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Given a large number N of copies of a qubit state of which we wish to estimate its purity, we prove that
separable-measurement protocols can be as efficient as the optimal joint-measurement one if classical
communication is used. This shows that the optimal estimation of the entanglement of a two-qubit state
can also be achieved asymptotically with fully separable measurements. Thus, quantum memories provide
no advantage in this situation. The relationship between our global Bayesian approach and the quantum
Cramér-Rao bound is discussed.
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The ultimate goal of quantum state estimation is to
determine the value of the parameters that fully character-
ize a given unknown quantum state. However, in practical
applications, a partial characterization is often all one
needs. Thus, e.g., knowing the purity of a qubit state or
the degree of entanglement of a bipartite state may be
sufficient to determine whether it can perform some par-
ticular task [1]—see Ref. [2] for recent experimental
progress on estimating the degree of polarization (the
purity) of light beams. This Letter concerns this type of
situation.

To be more specific, assume we are given N identical
copies of an unknown qubit mixed state ��~r�, so that the
state of the total system is �N�~r� � ��� ~r���N . The set of all
such density matrices f��~r�g can be mapped into the Bloch
sphere B � f~r : r � j ~rj � 1g through the relation �� ~r� �
�1	 ~r 
 ~��=2, where ~� � ��x; �y; �z� is a vector made out
of the three standard Pauli matrices. Our aim is to estimate
the purity, r, as accurately as possible by performing
suitable measurements on the N copies, i.e., on �N�~r�.
This problem can also be viewed as the parameter estima-
tion of a depolarizing channel [3] when it is fed with N
identical states.

Estimation protocols are broadly divided into two
classes depending on the type of measurements they use:
joint and separable. The former treats the system of N
qubits as a whole, allowing for the most general measure-
ments, and leads to the most accurate estimates or, equiv-
alently, to the largest fidelity (properly defined below).
The latter treats each copy separately, but classical com-
munication can be used in the measurement process. This
class is particularly important because it is feasible with
current technology and it offers an economy of resources.
In this Letter we show that for a sufficiently large N,
separable-measurement protocols for purity estimation
can attain the optimal joint-measurement fidelity bound.
The power of separable-measurement protocols in achiev-
ing optimal performance has also been demonstrated in
other contexts [4].
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It has been shown [5] that given N copies of a bipartite
qubit pure state, j�iAB, the optimal protocol for measuring
its entanglement consists in estimating the purity of �� ~r� �
trB�j�iABh�j�, where trB is the partial trace over the
Hilbert space of party B (see [6] for related work on
bipartite mixed states). We thus show that for large N
this entanglement can be optimally estimated by perform-
ing just separable measurements on one party (party A in
this discussion) of each of the N copies of j�iAB.

In this Letter, special attention is paid to the asymptotic
regime, when N is large. There are several reasons for this.
First, in this limit, formulas greatly simplify and usually
reveal important features of the estimation protocol.
Second, the asymptotic theory of quantum statistical infer-
ence, which has become in recent years a very active field
in mathematical statistics [7], deals with problems such as
the one at hand. Our results give support to some quantum
statistical methods for which only heuristic proofs exist;
e.g., the applicability of the integrated quantum Cramér-
Rao bound in the Bayesian approach [8].

In the first part of this Letter we state some important
results concerning the optimal joint estimation protocols
and give the corresponding fidelity bounds. In addition to
the general case of states in B, which was partially ad-
dressed in [5], we also consider the situation when the
unknown state is constrained to lie on the equatorial plane
E of the Bloch sphere B. In the second part, we discuss
separable-measurement protocols, we prove that they satu-
rate the joint-measurement bound asymptotically, and we
state our conclusions.

Mathematically, the problem of estimating the purity of
��~r� can be formulated within the Bayesian framework as
follows (see [9] for a large deviations approach, which is
meaningful only in the asymptotic regime). Let RO �

fR�g be the set of estimates of r, each of them based on a
particular outcome � of some generalized measurement O
over �N� ~r�. Such measurement is characterized by a posi-
tive operator valued measure (POVM), namely, by a set of
positive operators O � fO�g that satisfy

P
�O� � 1. A
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separable measurement is a particularly interesting in-
stance of a POVM for which each O� is a tensor product
of N individual operators (usually projectors) each one of
them acting on �� ~r�.

