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Brownian dynamics simulations were used to study the adhesion of hard spheres on a solid surface
by taking the hydrodynamic interactions into account. Special attention was paid to analyze the
configuration of the assembly of adsorbed particles. These results were compared to configurations
generated by the extensively studied random sequential adsorption (RSA) model. In our case the ad-
sorption probability for a particle is almost uniform over the entire available surface. This surprising
result shows that RSA provides a good approximation to generate adsorbed particle configurations.
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The adhesion of Brownian particles on solid surfaces
has attracted much interest from both theoretical and
experimental points of view during the last years. One
of the most popular models used to describe this appar-
ently simple process is the so-called random sequential
adsorption (RSA) model [1], which takes excluded vol-
ume effects into account. However, it has serious limi-
tations. In particular, it does not account for the trans-
port of the particles to the adsorbing surface. This ef-
fect is introduced in the diffusion RSA model (DRSA)
(2], where the adsorbing particle is allowed to diffuse in
three-dimensional space subject to hard sphere interac-
tions with previously adsorbed ones. The DRSA leads
to an increased adsorption probability for an incoming
sphere in the close vicinity of an already attached one as
compared to RSA. The DRSA distribution of adsorbed
particles is thus different at a given coverage from its RSA
counterpart except near saturation (jamming limit) [3].
However, since the diffusion coefficient is taken constant,
the DRSA seems to model a particle as moving in “dry
water” [4]. This Letter is devoted to take hydrodynamic
interactions into account and should thus represent a sig-
nificant jump toward reality.

The effect of the hydrodynamic interaction is to in-
crease the frictional force experienced by a particle when
it approaches another one or a flat surface [5]. This kind
of interaction between a sphere and a clean wall is well
known, and its effect on the rate of adsorption has al-
ready been studied [6]. The main goal of this Letter is
to investigate the influence of the hydrodynamic interac-
tions between an adsorbing particle and (i) the already
adsorbed ones, and (ii) the planar adsorbing surface, on
the distribution of the particles on this surface. It will in
particular be compared to RSA distributions in order to
investigate the degree of accuracy of this simple and now
well-known algorithm.

The Brownian motion of a spherical particle is com-
pletely described by the friction tensor, which is in gen-
eral position dependent and nonisotropic. In particu-
lar, the normal component of the friction tensor diverges
when the separation between the particle and any solid
surface vanishes due to lubrication forces. As a conse-
quence, contact of the particles with the adsorbing sur-
face is impossible in the absence of a strong attractive
force, like the van der Waals attraction. The latter be-
comes strong enough at small separations to overcome
the lubrication effects. In general van der Waals, hard
core, and electrostatic forces also act between the parti-
cles. However, in this study we will solely consider, be-
sides the hydrodynamic interactions, the different hard
core repulsions, and the van der Waals forces. For the
latter we restrict ourselves to the forces acting between
the moving sphere and the adsorbing plane. The sphere-
plane van der Waals force is derived from the correspond-
ing potential, U, given by [7]
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where s represents the shortest distance between the
sphere of radius a and the plane. The Hamaker constant
Ap corresponds to the interaction between the particle
and the surface in the presence of the fluid. It is typically
of the order of 10720 J.

The diffusion tensor D is related to the friction tensor
R through the Einstein relation D = kTR~!. Far from
the surface, D becomes independent of the position of the
sphere and is then given by the Stokes-Einstein relation
D(o0) = IKkT/67na, n being the viscosity of the fluid and
I the unit tensor. In general, the position dependence
of the diffusion tensor may be derived as follows. Using
the linear dependence of the force F and torque L with
the translational and angular velocities, u and 2, respec-
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tively, one has according to Ref. 8] F= A -u+ B Q, L=10

L =B u+ C-Q, where the second rank tensors A, B, se8

and C are components of the resistance matrix. B repre- (a)

sents the transpose of matrix B. For an isolated sphere
there is no coupling between the torque and the trans-
lational motion (B = 0). However, in the presence of
boundaries, e.g., a sphere near a surface, the hydrody-
namic interaction produces such a coupling. After elimi-
nation of the angular velocity in the previous linear equa-
tions, one finds F—-B.-C'.L=(A-B- C_I-B)~u.
This shows that the effective force acting on the
particle, Feg = F —B.C 1L, is linearly related to
the velocity through the effective friction tensor
Reg=A — B- C—I-B. This is the friction tensor that
must be used in the Einstein relation to obtain the diffu-
sion tensor needed in the Smoluchowski equation which
governs the diffusion of the particles.

