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Time-Delayed Theory of the Neolithic Transition in Europe
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The classical wave-of-advance model of the neolithic transition (i.e., the shift from hunter-gatherer to
agricultural economies) is based on Fisher’s reaction-diffusion equation. Here we present an extension
of Einstein’s approach to Fickian diffusion, incorporating reaction terms. On this basis we show that
second-order terms in the reaction-diffusion equation, which have been neglected up to now, are not
in fact negligible but can lead to important corrections. The resulting time-delayed model agrees quite
well with observations. [S0031-9007(98)08286-6]
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Linear flux-force dependences (such as Fick’s law) a
a special, limiting case of time-delayed equations [1],
first noticed by Maxwell [2]. Such equations arise, e.g
in time-delayed diffusion, which has been considered f
many years [3–5] and applied to turbulent diffusion [3
optics in turbid media [6], x-ray bursters [7], etc.

In reactive systems, Fickian diffusion leads to parabo
reaction-diffusion (PRD) equations. Parabolic reactio
diffusion equations have been applied to the spre
of advantageous genes [8], dispersions of biologic
populations [9], epidemic models [10], etc. But, i
information propagates at a finite speed, linear flux-for
laws—and thus PRD equations—do not hold [1]. Th
unphysical feature can be avoided by making use
hyperbolic reaction-diffusion (HRD) equations [11,12
Thus HRD equations, instead of the usual PRD equatio
should be regarded as the first choice from a concept
perspective. Hyperbolic reaction-diffusion equations ha
been very recently applied to the spread of epidemics [1
forest fire models [14], and chemical systems [15].

An interesting application of PRD equations arose aft
archaeological data led to the conclusion that Europe
o
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farming originated in the Near East, from where it sprea
across Europe. The rate of this spread was measu
[16], and a mathematical model was proposed accordi
to which early farming expanded in the form of a PRD
wave of advance [17]. Such a model provides a consiste
explanation for the origin of Indo-European language
[18], and also finds remarkable support from the observ
gene frequencies [19]. However, this PRD model predic
a velocity for the spread of agriculture that is higher tha
that inferred from archaeological evidence, provided th
one accepts those values for the parameters in the mo
that have been measured in independent observations [1
Here we will analyze this problem by means of a HRD
model.

Let psx, y, td stand for the population density (measure
in number of families per square kilometer), wherex and
y are Cartesian coordinates andt is the time. We assume
that a well-defined time scalet between two successive
migrations exists. We begin, as usual [20], noting tha
between the values of timet and t 1 t, both migrations
and population growth will cause a change in the numb
of families in an area differentialds ­ dx dy, i.e.,
[21].
fpsx, y, t 1 td 2 psx, y, tdgds ­ fpsx, y, t 1 td 2 psx, y, tdgmds 1 fpsx, y, t 1 td 2 psx, y, tdggds , (1)

where the subindicesm andg stand for migrations and population growth, respectively.
We denote the coordinate variations of a given family duringt by Dx and Dy. The effect of migrations on the

evolution ofpsx, y, td will be derived here by means of a simple extension of Einstein’s model of Fickian diffusion
The migration term in Eq. (1) can be written as

fpsx, y, t 1 td 2 psx, y, tdgmds ­ ds
Z 1`

2`

Z 1`

2`

psx 1 Dx, y 1 Dy, tdfsDx, DyddDx dDy 2 dspsx, y, td , (2)
where fsDx, Dyd is the fraction of those families lying
at time t in an areads, centered atsx 1 Dx, y 1 Dyd,
such that they are at timet 1 t in an areads, centered at
sx, yd. Therefore,Z 1`

2`

Z 1`

2`

fsDx, DyddDx dDy ­ 1 , (3)

and, assuming for simplicity that the low-scale migrati
is isotropic [21],
n

fsDx, Dyd ­ fs2Dx, Dyd ­ fsDx, 2Dyd

­ fs2Dx, 2Dyd ­ fsDy, Dxd . (4)

We Taylor expand the last term in Eq. (1),

fpsx, y, t 1 td 2 psx, y, tdggds

­

√
tFsx, y, td 1

t2

2
≠Fsx, y, td

≠t
1 . . .

!
ds , (5)
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in
whereFsx, y, td is the change, due to births and deaths,
the local population density per unit time.
868
From Eqs. (1), (2), and (5) we find
ces
ylor
psx, y, t 1 td 2 psx, y, td ­
Z 1`

2`

Z 1`

2`

psx 1 Dx, y 1 Dy, tdfsDx, DyddDx dDy 2 psx, y, td

1 tFsx, y, td 1
t2

2
≠Fsx, y, td

≠t
1 . . . . (6)

