.05 0 .00 93921 0 .00 0 .00 Swap
0 .00 6283.05 0 .00 11463 0 .00 0 .00 Pa r t i t i on3
0 .00 6283.05 0 .00 178 0 .00 0 .00 EscriuCoordXYZEntitatVec
0 .00 6283.05 0 .00 89 0 .00 0 .00 Qsort
0 .00 6283.05 0 .00 13 0 .00 0 .00 SaltaDoc

. . .

Listing 4.5: AfinaPC execution time and gprof profiling with NODATA calibration

With the OpenMP parallel version of AfinaPC it is not possible to properly
profile with gprof any more. In the code from listing 4.5 the gprof profiling output
for a parallel execution can be analysed. Knowing the code and execution times of
the parallel version it is impossible that the function moda dwords, which runs in a
serial section at the end of the application, can lead to a linear speedup if it really
required almost 34% of the execution time.

A relevant performance aspect to take in account when optimizing OpenMP
parallelized applications is the thread scheduling[17] (e.g. dynamic, auto, static,
guided). Details depend on each compiler implementation but a general explanation
of each thread scheduling technique can be checked at Wikipedia6 or at the OpenMP
consortium website7.

Some OpenMP parameters can be defined at execution time, like the number
of threads (export OMP NUM THREADS=$nthreads) and the thread scheduler
(export OMP SCHEDULE=”$schedule”). A deep analysis on the performance of
the OpenMP parallelized AfinaPC application is presented in the following chapter.

6http://en.wikipedia.org/wiki/OpenMP
7http://www.openmp.org

33

Chapter 5

Measured Results

This chapter gives an overview on the performance tests carried on in order to
identify the best fit processor architecture for the parallelized AfinaPC application.

In total five different servers1 have been chosen for the performance tests,
mixing different architectures, vendors and generations in order to quantify the
major differences when running the parallelized AfinaPC algorithm.

The same pattern and candidate image, as well as GCPs have been used
in all execution runs. For each server all OpenMP built-in thread scheduling
algorithms have been tested, as well as several granularity values for those
algorithms supporting the feature. Each CPU as been tested with different
degrees of parallelism, ranging from the single threaded execution up to four times
the number of cores recognized by the server (usually it is the number of logic cores).

Both pattern and candidate images, as well as the AfinaPC correlation search
parameters have been provided by CREAF. Although being a 100% real use case of
AfinaPC, parameters and images have been selected so that the AfinaPC process
requires high computing resources.

1 byte 197031 OrtoPNOA 15m .IMG byte L72197031 03120110910 B70 HPFAv1 . img
MND L72197031 03120110910 B70 Afina Ajust . vec MND resultat1 . vec 41 251 0 .6 5 2
5 MND resultat2 . vec Equacions . i n i 15

Listing 5.1: Parameters (arguments) used all along this work with the AfinaPC
application.

The parameters shown by listing 5.1 have been used all along this work and
have the following meaning:

1resources gently provided by Port d’Informació Cient́ıfica (PIC) http://www.pic.es

34

Figure 5.1: Image
used as pattern
for the AfinaPC
correlation search
(byte 197031 OrtoPNOA 15m.IMG).

Figure 5.2: Image used
as candidate (prob-
lem) for the AfinaPC
correlation search
(byte L72197031 03120110910 B70 HPFAv1.img).

35

5.1 Performance metrics

• Global required orthorectification shift is calculated using the median of the
shifts from the matched GCPs.

• The 189MB image byte 197031 OrtoPNOA 15m.IMG is used as pattern im-
age, please see figure 5.1 for its graphic representation.

• The 225MB image byte L72197031 03120110910 B70 HPFAv1.img is used as
candidate image, please see figure 5.2 for its graphic representation.

• The file MND L72197031 03120110910 B70 Afina Ajust.vec contains the loca-
tion for 3338 GCPs.

• The original location (from the previous .vec file) of all matched GCPs will be
stored in the file MND resultat1.vec

• The pattern search window is 41*41 points.

• The candidate search window is 251*251 points, the pattern search window is
moved within this window so it must be bigger.

