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We present the optimal scheme for estimating a pure qubit state by means of local measurements
on N identical copies. We give explicit examples for low N. For large N, we show that the fidelity
saturates the collective measurement bound up to order 1=N. When the signal state lays on a meridian of
the Bloch sphere, we show that this can be achieved without classical communication.
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as 3D and 2D. In the former, no prior knowledge of ~nn is
assumed whereas, for the latter (2D), ~nn is known to lay on

circle in 2D). Note that in both situations we have as-
sumed no further prior knowledge of j i.
State estimation is a central topic in quantum mechan-
ics. Quantum measurements give only partial informa-
tion about the state of the system under consideration. If
an unlimited number of copies of a given state were avail-
able, one could in principle determine exactly this state,
provided an infinite number of measurements were per-
formed. In the real world, we have access to a limited
number of copies and time for a finite number of mea-
surements, and the best we can achieve is an estimate of
the state. It is, thus, of great importance to design optimal
strategies which maximize the knowledge one can ac-
quire about a general quantum state.

Over the past few years, a great deal of work has been
devoted to the optimal estimation of states and many im-
portant features have been recognized [1–6], one of the
most interesting ones being that collective measurements
(CM) are more informative than individual ones [1,2].
The experimental implementation of such measurements
seems, though, quite involved. In practice, individual von
Neumann measurements are far easier to perform. More-
over, one can show that optimal individual measurements
are of this type in the situations considered in this Letter
[7]. In the most general local framework one is allowed
to design each individual measurement according to the
outcome of the previous ones. One can further assume
that the copies of the system may have never interacted
in the past and may be macroscopically separated. We
call this a LOCC (local operations and classical commu-
nication) scheme because classical communication is es-
sential in this situation. This is in contradistinction to
collective measurements, for which the role of classical
communication is played by the quantum entanglement
of the measuring devices. In the LOCC context, some
numerical simulations and experimental tests have been
performed recently [8,9].

In this Letter, we will deal with pure states of a single
qubit j i. To each one of these states it corresponds a
unique unit vector ~nn on the Bloch sphere; i.e., j ih j �
�1� ~nn � ~���=2, where ~�� are the usual Pauli matrices. We
will focus on two situations to which we will simply refer
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a meridian of the Bloch sphere. Our aim is to design
LOCC measurements such that we can obtain the best
estimate of ~nn and, hence, of j i. We will investigate how
good these LOCC measurements are as compared to the
collective ones. For the latter, the mean fidelity F is
commonly used as a figure of merit and many results
can be found in the literature — in particular, the large N
asymptotic behavior of F is now known for the most
interesting approaches [2,4].

For N identical copies of j i optimal CM lead to a
fidelity that behaves as FCM 	 1
 1=N for large N in 3D
[2]. From [10,11], one can likewise compute the asymp-
totic fidelity in 2D, which is FCM 	 1
 1=�4N�. These
results are the absolute upper bound for any measurement
scheme; therefore within the LOCC framework the fidel-
ity F cannot approach unity at a rate larger than 1
 1=
�4N� in 2D (1
 1=N in 3D) [5]. In this Letter, we dem-
onstrate that, rather unexpectedly, this asymptotic behav-
ior can be achieved in 2D with just local measurements
and no classical communication. In 3D, classical com-
munication seems necessary to saturate the asymptotic
CM bound; however, we have verified that for the optimal
approach the fidelity reaches the CM regime very fast (for
N * 12). Therefore, CM do not provide a significant im-
provement over local measurements.

