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We analyze finite temperature effects in the generation of bright solitons in condensates in optical
lattices. We show that even in the presence of strong phase fluctuations solitonic structures with a well
defined phase profile can be created. We propose a novel family of variational functions which describe
well the properties of these solitons and account for the nonlinear effects in the band structure. We discuss
also the mobility and collisions of these localized wave packets.
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Bose-Einstein condensates (BEC) in optical lattices
(OL) are unique candidates to explore phenomena that
are often extremely elusive in other areas of physics. The
dynamics of the system is dominated by the interplay
between the nonlinearity that can be modified via
Feshbach resonances [1] and the periodicity which can
be engineered through the intensity, geometry, polariza-
tion, and phase of the two counterpropagating laser beams
conforming the optical lattice. BEC in optical lattices
exhibit phenomena known from solid state physics as
demonstrated, for instance, in [2]. Furthermore, its simi-
larity to other cubic nonlinear periodic media has stimu-
lated a renewed interest in solitonic models [3–7].

Solitons, which, strictly speaking, are exact solutions of
integrable models corresponding to wave packets that
propagate without change of their shapes and velocities
even in the presence of collisions, appear in many branches
of physics. In one-dimensional homogeneous condensates
with attractive interactions, bright solitons exist [8] and
have been recently observed [9]. The presence of a periodic
potential, like, e.g., an optical lattice, breaks the transla-
tional invariance, and the system becomes most likely
nonintegrable, having less conserved quantities than de-
grees of freedom. Nonintegrable systems, however, admit
also localized solutions which are as well commonly
termed solitons. These structures differ from proper sol-
itons either in their motion and/or their collisions. A well
known example are optical solitons in periodic media (cf.
[10]) whose interactions have been extensively studied
using either the discrete nonlinear Schrödinger (DNLS)
equation [11] or weakly perturbed integrable models [12].

So far, to our knowledge, the generation of lattice sol-
itons in condensates has been only discussed at zero tem-
perature [3–7], where there is an analogy between an array
of optical waveguides in a Kerr medium and a BEC in a
periodic potential. In this limit, one can generate [13]
bright lattice solitons in repulsive condensates when the
tunneling rate balances the nonlinear energy of the system.
This compensation occurs if the soliton is placed at the
edge of the first Brillouin zone where the effective mass
becomes negative reaching the staggered configuration
[14].
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Here we discuss the generation of solitons in repulsive
condensates at finite temperature. We show that even when
the condensate is not phase coherent, solitonic structures
with well defined phase profiles can be created. A new
insight into the nature of these lattice solitons is obtained
by means of a novel variational ansatz that accounts for the
effects of the nonlinearity. Finally, we address the issue of
mobility and collisions.

For BEC in 3D trapping geometries, fluctuations of
density and phase are only important in a narrow tempera-
ture range near the BEC transition temperature Tc [15]. For
pure 1D systems, however, phase fluctuations are present at
temperatures far below the degeneracy temperature Td �
N �h!x=kB, while density fluctuations are still suppressed
[16] (kB denotes the Boltzmann constant, N the number of
atoms, !x the axial trapping frequency). Phase fluctuations
can be studied by solving the Bogoliubov–de Gennes
(BdG) equations describing elementary excitations.
Writing the quantum field operator as ’̂�x� ������������
n0�x�

p
exp�i�̂�x��, where n0�x� denotes the density, the

phase operator takes the form [17]:

