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We present a grand unified theory (GUT) that has GUT fields with masses of the order of a TeV, but at
the same time preserves (at the one-loop level) the success of gauge-coupling unification of the minimal
supersymmetric standard model (MSSM) and the smallness of proton decay operators. This scenario is
based on a five-dimensional theory with the extra dimension compactified as in the Randall-Sundrum
model. The MSSM gauge sector and its GUT extension live in the 5D bulk, while the matter sector is
localized on a 4D boundary.

PACS numbers: 11.10.Kk, 12.10.Dm, 12.60.Jv
1. Introduction.—One of the most fascinating chal-
lenges in particle physics is the unification of the forces
of nature. Grand unified theories (GUTs) have been advo-
cated as an extension of the standard model (SM) to unify
the gauge interactions. Their immediate consequence
is the explanation of charge quantization. The scale at
which GUTs must replace the SM, however, must be very
high, MGUT . 1015 16 GeV, in order to avoid higher-
dimensional operators that would lead to a large proton
decay rate. Furthermore, a large MGUT is also needed for
gauge-coupling unification. Since the 4D gauge couplings
evolve logarithmically with the energy scale, a large MGUT
is needed to allow the different gauge couplings of the SM
to get closer and, eventually, unify. This is the case in the
supersymmetric extension of the standard model [minimal
supersymmetric standard model (MSSM)] where gauge
couplings actually unify at MGUT � 1016 GeV. Since
supersymmetry is also needed for the stability of the
weak scale versus the large GUT scale, supersymmetric
GUTs provide a very appealing framework for physics
beyond the SM. Nevertheless, we must face the fact that,
since GUT fields will appear only at very high energies
MGUT � 1016 GeV, GUTs will never be tested in a direct
way. These theories predict a big “desert” from the weak
to the GUT scale.

Here we will present a GUT scenario without the desert.
It has GUT fields of masses of the order of a TeV. This
scenario has been proposed in Refs. [1,2] and is based on
an extension of the MSSM to a five-dimensional theory
with the extra dimension compactified as in the Randall-
Sundrum model [3]. Differently from Ref. [3], however,
we will consider the MSSM gauge sector and its GUT
extension living in 5D with matter localized on a 4D
boundary. In this Letter we will show that, even though
the theory is five dimensional, gauge couplings get loga-
rithmic corrections at the one-loop level. Therefore the
theory predicts, as in the 4D MSSM case, the right val-
ues of the gauge couplings at low energies. We will also
show that proton decay operators are suppressed by the
high scale MGUT � 1016 GeV.

Different attempts to obtain theories that, while predict-
ing gauge-coupling unification as in the MSSM, do not
0031-9007�00�85(19)�4004(4)$15.00
have a desert between the weak and the GUT scale can be
found in Ref. [4].

2. The setup.—Our setup is based on the Randall-
Sundrum 5D model [3], where the bulk is a slice of
AdS5. This corresponds to a 5D nonfactorizable geome-
try with the fifth dimension y compactified on an orbifold,
S1��2, of radius R with 0 # y # pR. The orbifold
fixed points at y� � 0 and y� � pR are 4D boundaries
of the five-dimensional space-time. The metric is given
by [3]

ds2 � e22kyhmndxmdxn 1 dy2, (1)

where 1�k is the AdS curvature radius and hmn �
diag�21, 1, 1, 1� with m � 1, . . . , 4. The fundamental
scale in the 5D theory, M5, is related with the 4D Planck
mass, MP , by M3

5 � kM2
P (for R . 1�k). We assume that

all the scales are of roughly the same order of magnitude
k � M5 � MP , with the radius of the extra dimension
slightly larger, R � 11�k. The effective scales on the two
boundaries are very different. On the y� � 0 boundary
the effective scale is MP , while on the y� � pR boundary
this is given by ke2kpR � TeV (for the assumed value
R � 11�k). We will hence call these two boundaries the
MP boundary and the TeV boundary, respectively.