The estimation procedure goes as follows. After the N
measurements (one on each copy) have been performed, a
list of outcomes is obtained, which we symbolically
denote by x. Based on x, an estimate for j i can be
guessed, j guess�x�i. The fidelity is then defined as the
overlap

jh j guess�x�ij
2 �

1� ~nn � ~MM�x�
2

� fn�x�; (1)

where, as above, ~nn is the unit vector on the Bloch sphere
corresponding to the state j i and ~MM�x� is that corre-
sponding to j guess�x�i. The average fidelity can be written
as F � hfi �

P
x

R
dnfn�x�Pn�x�, where Pn�x� is the

probability of getting the outcome x if the Bloch vector
is ~nn, and dn is the measure on the sphere in 3D (on the unit
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Any local von Neumann measurement is represented
by two projectors O�� ~mm� � �1� ~mm � ~���=2, where ~mm is a
unit Bloch vector characterizing the measurement (in a
spin system, e.g., ~mm is the orientation of a Stern-Gerlach).
The set of outcomes x can be expressed as an N-digit
binary number x � iNiN
1 � � � i2i1, where ik (� 0; 1) in-
dicates that, upon measuring on the kth copy, this is
projected on the O�
�ik ~mmk� projection space. The most
general local measurement is realized when we allow
~mmk�1 to depend also on the list of previous outcomes
ikik
1 � � � i2i1 � xk (hence, x � xN). We thus write ~mm�xk�
instead of ~mmk. Note that ~mm�xk� satisfy

~mm�1xk
1� � 
 ~mm�0xk
1�: (2)

The fidelity of a general LOCC scheme can be written as

F �
X2N
1

x�00���0

Z
dn

1� ~nn � ~MM�x�
2

YN
k�1

1� ~nn � ~mm�xk�
2

; (3)

where the last product is the probability Pn�x�.
The optimal LOCC scheme is the one that maximizes

(3) over the Bloch vectors ~mm�xk� and ~MM�x�. Using the
Schwartz inequality, it is straightforward to see that the
best guess ~MM�x� must be proportional to the vector

~VV �x� �
Z
dn ~nn

YN
k�1

1� ~nn � ~mm�xk�
2

; (4)

i.e., ~MM�x� � ~VV �x�=j ~VV �x�j. In this case, the maximum
fidelity reads

F �
1

2

�
1�

X
x

j ~VV �x�j
�
: (5)

For a fixed set of measurements fm�xk�g (optimal or not)
and a given set of outcomes x, the guess (4) provides the
best estimate of the signal state. This simple and general
result does not seem to be conveyed in the literature. We
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next show how (4) can be used to improve the quality of
state estimation schemes based on local measurements.

Consider N � 2N copies of the state j i whose vec-
tor ~nn is known to be on the equator (xy plane) of the Bloch
sphere (2D case). Since the expectation value of ~�� is
h j ~��j i � ~nn, the central limit theorem strongly suggests
to adopt the following scheme. Let ~ee1, ~ee2 be the two unit
vectors pointing along the x and y axes, respectively. For
each i ( � 1; 2), perform N measurements of the observ-
able �i � O� ~eei� 
O�
 ~eei�. Assume we have obtained
N �i times the outcome �1 [consequently, N �1
 �i�
times the outcome 
1]. One is driven to propose ~MM /P
i �i ~eiei �

P
i�1
 �i��
~eei� (the mean value of these out-

comes) as the Bloch vector of j i. More precisely,

Mi��� �
2�i 
 1�����������������������������P
j�2�j 
 1�2

q : (6)

By doing so, the limiting behavior M 


!N!1
h j ~��j i � ~nn

is ensured by the central limit theorem. With the tech-
niques described below, one can show that the fidelity for
the guess (6) has the asymptotic expression

FCL � 1

3

8

1

N
� . . . ; (7)

where CL stands for central limit.
According to (4), however, this guess cannot be opti-

mal. Let us show that indeed this scheme can be improved
using (4) instead of (6). In this particular situation,
Eqs. (5) and (4) read FOG � �1�

P
� j ~VV ���j�=2 (OG

stands for optimal guess) and

~VV ��� �
Y2
i�1

�
N

N �i

�Z
dn ~nn

�
Y2
j�1

�
1� nj

2

�
N �j

�
1
 nj

2

�
N �1
�j�

; (8)

where we have used the shorthand notation � � ��1; �2�.
To obtain the large N limit of FOG, we use the formula
�

N
�N

�
q�N �1
 q��1
��N !

