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(Received 28 January 2011; published 12 August 2011)

The strength of classical correlations is subject to certain constraints, commonly known as Bell

inequalities. Violation of these inequalities is the manifestation of nonlocality—displayed, in particular,

by quantum mechanics, meaning that quantum mechanics can outperform classical physics at tasks

associated with such Bell inequalities. Interestingly, however, there exist situations in which this is not the

case. We associate an intriguing class of bound entangled states, constructed from unextendable product

bases with a wide family of tasks, for which (i) quantum correlations do not outperform the classical ones

but (ii) there exist supraquantum nonsignaling correlations that do provide an advantage.
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Introduction.—The existence of correlations is an inher-
ent property of composite physical systems and, as such, is
fundamental for our understanding of physical phenomena.
On the other hand, physical principles impose limits on the
correlations between the results of measurements per-
formed on distant systems. If the measurements correspond
to spacelike separated events, the observed correlations
should obey the principle of no signaling, which prevents
any faster-than-light communication among the parties. If
the systems are quantum, it should be possible to write the
correlations as results of local measurements acting on a
global quantum state. Finally, the observed correlations are
said to be classical if they are attainable with shared
classical randomness. All three kinds of correlations cor-
respond to sets of probabilities of measurement outcomes
and, as such, form convex sets, represented schematically
in Fig. 1.

Bell was the first to point out that classical correlations
(CC) are constrained by certain inequalities (the famous
Bell inequalities) [1]. Correlations which violate a Bell
inequality, and thus do not correspond to any classical
model, are known as nonlocal. Bell’s theorem guarantees
the existence of quantum correlations (QC) that are non-
local. However, it is known also that there are nonsignaling
correlations (NC) which are supraquantum [2], i.e., not
attainable by measurements acting on a quantum state,
yet violating Bell inequalities.

Apart from its fundamental importance, understanding
the relation among the sets of correlations is crucial from a
practical point of view, since correlations find application
as an information resource. In particular, one of the goals
of quantum information theory is to understand when QC
give an advantage over CC. For instance, nonlocal QC
provide cryptographic security not achievable with classi-
cal theory [3,4]. They can also be used to certify the
presence of randomness [5] and outperform CC at commu-
nication complexity problems [6].

While QC are in general more powerful than CC, there
are some intriguing situations in which CC and QC per-
form equally well. This equivalence can be detected by
Bell inequalities which are not violated by QC. The first
examples of such inequalities were given in Ref. [7] for
two parties. Unfortunately, none of these is tight [8]. The
importance of tight Bell inequalities stems from the fact
that they correspond to facets of the convex set (polytope)
of classical correlations (see Fig. 1) and hence are suffi-
cient to fully characterize it [9]. Multipartite Bell inequal-
ities with no quantum violation were later provided in
Ref. [10] and, moreover, shown to be tight for 3 � n � 7
parties. Apart from these examples, we know little about
information tasks, or equivalently Bell inequalities, where
QC do not provide any advantage.
In this Letter, we demonstrate an a priori unexpected

relation between such inequalities and unextendable prod-
uct bases (UPBs) [11]. Recall that the latter is a collection
of orthogonal product vectors spanning a proper subspace
V of some n-partite Hilbert space H , such that there does
not exist any other product vector in H orthogonal to V.

FIG. 1 (color online). Schematic depiction of the sets of clas-
sical (CC), quantum (QC), and nonsignaling correlations (NC).
Tight Bell inequalities correspond to facets of the classical set. B
denotes a Bell inequality with no quantum violation which is
(a) not tight or (b) tight. Note that a tight Bell inequality
guarantees that a region in which quantum and classical corre-
lations coincide is a facet. A nontight inequality may define a
common region of the classical and quantum sets that does not
have maximal dimension.
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The fundamental physical importance of UPBs stems from
the fact that they allow for the construction [11] of one of
the first examples of bound (i.e., nondistillable) entangled
states—being one of the most intriguing concepts in quan-
tum information theory [12]—and, furthermore, that they
give rise to nonlocality without entanglement [13], i.e., the
impossibility of perfect distinguishability of some orthogo-
nal product states by means of local operations and classi-
cal communication.