We now assume thatt, Dx, andDy are small enough in comparison with the measured time intervals and distan
(t ø t, Dx ø x, and Dy ø y) so that both sides of Eq. (6) may be approximated by their second-order Ta
expansions,

t
≠p
≠t

1
t2

2
≠2p
≠t2 ­ p

Z 1`

2`

Z 1`

2`

fsDx, DyddDx dDy 1
≠p
≠x

Z 1`

2`

Z 1`

2`

fsDx, DydDxdDx dDy

1
≠p
≠y

Z 1`

2`

Z 1`

2`

fsDx, DydDydDx dDy 1
≠2p
≠x2

Z 1`

2`

Z 1`

2`

fsDx, Dyd
Dx2

2
dDx dDy

1
≠2p
≠y2

Z 1`

2`

Z 1`

2`

fsDx, Dyd
Dy2

2
dDx dDy 1

≠2p
≠x≠y

Z 1`

2`

Z 1`

2`

fsDx, DydDxDydDx dDy

2 p 1 tF 1
t2

2
≠F
≠t

.
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Making use of Eqs. (3) and (4), this reduces to

≠p
≠t

1
t

2
≠2p
≠t2 ­ D

√
≠2p
≠x2 1

≠2p
≠y2

!
1 F 1

t

2
≠F
≠t

,

(7)

where we have defined

D ­
1

4t

Z 1`

2`

Z 1`

2`

fsDx, DydD2dDx dDy , (8)

with D ­
p

Dx2 1 Dy2.
In the special case of a vanishingly small delay time

t ! 0, Eq. (7) reduces to the usual PRD equation [8
In the limit F ! 0 and t ! 0, Fickian diffusion is
recovered [21]. Our derivation of the HRD equation (7)
in contrast to previous ones [11,12], makes it possib
to note that in the application we are dealing with th
interpretation oft is completely different from that in
a reacting-diffusing gas mixture (where collisions hav
a negligible duration in comparison with the travel time
between two subsequent collisions). The time interv
between two successive migrations is the sum of the tim
of travel (which may of the order of some days or weeks
and the time of “residence,” i.e., the time interval betwee
the arrival of a family and the subsequent migratio
(presumably of about one generation [22]). Therefore,
our case,t is approximately the time of residence.

We will assume that the population growth can b
described by

F ­ ap

√
1 2

p
pmax

!
, (9)

wherea is the initial growth rate andpmax is the saturation
density. Equation (9) is the logistic growth function, an
it compares favorably to a wealth of experimental resul
[23]. It has been recently shown that Eq. (7) leads
,
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wave fronts with asymptotic speed of propagation [12]

y ­
2
q

DsdFydpdjp­0

1 1
t

2
dF
dp jp­0

­
2
p

aD
1 1

at

2
. (10)

This result would not change if we considered an exp
nential growth function. We note from Eq. (10) that th
delay timet slows down the wave front, as was to be e
pected intuitively. In the limitt ! 0, Eq. (10) becomes

yt!0 ­ 2
p

aD , (11)

which is the basis of the classical wave-of-advance the
of the neolithic transition in Europe [17].

In a different context, wave fronts for the autocatalys
A 1 B ! A 1 A have been studied for a reaction term
of the formF ­ kpsp0 2 pd, wherep is the density of
A, p0 is the total density, andk is the rate constant. In
this case, Eq. (10) can be written asyr!0

y ­ 1 1
t

2 kp0,
i.e., an additional term proportional to the rate consta
is predicted. Such a term has been proposed before [
although no explicit form for it has been derived.

We return to the problem under consideration. Equ
tion (8) may be written as

D ­
1
4

D2

t
, (12)

in fact, a well-known result for two-dimensional diffusion

Here D2

t is the mean square displacement during t
time intervalt that separates two successive migration
Previous approaches did not take the factor1

4 in Eq. (12)
into account but relied on the approximation [17]

D ø
D2

t
. (13)

The front velocity for the expansion of agricultur
can be predicted from Eq. (10) provided that independe
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estimations for the values oft, a, andD are available. As
in Ref. [17], we consider twenty-five years for the averag
generation,t ­ 25 yr. Let us, for the moment, assume
an initial growth rate of 3%, i.e.,a ­ 0.03 yr21 [19] and
D2

t ­ 1700 km2ygeneration [17].
In Fig. 1 we reproduce the archaeological data for th

spread of the neolithic transition in Europe [17]. Us
of the values above into the approximation (13) (whic
was applied in Ref. [17]) and Eq. (11) yields a fron
velocity of yt!0 ­ 2.86 kmyyr. In contrast, Eqs. (11)
and (12) yield a velocity of 1.43 kmyyr. The dashed-
dotted and dashed lines in Fig. 1 are the best fits wi
these slopes, respectively. The front speed implied
Eq. (13) is much higher than that inferred from the dat
The prediction from Eq. (12), on the other hand, show
the usefulness of the wave-of-advance theory (provid
that the factor14 in Eq. (12) is included, as has been don
here for the first time). Still, a lower front speed is clearl

FIG. 1. Comparison between empirical evidence and theore
cal models for the spread of agriculture in Europe. The poin
are the data already analyzed in Ref. [17], distances being m
sured as great circle routes from Jericho (the presumed cen
of diffusion). Dates are conventional radiocarbon ages in yea
before present (BP). The solid line is the regression by Amme
man and Cavalli-Sforza (correlation coefficientr ­ 0.89) [17].
The other three lines are least-squares fits with slopes cal

lated from the classical wave-of-advance model withD ø D2

t

(dashed-dotted line) andD ­ 1
4

D2

t (dashed line), and from

the time-delayed model withD ­ 1
4

D2

t (dotted line). Here

t ­ 25 yr, a ­ 0.03 yr21, and D2

t ­ 1700 km2ygeneration.
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implied. This may also be seen from the regression (so
line) in Fig. 1 [16,17]: Its slope yields a velocity of
1.00 kmyyr. When the same values for the paramete
as above are introduced into Eqs. (10) and (12), o
obtains a prediction ofy ­ 1.04 kmyyr. Therefore, the
prediction from Eq. (7) agrees very well with observation
(see the values ofx2 in Fig. 1).