3. One-loop corrections to the gauge propagator at
low energies.— Let us consider a 5D gauge boson [1,5],
AM�x, y�, with M � �m, 5�, living in the slice of AdS5 de-
scribed above. We will work in the gauge A5�x, y� � 0,
so we only have to consider Am�x, y�. At energies be-
low the Kaluza-Klein (KK) masses, only the massless zero
mode of the photon is relevant. This is given by [1,5]
Am�x, y� � 1p

pR
A�0�

m �x� 1 · · · . This corresponds to a 4D
massless state with a y-independent wave function. We
want to calculate the one-loop corrections to the propaga-
tor of this massless gauge boson. For simplicity, we will
consider a 5D scalar QED theory, and calculate the correc-
tions generated by a 5D scalar f with charge 1 and even
under the �2. We will regularize this theory with a 5D
Pauli-Villars (PV) field F of mass L. This mass corre-
sponds to the cutoff of the theory that we will take to be
L & k. Let us decompose the 5D scalar fields f and F

in KK modes. This has been done in Refs. [2,6]. For a
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5D scalar particle of mass M, the approximate KK mass
spectrum for M , k is given in Table I.

We have defined the n � 0 mode as the mode that be-
comes massless in the limit M ! 0. For M of order k, this
mode becomes heavier than some of the KK states since
mKK � pke2kpR ø k for R . 1�k. This is very differ-
ent from compactifications in a slice of flat space where
the n � 0 mode (defined as explained above) is always
the lightest state. For the scalar f and the PV field F

we can obtain the KK spectrum using Table I with M � 0
and M � L, respectively. From this KK decomposition
we can already infer the magnitude of the quantum cor-
rections. For each KK mode of the field f there is a KK
mode of the PV field whose mass acts as a cutoff scale.
Since the masses of the KK modes of f and F are of the
same order of magnitude, we do not expect large correc-
tions from them. Nevertheless, the zero mode of the PV
field is very heavy, L�

p
2, in contrast with the zero mode

of f that is massless. Therefore we expect a large cor-
rection coming from this large mass splitting of the zero
modes that will reproduce the quantum corrections of an
ordinary 4D theory.

To see this explicitly, let us now calculate the one-loop
contribution from the scalar f to the propagator of the
photon A�0�

m . Defining the photon self-energy by Pmn�q� �
�q2hmn 2 qmqn�P�q�, we find, at zero momentum, that
the one-loop contribution is given by

P�0� �
b0

8p2 ln
m

f
0

mF
0

1
bKK

8p2

X̀
n�1

ln
m

f
n

mF
n

, (2)

where m
f
0 and m

f
n are, respectively, the masses of the zero

mode and n-KK mode of the field f, and similarly for F.
We denote by b0 and bKK the beta-function coefficients
of the zero mode and KK modes, respectively. In the
example here we have b0 � bKK � 1�3. Using Table I
with M � 0 and M � L, respectively, for f and the PV
field F, we obtain

P�0� �
b0

8p2 ln
m

L
1

bKK

8p2

3
Z ekpR

1
dn ln

µ
n 1 1�4

n 1 1�4 1 L2��8k2�

∂
, (3)

where as usual we have introduced an infrared cutoff
m, and we have replaced the sum over n by an integral.
Evaluating the integral and considering that L & k, we

TABLE I. Approximate KK mass spectrum of a 5D scalar of
mass M. We have defined a �

p
4 1 �M2�k2� and mKK �

pke2kpR . We have neglected corrections to the spectrum of
O �1�n�. KK modes with masses close to M or k can have devia-
tions of O �1� in their masses from the values given here. Since
these deviations only affect a few KK, they will be neglected.

n � 0 n � 1 to n & ekpR n * ekpR

KK masses M�
p

2 �n 1 a
2 2 3

4 �mKK nmKK
obtain

P�0� �
b0

8p2 ln
m

L
1

bKK

64p2

L2

k2 ln
5mKK

4pk
. (4)

