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(Received 25 November 2005; published 24 October 2006)

Spatiotemporal properties of seismicity are investigated for a worldwide (WW) catalog and for southern
California in the stationary case (SC), showing a nearly universal scaling behavior. Distributions of
distances between consecutive earthquakes (jumps) are magnitude independent and show two power-law
regimes, separated by jump values about 200 (WW) and 15 km (SC). Distributions of waiting times
conditioned to the value of jumps show that both variables are correlated, in general, but turn out to be
independent when only short or long jumps are considered. Finally, diffusion profiles are found to be
independent on the magnitude, contrary to what the waiting-time distributions suggest.
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Earthquake statistics usually deals with simple distribu-
tions such as those in the Gutenberg-Richter law and in the
Omori law. It is natural to expect that more sophisticated,
multidimensional statistical studies can be very valuable
for hazard assessment as well as for understanding the
fundamental properties of earthquakes. The first systematic
analysis of seismicity taking into account its multidimen-
sional nature was performed by Bak et al., who studied the
dependence of waiting-time distributions on the magnitude
range and the size of the spatial regions selected for
analysis [1–4]. Waiting times are just the time intervals
between consecutive earthquakes in a region and can be
studied in two ways: (i) by using single-region waiting-
time distributions, in which an arbitrary region is charac-
terized by its own distribution [5], or (ii) the original
approach of Bak et al. [1], in which a large region is
divided into smaller, equally sized areas and waiting times
are measured for the smaller areas but are included to-
gether into a unique mixed distribution for the whole
region. The outcomes of both approaches are clearly differ-
ent, but in any case scaling turns out to be a fundamental
tool of analysis, reducing the multidimensional depen-
dence of the waiting-time distributions to simple univariate
functions. Further, it is possible to understand this scaling
approach in terms of a renormalization-group transforma-
tion [6].

Equally important for risk estimations and forecasting,
though much less studied [7,8], should be the statistics of
the distances between consecutive earthquakes, which we
can identify with jumps (or flights) of earthquake occur-
rence. Very recently, Davidsen and Paczuski have provided
a coherent picture using Bak et al.’s mixed-distributions
procedure [9]; in contrast, our Letter undertakes the study
of the earthquake-distance problem considering the sim-
pler approach of single-region distributions and for the
case of stationary seismicity. The results will lead us to
examine the distribution of waiting times conditioned to
different values of the jumps; finally, we measure diffusion
profiles for seismic occurrence.

Consider that an arbitrary spatial region and a range of
magnitudes have been selected for analysis. The unit vec-

tor locating the epicenter of the ith earthquake on the
selected portion of the Earth’s surface is given by r̂i �
�cos’i cos�i; sin’i cos�i; sin�i�, where the angles ’i and
�i denote longitude and latitude, respectively. The spatial
distance, or jump, between the ith event and the immedi-
ately previous-in-time event i� 1 can be obtained from the
angle �i defined by the two vectors �i � arccos�r̂i�1 � r̂i�.
In this way, one can measure distances as angles, in de-
grees; the distance in kilometers is obtained by multiplying
�i in radians by the Earth radius (about 6370 km).

Given a set of values of the jumps, their probability
density D��� is defined as the probability per unit distance
that the distance is in a small interval containing �. In order
to avoid boundary problems, it is convenient to start the
analysis of seismicity on a global scale, which has also the
advantage of stationarity (or, more properly, homogeneity
in time, at least for the past 30 years). Stationarity means
that any short time period is described by (roughly) the
same seismic rate R (defined as the number of earthquakes
per unit time); in such a case, a linear increase of the
cumulative number of earthquakes versus time must be
observed. Notice that stationarity does not mean that af-
tershock sequences are not present in the data; rather, many
sequences can be intertwined but without a predominant
one in the spatial scale of observation.