�̂�x� �
1��������������

4n0�x�
p X1

j�1

f�
j �x�âj � H:c:; (1)

where âj is the annihilation operator of the excitation with

quantum number j and energy �j � �h!x

����������������������
j�j� 1�=2

p
, and

f�
j � uj � vj, where uj and vj denote the excitation

functions determined by the BdG equations. In 1D and in
the Thomas-Fermi (TF) regime, the functions f�

j have the
form:

f�
j �x� �

���������������������������������������������������������
�j� 1=2�2�

RTF�j

�
1�

�
x

RTF

�
2
�s
Pj

�
x

RTF

�
; (2)

where Pj�x=RTF� are Legendre polynomials, RTF �

�2�=m!2
x�

1=2 is the TF radius, and � the chemical poten-
tial. The phase coherence length, L� � RTFTd �h!x=�T,
characterizes the maximal distance between two phase
correlated points in the condensate. Phase fluctuations
increase for large trap aspect ratios, !t=!x, and small N
[18].
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FIG. 1. Density and phase (inset) profile (a) of magnetically
trapped (!x � 14	 2� Hz) 87Rb ground state condensate with
N � 500 at T � 0:8Tc, (b) after the adiabatic growing of the
optical lattice (V0 � 1Er and # � 795 nm), (c) of lattice soliton
100 ms after the imprinting of a phase difference of � between
consecutive wells and after the magnetic trap is switched off, and
(d) of lattice soliton generated under the same conditions of (c)
but at T � 0.
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To study temperature effects in the generation of lattice
solitons, we consider a 87Rb condensate with N � 500
atoms in a magnetic trap with frequencies !t �
715	 2� Hz and !x � 14	 2� Hz. For such parame-
ters, the system is effectively in a 1D regime since trans-
verse excitations are suppressed (� 
 �h!t). Moreover,
along the axial direction, the condensate is well in the TF
regime (� � �h!x). To create lattice solitons in repulsive
condensates, the optical lattice depth belongs to the so-
called weak potential regime. Thus, one cannot use the
tight binding approximation [19] to rewrite the condensate
order parameter as a sum of wave functions localized in
each well of the lattice. To study the dynamics of the
system we use the 1D Gross-Pitaevskii equation (GPE):

i�h _’�x; t� �
�
�

�h2

2m
r�V�x; t��gj’�x; t�j2

�
’�x; t�; (3)

with coupling constant g � 2N �has!t and scattering length
as � 5:8 nm. The confining potential V�x; t� �
m!x�t�

2x2=2� V0�t�sin
2��x=d� describes both the axial

magnetic trap and the optical lattice. The later is charac-
terized by its maximal depth V0 � 1Er and by its spatial
period d � #=2 (# � 795 nm). Energy is expressed in
units of the recoil energy Er � �h2k2=2m, where k �
�=d. Temperature is included at the level of the GPE by
calculating first the density at T � 0 in the presence of the
magnetic trap only, i.e., V�x; t � 0� � m!2

xx
2=2 and then

the phase operator (1). To this aim, we calculate the Bose
occupation Nj � �e�j=kB � 1��1 of the low-energy modes
in the Bogoliubov approximation for a fixed T replacing
the operators âj and â�

j by random complex variables %j

and %�
j such that hj%jj

2i � Nj [18]. One can also study the
quasi 1D case using a 3D GPE and replacing in (1) the
energy of low excitations by �j � �h!x

����������������������
j�j� 3�=4

p
[20]

and the Legendre by Jacobi polynomials [18].
We summarize the procedure to generate lattice solitons

at a given T. Once the phase fluctuations have been in-
cluded, periodicity is introduced by growing adiabatically
the optical lattice (t � &). During this process, density
fluctuations arise. We simultaneously turn off the magnetic
trap and imprint a phase difference of � between consecu-
tive wells to place the condensate at the edge of the first
Brillouin zone. This is achieved by using an auxiliary
optical lattice with double spatial period than the first
one, acting for a time much shorter than the tunneling
and the correlation time of the system [4]. Hence, the
condensate acquires the desired phase without modifying
its density profile.