For m ø L , k the KK contribution is small and can
be neglected. We then obtain that the contribution to
the gauge boson propagator is dominated by the zero
mode and gives exactly the same contribution as in four
dimensions:

P�0� �
b0

8p2 ln
m

L
. (5)

It is important to see if the result of Eq. (5) can be under-
stood as a running of the gauge coupling similar to the 4D
case. Of course, this cannot be the case if matter is lo-
calized on the TeV boundary, since on that boundary our
effective scale (cutoff scale) is TeV, and above this energy
effects must be considered from the fundamental (string)
theory. Nevertheless, if matter is localized on the MP

boundary, where the effective scale is MP , we will show in
the next section that the effective gauge couplings can be
considered to run logarithmically with the energy similarly
to the 4D case.

4. The 5D gauge propagator at high energies.— In or-
der to understand what is the behavior of the theory at
energies above the TeV, we will derive here the 5D propa-
gator of the gauge boson. Since we are interested in the
propagator at high energies from the point of view of the
MP boundary, we will consider the limit R ! `.

Let us take the gauge A5�x, y� � 0 and consider
only the transverse part of Am�x, y�, i.e., we impose
≠mAm�x, y� � 0. It is shown in Ref. [7] that the trans-
verse part decouples from the nontransverse part in the
equations of motion. Moreover, only the propagator of the
transverse part is relevant to sources localized on the MP

boundary since the current there is transverse, ≠mJm � 0.
Following similar steps to those in the graviton case [8,9],
we want to calculate the Green function for the gauge
boson defined as

Am�x, y� �
Z

d4x0 dy0 p2g G�x, y; x0, y0�e2ky0

Jm�x0, y0� ,

(6)

with ≠mJm � 0. It can be shown that ek� y1y0�G�x, y; x0, y0�
is also the Green function of a scalar with mass 23k2 1

2kd� y� [2]. Let us change the extra dimensional coordi-
nate to z � eky�k. Taking the 4D Fourier transform of the
Green function

G�x, z; x0, z0� �
Z d4p

�2p�4 eip�x2x0�Gp�z, z0� , (7)

we have that Gp�z, z0� must satisfy the equation

∑
≠2

z 2
1
z

≠z 2 p2

∏
Gp�z, z0� � zkd�z 2 z0� . (8)
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Solving Eq. (8) with the Neumann boundary condition on the MP boundary, we find

G�x, z; x0, z0� �
ipk

2
zz0

Z d4p
�2p�4 eip�x2x0�

"
J0�ip�k�

H
�1�
0 �ip�k�

H
�1�
1 �ipz�H�1�

1 �ipz0� 2 J1�ipz,�H�1�
1 �ipz.�

#
, (9)
where H�1�
n � Jn 1 iYn is the Hankel function of order n,

Jn and Yn are Bessel functions, and we have defined z.

(z,) as the greater (lesser) of z and z0. In the case where
the coordinate z0 is on the MP boundary, z0 � 1�k, the
Green function simplifies to

G

µ
x, z; x0,

1
k

∂
� 2ikz

Z d4p
�2p�4 eip�x2x0� 1

p
H

�1�
1 �ipz�

H
�1�
0 �ip�k�

.

(10)

We are interested in the limit r � jx 2 x0j ¿ 1�k where
the Green function is dominated by the small-momentum
values of the Fourier transform �p ø k� and the Han-
kel function H

�1�
0 �ip�k� is approximately H

�1�
0 �ip�k� �

i
2
p �ln p

2k 1 g� 1 O �p2

k2 �.
Let us now study the Green function of Eq. (10) in two

different limits. First let us consider the propagator at
large z, z ¿ r . In this case we find a falloff of the Green
function

G

µ
x, z ¿ r; x0,

1
k

∂
�

k
z2 ln�kz�

(11)

that is similar to the graviton case [8,9]. Equation (11)
implies that at large momentum p * 1�z � ke2ky the MP

boundary decouples from the TeV boundary. Let us now
consider the opposite limit, r ¿ z, that also corresponds
to the case when z � 1�k, i.e., the gauge propagator on
the MP boundary. In this case we have

G

µ
x,

1
k

; x0,
1
k

∂
� k

Z d4p
�2p�4 eip�x2x0� 1

p2 ln�p�k�
.

