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We analyze the properties of seven community food webs from a variety of environments, including
freshwater, marine-freshwater interfaces, and terrestrial environments. We uncover quantitative unifying
patterns that describe the properties of the diverse trophic webs considered and suggest that statisti-
cal physics concepts such as scaling and universality may be useful in the description of ecosystems.
Specifically, we find that several quantities characterizing these diverse food webs obey functional forms
that are universal across the different environments considered. The empirical results are in remarkable
agreement with the analytical solution of a recently proposed model for food webs.
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In natural ecosystems species are connected through
trophic relationships [1,2] defining intricate networks
[3–6], the so-called food webs. Understanding the
structure and mechanisms underlying the formation of
these webs is of great importance in ecology [7]. For
this reason, much research has been done in constructing
empirical webs and uncovering unifying patterns describ-
ing their structure [7,8]. However, in the past decade
the construction of larger and more complete food webs
clearly indicated that the previously reported unifying
patterns do not hold for the new webs [9,10]. Indeed, the
complexity of the new webs has rendered quite difficult
the challenge to obtain quantitative patterns that substitute
the old ones.

Here, we analyze the properties of seven detailed com-
munity food webs from a variety of environments —in-
cluding freshwater habitats, marine-freshwater interfaces,
and terrestrial environments. Remarkably, we uncover
quantitative unifying patterns that describe the properties
of the diverse trophic webs considered and capture the
random and nonrandom aspects of their structure. Specifi-
cally, we find that several quantities —such as the distribu-
tions of the number of prey, number of predators, and num-
ber of trophic links —characterizing these diverse food
webs obey robust functional forms that depend on a single
parameter, the linkage density z.

In our analysis, we use results obtained for complex net-
works [6] and for a recent model of food web formation,
the “niche model” of Ref. [1]. We first describe the theo-
retical model and its predictions: An ecosystem with S
species and L trophic interactions between these species
defines a network with S nodes and L directed links. In
the niche model, one first randomly assigns species i �
1, . . . , S to “trophic niches” ni which are mapped into the
interval [0,1]. A species i is characterized by its niche pa-
rameter ni and by its list of prey. Prey are chosen according
to the following procedure: species i preys on the species
j with niche parameters nj inside a segment of length xni

centered in a position chosen randomly inside the inter-
-1 0031-9007�02�88(22)�228102(4)$20.00
val �xni�2, ni�. Here, 0 # x # 1 is a random variable
with probability density function px�x� � b�1 2 x��b21�

[1]. The values of the parameters b � �S2�2L 2 1� and
S determine the linkage density z � L�S of the food web,
and the directed connectance L�S2, which is a measure of
the fraction of the actual number of trophic links as com-
pared to the maximum possible number [1].

In the limit of large web sizes �S ¿ 1� and small
connectances �L�S2 ø 1�, one can derive analyti-
cal expressions for the distribution of the number of
prey k [11]. We consider the cumulative distribution
Pprey�k� �

P
k0$k pprey�k0� because it is less noisy than

the probability function pprey�k�. We obtain
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where E1�x� is the so-called exponential-integral function
[12]. Equation (1) predicts that the distribution of the
number of prey decays exponentially for large k.

Also in the limit of large web sizes and small con-
nectances, one can derive analytical expressions for the
distribution of the number of predators m [11]. We obtain

Ppred�m� �
1
2z

X̀
m0�m

g�m0 1 1, 2z� , (2)

where g�m 1 1, z� is the so-called “incomplete gamma
function” [12]. To gain intuition about the functional form
(2), note that ppred�m� is approximately a step function: It
is constant for m , z, and then it decays with a Gaussian
tail for m � 2z [11]. It follows then that the cumulative
distribution Ppred�m� decreases linearly as 1 2 m�z for
m , z and decays as the error function [12] for m � 2z.

Next, we analyze the empirical data for seven food webs
with 25 to 92 trophic species. These webs have linkage
densities 2.2 , z , 10.8, and connectances in the inter-
val 0.06–0.31 [1]. We first investigate the distributions of
the number of prey and number of predators. Figures 1a
and 1b compare the cumulative distributions of the num-
ber of prey and number of predators for species in the
© 2002 The American Physical Society 228102-1
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FIG. 1. Cumulative distribution (a) Pprey of the number of prey
k, and (b) Ppred of the number of predators m for the St. Martin
Island web. The data agree well with the analytical predictions
of Eqs. (1) and (2) (indicated by the solid lines), without any
free parameters for fitting as z is determined empirically.