Next, a figure of merit, f�r; R��, is introduced as a
quantitative way of expressing the quality of the purity
estimation. Throughout this Letter we use

f�r; R�� � rR� 	
��������������
1� r2

p ���������������
1� R2

�

q
; (1)

which we call fidelity for short. Its values are in the range
�0; 1�, where unity corresponds to perfect determination.
This fidelity has a natural interpretation: in Uhlmann’s
geometric representation of the set of density matrices as
the hemisphere �1=2�S3 � R4, the function D�r; R�� �
�1=2� arccosf�r; R�� is the geodesic (Bures) distance [10]
between two sets (two parallel two-dimensional spheres)
characterized by the purities r and R�, respectively.

The optimal protocol is obtained by maximizing
F�O;RO� �

P
�

R
d�f�r; R��tr��N�~r�O��, where d� is

the prior probability distribution of �� ~r�, and we identify
the trace as the probability of obtaining the outcome �
given that the state we measure upon is �N� ~r�. Thus, F is
the average fidelity. The maximization is over the estimator
(guessed purity) RO and the POVM O,

Fmax � max
O
fmax
RO

F�O;RO�g: (2)

In this formulation, we need to provide a prior proba-
bility distribution (prior for short) d�, which encodes our
initial knowledge about ��~r�. Here we assume to be com-
pletely ignorant of both ~n � ~r=r and r. Our lack of knowl-
edge about the former is properly represented with the
choice d� / d� (solid angle element), which states that
à priori ~n is isotropically distributed on B. Therefore, we
write

d� �
d�

4�
w�r�dr;

Z 1

0
drw�r� � 1: (3)

While there is wide agreement on this respect, the r de-
pendence of the prior is controversial, and so far we will
not stick to any particular choice. Nevertheless, it is worth
keeping in mind that the hard sphere prior w�r� � 3r2

shows up in the context of entanglement estimation [11],
whereas the Bures prior w�r� � �4=��r2�1� r2��1=2 is
most natural in connection with distinguishability of den-
sity matrices [12–14].

Rather than computing (2), we here present the main
results (details can be found in [15]). (i) The optimal
POVM is defined by the set of operators f1j� �P
mjjm;�ihjm;�jg. Each 1j� projects over the invariant

subspace corresponding to an irreducible representation j
of SU�2�—the group of unitary transformationsU that acts
naturally over B as ��~r� ! U��~r�Uy. Here the index �
(� � 1; 2; . . . ; nj) labels the different nj occurrences of j.
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All these nj equivalent representations j give an identical
contribution to F. This result should not come as a surprise.
The optimal purity estimate, and thus the fidelity, should
depend only on invariant quantities (i.e., j and �), as the
purity itself is rotationally invariant, and so is our choice
for the prior. (ii) The optimal purity estimator can be
written as Rj � Aj�A

2
j 	 B

2
j �
�1=2, where

�Aj;Bj��
Z
drw�r��r;

�������������
1�r2

p
�
Xj
m��j

pN=2�m
r qN=2	m

r ; (4)

and pr � �1� r�=2, qr � 1� pr. We can easily identify
the sum in (4) as the probability tr��N�~r�1j��. (iii) The
maximum fidelity is given by

Fmax �
N

N
2 � j

� �
2j	 1

N
2 	 j	 1

X
j

������������������
A2
j 	 B

2
j

q
; (5)

where the coefficient in front of the sum is nj [8,16].
For large N, this can be computed to be [8]

Fmax � 1�
1

2N
	 o�N�1�: (6)

One can also check that at leading order Rj � 2j=N 	 . . . ,
as one would intuitively expect. These asymptotic results
hold for any prior w�r�.

It is also interesting to analyze the case where ~r is
known to lie on the equatorial plane E. With this infor-
mation, the prior probability distribution becomes d� �
�d�=2��w�r�dr, where � is the polar angle of the spheri-
cal coordinates. The group of unitary transformations on E
is now a U�1� subgroup of SU�2� and, hence, the optimal
POVM is given by the corresponding one-dimensional
projectors over the U�1�-invariant subspaces, f1j�m �
jjm;�ihjm;�jg. With this, one can work out the maximum
fidelity. It turns out that asymptotically Fmax is also given
by (6) and the optimal guess is Rjm � 2j=N 	 . . . (inde-
pendently of m). The same conclusions also hold in the
one-dimensional case of states known to lie on a diameter
of B. Therefore, we see that the information about ~n
becomes irrelevant in the asymptotic limit.