• The minimum correlation for a certain GCP window to be taken as a match
is 0.6 (it ranges from 0 to 1)

• The maximum number of possible match locations is 5

• The tolerance to group individual shifts is 2

• For the fine-grain GCP matching each position is subdivided in 5 pixels

• The file MND resultat2.vec will be generated by AfinaPC and all GCPs found
will be stored here together with it’s position in the candidate image. This file
is necessary to make a complete geometric correction of the candidate image.

• The file Equacions.ini contains the parameters of a first general correction
done by a previous step with TriaPC 2.

• Size of the pixels for the candidate image
(byte L72197031 03120110910 B70 HPFAv1.img) is 15.

5.1 Performance metrics

In order to analyse the behaviour of each CPU under the wide range of test runs
the following information has been collected for each execution:

2TriaPC is an application from the MiraMon software that generates GCPs for an image.

36

5.2 Benchmarking hardware

• Real execution time
is the time that the execution of the application requires since the very same
second of it’s instantiation until it returns to shell.

• CPU time
is the total amount of CPU time used by the application. If more than one
CPU has been used, the CPU time contains the sum of the utilization time of
all CPUs.

• System time
is the total amount of CPU time used by system calls triggered from the
application.

• SpeedUP vs single thread
is the number of times the execution is faster with regard to the single threaded
execution.

• SpeedUP vs original Win32 execution in i5-2400 3

is the number of times the execution is faster compared to the single threaded
execution of the original Windows 32 bit Borland compiled application running
in the Intel i5-2400 CPU server described in section 5.3.

• Efficiency
is a performance metric defined as SpeedUP divided by the number of cores
or processors. It is a value, typically between zero and one, estimating how
well-utilized the processors are in solving the problem, compared to how much
effort is wasted in communication and synchronization. Algorithms with linear
speedup and algorithms running on a single processor have an efficiency of 1.
In this work a similar figure is used where the SpeedUP is divided by the
number of threads in order to better detect efficiency loss.

5.2 Benchmarking hardware

In order to have a wide point of view of the user experience with the parallelized
version of AfinaPC, four different servers and one desktop computer have been used
for the performance benchmarking. The following table contains a description of
each one of this computers, identified by the most distinctive element, its processor
(CPU):

3Due to technical and temporal limitations it has not been possible to perform measurements
with the original binaries with each CPU architecture.
The Intel i5-2400 has been selected to run the original Windows binary because of it’s modern
microarchitecture and remarcable single core performance.

37

5.2 Benchmarking hardware

Processor Intel i5-2400 Intel E5-2643 Intel L5630 AMD Opteron 290 AMD Opteron 6276
Server name wl-gerard.pic.es pbs04.pic.es dc021.pic.es dc065.pic.es td801.pic.es

Product name Dell OptiPlex 790 Dell PowerEdge R620 Supermicro X8DTH Sun Fire X4500 Dell PowerEdge C6145
of Processors 1 1 2 2 4
Total # of Cores 4 4 8 4 64

Total # of Threads 4 8 16 4 64
Memory type DDR3-1333 (0.8ns) DDR3-1600 (0.6ns) DDR3-1066 (0.9ns) DDR2-400 (5ns) DDR3-1333 (0.8ns)
Memory size 8 GB 16GB 48GB 16GB 64GB

Used memory banks 2 2 6 8 16
ECC Memory No Yes Yes Yes Yes

Operative System Ubuntu 12.04 SL 6.1 SL 6.1 SL 6.1 SL 6.1

The information from the servers was collected via visual inspection as well as
using the Linux lshw command on each server. More detailed information for each
processor45 can be found in the table below. Pricing information list prices6 in 1000
unit sales. The maximum clock speed row is due to Intel’s Turbo Boost or AMD’s
Turbo Core technologies which only apply under certain circumstances like when
just one or a few cores are active.