Below, we prove how UPBs satisfying a given require-
ment give rise to Bell inequalities without a quantum
violation. Our construction covers some of the inequalities
previously derived in Ref. [10] and, thus, can lead to tight
Bell inequalities. Moreover, the construction can be ex-
ploited in the opposite direction: We derive new examples
of UPBs from some of the Bell inequalities with no quan-
tum violation from Ref. [10].

The considered scenario consists of n distant observers
having access to n systems. Observer i (i ¼ 1; . . . ; n) can
perform on his system one of mi possible measurements.
His choice of measurement is denoted xi ¼ 1; . . . ; mi, and
the obtained result ai ¼ 1; . . . ; rxii with rxii denoting the
number of outcomes the mith measurement has, while
x ¼ ðx1; . . . ; xnÞ and a ¼ ða1; . . . ; anÞ stand for the corre-
sponding vectors. The correlations among the parties are
described by the conditional probability pðajxÞ.

Consider a linear combination of these probabilities
defined by a 2n-index tensor Tx;a:

P
Tx;apðajxÞ. It leads

to the Bell inequality
P

x;aTx;apðajxÞ � �C, where �C

(�Q, �N) is its maximal value for CC (QC, NC). It

is nontrivial if it is not an inequality for general nonsignal-
ing correlations, i.e., �N >�C, while it is violated by
QC if �Q >�C. Any Bell inequality can also be seen as

a nonlocal game, in which the parties are given the input x
and have to produce the output a, in a distributed
manner, all the possibilities being weighted by the tensor
Tx;a. The maximum values of the inequalities give the

optimal winning probability for the different sets of
correlations.

From a UPB to Bell inequalities.—Consider an n-partite
product Hilbert space H ¼ �n

i¼1C
di and a set S of or-

thogonal product vectors from H : S ¼ fjc ð1Þ
j i � � � � �

jc ðnÞ
j igjSjj¼1, with jc ðiÞ

j i 2 Cdi . The jSj local states for

each party constitute n sets, denoted by SðiÞ.
We partition each SðiÞ into disjoint subsets SðiÞ

k such that

all vectors forming a particular subset are mutually or-

thogonal. Each SðiÞ
k defines a measurement, while the dif-

ferent vectors within every such subset are associated to the
measurement outcomes. In order to remove the ambiguity

in splitting the local sets SðiÞ into subsets, we restrict
ourselves to sets S having the property that no two vectors

belonging to different subsets SðiÞ
k are orthogonal. Below,

we refer to this property as ðPÞ. This constraint is auto-
matically satisfied in the case of qubits.

It is straightforward to assign to each vector from S a
conditional probability pðajjxjÞ: The measurement by the

observer i is given by the index k, enumerating the subset

SðiÞ
k to which jc ðiÞ

j i belongs, while the result corresponds to
the position of this state within the set. We now consider
linear combinations of these conditional probabilities with
weights qj. The maximum of such a linear combination

over all local strategies is �C ¼ maxfqjg. Indeed, due to

ðPÞ, orthogonality of any two vectors from S means that at
some position they have different vectors from the same
local subset. At the level of probabilities, this means that if
one of them, say, pðajjxjÞ, equals unity, the rest have to be
zero, as they always have at some position the same input
but a different output. Then, we get the Bell inequality

X

j

qjpðajjxjÞ � maxfqjg; (1)

from the initial set of orthogonal product vectors S.
It is now easy to prove that all these inequalities are not

violated by QC.
Fact 1.—Let S be a set of orthogonal product vectors

possessing the property ðPÞ. Then for the corresponding
Bell inequality (1) it holds that �C ¼ �Q ¼ maxfqig.
Proof.—First of all, since the dimension is arbitrary, we

can restrict the analysis to projective measurements. Let us

assign projectors PðiÞ
j (we enumerate them in the same way

as the vectors jc ðiÞ
j i) to the outcomes of the local observ-

ables and construct the Bell operator

B ¼ XjSj

j¼1

qj
On

i¼1

PðiÞ
j : (2)

