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(Received 30 July 2008; published 21 November 2008)

Motivated by the experiments [Santamaria et al., Neuron 52, 635 (2006)] that indicated the possibility

of subdiffusive transport of molecules along dendrites of cerebellar Purkinje cells, we develop a

mesoscopic model for transport and chemical reactions of particles in spiny dendrites. The communica-

tion between spines and a parent dendrite is described by a non-Markovian random process and, as a

result, the overall movement of particles can be subdiffusive. A system of integrodifferential equations is

derived for the particles densities in dendrites and spines. This system involves the spine-dendrite

interaction term which describes the memory effects and nonlocality in space. We consider the impact

of power-law waiting time distributions on the transport of biochemical signals and mechanism of the

accumulation of plasticity-inducing signals inside spines.

DOI: 10.1103/PhysRevLett.101.218102 PACS numbers: 87.19.L�, 05.40.�a, 05.60.�k

Dendritic spines are essential elements of most brain
regions because they form a surface for receiving synaptic
inputs. For the Purkinje cells of the cerebellar cortex, over
90% of their excitatory synapses are located on dendritic
spines. They are believed to play a very important role in
regulating neuronal activity [1–3]. The heads of spines
have an active membrane; therefore, the spiny dendrites
can sustain the propagation of an action potential. The
propagation rate depends on the spatial distribution of
spines along dendrites. Much theoretical work has been
devoted to studying the interaction of spines with dendrites
on the macroscopic level. Baer and Rinzel [4] proposed a
cable theory for excitable spiny dendrites and found that
the spread of local excitation strongly depends on a spine-
stem resistance. There are many extensions of this work
that take into account the dynamic structure of spines and
their changes in response to synaptic activity [5]. Coombes
and Bressloff suggested the simplified version of classical
theory based on FitzHugh-Nagumo model [6]. Note that
these cable models are phenomenological and not derived
from the transport and biochemical reactions equations for
ions in spiny dendrites. In recent years, the development of
confocal microscopies and other techniques allow one to
study the transport and biochemical reactions on themicro-
scopic level of a single spine and a parent dendrite [7–9].
There are several models for the particle transport and
chemical reactions inside biological microdomains [10–
13]. Santamaria et al. [14] found recently that the transport
of biologically inert particles (fluorescein dextran) in spiny
dendrites is very slow in comparison to the standard dif-
fusion. The mean-square displacement is hx2ðtÞi � t� with
�< 1 [15,16]. The authors suggested that the main reason
for this anomalous diffusion is that the dendritic spines act
as the traps of particles. Henry et al. [17] addressed this
problem by proposing a cable model derived from frac-
tional Nernst-Planck equations. Whereas many studies
have been devoted to the coupling between spines and den-

drites, they are either phenomenological cable theories or
microscopic models for a single spine and parent dendrite.
To the authors knowledge, there are still no mesoscopic
models for the transport and biochemical reactions inside
the population of spines and dendrites. We stress that ab-
normalities in dendritic spine populations (e.g., decreased
spine density) may result in cognitive disorders such as
autism, mental retardation, and fragile X syndrome [2].
The purpose of this Letter is to set up a mesoscopic

model for the transport of particles inside a single spiny
dendrite and chemical reaction in spines. Morphology of
spiny dendrites is very complex: the distances between the
spines, their sizes, and their shapes are randomly distrib-
uted [1,18]. Our model allows us to deal with morphologi-
cal diversity of dendritic spines through the transparent
formalism of waiting time distributions. We adopt the
following stochastic model. Inside a dendrite with the
uniform surface spine density �s, a particle performs a
Brownian motion with constant drift v along dendrite
and a diffusion coefficient D. This particle can describe
movement of an overdamped ion under the action of an
electrical field E such that v ¼ �E, where � is the ion
mobility. After a random time �d distributed by the proba-
bility density function (PDF) c 1ð�Þ the particle hits the
neck of spine on the surface of dendrite. Then it is trapped
inside the spine for a random time �s. The PDF for the
dwelling time �s is c 2ð�Þ. During this time irreversible

chemical reactionC!�Cb takes place, where� is the rate of
removing particles by buffers and pumps inside spines.
After the random time �s, the particle is released to the
parent dendrite through spine neck again. The experimen-
tal evidence indicates that spine necks act as a transport
barrier. The measurements of the Ca2þ flux out of spines
show that spine necks slow down the transport of ions up to
a factor 102 compared with free diffusion [8]. For these
reasons we suggest a power-law distribution for the dwell-
ing time PDF c 2ð�Þ, which also accounts for heteroge-
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neous spine-dendrite transport coupling [9]. Note that cal-
cium dynamics inside spines is a very complex process
regulated by endogenous Ca2þ buffers, IP3-mediated cal-
cium release from intracellular stores, pumps on the spine
membrane, etc. [8]. These factors also contribute to the
effective dwelling time �s. The PDF c 1ð�Þ for the random
time �d can be found from the escape problem for a
diffusion in bounded domain with absorbing sites (spines)
on the surface [10]. If a cylindrical dendrite of length L and
radius R has just one spine with neck radius a � R, then
the survival probability