Processor Intel i5-2400 Intel E5-2643 Intel L5630 AMD Opteron 290 AMD Opteron 6276
Launch Date Q1’11 Q1’12 Q1’10 2006 Q4’11
of Cores 4 4 4 2 16

of Threads 4 8 8 2 16
Clock Speed 3.1 Ghz 3.3 Ghz 2.13 Ghz 2.8 Ghz 2.3 Ghz

Max. Clock Speed 3.4 Ghz 3.5 Ghz 2.4 Ghz - 3.2 Ghz
L1 Cache 256KiB 128KiB 256KiB 128KiB 768KiB
L2 Cache 1MiB 1MiB 1MiB 1MiB 16MiB
L3 Cache 6MiB 10MiB 12MiB - 16MiB

Litography 32 nm 32 nm 32 nm 90 nm 32 nm
Max TDP 95W 130W 40W 95W 115W

Recommended price 284$ 885$ 551$ 711$ 788$
Memory Channels 2 4 3 2 4

Max Memory Bandwidth 21GB/s 51.2GB/s 25.6GB/s 6.4 GB/s 51.2GB/s

Processor Intel i5-2400 Intel E5-2643 2x Intel L5630 2x AMD Opteron 290 4x AMD Opteron 6276
Launch Date Q1’11 Q1’12 Q1’10 2006 Q4’11
Clock Speed 3.1 Ghz 3.3 Ghz 2.13 Ghz 2.8 Ghz 2.3 Ghz

Total # of Cores 4 4 8 4 64
Total # of Threads 4 8 16 4 64

Max Mem Bandwidth 21GB/s 51.2GB/s 25.6GB/s 6.4 GB/s 51.2GB/s

The following sections show some of the relevant performance metrics measured
in the different servers (identified by their processor). As we go through the
different CPUs the parallel implementation of AfinaPC is analysed, as well as some
architectural specific remarks.

4Source for all Intel processors: http://ark.intel.com
5Sources for AMD processors: http://www.amd.com/us/products/Pages/products.aspx,

http://www.avadirect.com/product_print.asp?PRID=7599, http://www.cpu-world.com/

CPUs/Bulldozer/AMD-Opteron\%206276.html, http://www.anandtech.com/show/5058/

amds-opteron-interlagos-6200
6Prices as of 14/6/12. Sources: Intel prices from http://ark.intel.com. AMD prices

from http://www.amd.com/us/products/pricing/Pages/server-opteron.aspx and http://

www.dailytech.com/AMD+Cuts+Prices+on+Opteron+Processors/article8324.htm

38

5.3 Intel Core i5-2400

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 4 8

R
u

n
 t

im
e

 (
s
)

Threads (log2)

Real execution time OrtoPNOA15m-i5-2400

auto

static

dynamic,1

dynamic,2

dynamic,4

dynamic,32

guided,1

guided,2

guided,4

guided,32

Figure 5.3: Real time
used by a single ex-
ecution of the multi-
threaded AfinaPC on a
Intel i5-2400 CPU us-
ing different OpenMP
thread task scheduling
techniques.

5.3 Intel Core i5-2400

This section focuses on the performance of a single-socket PC featuring the Intel
i5-2400 processor, which is a desktop widely used mid-range CPU based in the
SandyBridge Intel core architecture.

Figure 5.3 points out a common trend observed with all processors where
consistent differences are observed using different OpenMP thread scheduling;
surprisingly the auto scheduling is clearly worse than any other policy but it joins
all others as many threads are used. The reason for this is that when more threads
than cores are available, a non-efficient thread scheduling policy is masked by the
OS task scheduler that gives CPU time to those threads in need while leaving the
idle threads waiting.

Figure 5.4 shows an initial SpeedUP of 12 with just a single thread, which
acts exactly like the non-multi-threaded version (i.e. the execution 64 bit Linux
is 12 times faster than the original binary). As more threads are used the ap-
plication scales almost linearly until the number of cores in the server (4) is matched.