In general, PðiÞ
j may be different from the local vectors of

S, and, moreover, they can be degenerate. Nevertheless,
they maintain the orthogonality of the local vectors from S.
Precisely, any pair of projectors �n

i¼1P
ðiÞ
j have at some

position local projectors corresponding to the same observ-
able but different outcomes, meaning that all of them are
orthogonal. Thus the maximal eigenvalue of B is maxfqig,
and hence �Q ¼ maxfqig. j

Our construction offers a systematic and easy way of
generating Bell inequalities with no quantum violation
from orthogonal product vectors. However, it could be
the case that all the derived inequalities are trivial, in the
sense of not being violated by any NC. Here is where the
concept of a UPB becomes relevant.
Fact 2.—If S is a UPB with the property ðPÞ, the result-

ing Bell inequality (1) with qj ¼ 1 is violated by NC.

Proof.—Let �UPB be a projector onto the subspace of
H spanned by S. Then, the Bell operator B with qj ¼ 1

and the measurements defined by S is exactly �UPB.
Consider now the normalized entanglement witness

W ¼ ½1=ðjSj � �DÞ�ð�UPB � �1Þ with D ¼ dimH and
� ¼ minc prod

hc prodj�UPBjc prodi. This witness detects the
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bound entangled state % ¼ ð1��UPBÞ=ðD� jSjÞ. A
direct check shows that TrðBWÞ ¼ Trð�UPBWÞ ¼ jSjð1�
�Þ=ðjSj � �DÞ, which is greater than 1 (in this case
�C ¼ �Q ¼ 1) whenever jSj> �D. The latter, however,

follows from the very definition of W. Consequently, W
violates the Bell inequality resulting from S. This com-
pletes the proof, as local measurements acting on a witness
give raise to NC (see, e.g., Refs. [14,15]). j

Our construction, then, shows how to derive nontrivial
Bell inequalities with no quantum violation from any
UPB with property ðPÞ. As mentioned, this property is
always satisfied in the case of qubits. For two parties there
exists no qubit UPB. Moving to three parties, it was shown
in Ref. [16] that, by local unitaries and permutations of
particles, all UPBs can be brought to S ¼ fj000i; j1e2e3i;
je11e?3 i; je?1 e?2 1igwith jeii � j0i; j1i and he?i jeii ¼ 0 (i ¼
1; 2; 3). Following the above rules, at each site we can
define two subsets of mutually orthogonal vectors, namely,

S0 ¼ fj0i; j1ig and SðiÞ
1 ¼ fjeii; je?i ig. Then, we assign to

each element in the UPB the following probabilities:
j000i ! pð000j000Þ, j1e2e3i ! pð100j011Þ, je11e?3 i !
pð011j101Þ, and je?1 e?2 1i ! pð111j110Þ. Adding them,

we obtain the inequality pð000j000Þ þ pð100j011Þ þ
pð011j101Þ þ pð111j110Þ � 1 with �Q ¼ �C ¼ 1. This

inequality, previously derived in Ref. [17], is one of the
tight inequalities studied in Ref. [10]. This shows that our
construction can lead to tight Bell inequalities with no
quantum violation. In Ref. [18], the above UPB was gen-
eralized to an arbitrary odd number of qubits. We have
checked that the corresponding inequality for n ¼ 5,
which is not the same as the five-party Bell inequality of
Ref. [10], is not tight.

Moving to dimensions larger than 2, there already exist
UPBs for two parties. Although, as explained later, none of
them has property ðPÞ, there do exist examples for more
than two parties with this property, such as the UPB of
Ref. [19]. We applied our construction to these states in the
case of four three-dimensional systems. Unfortunately, the
resulting inequality is not tight.