Figure 1 shows density and phase of the condensate at
T � 0:8Tc (Tc � N �h!x=kBln2N [21]) (a) in the presence
of the magnetic trap only (t � 0), (b) after growing adia-
batically the optical lattice (t � &), and (c) 100 ms after the
phase imprint has been performed and the magnetic trap
has been switched off (t � &� 100). Figure 1(d) shows a
lattice soliton generated at T � 0 with otherwise identical
13040
parameters. Despite the strong fluctuations of phase and
density induced by finite temperature, the system (after
phase imprint) evolves towards a staggered soliton con-
figuration. It contains approximately 35% of the initial
atoms and remains so for times much larger than the
tunneling time. This robustness can be understood by real-
izing that the size of the lattice soliton is smaller than the
phase coherence length for all T < Tc. The soliton size
(which depends on N, being smaller as N increases) is
independent of the temperature but due to the random
character of the fluctuations, the position of the generated
soliton is different for each realization.

An analytical description of lattice solitons in repulsive
condensates is often performed through an effective theory
for the soliton’s envelope in the effective mass approxima-
tion [22]. The influence of the periodic potential is in-
cluded there via an effective mass and coupling constant.
3-2
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Instead let us consider a very general ansatz for the soliton
wave function:

’�x; t� � e�i�t= �hG�A;+; x; x0�F�x�; (4)

where G�A;+; x; x0� describes the envelope of a soliton of
amplitude A, width +, and centered at x0. The effect of the
periodic potential is included, in the weak approximation
limit, as a combination of linear Bloch functions F�x� �P

ke
ikxfk�x�, where the fk�x� have the periodicity of the

lattice. At the edge of the first Brillouin zone, this combi-
nation can be approximated by only two harmonics, i.e.,
F�x� � cos�2�x=#� [5]. Notice that such an ansatz does
not take into account nonlinear effects. Moreover, it does
not present a minimum in the energy functional of the GPE
for any atom number. Inspection of Fig. 1(c) and 1(d)
shows that the density profile inside each well is shifted
with respect to the minimum of the optical potential. A
relative simple function that reproduces such site depen-
dent shift is F�x� � cos�2�x=#0�x�� with an effective
wavelength #0�x� � #�1� %�N�jG�A;+; x; x0�j2�, where
%�N� 
 1 is a variational parameter which depends only
on N. In other words, the modification of the band structure
due to the nonlinearity results in an effective change of the
periodicity of the system. The ansatz (4) with the effective
wavelength #0�x� does not allow a fully analytical treat-
ment for the energy functional. As a first approximation we
assume thus that the effect of the nonlinearity is to shift #
simply by a constant #0 � #� -. With this new ansatz,
imposing the normalization of the wave function (i.e.,
conservation of N) and assuming a Gaussian envelope
G�A;+; x; x0� � A exp��x� x0�

2=2+2�, the energy func-
tional E�A;+; x0; -� reads:

E�
Z �

�h2

2m
jr’�x�j2 �

g
2
j’�x�j4 �V�x�j’�x�j2

�
dx

� B
�
�h2

m

�
1� e�k02+2

cos�2k0x0�

2+2 � k02
�

�
gjAj2

4
���
2

p �3� e�2k02+2
cos�4k0x0�� 4e�

k02+2
2 cos�2k0x0��

�V0�1� e�k02+2
cos�2k0x0�� e�k2+2

cos�2kx0�

�
1

2
e�k2�+2

cos�2k�x0��
1

2
e�k2�+2

cos�2k�x0��
�
; (5)

where B � jAj2
����
�

p
+=4, k0 � 2�=#0, and k� � k0 � k.

We minimize (5) for a soliton centered in one lattice site,
i.e., x0 � 0, as a function of the shift - and the width +.
The other free parameter A, the amplitude, is fixed by
normalization, i.e., 1 � 2B�1� e�k02+2

cos�2k0x0��.
For any N and x0, minimization of E�A;+; x0; -� with

respect to + and - presents now a clear minimum. The
values of + and - obtained through minimization coincide
with the values of the width and on-site shift obtained by
solving numerically the GPE (3). Also, minimization of (5)
correctly indicates that solitons containing few atoms (N <
13040
100) are very extended (large +) and present practically no
shift (- � 0:001), as one should expect in the continuum
limit. On the contrary for larger N, + decreases and -
grows.