(12)

From Eq. (12) we can derive the static potential on the MP

boundary:

V �r� �
k
r

1
ln�kr�

. (13)

We see that it differs from the Coulomb potential in 4D by
a logarithmic term. It means that the gauge coupling on
the MP boundary grows, at the tree level, logarithmically
with the energy. This is in contrast with 5D theories in
flat space where at the classical level the coupling grows
linearly with the energy. In a theory with finite R this
“running” will be present at energies above the mass of the
first KK mode �mKK � pke2kpR (below mKK we have
a single massless gauge boson as in 4D). We then have

g2�p . mKK� � g2�p � mKK�
pkR

ln�k�p�
. (14)

This mild logarithmic evolution of the gauge coupling al-
lows us to go to high energies without entering in the
strong coupling regime. We must stress that this running
of the gauge coupling is a tree-level effect, not a quantum
one. As a consequence, it will be universal for the differ-
4006
ent groups of the SM and will not affect gauge-coupling
unification.

From the tree-level behavior of the propagator in Eq. (9),
we learn that the theory remains weakly coupled for p &

1�z. This suggests that the theory can be renormalized
as long as we keep our cutoff scale below 1�z, i.e., L &

ke2ky . Notice that this cutoff scale depends on the position
in the extra dimension. This should be expected in a the-
ory with the metric (1), since the effective scale of the 4D
space-time at the position y is given by �ke2ky . Using the
cutoff L � ke2ky , we can calculate quantum corrections
in a very simple way. We just need the 5D propagators for
r . z. For the case of the 5D massless scalar discussed in
the previous section, the propagator behaves as in 4D [8,9],
k

R
d4p��2p�4�1�p2�, giving then the same one-loop cor-

rection to the gauge coupling as in 4D.
5. GUTs in a slice of AdS5.— Let us now proceed to

show that theories with gauge bosons in a slice of AdS5 can
have gauge-coupling unification. We will take a top-down
approach. We will assume that we have a supersymmetric
GUT in the slice of AdS5 and show that this theory, when
broken to the MSSM group, leads to a successful predic-
tion for the gauge couplings at low energies.

As a toy example, let us consider an SU(5) theory.
Because of the �2 orbifold symmetry, the massless gauge
sector of this theory consists of a N � 1 vector multiplet
[2]. They contain the SM gauge bosons plus the GUT
gauge bosons, X and Y , that complete the SU(5) represen-
tation. The KK spectrum consists of N � 2 vector mul-
tiplets with masses ��n 2

1
4 �mKK. Let us now consider

that on the MP boundary we have a chiral supermulti-
plet, in the 24 representation of SU(5), whose scalar gets
a vacuum expectation value (VEV) equal to MGUT �
1016 GeV (slightly below k � MP) breaking the SU(5)
group down to the MSSM. This can be achieved in the
same way as in ordinary 4D SU(5) theories, since our
theory on the boundary is 4D N � 1 supersymmetric.
It is easy to calculate the KK spectrum of the resulting
theory. The n � 0 MSSM gauge bosons remain mass-
less, while the GUT gauge bosons, X and Y , have masses
MX,Y � MGUT. (More precisely, we find that MX,Y
is determined by the equation MX,Y �ln�MX,Y �2k� 1

g 1 1�2� 1 M2
GUT�MX,Y � 0.) The KK mass spectrum

(n $ 1), however, is not modified by the VEV of the
24 [up to corrections of O �M2

n�k2�] and therefore the
KK modes approximately respect the SU(5) symmetry.
Consequently, only the zero modes (as we claimed before)
will give a relative one-loop contribution to the SM gauge
couplings which, at energies m, is given by