Changing the value of the average generation leads
much the same result (e.g., we might considert ­ 28 yr
[17] in Eqs. (10) and (12), which yieldsy ­ 0.95 kmyyr).
In Figs. 2 and 3, the curves labeled with number 1 giv

the possible values ofa and D2

t compatible (according to
each one of the three models) with the observed speed
1 kmyyr. In fact, the principal axis was preferred [16,17
to perform a fit to the data (solid line in Fig. 1), but the tw
regressions (distances versus dates and vice versa) imp
velocity range between about 0.8 and 1.2 kmyyr [16]. In
Figs. 2 and 3 we also include curves corresponding to th
velocities. The hatched regions in these figures correspo
to likely ranges of the parameters, and have been obtai
as follows. Birdsell [24] was able to collect detailed evolu
tion data of two human populations which settled in emp
space. A fit of these data (either to an exponential or
logistic curve) yieldsa ­ 0.032 6 0.003 yr21, with 80%

confidence level (C.L.). Values forD
2

t have been derived
[17,25] from observations of Ethiopian shifting agricul
turalists and Australian aborigines. A statistical analys

of these values yieldsD
2

t ­ 1544 6 368 km2ygeneration
(80% C.L. interval). As we have stressed, Eq. (12) shou
replace the approximation (13) in two-dimensional situ
tions. This does not rely on any assumption. From Fig.

FIG. 2. Predictions of the classical wave-of-advance mod
[Eq. (11)]. The hatched regions correspond to the range

allowed values fora and D2

t , according to the available
empirical evidence. Each curve is labeled with a numbe
which gives the considered front velocity (in kmyyr). The
three lower curves correspond to the approximation (13), whi
was used in Ref. [17]. The three upper curves correspo
to the same model, but taking into account Eq. (12) for tw
dimensional diffusion.
869
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FIG. 3. The same as Fig. 2, but for the time-delayed wav
of-advance model we have presented [Eq. (10)] and an aver
generation oft ­ 25 yr. It is seen that, for almost all of the

likely values of the parametersa and D2

t (hatched rectangle),
the predictions of the model are consistent with the observ
front velocity s1.0 6 0.2 kmyyrd.

it is seen that the use of this correction (three upper curve
instead of the classical approach (lower curves), mak
the nondelayed model marginally consistent with the e

perimental range ofa and D2

t values (hatched rectangle)
This shows that the first-order, or PRD, approach is com
patible with the demographic data, but only assuming e
treme values for the parameters. In the second-order,
HRD, model, Eq. (10) holds, from which Fig. 3 follows.
From this figure, we conclude that the agreement betwe
the available empirical data and our time-delayed mod
is very satisfactory, in spite of the simplicity of the latter
This shows that it is not necessary to assume extreme v
ues of the measured parameters, provided that one is w
ing to accept the hypothesis that a time interval of abo
one generation separates successive migrations.

Finally, it is worthwhile to take into account that simu
lations of the neolithic transition in Europe for the value

a ­ 0.02 yr21 and D2

t ­ 973.4 km2ygeneration yield a
front velocity of y ­ 1.09 kmyyr [25]. Making use of
Eq. (11), thetwo-dimensionalresult (12) and the above

values fora and D2

t , we obtainyt!0 ­ 0.88 kmyyr. In
fact, in Ref. [25] an irregular lattice was considered. Sinc

Eq. (12) can be easily generalized intoD ­
1

2n
D2

t , where
n is the number of dimensions and2n is the number of
neighbors in a simulation lattice, we note that a decrea
in the number of neighbors corresponds to an enhancem
of diffusion, as was to be expected intuitively. If we tak
into account that, for the irregular lattice used in Ref. [25
the mean number of neighbors was 3.4, making use
Eq. (11) we estimateyt!0 ­ 0.96 kmyyr, which is closer
to the value 1.09 kmyyr observed in simulations. Since
the simulations in Ref. [25] included corrections due to th
870
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acculturation of hunter-gatherers by farmers (which coul
lead to a more rapid agricultural expansion), we conclud
that there is reasonable agreement between our results a
the simulations. Of course, the more general result (10
cannot be compared to those in Ref. [25], simply becaus
that study is based on Eq. (7) in the limitt ! 0.

We would like to stress that, unless one is willing
to accept an instantaneous propagation of signals, HR
equations are much more natural than the usual PR
equations.

Physical models could also contribute to the modeling o
genetic gradients, to the possible contributions of highe
order terms, etc.
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