GCC 4.6.3

The exact same OpenMP parallel implementation code was recompiled with a more
modern version of GCC: 4.6.3. In every sense the behaviour is the same but, as
can be observed in figure 5.5, the SpeedUP obtained with regards to the original
execution using the newer GCC version is slightly higher. Although interesting
and important to take in account, this shouldn’t sound as breaking news since
many groups around the world actively work to improve the GCC compiler at each

39

5.3 Intel Core i5-2400

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 4 8

S
p

e
e

d
u

p

Threads (log2)

Speedup vs Original 1-thr Win32 in i5-2400 OrtoPNOA15m-i5-2400

auto

static

dynamic,1

dynamic,2

dynamic,4

dynamic,32

guided,1

guided,2

guided,4

guided,32

Figure 5.4: Real time
speedUP of the Linux
64 bit GCC 4.4.6 com-
piled multithreaded
AfinaPC implementa-
tion versus the Win32
borland C compiled
original binary. The
same Intel i5-2400
CPU server is used
to execute the Win32
run.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 4 8

S
p

e
e

d
u

p

Threads (log2)

Speedup vs Original 1-thr Win32 in i5-2400 OrtoPNOA15m-i5-2400-GCC463

auto

static

dynamic,1

dynamic,2

dynamic,4

dynamic,32

guided,1

guided,2

guided,4

guided,32

Figure 5.5: Real time
speedUP of the Linux
64 bit GCC 4.6.3 com-
piled multi-threaded
AfinaPC implementa-
tion versus the Win32
borland C compiled
original binary. The
same Intel i5-2400
CPU server is used
to execute the Win32
run.

40

5.4 Intel Xeon E5-2643

 1

 2

 4

 8

 1 2 4 8 16

S
p

e
e

d
u

p
 (

lo
g

)

Threads (log2)

Speedup vs single thread OrtoPNOA15m-E5-2643

auto

static

dynamic,1

dynamic,2

dynamic,4

dynamic,32

guided,1

guided,2

guided,4

guided,32

Figure 5.6: Real time
speedUP of the mul-
tithreaded AfinaPC
implementation versus
single threaded execu-
tion in a single socket
Intel Xeon E5-2643
server.

version and, as we can see, it is worth the effort.

5.4 Intel Xeon E5-2643

With the Intel E5-2643 another Sandy Bridge core based processor is evaluated,
this time it is on the server segment. With regards to the i5-2400 in this CPU
we’ve half of the L1 cache but more L3 cache, also the E5 doubles the maximum
memory bandwidth and provides hyperthreading capabilities to the cores, so with
4 physical cores we get 8 logical cores/threads. In terms of clock speed, this E5 is
slightly faster than the tested i5 (3.3 vs 3.1 base clock speed).

In figure 5.6 we can see how hyperthreading helps slightly improving performance
after 4 threads, when the non-multi-threaded cores of the i5 could not provide any
further benefits. This is, with the E5 we’re obtaining a speedUP slightly better than
4, thus going beyond the number of cores in the processor; we get at a steady state
at 8 threads though, when the number of logical cores is reached. Unlike the desktop
series i5 CPU, the E5 family supports dual socket server setups, so it is possible to
build a shared cache coherent memory system with twice the cores and that would
potentially double the performance. Another advantage of using a processor from
the server segment is the memory integrity check provided by ECC protected RAM.

5.5 Intel Xeon L5630

The latest Intel benchmarked in this work is another server segment processor, the
Intel Xeon L5630. Although having a 32nm lithography this is an older CPU than

41

5.5 Intel Xeon L5630

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64

E
ff

ic
ie

n
c
y

Threads (log2)

Efficiency OrtoPNOA15m-intelL5630

auto

static

dynamic,1

dynamic,2

dynamic,4

dynamic,32

guided,1

guided,2

guided,4

guided,32

Figure 5.7: Efficiency
of the multi-threaded
AfinaPC implementa-
tion in a dual socket In-
tel Xeon L5630 proces-
sor server.

 1

 2

 4

 8

 1 2 4 8 16 32 64

S
p

e
e

d
u

p
 (

lo
g

)

Threads (log2)

Speedup vs single thread OrtoPNOA15m-intelL5630

auto

static

dynamic,1

dynamic,2

dynamic,4

dynamic,32

guided,1

guided,2

guided,4

guided,32

Figure 5.8: Real time
speedUP of the multi-
threaded AfinaPC exe-
cution in a dual socket
Intel Xeon L5630 pro-
cessor server.

the ones tested before, from Q1’2010, and it is not based in the Sandy Bridge core
but in the previous Westmere (formerly Nehalem-C) generation.

