
brought to you by D CORE

Metabolic engineering in microalgae: Challenges in Dunaliella tertiolecta UAB

Ismael Torres Romero

Industrial Biotechnology

Product improvements:

- ↑TAG (ACCase overexpression, polyamine activation of biosynthetic genes, etc.)
- Lipid composition: better properties for biodiesel, shortening lipid chains.

Conclusions

Genetic tools for D. tertiolecta are still scarce to engineer its metabolism. It is essential to sequence its genome for directed genetic engineering and explore its potential.

Process improvements:

- Higher iron uptake, ferritin concentration enables magneticdriven extraction (1 extraction cost).
- Co-products accumulation such as β -carotene (nutraceutical, food additives).

References

- Image extracted from: http://eol.org/data_objects/2088133 Authors: David Patterson and Bob Andersen. Gomes de Oliveira Dal'Molin et al. AlgaGEM - a genome-scale metabolic reconstruction of algae based on
- the Chlamydomonas reinhardtii genome. BMC Genomics (2011) 12(Suppl 4):S5. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta. Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics (2011) 12:148. 3.
- 4. Chang RL et al. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal
- metabolism. Molecular Systems Biology (2011) 7:518.