St. Martin Island web [13] with our analytical predictions,
and suggest that these distributions are well approximated
by Eqs. (1) and (2) without any free parameters for fitting.
Equations (1) and (2) and the results of Fig. 1 suggest the
possibility that Pprey and Ppred obey universal functional
forms that depend only on z.

Indeed, Eq. (1) predicts that Pprey�k� depends only on
k�2z. So, we plot in Figs. 2a and 2c the cumulative dis-
tributions Pprey�k� versus the scaled variable k�2z for the
food webs and find that the data collapse onto a single
curve, supporting the possibility that Pprey obeys a univer-
sal functional form [14].

The scaling of Ppred�m� is not as straightforward. Equa-
tion (2) indicates that “true” scaling holds only for m�2z ,

1�2, while for larger values of m�2z there is a Gaussian
decay of the probability function with an explicit depen-
dence on z. However, the decay for m . 2z is quite fast
and, to first approximation, not very relevant. Thus, we
plot Ppred�m� versus the scaled variable m�2z for the food
webs and indeed find a collapse of the data onto a single
curve for m�2z , 0.7 (Figs. 2b and 2d) [15].

Figure 2 supports the strong new hypothesis that the
distributions of the number of prey and the number of
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FIG. 2. We test the “scaling hypothesis” that the distributions of the number of prey (predators) have the same functional form
for different food webs. (a) Cumulative distribution Pprey of the scaled number of prey k�2z for all the webs except Ythan [14,15].
The solid line is the prediction of Eq. (1). The data “collapses” onto a single curve that agrees well with the analytical results.
(b) Cumulative distribution Ppred of the scaled number of predators m�2z for all the webs but Ythan [14,15]. The solid lines are the
analytical predictions of Eq. (2) for the extremal values of z in the empirical data. Semilogarithmic plot of the scaled distributions
of (c) number of prey and (d) number of predators.
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predators follow universal functional forms. To improve
statistics and better determine the specific functional form
of these distributions, one may pool the scaled variables,
k�2z and m�2z, from the different webs [14,15] into single
distributions, pprey and ppred, respectively. Figures 3a and
3b show the cumulative distributions of the scaled number
of prey and scaled number of predators. Note that the dis-
tributions are well approximated by Eqs. (1) and (2) even
though there are no free parameters to fit in the analyti-
cal curves. These results are analogous to the finding of
scaling and universality in physical, chemical, and social
systems.

Figure 3c plots the probability densities for the distri-
bution of the number of prey and number of predators. It
is visually apparent that both distributions are different.
This is confirmed by the Kolmogorov-Smirnov test which
rejects the null hypothesis at the p , 0.001 level. The dis-
tribution of the number of prey decays exponentially, and
the distribution of the number of predators is essentially a
step function with a fast decay.

One can perform a similar analysis for the distribution
plink of the number of trophic links r � k 1 m. As for
the number of prey or number of predators, the data from
the different webs, upon the scaling r�2z, collapse onto a
single curve, further supporting the hypothesis that scal-
ing holds for food web structure. To better determine the
specific functional form of plink�r�, we pool the scaled
variables, r�2z, from all webs except Ythan into a single
distribution (Fig. 3d). We find that plink�r� has an expo-
nential decay for r�2z ¿ 1, in agreement with our theo-
retical calculations. Therefore, there is a characteristic
scale for the linkage density, i.e., food webs do not have a
scale-free structure, in contrast to reports in recent studies
of food web fragility [17].

Next, we test if the scaling hypothesis suggested by
the analysis of distribution of trophic links also applies
to other quantities characterizing food web structure. We
consider two quantities with ecologic implications: (i) the
average trophic distance d between species [4] (which is
228102-2
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FIG. 3. Cumulative distributions (a) Pprey of the scaled number of prey, k�2z, and (b) Ppred of the scaled number of predators,
m�2z, for the pooled webs (all except Ythan). The solid lines are the analytical predictions [Eqs. (1) and (2)] for the case z � 7.5,
and the dashed lines are for numerical simulations of the niche model [1] with S � 244 (the size of the pooled data) and z � 7.5
(the average degree for the pooled webs). (c) Comparison of the probability density functions of the scaled number of prey and
the number of predators. It is visually apparent that the two distributions have distinct functional forms. (d) Probability density
function of the number of trophic interactions per species r � k 1 m pooled for all webs except Ythan. The solid line is obtained
by numerically convolving the distributions [Eqs. (1) and (2)] while the dashed line is obtained from numerical simulations of the
niche model for S � 1000 and z � 5, i.e., the limit of large web sizes and small connectances for which the analytical curves were
derived [11]. The tail of the distribution decays exponentially, indicating that food webs do not have a scale-free structure.
the number of species needed to trophically connect two
given species) and (ii) the clustering coefficient C (which
counts the fraction of species’ triplets that form fully con-
nected triangles). The latter relates to the compartmental-
ization in an ecosystem while the former relates to a typical
food-chain length.