In this occasion the server is under a dual socket setup, so 2 identical L5630 CPUs
are used, providing a total of 8 physical cores. Memory banks are distributed across
both CPUs and the Intel QuickPath Interconnect (QPI) is used when one processor
needs to access a memory position stored by memory banks from the other processor.

Figure 5.7 shows how efficiency while only one CPU is used remains very close
to 1, which is the ideal case. After 4 threads cores from the second CPU start
working and we can see how efficency decreases down to 90% when all 8 cores are
in use. This is mainly due to the higher memory latency bottleneck. Fortunatelly

42

5.6 AMD Opteron 290

the L5630 cores are multi-threaded, and this helps by hiding the memory latency
when more threads are used; in figure 5.8 we can see that when 16 or more threads
are used the speedUP versus the single threaded execution is 8, so all the physical
cores are fully active.

5.6 AMD Opteron 290

The AMD Opteron 290 CPU is the older CPU analysed in this work. The server
used for the benchmarking has a dual-socket setup so a total of 4 cores are
available. As an older generation system, the RAM memory latency is significantly
higher than in all other processors (5ns vs <1ns). Anyway it is interesting
to have benchmarks using older hardware because not all potential users of Afi-
naPC have the latest processors in their production servers (or personal computers).

More details on the behaviour of this server are shown latter in this chapter, in
the CPU measurement benchmarking comparison section.

5.7 AMD Opteron Model 6276

The AMD 6276 processor is a 16 Bulldozer based core Interlagos CPU. The server
used for benchmarking has a quad-socket setup, so a total of 64 cores are available
in the system. Unfortunately not all memory banks on the server are full, only half
of them, so only 2 out of 4 memory channels are active and therefore the maximum
memory bandwidth per processor is 25.6 GB/s instead of the nominal 51.2GB/s.

In figure 5.9 we can see now more behavioural differences in the thread
scheduling decision than in any other architecture, this is due to the differences
between the computing needs for the different GCP searches that unbalance the
load, leading to some inefficient executions with certain schedulers when many cores
are present but the number of threads is not big enough. As in all other cases, the
best scheduler for the AfinaPC workload is dynamic,1 and guided,1, which means
that only one task is assigned at a time to each thread.

Looking at figure 5.10 we can see how an almost linear speedUP is achieved
until 64 threads are used, then the speedUP keeps steady at almost 42, that is the
65% efficiency by figure 5.9, and means that what was shown as a tendency by
other architectures with greater memory bandwidth per core; memory is not able
to feed the cores with enough data.

43

5.7 AMD Opteron Model 6276

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128 256

E
ff

ic
ie

n
c
y

Threads (log2)

Efficiency OrtoPNOA15m-AMD6276

auto

static

dynamic,1

dynamic,2

dynamic,4

dynamic,32

guided,1

guided,2

guided,4

guided,32

Figure 5.9: Efficiency
of the multithreaded
AfinaPC implementa-
tion in a 64 core quad
socket AMD Opteron
6276 processor server.

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64 128 256

S
p

e
e

d
u

p
 (

lo
g

)

Threads (log2)

Speedup vs single thread OrtoPNOA15m-AMD6276

auto

static

dynamic,1

dynamic,2

dynamic,4

dynamic,32

guided,1

guided,2

guided,4

guided,32

Figure 5.10: Real
time speedUP of the
multithreaded Afi-
naPC execution in a
64 core quad socket
AMD Opteron 6276
processor server.

44

5.7 AMD Opteron Model 6276

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32 64 128 256

S
y
s
te

m
 t

im
e

 (
s
)

Threads (log2)

System time OrtoPNOA15m-AMD6276

auto

static

dynamic,1

dynamic,2

dynamic,4

dynamic,32

guided,1

guided,2

guided,4

guided,32

Figure 5.11: System
time required by the
multi-threaded Afi-
naPC execution in a
64 core quad socket
AMD Opteron 6276
processor server.