A word regarding quantum statistical inference is in
order here. It is often argued that the quantum Cramér-
Rao bound [17] can be integrated to provide an attainable
asymptotic lower bound for some averaged figures of
merit, such as the fidelity (1). Ours is a so-called one
parameter problem for which the quantum Cramér-Rao
bound takes the simple form VarR  H�1� ~r�=N, where
VarR � h�R� � hR�i�

2i is the variance of the estimator R�,
the average is over the outcomes � of a measurement, H� ~r�
is the quantum information matrix [17], and R� is assumed
to be unbiased: hR�i � r. In our case H� ~r� � �1� r2��1,
and the bound is attainable. This provides in turn an
attainable asymptotic upper bound for the fidelity (1), since
hf�r; R��i � 1� 1

2H� ~r�VarR	 . . . . Assuming one can in-
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tegrate this relation over the whole of B [including the
region r � 1, where H� ~r� is singular], with a weight func-
tion given by the prior (3), one easily obtains Eq. (6).
Unfortunately, there are only heuristic arguments support-
ing this assumption, but so far no rigorous proof exists in
the literature.

We now abandon the joint protocols to dwell on
separable-measurement strategies for the rest of the
Letter. Here we focus on the asymptotic regime, but
some brief comments concerning small N can be found
in the conclusions.

In previous work [18], some of the authors showed that
the maximum fidelity one can achieve in estimating both r
and ~n (full estimation of a qubit mixed state) assuming the
Bures prior and using tomography behaves as Fmax

full � 1�
�N�3=4 	 o�N�3=4�; where � is a positive constant. The
same behavior one should expect for our fidelity Fmax,
since the effect of the purity estimation is dominant in
Fmax

full . This strange power law, somehow unexpected on
statistical grounds, is caused by the behavior of w�r� in a
small region r � 1. Indeed, it is not difficult to convince
oneself that if w�r� / �1� r2��� � 2�1� r��� for r � 1,
one should have 1� Fmax / N�=2�1 	 . . . , for 0< �< 1
(for � � 0, hard sphere prior, one should have logarithmic
corrections). This differs drastically from (6) which, as
stated above, holds for any such values of �. Would clas-
sical communication be enough to restore the right power
lawN�1 for 1� Fmax and, moreover, saturate the bound of
the optimal joint-measurement protocol?

On quantum statistical grounds, one should expect a
positive answer to this question since the quantum
Cramér-Rao bound is attained by a separable protocol
consisting in performing the (von Neumann) measure-
ments M � f�1� ~n 
 ��=2g on each copy. Note, however,
that M depends on ~n, which is, of course, unknown
à priori. This protocol can make sense only if we are ready
to spend a fraction of the N copies of �� ~r� to obtain an
estimate of ~n, use this classical information to design M,
and, finally, perform this adapted measurement on the
remaining copies. This protocol was successfully applied
to pure states by Gill and Massar in [19]. We extend it to a
purity estimation below.

Let us consider a family of priors of the form

w�r� �
4����
�
p

��5=2� ��
��1� ��

r2�1� r2���; (7)

which includes both the Bures (� � 1=2) and the hard
sphere (� � 0) metrics. Despite this particular r depen-
dence, the final results apply to any prior whose behavior
near r � 1 is given by (7).

We now proceed à la Gill-Massar [19] and consider the
following one-step adaptive protocol: we take a fraction
N� � N0 (0<�< 1) of theN copies of ��~r� and use them
to estimate ~n. Tomography along the three orthogonal axes
x, y, and z, together with a very elementary estimation
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based on the relative frequencies of the outcomes [20],
enables us to estimate ~n with an accuracy given by

h�2
ri

2
� 1� hcos�ri �

3

N0

�
1

r2 �
1

5

�
	 o�N�1

0 �; (8)

where �r is the angle between ~n and its estimate. Here and
below h
 
 
i is not only the average over the outcomes of
these tomography measurements, but also contains an in-
tegration over the prior angular distribution d�=�4�� for
fixed r.

In a second step, we measure the projection of ~� along
the estimated ~n obtained in the previous step. We perform
this von Neumann measurement on each of the remaining
N � N0 � N1 copies of the state ��~r�. We estimate the
purity to be R � 2N	=N1 � 1, where N�=N1 is the rela-
tive frequency of �1 outcomes, and we drop the N	
dependence of R to simplify the notation.

Obviously, as a random variable and for large N1, R is

normally distributed as R� N�rcr;
������������������
1� r2c2

r

p
=
������
N1

p
�,

where cr � cos�r. Hence, for large N0 and N1 it makes
sense to expand f�r; R�, Eq. (1), around R � rcr, and
thereafter, because of (8), expand the resulting expression
around cr � 1. We obtain

F�r� � 1�
1

2N1
	

r2

1� r2

�
h�2

ri

4N1
�
h�4

ri

8

�
	 . . . ; (9)

where F�r� is the average fidelity for fixed r, i.e.,R
drw�r�F�r� � F. In view of (8), h�4

ri � N
�2
0 � N�2�.