R1
t c 1ðsÞds is exponentially dis-

tributed for large t and the mean escape time h�di is
�R2L=4aD [10,13]. In this Letter we use two distributions:
exponential c 1ðtÞ ¼ �1 expð��1tÞ (Markovian) and
gamma distribution c 1ðtÞ ¼ �2

1te
��1t (non-Markovian).

In both cases it is assumed that the parameters �1 and �1

are functions of the linear spine density �l ¼ 2�R�s, that
is �1 ¼ �l�

0
1 and �1 ¼ �l�

0
1. Its typical value for dendrites

with radius 0:5 �m is around 10 spines per �m [14].
Because of rather general character of our model, it is
not confined to the spiny dendrites, but it also allows us
to address the general issues of the transport and reactions
in fractals, porous media and disordered systems such as
nanochannel materials [19], biofilms [20], etc.

The main quantities of interest in this Letter are the
density of particles, n1 ¼ n1ðx; tÞ, inside a single dendrite
and the density of particles, n2 ¼ n2ðx; tÞ inside a single
spine, where x is the distance along a dendrite. Let us
derive the balance equations for n1 and n2 by using the
stochastic model for a single particle proposed above. Let
n01 and n

0
2 be the initial densities of particles in dendrite and

spine. If j1ðx; tÞ denotes the number of particles arriving at
point x in a dendrite at time t through a single spine stem
and j2ðx; tÞ is the number of particles arriving at point x in a
single spine at time t (see Fig. 1), the balance equation for
the densities n1 and n2 can be written as follows:

For a dendrite

n1ðx; tÞ ¼ �1ðtÞEx;t½n01� þ �l

Z t

0
�1ðuÞEx;t�u½j1�du: (1)

For a single spine

n2ðx;tÞ¼�2ðtÞe��tn02ðxÞþ
Z t

0
�2ðuÞe��uj2ðx;t�uÞdu:

(2)

Here we introduce the expectation operator Ex;t:

E x;t½n01� ¼
Z 1

�1
pðx; tjzÞn01ðzÞ dz; (3)

where pðx; tjzÞ is the probability density function for a
particle which starts at point z in a dendrite and ends up
at point x at time t. Equation (1) gives the density of
particles at point x in a dendrite at time t as a sum of two
terms. The first term �1ðtÞEx;t½n01� is the contribution of

those particles that are initially located inside the dendrite
and diffuse along it from t ¼ 0 up to time twithout moving
into spines. The second term represents those particles that
arrived in the dendrite from spines at point z at time t� u

and diffuse to reach point x without switching to spines.
The functions �1ðtÞ and �2ðtÞ [�iðtÞ ¼

R1
t c iðuÞdu, i ¼

1, 2] are the survival probabilities of particles in dendrites
and spines, respectively. Equation (2) is the particle’s
balance equation in a single spine. Note that Ex;t�u½j1� ¼R1
�1 pðx; t� ujzÞj1ðz; t� uÞdz. It gives the density of free

particles that are not bounded to absorbing sites inside
spine. The function e��t gives the fraction of free particles.
Then the first term�2ðtÞe��tn02ðxÞ is the contribution from
particles initially located in a spine that remain free up to
time t without moving inside dendrite. Now let us formu-
late the balance equations for j1ðx; tÞ and j2ðx; tÞ.
For a dendrite

j1ðx; tÞ ¼ c 2ðtÞe��tn02ðxÞ þ
Z t

0
c 2ðuÞe��uj2ðx; t� uÞdu:

(4)

For a single spine

j2ðx; tÞ ¼ c 1ðtÞEx;t½n01�=�l þ
Z t

0
c 1ðuÞEx;t�u½j1�du:

(5)