The results for the NEIC-PDE worldwide catalog [10],
covering the period 1973–2002, are shown in Fig. 1(a)
(bottom set of curves), using events with magnitude M
above different thresholds Mc (i.e., M � Mc). A first con-
clusion drawn from the figure is the independence of the
jump distributions on the magnitude threshold, as in
Ref. [9], implying that the spatial occurrence of large
earthquakes is no different than the occurrence of small
ones, in contrast to claims by some authors [11]. There is,
nevertheless, an exception for small distances, less than
about 0.1� for Mc from 5.5 to 6, comparable with the size
of rupture [12]. In any case, the distributions are charac-
terized by a decreasing power-law regime from about 0.1�

to 2�, with an exponent about 1.6, and a possible increasing
second power law for �> 2�, with exponent 0.3, decaying
abruptly close to the maximum distance.
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However, the measurement of D��� contains an incon-
sistency when it is used for distances over a sphere; for
instance, after any event, there are many ways to obtain a
jump of� � 90� (360 ‘‘ways’’ in intervals of 1�), but there
is only one way to get � � 180�. Therefore, instead of
working with the probability density defined per unit dis-
tance, i.e., per unit angle, it is preferable to use (and easier
to interpret) the probability density defined per unit solid
angle (taking into account all the possible orientations for a
given distance �). A straightforward way to estimate this
quantity is by means of the transformation ~D��� �
D���=�2� sin��; due to the fact that 2� sin�d� is the
element of a solid angle defined by the points at distance �.

The results of the transformation are clearly seen in
Fig. 1(a) (top curves). In addition to the power law for
the range 0.1�–2�, whose exponent turns into 	2:6, the
second power law, now decreasing, becomes more appar-
ent from about 2� to the maximum distance 180�, with an
exponent 	0:7. This power law seems to imply a depen-
dence of events at large spatial scales. Indeed, for a given
direction, it is more likely a jump with� � 20� than one of
160� (independence would imply that the probabilities
were the same); however, this effect is due to the fact
that earthquake occurrence is not uniform over the Earth

but fractal, and the power law reflects the fractal structure
of the epicenters. If for long distances there is no causal
relation between events, the distribution of earthquake
jumps is equivalent to the distribution of distances between
any pair of earthquakes (not necessarily consecutive), and,
as the density corresponding to this distance is the deriva-
tive of the well-known correlation integral, it scales as
�df�1, where df is the correlation dimension; therefore,
independence at long distances implies ~D��� 	 1=�2�df .

We have measured, for earthquakes with M � 6, the
probability density of the distance between any two events
(per unit solid angle), obtaining a behavior proportional to
1=�0:85 (for both short and long distances), which implies a
correlation dimension df ’ 1:15, in reasonable agreement
with ~D��� 	 1=�0:7, and confirming the spatial indepen-
dence of events for �> 2�. We stress that the fractal
dimension is 1.15 for all distances, and this implies that
the behavior at short distances contains new information
related not only with the geometry but with the dynamics.

It is clear that the short-distance regime is caused by the
seismic activity triggered by the preceding event (which in
this context may be called the triggering event or main
shock). The excess of probability given by the correspond-
ing power law with respect the long-jump power law
(associated to the uncorrelated regime) is a clear sign of
spatial clustering in earthquake occurrence (as it has to be
for aftershock sequences), extending up to distances of
about 2� ’ 200 km. It is likely that this clustering extends
beyond this limit, but it is not detectable with this proce-
dure as it is hidden below the uncorrelated, long-distance
regime. In any case, the power-law behavior implies the
nonexistence of a finite correlation length, at least up to
200 km, at variance with the findings of Refs. [13,14].

In contrast to worldwide seismicity, regional seismicity
turns out to be nonstationary, in general, and, in the same
way as for waiting-time distributions [5], the distributions
of earthquake jumps depend on the time window selected
for analysis. This problem will be avoided here by consid-
ering specific time windows characterized by stationary
seismicity; an important realization then is that stationary
seismicity is characterized by stationary distributions.

We consider southern-California seismicity, from the
waveform cross-correlation catalog by Shearer et al. [15].
The analysis has been performed on 11 stationary periods,
comprised between the years 1986 and 2002, yielding a
total time span of 9.25 years and containing 6072 events for
M � 2:5. It is very striking, as Fig. 1(b) shows, that the
distributions of jumps resemble very much those of the
worldwide case, with two power-law regimes, but in a
different scale (the separation is at about 0.1�). In principle,
for a smaller area such as California, one would expect that
the distribution of jumps is just a truncation of the global
one, but Fig. 1(b) clearly refutes this fact, providing a clear
illustration of earthquake-occurrence self-similarity in
space. In fact, the figure shows these distributions rescaled
by a factor L, with L the maximum distance for the region,

(a)

(b)