1�������������������������������
2�N q�1
 q�

p � exp

�


N

2

��
 q�2

q�1
 q�

�
f1�O�1=

�������
N

p
�g; (9)
with q � �1� nj�=2, and approximate the sum over the
outcomes � by an integral. Performing the change of
variables ri � 2�i 
 1, we get

X
�

j ~VV ���j ’
Z
d2rj ~VV j �

Z
d2r

�������
Z
dn ~QQe
�N =2�E

�������; (10)

with E�
P

2
i�1�ni
 ri�2=�1
n2i � and ~QQ � P~nn �

�N =2��
Q

2
i�1�1
 n2i �


1=2 ~nn. As it will become clear be-
low, the terms of order 1=

�������
N

p
neglected in these approxi-

mations give no contribution to the final answer. The
integral (10) will now be evaluated with the aid of the
saddle point technique. We use spherical coordinates and
write ~nn � �cos�; sin��, ~rr � r �cos�; sin��. For large N ,
the integrand peaks at r� 1, which suggests writing
r� 1��. We denote by �m or, equivalently, by ~nnm, the
location of the minimum of E, which can be computed
as a power series in � of the form �m � �� 1��
 2�2 � . . . . We next expand E and ~QQ as a power series
in t��
�m and write ~QQ � ~LL� ~MMt� ~RRt2 � . . . . The
exponential in (10) is seen to have the form

e
�N =2�E � e
�N =2�Ae
�N =2�Bt2e
�N =2��O�t3�; (11)

where 2B is the second derivative of E with respect to t,
and the last exponential factor can also be expanded in
277904-2
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powers of t. Neglecting contributions which vanish ex-
ponentially in N , one has

~VV �
Z
dn ~QQe
�N =2�E �

e�
N =2�A�����������������
2�N B

p

 
~LL�

~RR
N B

� . . .

!
;

(12)

where dn� d�=�2�� � dt=�2��. At this point, all the
coefficients can be expanded in powers of �, e.g., B�
B0 �B1�� . . . , R� R0 �R1�� . . . , and so on. Note,
however, that the expansion of A starts at order �2,
i.e., A � A2�2 �A3�3 � . . . . For ~QQ � ~nnP � ~nnmP�
� ~nn
 ~nnm�P, we readily note that (12) yields

~VV � ~nnm
Z
dnPe
�N =2�E�

~II
N

; (13)

where ~II=N is given by (12) with ~QQ � � ~nn
 ~nnm�P. We
have written a factor 1=N in the last term to make
explicit that this contribution is of order N 
1. Hence,
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j ~VV j �
Z
dnPe
�N =2�E�

~nnm � ~II
N

�O
�

1

N 2

�
; (14)

and we finally have up to O�1=N 2�,Z
d2rj ~VV j � 1


Z
d2r

Z
dnP�1
 ~nn � ~nnm�e


�N =2�E: (15)

The leading term (unity) comes from the first integral in
(14), which is straightforward to compute exchanging
the order of integration. Note also that the integral of
the leading term on the right-hand side of (9),R
d2rPexp�
N E=2�, is one, and so is the sum over �

on the left-hand side independently of N . This shows that
the terms of order 1=

�������
N

p
neglected in (10) indeed cancel.