The Peierls-Nabarro (PN) barrier [4,23], i.e., the energy
difference between a solitonic configuration centered in
one minimum of the lattice, E�A;+; x0 � nd; -�, and the
one centered in one maximum, E�A0; +0; x0 � nd=2; -0�,
has been also calculated using (5). For any value of N,
E�A;+; x0 � nd; -�< E�A0; +0; x0 � nd=2; -0�. Thus,
even the constant shift approximation reproduces the
main features of lattice solitons.

On-site lattice solitons are created initially at rest.
Nevertheless, if they are well localized in momentum space
and an instantaneous transfer of momentum (large enough
to overcome the PN barrier) is given to the system, the
solitons move in opposite direction to the given momentum
due to their negative effective mass. Notice that the varia-
tional ansatz F�x� � cos�2�x=#0� with #0 � #� - is
meaningful only in the static case. Such a simplified solu-
tion cannot be used to study soliton dynamics, since the
soliton is always chirped with respect to its center. The
Euler-Lagrange equations for an ansatz whose periodicity
depends also on the density are quite complex. Therefore,
to study dynamical behavior, one has to rely on numerical
simulations.

Giving momentum to the system is generally accompa-
nied by radiation of atoms. The larger the given momentum
is, the larger the losses. For small initial transfer of mo-
mentum the system exhibits a nonlinear response, its ve-
locity slows down, and eventually a complete halt of the
soliton occurs. The given momentum p, for which the
soliton experiences a nonlinear response lies on the range
0 � p � �h�k� k0�, where k0 corresponds to the inverse of
the effective wavelength. Thus the linear response is re-
covered for broad solitons since k ’ k0 and for well local-
ized solitons if the initial given momentum is large enough,
i.e., p > �h�k� k0�. Recently nonlinear movement of dis-
crete solitons has also been reported [5]. The interaction
between lattice solitons depends also strongly on the initial
given momentum. We study numerically collisions be-
tween two identical solitons with N � 200 each, created
initially at rest and separated by a distance 2x0 � 246d.
For small values of the initial momentum p ’ 0:1k �h, the
two initial solitons merge at the interaction point resulting
in a single soliton (with N � 200) at rest. The excess of
atoms is lost by radiation in a symmetric way [Fig. 2(a)].
For intermediate values of the initial kick, p ’ 0:2k �h, the
two solitons merge in a moving soliton with smaller N than
the initial ones. For larger kicks, p ’ 0:3k �h, the solitons
exhibit a quasielastic collision where the two solitons pass
each other. The average phase difference between the two
solitons also affects the nature of their interactions. For
p � 0:1k �h and identical initial phase distribution, one
obtains the fusion of the initial two solitons into a single
one at rest [Fig. 2(a)]. This merging behavior is always
3-3
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FIG. 2. Collisions between two identical lattice solitons (N �
200) at an initial distance of 2x0 � 246d and with an initial
phase difference of (a) �� � 0 rad, (b) �� � �=2 rad,
(c) �� � 0:3 rad, and (d) �� � 0:9 rad. The initial transfer
of momentum is 0:1k �h in all the cases.
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present for average phase difference between the solitons
below 0.19 rad, although the final structure can either be a
soliton or a breather and its position can also change. For
phase differences of the order of �=2 or larger, the two
solitons always repel each other [Fig. 2(b)]. Between these
two extreme cases, the dynamics of the system is unpre-
dictable. Two solitons either with approximately the same
N and same velocity or with a different N (being the one
with more atoms the slower) [Fig. 2(c)] are examples of
possible situations after the collision. In other cases, the
two initial solitons form a bound state that ends up into a
single soliton [Fig. 2(d)]. These results evidence the strong
dependence on the initial conditions in the dynamics of the
system.

Summarizing, finite temperature effects in the genera-
tion of lattice solitons in quasicondensates have been ad-
dressed. New insight into the nature of these structures is
provided through a new family of variational functions in
which the effect of the nonlinearity is shown as an effective
change in the lattice periodicity. We hope that such a novel
ansatz opens new possibilities in the study of lattice
solitons.
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