FIG. 1 (color online). (a) Probability densities of earthquake
jumps, defined per unit distance (angle) D��� and per unit solid
angle ~D��� � D���=�360� sin�� (shifted up a factor of 1000 for
clarity), for worldwide seismicity with lower magnitudes from
Mc � 5 to Mc � 6:5. The lines come from power-law fits to
~D��� for Mc � 5. (b) Rescaled probability densities ~D��� for
worldwide seismicity (WW) and for several stationary periods in
southern California (SC), with different Mc values. For each
case, L � 180� and L � 6:5�, and the normalization factors
C � 0:0235 and C � 1:14 degrees�1 are determined forMc � 5
and Mc � 2:5, disregarding the smallest jumps. Power-law fits
for SC with Mc � 2:5 are shown.
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which is L ’ 6:5� for southern California and L � 180�

for the worldwide case (also included in the plot). The
reasonable data collapse is a signature of the existence of a
scaling law for the jump distribution,

 D��� ’ g��=L�=L

[for ~D���, we need to include an extra factor C of normal-
ization]. The scaling law can only be given the status of
approximated, as the exponent for short jumps for southern
California seems to be different than in the worldwide case,
2.15 versus 2.6 for the distribution ~D. Nevertheless, this
variation could be due to artifacts in the short-distance
properties of the catalogs, which are very different: The
southern-California catalog relocates events relative to
groups with similar characteristics identified by waveform
cross-correlation [15], whereas the NEIC catalog does not.
On the other hand, the long-jump regime is well described
by the worldwide exponent. We recall that the exponents
are far from the value of Davidsen and Paczuski for the
nonstationary California case [9]. The main difference with
the worldwide case is the abrupt decay of ~D��� close to the
maximum �. Clearly, this is a boundary effect. Further, we
have found a similar behavior for a Spanish catalog, but
other regions do not follow this trend, indicating the ex-
istence of different universality classes.

The distributions of jumps we have obtained, together
with previous work on the distribution of waiting times [5],
provide a simple picture of earthquake occurrence as a
continuous-time random walk. This means that we can un-
derstand seismic activity as a set of intertwined random
walks, where one event comes after another at a distance
distributed as 1=�2:6 (which constitutes a Lévy flight) and
after a waiting time � given by the waiting-time probability
density D���. However, an important ingredient is missing
in this picture, as we need to take into account the corre-
lations between jumps and waiting times.

With this goal in mind, we introduce the conditional
waiting-time probability density D��jX�, where jX means
that only the cases where X is verified are taken into
account; in our case, X will be a set of values of the jumps.
It turns out that, ifD��jX� does not depend onX, then � and
X are independent, whereas when D��jX� changes with X,
then � and X are correlated (nonlinearly, in general).

From the behavior of D���, a natural threshold for the
jumps in the worldwide case is � ’ 2�. Figure 2(a) com-
pares D��j� short� with D��j� long� for worldwide seis-
micity, where short and long refer to sets of distances
below and above 2�, respectively. The differences are
clear: For short jumps, the waiting-time distribution is a
decreasing power law for several decades, with an expo-
nent close to 1, and ends in an exponential decay. We can
identify these distributions with highly correlated events,
i.e., aftershock sequences. On the other hand, for long �,
the waiting-time distribution seems to be exponential for
its full range, compatible with a Poisson process and,
therefore, with independent occurrence.

But more surprising than the differences between short
and long jumps are perhaps the similarities for short jumps.
In fact, there seems to be a radical change of behavior
separated by � ’ 2�, in the sense that, if we are above or
below this value, the distributions do not change; in other
words, D��j�< 0:25�� � D��j0:25 
 �< 1��, etc., and
D��j2� 
 �< 30�� � D��j� � 100��, etc.; see Fig. 2(a)
(for the range between 1� and 2�, the behavior is not clear
as the statistics is low). This means that for short jumps the
waiting-time distribution is independent on the value of the
jump, and the same happens for long jumps, but when the
whole range of jumps is considered, this is no longer true
and both variables become dependent, in contrast to
Ref. [9]. For each set of curves, we can fit a gamma
distribution D��j�� / e��=a=�1��, turning out to be � ’
0:17 for short � and � ’ 0:9 for long �. As we have stated,
the latter value is very close to 1, the characteristic value of
a Poisson process; in fact, the difference between 1 and 0.9
is not significant within the uncertainty of our data, but if
the hypothesis of a Poisson process for long distances
could be rejected at any reasonable significance level (for
which much more data would be necessary) and a value
� < 1 could be significantly established, this would con-
stitute support for the existence of long-range earthquake
triggering. In any case, our findings are in disagreement