In Fig. 4a, we compare our numerical results for the
average trophic distance d for the niche model [1] with
the values calculated for the food webs analyzed. We find
that d increases with web size as log S both for the model
and for the data. This logarithmic increase is the expected
behavior for a random graph; however, the slopes mea-
sured for the data and the model are different from the
value predicted for a random graph [6], suggesting that
there is a degree of “order” to the connectivity of the food
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web which may encode the mechanisms of food web as-
sembly. Remarkably, this characteristic of the empirical
food webs appears to be captured by the niche model [1].
The results of Fig. 4a also support the scaling hypothe-
sis and suggest that the average distance in a food web
may also follow a unique functional form for different
food webs.

Figure 4b shows our results for the clustering C of the
food webs studied and for the niche model [1]. We find that
the data is well approximated by the model predictions, and
that C decreases to zero as 1�S as web size S increases.

The major finding of this paper is the uncovering of uni-
fying quantitative patterns characterizing the structure of
food webs from diverse environments. Specifically, we
find that the distributions of the number of prey, number
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FIG. 4. (a) Scaled average trophic distance d between species versus linkage density z. We compare the data with the numerical
simulations of the niche model [1] for web sizes S � 100, 500, and 1000 (thin solid lines). We find a logarithmic increase of the
average distance with web size S, in good agreement with the model predictions. We also compare our results with the prediction for
a random graph with the same linkage density as the webs studied (dashed line). The logarithmic dependence of d�S� agrees with
the expectation for a random graph; however, the coefficients of the logarithmic increase differ from the predicted values, indicating
that food webs have a more complex structure than that predicted by a random graph. (b) Double-logarithmic plot of the clustering
coefficient C versus the scaled web size S�2z. We compare the data with numerical results for the niche model [1] for three values
of the linkage density in the empirically relevant range (z � 2.5, 5, and 10). We find that the clustering coefficient of the food webs
is inversely proportional to the web size S, in good agreement with the model predictions and with the asymptotic behavior predicted
for a random graph [4].
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of predators, and number of links of most of the best stud-
ied food webs seem to collapse onto the same curves after
rescaling the number of links by its average number z. Re-
markably, the corresponding curves are in agreement with
the analytical predictions of the niche model. Therefore,
these distributions can be theoretically predicted merely
by knowing the food web’s linkage density z, a parameter
readily accessible empirically. Regularities such as these
are interesting as descriptors of trophic interactions inside
communities because they may enable us to make predic-
tions in the absence of high-quality data, and provide in-
sight into how communities function and are assembled.

Our results are of interest for a number of other rea-
sons. First, food webs do not have a scale-free distribu-
tion of the number of links (total, incoming or outgoing).
This is surprising since one could expect most species to
try to prey on the most abundant species in the ecosys-
tem (an “abundant-get-eaten” type of mechanism). Such a
preferential attachment would lead to a scale-free distribu-
tion of links; instead, we find a single-scale distribution,
suggesting that species specialize and prey on a small
set of other species. Second, the results of Figs. 4a and
4b support the scaling hypothesis and indicate that there
is very little, if any, compartmentalization in ecosystems
[18], suggesting the possibility that ecosystems are highly
interconnected and that the removal of any species may in-
duce large disturbances. Third, the structure of food webs
is different from many other biological networks in two
important aspects: the links are unidirectional and the in-
and out-degree distributions are different. These two facts
are a result of the directed character of the trophic inter-
actions and of the asymmetry it creates. Interestingly, the
niche model captures this asymmetry in its rules, which
may explain its success in explaining the empirical results.

Our findings are surprising for two reasons: (i) they hold
for the most complete food webs studied, in contrast to
previously reported patterns [7], and (ii) they support the
possibility that fundamental concepts of modern statistical
physics such as scaling and universality —which were de-
veloped for the study of inanimate systems —may also be
applied in the study of food webs—which comprise an-
imate beings. Indeed, our results are consistent with the
underlying hypothesis of scaling theory, i.e., food webs
display universal patterns in the way trophic relations are
established despite apparently “fundamental” differences
in factors such as the environment (e.g., marine versus ter-
restrial), ecosystem assembly, and past history.
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