The subleading term in (15) can be computed using the
general expression (12) where now Q� �1
 ~nn � ~nnm�P�
Rt2 �O�t3� (i.e., L�M� 0). Moreover, only the leading
terms in powers of � have to be retained, namely, A2, B0,
and R0 (in particular, we just need  1). This is so because
effectively O�t2� �O��2� �O�1=N �. The integral in
(15) is then
Z 2�

0

d�R0���������������������
2�N 3B3

0

q Z 1

0
drr exp

�


N A2

2
�r
 1�2

�
�

2�
N

Z 2�

0

d�
2�

R0

N
�����������
A2B

3
0

q ; (16)
where again terms vanishing exponentially as N ! 1
have been neglected. The coefficient  1 is computed to be
 1 � 
 cot2�. With this, B0 � 2, R0 � �N =2�� csc2�,
and A2 � 2 csc22�. The subleading term in (15) yields

1=�4N �, and substituting back in (5), we finally obtain

FOG � 1

1

4

1

N
� . . . (17)

(recall that N � 2N ). As announced, this fidelity is
larger than FCL. Moreover, it saturates the absolute upper
bound given by CM even though classical communication
has not been used. In this sense, the behavior of the most
basic local scheme (without classical communication) in
2D is qualitatively similar to that obtained from CM
provided the optimal guess (4) is used. Working along
the same line, we have computed the asymptotic fidelities
FCL and FOG in 3D. One has

FCL � 1

6

5

1

N
� � � � ; FOG � 1


13

12

1

N
� � � � ;

(18)

where again we note that FOG > FCL. Despite this im-
provement, the CM bound FCM � 1
 1=N is not satu-
rated, although the subleading term of FOG is only 8%
less than that of FCM.

Thus far, classical communication has not been ex-
ploited; i.e., the Bloch vectors ~mm�xk� were both x inde-
pendent and nonoptimal. We now turn to the full-fleshed
LOCC schemes. Hereafter, only the general case 3D will
be considered.
The first nontrivial case is N � 2. Here, x takes four
possible values, 00, 01, 10, and 11. There are three inde-
pendent vectors, namely, ~mm�0�; ~mm�00�; ~mm�01� [the other
three are obtained using Eq. (2)]. The first vector, ~mm�0�,
is arbitrary and we take ~mm�0� � ~zz. The optimal fidelity is
obtained by maximizing (5) with respect to ~mm�00� and
~mm�01�. A straightforward calculation givesX

x

j ~VV �x�j �
1

6

X
k�0;1

��������sin)0k2
��������

�������cos)0k2
�������
�
; (19)

where )x is the polar angle of the vector ~mm�x�. The
maximal value of (19) is attained for )00 � )01 � �=2.
Notice that )00 and )01 are maximized independently, so
~mm�00�, ~mm�01� do not need to be equal; they are required
only to be orthogonal to ~mm�0�. Substituting back in (5),
we find F�2� � �3�

���
2

p
�=6 (see also [8]). From Eq. (4), we

obtain the optimal guess

M�2��x� �
~mm�x2� � ~mm�x1����

2
p � ~ss�x�; (20)

hence, e.g., ~MM �2��01� �  ~mm�01� � ~mm�1��=
���
2

p
�

 ~mm�01� 
 ~mm�0��=
���
2

p
.

The case N � 3 is very similar. The optimal Bloch
vectors, ~mm�x1�, ~mm�x2�, ~mm�x3�, are found to be mutually
orthogonal. Since there is no further constraint, one
can choose the three fixed (i.e., independent of x) vectors
~mm�xk� � ~ekek , k � 1; 2; 3. This shows that for N � 3 (as
well as for N � 2) the optimal estimation schemes
based on local measurements do not require classical
277904-3
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communication. For each outcome x, the optimal guess
is ~MM�3��x� �  ~mm�x3� � ~mm�x2� � ~mm�x1��=

���
3

p
, which is a

straightforward generalization of ~MM �2��x�, and yields
F�3� � �3�

���
3

p
�=6. These results could somehow be anti-

cipated: If O� ~mm�j i � 0, we can only be sure that the
Bloch vector of j i is not 
 ~mm. Intuition suggests to use
the subsequent copies of j i to explore the plane orthogo-
nal to ~mm. Thus, the optimal Bloch vectors ~mm�xk� tend to be
mutually orthogonal.