Despite the observed hints it is not possible to be completely sure that the
actual bottleneck is the memory bandwidth without a fine-grain profiling on the
memory bandwidth requirements of the AfinaPC application and a deep analysis
on the Bulldozer architecture. Each Interlagos processor offering 16 Bulldozer cores
is actually composed by 8 dual threaded modules, this is clear when looking at
the efficiency drop from 1 to 8 threads is about 0,005675 but from 8 to 9 cores it
is four times greater (0,023213); the technology is completely different from the
hyperthreading used by Intel’s cores, though. Inspecting figure 5.10 we can see
that when the maximum number of modules (32) is used, the speedup is about 26
and this is not consistent with Intel’s hyperthreading effect when later we see that
using 64 threads the speedup grows up to 42.

A similar inter-CPU communication issue like seen in the 2 socket Intel L5630
server is observed also in the quad-socket AMD 6276 server: when moving from 16
to 17 threads the efficiency loss is 0,028 while going from 17 to 18 cores we’re just
loosing 0,019.

After analysing the performance for the many studied architectures one could
be mistakenly driven to think that the more threads used the better. Actually no
performance improvement has been observed in any case after the number of logical
cores (or threads) is reached and figure 5.11 shows that having more threads require
more system CPU time, so keeping the number of threads in balance is definitely a
good practice.

45

5.8 CPU benchmarking comparison

 100

 150

 200

 300

 400

 500
 600
 700
 800

 1000

 1250
 1500

 2000

 3000

 4000

 5000
 6000
 7000
 8000

 1 2 4 8 16 32 64

C
P

U
 t

im
e

 i
n

 s
e

c
o

n
d

s
 (

lo
g

)

Threads (log2)

Real execution time comparison

AMD6276

AMDopteron290

intelL5630

E5-2643

i5-2400

i5-2400-GCC463

Figure 5.12: Real time
execution comparison
between the different
benchmarked servers.
This is the metric that
the end user cares more
about.

5.8 CPU benchmarking comparison

After looking at each system’s behaviour it is time now to put all measurements
together.

Figure 5.12 shows that as one would expect ”bigger” and newer CPUs provide
lower execution times, thus deliver greater performance. Looking at the single-
threaded execution time we see how the AMD cores are significantly slower than
the Intel counterparts. Although it is true that Intel cores are faster and the newer
the better when we compare core by core performance, thanks to the parallelization
of the AfinaPC application when more cores are active the situation changes, and
the 64 core AMD 6276 based server, that was the second most slow processor with
one thread ends up being significantly faster than any other. A similar situation
happens with the octacore Intel L5630, despite being older than the Sandy Bridge
based CPUs, it ends up beating them thanks to having twice the cores, which sum
up more computing capacity with a lower energy footprint.

Even when the original binary has been executed in the second most powerful
core available7, figure 5.13 points out a great common fact in all architectures: the
OpenMP multi-threaded Linux implementation greatly improves the performance
of the original Windows 32 bit Borland C original binary,

The efficiency comparison presented by figure 5.14 is consistent with the memory
bandwidth and processor capacities offered by the benchmarked computers. It is
tightly related with figure 5.13 and demonstrates that even being more expensive,
server oriented systems are in general better balanced, therefore more efficient in

7the i5-2400 server, slightly less powerful than the E5-2643

46

5.8 CPU benchmarking comparison

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16 32 64 128 256

C
P

U
 t

im
e

 (
s
)

Threads (log)

SpeedUP comparison vs original Win32 in i5-2400

AMD6276

AMDopteron290

intelL5630

E5-2643

i5-2400

i5-2400-GCC463

Figure 5.13: CPU
speedUP comparison
vs original AfinaPC
execution in a Intel
i5-2400@3.1Ghz

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128 256

E
ff

ic
ie

n
c
y
 (

S
p

e
e

d
u

p
/#

 T
h

re
a

d
s
)

Threads (log)

Efficiency comparison

AMD6276

AMDopteron290

intelL5630

E5-2643

i5-2400

i5-2400-GCC463

Figure 5.14: CPU
efficiency compari-
son while increasing
the number of par-
allel threads for the
AfinaPC parallel
execution.

47

5.8 CPU benchmarking comparison

computational and energy efficiency terms.