Hence, the two terms in parentheses in (9) can be dropped
only if �> 1=2. Provided w�r� vanishes as in (7) with � <
0, we can integrate r in (9) over the unit interval to obtain

F � 1�
1

2N�1� N��1�
	 o�N�1�; (10)

and we conclude that this protocol attains asymptotically
the joint-measurement bound (6).

However, most of the physically interesting priors
[11,14], w�r�, not only do not vanish as r! 1, but often
diverge like (7) with 0< �< 1. In this case (9) cannot be
integrated, as the last term does not lead to a convergent
integral. This signals that the series expansion around
cr � 1 leading to (9) is not legitimated in the whole of B.

To fix the problem, we split B in two regions. A sphere
of radius 1� 	, 	 > 0, which we call BI, and a spherical
sheet of thickness 	: BII � f ~r : 1� 	 < r � 1g. The fidel-
ity can thus be written as the sum of the corresponding two
contributions: F � FI 	 FII. While FI can be obtained by
simply integrating (9) over BI, where this expansion is
valid, some care must be taken in the region BII. There, we
proceed as follows.

We compute the fidelity as if all the states in BII had the
lowest possible purity (r � 1� 	) when the first-step to-
mography was performed. This leads to a lower bound for
FII, because the lower the purity of a state the less accu-
rately ~n can be determined [see Eq. (8)], and hence, the
4-3
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worse its purity can be estimated in the second step. The
trick, which amounts to replacing cr by c1�	, enables us to
integrate r prior to performing the average h
 
 
i. A
straightforward calculation leads to

F * 1�
1

2N1
� 2��2k�h�2

1�	i
2�� 	 . . . ; (11)

0< �< 1, where k� � 22����52� ����
3
2� ������

2�=����1� ���. Now, we can safely take the limit 	!
0. We see that by choosing maxf1=2; 1=�2� ��g<�< 1
we ensure that the joint-measurement bound (6) is attained.
It is worth emphasizing that the last term in (11), which is
completely missing in (10), is actually the dominant con-
tribution if �< 1=�2� ��. For � � 0 we have Fhard *

1� �1=2�N�1
1 � �3=8�N�1

1 h�
2
1i logh�2

1i 	 . . . , and we
again conclude that the protocol presented here attains
the joint-measurement bound.

At this point one may wonder if the conclusions above
depend upon our particular choice of figure of merit. To get
a grasp on this, it is worth using again the standard point-
wise approach to quantum statistics. There, one is inter-
ested in the mean square error MSER � h�R� r�2i for
fixed r, where now the average h
 
 
i is over the outcomes
of all measurements for a fixed ~r. One can write MSER �
VarR	 �hRi � r�2, where the second term is the bias.
Using the same one-step adaptive protocol described
above, we get that the mean square error after step two is
MSER � �N1H�r���1 	 r2h�4

ri=4	 . . . . As above, the
last term can be dropped if �> 1=2, and MSER �
�NH�r���1 	 o�N�1�, saturating the quantum Cramér-
Rao bound. This protocol is, therefore, also asymptotically
optimal in the present context.

In summary, though the absolute bounds for the average
fidelity involve joint measurements, these bounds can be
obtained asymptotically with separable measurements.
This requires classical communication among the sequen-
tial von Neumann measurements performed on each of the
N individual copies of the state. This result, which has been
speculated on quantum statistical grounds, is here proved
for the first time by a direct calculation. Since the purity is
an optimal measure of the entanglement of a pure bipartite
qubit state, we also obtain the additional result that this
entanglement can be optimally estimated with separable
measurements on just one of the parties.

For finite (but otherwise arbitrary)N, finding the optimal
separable-measurement protocol is an open problem.
Interestingly enough, a ‘‘greedy’’ protocol designed to be
optimal at each measurement step [4] leads to an unac-
ceptably poor estimation. Notice that in the one-step adap-
tive protocol described above, part of the copies were spent
(‘‘wasted’’ from a greedy point of view) in estimating ~n.
We have seen that this strategy pays in the long run.
However, the greedy strategy optimizes measurements in
the short run, which translates into measuring ~� along the
same arbitrarily fixed axis. This yields a low value for the
11050
fidelity, which does not even converge to unity in the strict
limit N ! 1. This counterintuitive behavior also appears
in other contexts as, e.g., economics, biology, or social
sciences (see, e.g., [21]).
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