1
ai

�
1

aj
1

bi 2 bj

2p
ln

MGUT

m
, (15)
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where bi is the contribution of the massless modes to
the beta-function coefficient of the MSSM gauge group
i. Therefore, in order to have the same predictions for the
gauge coupling as in 4D supersymmetric GUTs, we must
demand that the massless states of the theory be those of
the MSSM. This will be the case of the gauge sector, as we
already explained. For the Higgs sector we can, as usual,
assume that they arise from a 5 and 5̄ of SU(5). Since we
need to have only the SU�2�L-doublet light, we will need a
mechanism that provides a doublet-triplet mass splitting in-
side the 5 and 5̄. Several mechanisms exist in the literature
for 4D. It is not clear if these mechanisms can also work
in 5D. Nevertheless, we can rely on these mechanisms by
assuming that the Higgs live on the MP boundary.

Finally, we must implement the matter sector. Since they
form complete SU(5) multiplets, 5̄ and 10, they are irrele-
vant to gauge-coupling unification (they will not contribute
at the one-loop level to the relative corrections to the gauge
couplings). The matter sector, however, must satisfy im-
portant constraints from proton decay. Since there are very
light KK modes of the X and Y bosons (mKK � TeV), we
must worry about proton decay operators induced by these
modes. If we analyze the y-dependent wave function of
these modes, however, we find that they are peaked on
the TeV boundary [1]. Therefore, proton decay constraints
can be satisfied by just placing the matter sector on the MP

boundary. In this case, even if we sum over the full KK
tower of the X and Y bosons, we obtain that the strength
of the dimension-six proton decay operator is given by

X
n

g2
n

1
m2

n
� g2 pkR

M4
GUT

Z MGUT

0
m dm � g2 pkR

2M2
GUT

,

(16)

where gn and mn are, respectively, the coupling to the
MP boundary and the mass of the KK of the X, Y bosons
that can be derived following Ref. [2]. We see that the
result is similar to that in a 4D theory where one finds
g2�M2

GUT. The operator (16) is, however, slightly larger
in our theory than in 4D theories because of the factor
pkR in Eq. (16). This enhancement is due to the fact that
the gauge coupling grows (at tree level) with the energy
according to Eq. (14). Notice that, at the scale MGUT, the
theory is close to the strong coupling regime. This is why
we expect in these GUTs a proton decay rate for p ! pe
closer to the experimental limit than in 4D GUTs.

Up to now we have just assumed that mKK (approxi-
mately the mass of the lightest KK state) is an independent
parameter of the theory that we have taken to be close to the
weak scale by choosing R � 11�k. Nevertheless, it would
be interesting to relate mKK with the weak scale. One way
to do this is by associating the supersymmetry-breaking
scale with mKK. A realization of this is given in Ref. [2].
By assuming different boundary conditions for bosons and
fermions on the TeV boundary, we can get a fermion-
boson mass splitting of O �mKK�. This breaks supersym-
metry and induces a Higgs mass of O �mKK� [10]. If this
mass is negative, this will trigger electroweak symmetry
breaking. This scenario therefore links the scale mKK with
the weak scale.

Although this theory resembles the ordinary 4D super-
symmetric GUT, it has very different implications at TeV
energies. While 4D supersymmetric GUTs predict that
only the MSSM fields have masses of the order of the weak
scale, with a big desert up to the GUT scale, our theory has
plenty of new physics at the TeV. There are the KK states
not only of the SM but also of the GUT fields and gravi-
ton. It has been shown in Ref. [1] that the KK modes of
the SM gauge bosons have sizable couplings to the SM fer-
mions living on the MP boundary (� 0.2g) and therefore
they could be seen as resonances in TeV colliders. On the
other hand, the KK modes of the GUT fields couple very
weakly to the MP boundary (this is why the proton decay
rate is small). These modes, however, can be produced at
TeV energies by processes mediated by virtual SM gauge
bosons (that live in the 5D bulk and propagate between
the two boundaries). At these energies, also graviton KK
modes can be produced. In fact, since the effective scale
on the TeV boundary is �ke2kpR � TeV, quantum grav-
ity or string effects can be important and possible to test.
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