The first term in (4) is the number of particles initially
located in spine that arrive at dendrite at time t due to the
transport through spine neck. The second term represents
those particles that arrived at spines at point x at time t� u,
spent time u before moving into dendrite at time t. In (5)
the same balance of particles is applied, but we take into
account the motion of particles along the dendrite. Note
that all balance equations are valid in a nonlinear case
when the electric field E is induced by a membrane poten-
tial which depends on ions concentrations. This can be
included into the PDF p. In what follows we consider v ¼
const: For this linear problem, one can obtain an explicit
expression for PDF

pðx; tjzÞ ¼ ð4�DtÞ�1=2 exp½�ðx� z� vtÞ2=4Dt�: (6)

By using the Fourier-Laplace transforms ðx; tÞ ! ðq; sÞ,
one can find from the balance Eqs. (1)–(5) the expressions
for sniðq; sÞ � n0i ðqÞ: By using the Fourier-Laplace inver-

FIG. 1. Spine-dendrite interaction.
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sion formula, we obtain a system of integrodifferential
equations

@n1
@t

þ v
@n1
@x

¼ D
@2n1
@x2

� �lJ½n1; n2�; (7)

@n2
@t

¼ J½n1; n2� � �n2; (8)

with the spine-dendrite interaction term

J½n1; n2� ¼ �
Z t

0
e��ua2ðuÞn2ðx; t� uÞdu

þ ��1
l

Z 1

�1

Z t

0
pðx; ujzÞa1ðuÞn1ðx� z; t

� uÞdudz; (9)

where the Laplace transforms of kernels are ~aiðsÞ ¼
~c iðsÞ= ~�iðsÞ, i ¼ 1, 2. The symbol ~f indicates the
Laplace transform of f. Note that our model involves
two equations for freely moving particles and particles
trapped in the spines whereas the standard CTRW model
describes the trapping property as a temporal memory in
the moving particles. The derivation of nonstandard spine-
dendrite interaction term (9) is one of the main result of this
Letter. J½n1; n2� is the number of particles per unit time
flowing between the dendrite and a single spine. The first
term in the right-hand side of (9) describes the flux of
particles from a single spine through spine neck into a
parent dendrite and the second term gives the flux of
particles from dendrite into spine. The spines-dendrite
coupling is crucial for the propagation of action potential
along spiny dendrites since there is no direct communica-
tion between neighboring spines. It turns out that this
interaction is far from trivial and cannot be easily found
by using phenomenological approach. In general both
terms in are nonlocal in time. One can see from (9) that
the effective memory kernel in the first term depends on
chemical reaction in spines with decay rate �. The second
term of (9) is nonlocal in space. Note that this effect is not
due to the long-range jumps of particles inside the dendrite.
This nonlocal behavior may lead to anomalous transport of
particles in dendrites (see below). The main conclusion is
that there is no separation of transport and chemical reac-
tions from interaction between spines and dendrite in
general case (see similar phenomenon in [21–24]). It hap-
pens only in a simple Markovian case. If the probability
density functions c 1ðtÞ and c 2ðtÞ are exponential with the
rates �1 ¼ h�di�1 and �2 ¼ h�si�1, then the memory ker-
nels aiðtÞ are delta functions and the system (7) and (8)
takes the form of standard reaction-diffusion equations
with the interaction term

J½n1; n2� ¼ �0
1n1 � �2n2; (10)

where �0
1 ¼ �1=�l. This Markovian model corresponds to

the phenomenological approach for spine-dendrite interac-
tion [12]. Consider now the non-Markovian case when
both waiting time PDFs c i are gamma distributions
c iðtÞ ¼ �2

i te
��it, i ¼ 1, 2. Then the interaction memory

kernels are aiðtÞ ¼ �2
i e

�2�it, i ¼ 1, 2. This formula shows
that the effective memory kernel in the first term is

e�ð2�1þ�Þt. The effective delay time is ð2�1 þ �Þ�1.
When the drift is zero, the second term can be written in

the Fourier space as �2
1

R
t
0 e

�ð2�1þDq2Þun1ðq; t� uÞdu. It
means that the effective delay time ð2�1 þDq2Þ�1 de-
pends on the diffusion in dendrites and the density of
spines since �1 ¼ �l�

0
1.