The lubrication forces depend on the local flow of the
fluid in the small regions between the moving particle
and (i) the plane and (ii) the adsorbed spheres. Since
these regions are well disconnected, one can assume as a
first approximation that they contribute additively to the
resulting force, and thus also additively to the effective
friction tensor [9]. The contributions from the sphere-
sphere interactions to the friction tensor were calculated
by using the analytical results given in Ref. [8]. The
sphere-plane contributions were computed according to
Refs. [10, 11].

The hydrodynamic interaction increases the friction
experienced by a particle that approaches a surface. This
increase is larger for the motion normal to the surface
than for the parallel one. Therefore, the lateral diffusion
of the particle is enhanced compared to the diffusion in
the direction perpendicular to the surface. A randomiza-
tion of the adsorption location along the surface is then
expected, rendering the distribution of the adsorbed par-
ticles to look more like its RSA counterpart.

For low to intermediate coverages, interactions with
only one or two adsorbed particles are relevant. There-
fore, we simulated the Brownian motion of an incoming
particle in the presence of, respectively, one and two ad-
sorbed spheres on the surface. The center of the moving
particle diffuses in the region shown in Fig. 1. Its tra-
jectory was simulated by using the classical algorithm of
Ermak and McCammon [12]: Given the position of the
particle at time ¢, its displacement along the ith coordi-
nate axis during a small interval of time At is calculated
according to

3
0D;;
aai= 3 (2 -

Jj=1

Dy; 8U . .
ﬁ%;) At+AX“ 7.-—1,2,3,
(2)

AX; is a Gaussian random variable with zero mean and
variance given by (AX;AX;) = 2D;;At. All the quanti-
ties are computed at the position of the particle at time
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FIG. 1. (a) Geometry of the simulation. The region from
which the center of the diffusing particle is excluded is delim-
ited by the dashed line (exclusion surface). (b) Relative dis-
tribution of the points of adsorption of particles obtained by
simulation of 10° trajectories with Aaan = 0.4426. The results
of the simulation are compared to the distribution obtained
when the particles diffuse in the absence of hydrodynamic in-
teractions and van der Waals forces (DRSA, continuous line).

N

t. The time interval At is taken so small that the mean
magnitude of the displacement § = |Ax| is smaller than
the characteristic length on which D and 8U/8x change
significantly. The value of § in the bulk, &y, fixes the
spatial resolution of the simulation. It should be a small
fraction of the radius of the particle, i.e., 6o < a. When
the center of the particle approaches the exclusion surface
(Fig. 1), the components of the diffusion tensor and the
van der Waals potential depend strongly on the distance,
s, to the surface which becomes the relevant distance.
The step of integration is then modified to become of
the order of § = sép/a. This process is stopped at some
small, but finite distance, to avoid an infinite number of
elementary displacements and thus an infinite computer
time.

Fortunately, the behavior of the particles at sufficiently
small separations can be obtained using the asymptotic
behavior of the diffusion tensor [D1 ~ s, D ~ —(Ins)™}]
and of the potential U ~ s~1. Because we do not take
attractive van der Waals forces between particles into ac-
count, the surfaces of the adsorbed spheres are perfectly
reflecting boundaries. The surface of the exclusion sphere
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around a fixed particle is then an entrance boundary [13]
that cannot be reached by the center of the diffusing
particle. Spheres arriving at a small distance ¢; < a
will then be reflected at some position on the spherical
surface at a distance 2¢; from the particle. Using the
expressions of the potential and of the diffusion coeffi-
cients near the surface, the mean time 7 for this diffusion
process can be computed using Eq. (5.2.160) of Ref. [13].
The lateral displacement of the particle can then be es-
timated by ((Arﬁ))l/2 ~ (4Dy7)Y/? = /Ze1a. It is taken
smaller than the resolution &g, and therefore one takes
€1 = 62/4a (< a). Near the adsorbing surface, in con-
trast, the attractive van der Waals force prevents the
particle from escaping; the adsorbing surface is then an
exit boundary [13]. The simulation is stopped when the
particle reaches a distance e3: A particle starting from a
plane of height €5 eventually reaches a surface at height
2¢; with a predetermined small probability p. Using
Eq. (5.2.189) of Ref. [13] one finds €2 & aAadn/(—21ndp)
with Aaan = Ag/6kT. The mean lateral displacement
during this step is €34/2/A,dn, which should be smaller
than &q.

Taking the radius of the particles a as the unit of
length, and the time ty = a2/D(c0) as the unit of time,
the problem can be cast in dimensionless form. The only
dimensionless parameter is the adhesion number Augm,
measuring the relative strength of the van der Waals force
with respect to the random force. If A,qn > 1 the tra-
jectory of the particle becomes deterministic for s ~ 1,
and a distribution similar to that obtained in ballistic
deposition models has to be expected. If, on the con-
trary, Aagn < 1, the diffusive motion is dominant until
the particle is very near to the surface; a homogeneous
distribution is to be expected. For polystyrene particles
in water at 300 K one has A,gn = 0.4426. In the follow-
ing, all the quantities will be expressed in a dimensionless
way.