The case N � 4 is more complex, since four mutually
orthogonal vectors cannot fit onto the Bloch sphere. The
solution exhibits some interesting features. First, the op-
timal Bloch vectors now depend on the outcomes of the
previous measurements. Therefore, classical communica-
tion does play a crucial role for N > 3. However, ~mm�x1� ?
~mm�x2� and, as before, one can choose ~mm�xi� � ~eei, for
i � 1; 2. For only the third and fourth measurements,
one really has to take different choices in accordance to
the sequence of the preceding outcomes. The Bloch vec-
tors of the third measurement can be parametrized by a
single angle � as ~mm�x3� � cos�~uu1�x� � sin� ~vv1�x�, where
~uu1�x� � ~mm�x1� � ~mm�x2� and ~vv1�x� � ~uu1�x� � ~ss�x� and
~ss�x� is defined in (20). The optimal value of this angle
is � � 0:502. We cannot give any insight as to why this
value is optimal. However, in agreement with our intui-
tion, ~mm�x3� ? ~ss�x�; i.e., the third measurement probes
the plane orthogonal to the Bloch vector one would guess
from the first two outcomes. Two angles are required to
parametrize the vectors of the fourth measurement. They
are given by ~mm�x4� � cos�~uu2�x� � sin� ~vv2�x�, where
~uu2�x� � ~ss�x� � ~mm�x3�, ~vv2�x� � cos- ~mm�x3� 
 sin-~ss�x�.
The optimal values of these angles are - � 0:584, � �
0:538, and the corresponding fidelity is F�4� � 0:8206.
This is just 1:5% lower than the absolute bound F�4�

CM �
5=6 � 0:8333 attained with CM. We also give the values
of the maximal LOCC fidelities for N � 5; 6. They are
F�5� � 0:8450 and F�6� � 0:8637. It is interesting to note
that, for N > 3, it pays to relax optimality at each step.
Hence, one-step adaptive schemes [8,9] are not optimal,
though the differences are very small; e.g., for N � 4,
F�4� > F�4�

adaptive � �15�
������
91

p
�=30 	 0:8180.

Having learned from the low N cases, we are in the
right position to compute the asymptotic fidelity of this
scheme. For that, we take inspiration in variational
methods as follows. Suppose we have performed a large
number N0 �

����
N

p
of measurements and obtained the

guess ~MM0. It is clear that the subsequent 2 !NN � N 
 N0

guesses will hardly differ from ~MM0. We, hence, sub-
stitute in (3) the ansatz ~MM�x� 	 ~MM0 cos!�
sin!� ~uu cos/� ~vv sin/�, where ~uu, ~vv are two unit vectors
which along with ~MM0 form an orthogonal bases, ! �  ����������������������������������������������������
�2�u 
 1�2 � �2�v 
 1�2

p
, tan/ � �2�v 
 1�=�2�u 
 1�,

and  is a variational parameter. As above, !NN�u ( !NN�v) is
277904-4
the number of times we obtain the outcome �1 when we
measure ~�� � ~uu ( ~�� � ~vv). Note that on average ! will be
small since we expect �u;v 	 1=2, and we need to retain
terms up to order !2. Putting all this together, one gets
from (3)

F * 1
 �1
  �2�1
 F0� 

 2

N 
 N0
� � � � ; (21)

where F0 is the optimal fidelity for N0 measurements and
the dots stand for subleading terms in inverse powers ofN
and N0. We readily see that the optimal choice is  � 1,
which leads to F 	 1
 1=N [12]. Hence, our LOCC
scheme does saturate the CM bound. Furthermore, nu-
merical analysis reveals that the CM regime is reached for
values of N as low as 12.

In summary, we have obtained the optimal LOCC
estimating scheme for general qubit (pure) states and
shown that its fidelity saturates the collective measure-
ment bound. For states that are known to lay on a meridian
of the Bloch sphere (2D case), we have explicitly given a
scheme whose fidelity saturates this bound without invok-
ing classical communication.
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