From a Bell inequality to UPB.—Clearly, the above
procedure can be applied in reverse: Given a Bell inequal-
ity (1), one can derive, by following analogous rules, a set
of product vectors. The number of different inputs at each
position gives the number of different local subsets, while
the number of different outputs corresponding to a particu-
lar input gives the number of elements of the correspond-
ing subset. The maximal number of different outputs at the
ith position gives the dimension of the local Hilbert space
di. Note that in the general case, the derived vectors are not
necessarily orthogonal. In what follows, we consider the
set of Bell inequalities with no quantum violation given in
Ref. [10]. These inequalities are such that the derived
product vectors are orthogonal and naturally possesses
the property ðPÞ. Remarkably, as we will see shortly, they
define a new class of UPBs.

The explicit form of these inequalities for odd n reads

Xðn�1Þ=2

k¼0

Xn

i1<���<i2k¼1

Di1...i2kpð0j0Þ � 1; (3)

while for even n,

Xðn�2Þ=2

k¼0

Xn

i1<���<i2k¼2

Di1...i2k½pð0j0Þ þpð0 . . . 01j10 . . . 0Þ� � 1:

(4)

Here 0 ¼ ð0; . . . ; 0Þ, and Di1;...;ik flips (0 $ 1) inputs and

outputs at positions i1; . . . ; ik and i1 � 1; . . . ; ik � 1 (if ij ¼
1, then ij � 1 ¼ n), respectively.

We now derive the product vectors corresponding to
these inequalities for arbitrary n. Note that all terms in
Eqs. (3) and (4) have at each position two possible incomes
and outcomes. Thus, at each site we can define a pair of
two-element sets and, without any loss of generality, we
can take them to be equal for all sites; say, S0 ¼ fj0i; j1ig
and S1 ¼ fjei; je?ig with jei � j0i; j1i.
Let V denote a unitary operation such that Vj0i ¼ jei

and Vj1i ¼ je?i, while �x is the standard Pauli matrix
flipping j0i $ j1i. Then, the 2n�1 product vectors derived
from (3) and (4) can be written as

Vi1 . . .Vik�i1�1 . . .�ik�1j0i�n;
i1 < � � �< ik ¼ 1; . . . ; n; k ¼ 0; 2; 4; . . . ; n� 1;

(5)

and

Vi1 . . .Vik�i1�1 . . .�ik�1j0i�n;
V1Vi1 . . .Vik�i1�1 . . .�ik�1�nj0i�n;
i1 < � � �< ik ¼ 2; . . . ; n; k ¼ 0; 2; 4; . . . ; n� 2;

(6)

respectively. For n ¼ 3 we recover the four-element three-
qubit Shifts UPB [11]. Notice that the freedom in choosing
the local sets allows one to obtain more general UPBs.
We are now ready to prove the following statement.
Fact 3.—The vectors (5) and (6) form an n-qubit UPB.
Proof.—Our proof consists of two steps. First, we show

that for any n the above vectors can be generated from the
Shifts UPB by a recursive protocol. Then we prove that this
protocol preserves the property of being UPB.
Let us start with the case of odd n. We denote the set of

vectors in Eq. (5) by U1 and divide it into two subsets UðiÞ
1

(i ¼ 1; 2) consisting of vectors with the first qubit from
Si�1. Then, we create another group of vectors U2 by
switching the last qubit ofU1 to the orthogonal one (hence-
forth called orthogonalization) and divide U2 into two

subsets UðiÞ
2 (i ¼ 1; 2) in the same way as U1. Finally,

direct algebra shows that the following set of vectors
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j0i �Uð1Þ
1 ; j1i �Uð2Þ

2 ;

jei �Uð1Þ
2 ; je?i �Uð2Þ

1

(7)

is exactly the same as the vectors in (6) with nþ 1 parties.
Almost exactly the same procedure produces (nþ 1)-

partite vectors (5) from an n-partite set with even n. The
only difference is that to obtain U2 from U1 one has to
orthogonalize the penultimate qubit and apply the trans-
formation j0i $ je?i and j1i $ jei to the last one.