48

Chapter 6

Conclusions and future work

6.1 Conclusions

This work demonstrates how by using the OpenMP widely used parallelization
API it is possible to obtain significant performance improvements on the AfinaPC
application using standard computers that range from old (2006) to the latest
multi-socket multi-core processor servers. The most time consuming application1

of a remote sensing image geometric correction process has been parallelized,
significantly reducing the time required to process the image as well as cutting the
hardware cost and power needs; now it is possible to take advantage of all the cores
in existing systems, this will slightly increase the power consumption of the servers,
but the task finishes well in advance thus reducing the overall costs by increasing
power, budget and time efficiency.

Guidelines to ease the parallelization of programs alike (i.e. from the MiraMon
tool-kit) are provided in chapter 4; the efforts that trained developers should
invest to parallelize the application following the suggested approach will be
greatly rewarded. As shown in chapter 5, a significant acceleration of the AfinaPC
application has been achieved, reaching a speedUP of almost 300 times with regards
to the original binary, using the proper general purpose hardware architecture.
In user measurable metrics this means that a process that usually takes over
nine hours can now be completed in less than two minutes while keeping, if not
improving, the accuracy2.

As a matter of which is the most suitable hardware platform for an optimum
execution of the parallelized AfinaPC application, it is highly dependant on
the market trends, but in general it is possible to take advantage of multi-core
architectures with low clock frequencies and high number of cores, which in return

1within the MiraMon software
2moving from the original 32 bits binary to 64 bits also improves floating point accuracy

49

6.2 Future work

lead to an energy efficient scenario.

On the desktop processor segment very good results have been obtained with
mainstream processors, having very similar performance of equivalent server class
CPUs at a fraction of the cost. On the other hand, ECC memory to ensure data
integrity and the multi-socket feature required for higher scalability and lower
execution times is compromised by the desktop segment.

The analysis in chapter 5 points out how the optimum number of threads should
be equal or slightly higher than the number of logical cores in the system, not lower
neither much higher in any case. A key issue for the AfinaPC application is the
memory bandwidth and latency, therefore it is advisable to fill all RAM banks in
those computers that should run the OpenMP parallel version of AfinaPC.

6.2 Future work

Should greater efficiency or greater execution time reductions be pursued, OmpP[19]
and PAPI[20] performance analisys could still show some room for improvement
in the algorithm, as well as demonstrate the conclusions from analysis about the
detected bottlenecks in the studied systems from chapter 5.

Moving from Quicksort to a more efficient ordering algorithm would help in
reducing the computational needs. Some OpenMP enhancements like transforming
the OMP critical area to OMP atomic areas could also provide greater efficiency in
the parallel execution.

On the hardware side, adding more memory to the servers, like the Quad-socket
AMD 6200 hexacore used in the benchmarks, by filling all memory banks to use
all memory channels, would increase effective memory bandwidth. This would
probably enable greater efficiency than showed in the tests from section 5.7.

When the need for many geometric correction processes arises, like when
analysing the evolution over the last 30 years of a designed area, the GRID or
Cloud environments could provide a good solution as a scalable pay-as-you-grow
model. The GRID approach could also benefit from the current research facilities
with very little effort for massive calibration processes; the software could be used
as is and just the workflows should be properly defined (e.g. where to store the
images, how to submit the jobs for a rapid execution).

Due to lack of time, GPU parallelization techniques could not be developed as
part of this work. The AfinaPC application shows potential for great speedUPs

50

6.2 Future work

using GPU architectures, I believe it is worth exploiting these technologies to lower
execution times in a cost effective way.

Besides the AfinaPC application, some more components of the MiraMon
software could take advantage of widely available multicore computer architecture.

51

Appendix A

Abbreviations

CREAF Center for Ecological Research and Forestry Applications
CUDA Compute Unified Device Architecture
HPC High Performance Computing
GCP Ground Control Point
GIS Geographic Information Systems
CPU Central Processing Unit
OGC Open Geospatial Consortium
RAM Random Access Memory
SIMD Single Instruction Multiple Data
SLC-off Scan Line Corrector off
USGS United States Geological Survey
WPS Web Processing Service

52

Bibliography

[1] Pons X., 2000. MiraMon. Geographical Information System and Remote Sensing Soft-
ware, CREAF, ISBN: 84-931323-4-9. http://www.creaf.uab.es/MiraMon

[2] Toutin T., 2004 Review article: Geometric processing of remote sensing images:
models, algorithms and method, International Journal of Remote Sensing. 25.10:
1893–1924.