Biologically inert particles: anomalous diffusion.—It
has been found recently that the transport of inert particles
(fluorescein dextran) in spiny dendrites of cerebellar
Purkinje cells is subdiffusive [14], i.e., hx2ðtÞi � t�, where
0<�< 1. Let us show that our model also predicts this
subdiffusive behavior. Consider the case when there is no
binding reaction inside the spines: � ¼ 0. For simplicity
we assume that waiting time PDF for dendrite c 1ðtÞ is
exponential. On the basis of the experimental evidence, we
suggest a power-law distribution for the waiting time den-
sity c 2ðtÞ � ðt=�Þ�1�� as t ! 1, which in the Laplace

space is ~c 2ðsÞ ¼ ð1þ ð�sÞ�Þ�1 [15,16]. The Laplace

transform of the mean squared displacement is hx2ðsÞi ¼
� d2n

dq2
ð0; sÞ; here nðq; sÞ ¼ n1ðq; sÞ þ �ln2ðq; sÞ is the

Laplace-Fourier transform of the total density of particles.
One can obtain from (1)–(5)

nðq; sÞ ¼ n01ðqÞ
~�q
1ðsÞ þ ~�2ðsþ �Þ ~c q

1ðsÞ
1� ~c 2ðsþ �Þ ~c q

1ðsÞ

þ �ln
0
2ðqÞ

~�2ðsþ �Þ þ ~c 2ðsþ �Þ ~�q
1ðsÞ

1� ~c 2ðsþ �Þ ~c q
1ðsÞ

; (11)

where ~�q
1ðsÞ ¼ ~�1ðsþ iqvþDq2Þ. In particular, when

� ¼ 0 and v ¼ 0, we compute the mean squared displace-
ment

hx2ðtÞi ’ h�diDðt=�Þ� (12)

as t ! 1. In the Markovian case with PDFs c iðtÞ ¼
�i expð��itÞ, one can find the standard hx2ðtÞi ’ Deqt,

where the effective diffusivity Deq ¼ D�2ð�1 þ �2Þ�1.

In the anomalous case (12) the effective diffusion coeffi-
cient tends to zero. Note that the authors in [14] measured
the mean-square displacement (MSD) as ensemble aver-
age. It has been found recently [25] that the time averaged
MSD is different from ensemble averaged MSD for sub-
diffusion. This is a clear indication of ergodicity breaking
which is closely related to the aging property of the CTRW
with power-law waiting times.
Kinetics of particles decay in spiny dendrites.—While

anomalous switching slows down the transport of particles
in dendrites (12), it leads to a high rate of particles’ decay
compared to the Markovian case. This is illustrated in
Fig. 2 where we compared the decay of particles in an
anomalous case (� ¼ 0:1) with that in the non-Markovian
case (gamma distribution) and standard Markovian case
(� ¼ 1). One can see that the decrease of diffusion of
particles towards the parent dendrite (decrease of the ex-
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ponent �) leads to a faster decay of total number of
particles nðtÞ ¼ Rðn1 þ �ln2Þdx. From Eq. (12), nðtÞ �
t��e��t as t ! 1. This explains the effect of limited
diffusion of Ca2þ along dendrites observed in experiments
[14]. The decay of n2 is also illustrated in Fig. 2 showing
that transport equilibration is slow. This is very important
for the accumulation of plasticity-inducing signals inside
spines [9]. The phenomenological model for spine-
dendrite interaction assumes that the ion current I passing
through the spine necks is proportional to the current
voltage difference between the spines and dendrite . Our
findings demonstrate that particles flux through the spine’s
neck is nonlocal in time and space [see (9)]. In general, the
ion current I½’1;’2� ¼

RR
t
0Gðz;uÞð’1 �’2Þdudz, where

the kernel Gðz; uÞ has to be determined. Note that Henry
et al. [17] used the spine-dendrite ion current with the
Riemann-Liouville fractional derivative operator instead
of local Ohm’s law.

In summary, we have developed the mesoscopic model
for transport and reactions of particles inside spiny den-
drites. The main feature of our model is that the spine-
dendrite interaction has been described by a non-
Markovian random process giving rise to a flux of particles
between the dendrite and spines that is nonlocal in space
and time (memory effects). This allows us to explain two
important effects observed in experiments [14]: (i) a sub-
diffusive transport of inert molecules along spiny dendrites
and (ii) limited diffusion of a second messenger (Ca2þ) due
to fast effective decay of particles inside spines. Because of
the non-Markovian character of spine-dendrite interaction,
a significant delay of diffusional equilibration between
spines and dendrites takes place. As a result, the local rises
in concentration of biochemical signals generated by syn-
aptic activation may lead to accumulation of plasticity-
inducing signals inside spines [9]. This is important for

understanding the mechanisms of synaptic plasticity which
underlie learning and memory.
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FIG. 2. Kinetics of particles decaying in the system spine-
dendrite nðtÞ (main figure) and in spines n2ðtÞ (inset). D ¼ 0:2,
�m2=ms, h�si ¼ h�di ¼ 1 ms, � ¼ 0:1 ms�1, �l ¼ 10 �m�1.
The initial conditions are niðx; 0Þ ¼ �ðxÞ=2, i ¼ 1, 2.
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