(a)

(b)

FIG. 2 (color online). (a) Waiting-time probability densities
conditioned to different sets of values of the jumps, in particular,
� short (below 1�) and � long (above 2�), using worldwide
seismicity with M � 5:5. In each case, gamma fits to all the
curves are shown, with parameter � � 0:17 (� short) and � �
0:90 (� long). (b) Rescaled waiting-time probability densities
conditioned to short jumps, �< 1� for worldwide seismicity
(WW) and �< 0:1� for southern California (SC). Different Mc
values are used. The rescaling factor R refers to the uncondi-
tional distribution and depends only on Mc and on the spatial
region R. The solid line is the gamma fit in (a) rescaled.
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with the hypothesis put forward in Ref. [13], which con-
siders seismicity as a process uncorrelated in time but
correlated in space.

This result confirms that the universal scaling law found
for stationary seismicity in Ref. [5] is, in fact, a mixture of
aftershocks and independent events, turning out to be very
striking that this mixture leads to a universal behavior. The
reason could be a universal proportion of aftershocks ver-
sus main shocks in stationary seismicity [16]. Further, the
conditional time distributions verify a scaling law

 D��j��� � Rwf��Rw��;

where the indices � and � refer to long and short jumps,
respectively, and R�1

w is the mean waiting time of the
unconditional distribution for the space-magnitude win-
dow w defined by the region R and by M � Mc (obvi-
ously, a scaling with the mean of the conditional
distribution also holds). Figure 2(b) shows this behavior.
In conclusion, the random walks performed by the trig-
gered events are more appropriately modeled with a
power-law waiting-time distribution, with exponent close
to 1 (0.8). Nevertheless, the scaling properties of seismicity
do not arise directly as a consequence of the power-law
continuous-time random walk, as we have verified through
simulations.

The next step is to measure earthquake diffusion directly
from data. The fundamental quantity is p��; t�, which we
call diffusion profile, and gives the probability density (per
unit distance) that any two earthquakes (not necessarily
consecutive) are at a distance �when they are separated by
a time t. As above, we introduce ~p��; t� � p��; t�=
�2� sin��. In the case of normal diffusion, ~p��; t� is given
by a Gaussian distribution (more precisely, a semi-
Gaussian, as �> 0), with a second moment scaling as

h�2i 	 t, whereas p��; t� is given by a Rayleigh distribu-
tion (or a Maxwell distribution in three dimensions). In
contrast, our measurements yield to results far from nor-
mality; see Fig. 3. For short times (up to a few days), the
profile resembles the distribution of jumps, with 2 regimes;
as time evolves, events migrate farther from the origin,
towards the long-range part of the curve, which becomes
dominant for all � for long times, with an exponent of
value 0.8 for ~p. The reason is that for short times it is very
likely that the number of jumps is just one, and then
p��; t� ’ D���, whereas for longer times the averaged
number of jumps increases, and even for short distances
the resulting events become uncorrelated with the original
one. A remarkable fact is that a scaling law also holds,
p��; t� ’ h��=L; t�=L, as can be approximately deduced
from Fig. 3. Unexpectedly, this scaling law does not de-
pend on the magnitude threshold Mc; in other words, the
diffusion profiles are independent on magnitude. Notice
that this is a strange result, as the diffusion profile arises
directly from the combination of the jump and waiting-
time distributions, the latter being clearly magnitude de-
pendent. Further research will be necessary to account for
the origin of this invariance in the diffusion of seismicity.

Note added.—A recent comparison between the spatial
decay of seismic wave amplitudes and diffusion profiles as
measured here suggests that the triggering of aftershocks is
of dynamic origin, due to the seismic waves [17].
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FIG. 3 (color online). Diffusion profiles ~p��; t� versus � (re-
scaled by L) for worldwide seismicity with M � 5:5 or M � 6
(same symbol, bottom curves) and for southern California with
M � 2:5 orM � 3 (same symbol, top). Time ranges from tens of
seconds to several years. The displayed power laws are indica-
tive and have the same exponents as the jump distributions.
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