[3] Pons X., Moré G. and Pesquer L., 2010, Automatic matching of Landsat image series
to high resolution orthorectified imagery, Proc. ESA Living Planet Symposium SP-
686

[4] Schut P. 2007, OGC Web Processing Service (WPS), Version 1.0.0, OGC 05-007r7:
http://portal.opengeospatial.org/files/?artifact_id=24151

[5] Markham, B.L. December 2004. Landsat sensor performance: history and current
status. IEEE transactions on Geoscience and remote sensing. Web Page, http://

ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1369366

[6] John L. Hennesy, David A. Patterson. 2012. Computer Architecture. Elsevier, Fifth
Edition

[7] Intel Product Information. Web Page, http://ark.intel.com/, Visited June 2012

[8] Hyper-threading technology - Wikipedia, the free encyclopedia. Web Page, http:

//en.wikipedia.org/wiki/Hyper-threading, Visited June 2012

[9] Cornelius, Herbert (speaker) (Intel Corp.). February 6th 2012. Many-core tech-
nologies: The move to energy-efficient, high-throughput x86 computing (TFLOPS
on a chip). Web Page, http://cdsweb.cern.ch/record/1421960, CERN, Geneva
(Switzerland)

[10] David Kanter. Intel’s Sandy Bridge Microarchitecture. Web Page, http://www.

realworldtech.com/page.cfm?ArticleID=RWT091810191937&p=7, Visited June
2012

[11] Shuai Che, Michael Boyer et al. October 2008. A performance study of general-purpose
applications on graphics processors using CUDA. Elsevier Journal of Parallel and
Distributed Computing Volume 68, Issue 10, October 2008, Pages 1370–1380

53

BIBLIOGRAPHY

[12] Daniel Cederman and Philippas Tsigas. 2009. GPU-Quicksort: A Practical Quicksort
Algorithm for Graphics Processors. In the ACM Journal of Experimental Algorith-
mics (JEA), Vol. 14, No. 4, ACM press 2009. Web Page, http://www.cse.chalmers.
se/research/group/dcs/gpuqsortdcs.html

[13] Harris M., Garland M., May 2009. Designing efficient sorting algorithms for manycore
GPUs. Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium.

[14] Dagum L., Menon R. 1998. OpenMP: an industry standard API for shared-memory
programming. Computational Science & Engineering, IEEE. Jan-Mar 1998 Volume:
5 , Issue: 1 (Pages 46 - 55).

[15] Blaise Barney, LBNL. OpenMP tutorial. Web Page, https://computing.llnl.gov/
tutorials/openMP/

[16] I.Foster, C.Kesselman, Morgan Kaufmann. 1998. The grid: blueprint for a new com-
puting infrastructure. ISBN-13: 978-1558604759. Elsevier.

[17] JM Bull. 1999. Measuring synchronisation and scheduling overheads in
OpenMP. Web Page, http://cs.anu.edu.au/student/comp4300/labwork/

bullewomp1999final.ps.gz

[18] Susan L. Graham, Peter B. Kessler, Marshall K. Mckusick. 1982. Gprof: A call graph
execution profiler. University of California. SIGPLAN ’82 Proceedings of the 1982
SIGPLAN symposium on Compiler construction (pages 120-126).

[19] Karl Fürlinger, Michael Gerndt. 2008. OmpP: A profiling tool for OpenMP. Lec-
ture Notes in Computer Science, 2008, Volume 4315/2008, 15-23, DOI: 10.1007/
978-3-540-68555-5_2

[20] S. Browne, J. Dongarra, N. Garner, G. Ho, P. Mucci. 2000. A Portable Programming
Interface for Performance Evaluation on Modern Processors. International Journal
of High Performance Computing Applications Fall 2000 vol. 14 no. 3 189-204

54