For the case of one adsorbed particle the simulation
procedure is as follows: One particle is permanently fixed
at the center of a square of side 10, with its center at
height A = 1. This square is surrounded by four ver-
tical walls to which periodical boundary conditions are
applied. The periodicity did not influence the results.
The starting position of the center of the moving parti-
cles is chosen randomly on a horizontal plane at a height
h above the surface. Afterwards, the values of the diffu-
sion matrix and the force corresponding to the position of
the particle are computed as described previously. The
displacement of the particle is then determined by us-
ing Eq. (2). It was verified on preliminary simulations
that long-range hydrodynamic interactions do not mod-
ify significantly the random distribution of particles if
h > 5. Thus, the starting height was fixed at h = 5.
Furthermore, to avoid particles escaping towards infin-
ity, a sphere reaching the plane h = 8 was rejected, and
a new one restarted from a random position in the plane

h = 5. The mean displacement of the particle in each
step is initially 6o = 0.1. The value of p was chosen to
be 1075. Therefore, €; = 0.0025 and e; = 0.022. Once
the particle touches the adsorbing plane, without overlap
with the fixed sphere, the coordinates (z,y) of the con-
tact point are recorded. The particle is then removed and
a new one started randomly from h = 5. This procedure
is repeated until a chosen number of particles, 10° in the
present study, has reached the surface. At the end of the
simulation stage, the surface is divided into small regions
of size d. The ratio g(r) of the density of contact points
(recorded previously) at a distance r from the fixed par-
ticle to the average density is plotted in Fig. 1, together
with the corresponding result obtained ignoring hydro-
dynamic interactions and van der Waals forces (DRSA).
It shows that the effect of the hydrodynamic interactions
is to cancel out practically the nonuniformity introduced
by diffusion. One recovers in this way a uniform distri-
bution. This is precisely the basic hypothesis of the RSA
that seems, therefore, to be a quite correct model to de-
scribe the structure of the adsorbed phase at least at low
coverages.

To verify this conclusion for higher coverages, we per-
formed also simulations in the presence of two adsorbed
particles, fixed on a rectangular 15 x 10 surface, the dis-
tance between their centers being 5 [Fig. 2(a)]. Periodic
boundary conditions were applied as previously. The re-
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FIG. 2. (a) Geometry of the simulation with two spheres

fixed on the surface. (b) Adhesion probability along the axis
perpendicular to the line of centers of two spheres fixed on
the surface. Each point corresponds to one of the rectangles
in (a), y = 0 being the center of the simulation area.
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mainder of the simulation procedure is identical to the
one-sphere case. There is now a relatively small region
between both spheres for the deposition of a third one,
and the effects of the hydrodynamic interaction are ex-
pected to be large there. Figure 2(b) shows the probabil-
ity density for the adhesion of a third particle along the
axis normal to the line of centers of the fixed spheres. A
small depletion (of the order of 10%) seems to appear in
the region nearest to the spheres. Away from that region,
the distribution is uniform within statistical error. We
can understand these results in the following way: The
most important effect of the hydrodynamic interactions
is to diminish the motion perpendicular to the surface
in comparison to the lateral motion. Therefore the lat-
eral diffusion homogenizes the distribution of particles.
Thus, they reach the surface in a practically homoge-
neous way. The inclusion of repulsive electrostatic forces
between the moving particle and the adsorbing surface
would even strengthen this effect: If the particles meet a
repulsive barrier or a secondary minimum before reach-
ing the surface, they will diffuse for a long time parallel
to the surface before being adsorbed.

The main goal of this study was to introduce accurately
the hydrodynamic interactions during the adhesion pro-
cess of spherical particles on a solid surface. We have
treated here the case in which interparticle interactions
other than hydrodynamic or hard core are neglected. In
this case, the particles seem to adsorb almost randomly
on the surface without correlation with previously ad-
sorbed spheres. This implies that, despite the complexity
of the adhesion phenomenon, RSA is a suitable model to
describe accurately the particle distribution on the sur-
face. This result is, at first sight, surprising and gives
a new validity to the numerous RSA studies undertaken
during the last years. Even though the results reported in
this Letter can only lead to this conclusion for coverages
lower than or of the order of 30% (for higher coverages
three-particle interactions become important [14]), it can
be assumed that it remains valid up to the jamming limit.
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Indeed, for high coverages, only small regions in space
remain accessible to the centers of new particles. Then,
during the diffusion of the particles toward the surface, a
randomization of the particle in the direction parallel to
the surface is likely to occur. Further studies are now un-
der way to include van der Waals and double layer forces
between particles in the model.
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