Having established the recursive procedure generating
vectors (5) and (6) from the Shifts UPB, we now show that
it preserves the UPB property. First, let us prove that all the
vectors (7) are orthogonal. It suffices to prove that vectors

from U2 are orthogonal, U
ð1Þ
1 ? Uð1Þ

2 , and Uð2Þ
1 ? Uð2Þ

2 (no-

tice that already Uð1Þ
1 ? Uð2Þ

1 ). The first condition is satis-

fied due to the fact that U2 is obtained from U1 by
application of the above local transformations. A direct
check shows that they map a set of orthogonal vectors onto
another set of orthogonal vectors.

The proof of the remaining two conditions is more
involved. Nevertheless, it suffices to consider the odd-n
case, since the proof for the even n goes along almost the
same lines. To this end, notice that the last qubit of the

vectors in Uð1Þ
1 is either j0i or jei [cf. (7)]. Thus, their

orthogonality comes from the first n� 1 qubits. This,

together with the fact that Uð1Þ
2 is obtained from Uð1Þ

1 by

orthogonalizing the last qubit, implies that any vector from

Uð1Þ
1 is orthogonal to Uð1Þ

2 and hence Uð1Þ
1 ? Uð1Þ

2 . Exactly

the same reasoning allows one to conclude that Uð2Þ
1 ?

Uð2Þ
2 . The only difference is that the last qubit of Uð2Þ

1 is
either j1i or je?i (also not orthogonal).

Finally, we show that there does not exist any product
vector orthogonal to the set (7). For this purpose, assume

the contrary and write the vector orthogonal to (7) as jc i ¼
jxij ~c i, with jxi and j ~c i denoting the first qubit and the
product state of the remaining n� 1 qubits, respectively. If

jxi belongs to one of the sets Si (i ¼ 0, 1), say, S0, then j ~c i
has to be orthogonal to either U1 or U2, depending on
whether jxi ¼ j0i or jxi ¼ j1i. If jxi =2 Si (i ¼ 0; 1), then

j ~c i must be orthogonal to both UPBs Ui. Both situations
lead to a contradiction meaning that the above construction
preserves the UPB property. j

Conclusions.—Nontrivial Bell inequalities lacking a
quantum violation are rare and intriguing objects meriting
further investigation. We have demonstrated here a system-
atic way to derive inequalities of this type with the property
�C ¼ �Q <�N from UPBs, themselves an important con-

cept in the theory of entanglement. We have furthermore
shown that the construction may be applied in the reverse
direction and have provided new examples of UPBs from
existing Bell inequalities.

These findings are strongly related to recent work on the
relationship between QC and multipartite versions of

Gleason’s theorem [14,15]. Indeed, the generalization of
this theorem to the case of distant observers leads to
correlations that can be written as local measurements
acting on entanglement witnesses. This set is equivalent
to the set of QC in the bipartite case [14,15]. However, this
equivalence does not hold for three parties [15]. Here, we
generalize this result to any Bell scenario in which one is
able to build, by using our procedure, a nontrivial inequal-
ity from some UPB satisfying ðPÞ. On the other hand, our
results imply that there are no bipartite UPBs with the
property ðPÞ, as otherwise there would exist a bipartite
witness violating a Bell inequality beyond the quantum
bound, contradicting the results of Refs. [14,15].
The connection between product vectors and Bell in-

equalities introduced here opens new perspectives. For
instance, it is worth investigating whether sets of orthogo-
nal product vectors with ðPÞ, which are not UPBs, can lead
to novel Bell inequalities. Although all of them lack a
quantum violation, it is unclear whether they are nontrivial,
i.e., violated by some nonsignaling correlations. In this
direction, we prove the following fact.
Fact 4.—Let S be a completable set of orthogonal

product vectors with the property ðPÞ. Then the corre-
sponding Bell inequality (1) is not violated by any NC
represented by entanglement witnesses.
Proof.—Let S? denote the set of product vectors com-

pleting S to the full basis in H . Then consider the Bell
inequality derived from S and the Bell operator B repre-
senting it [cf. (2)]. By � let us now denote the separable
projector onto the support of B. The latter can act on a
Hilbert space of dimension larger than dimH , but, since S
is completable, there exists a separable projector �? such
that �þ�? ¼ 1. Then, for any normalized witness
TrðBWÞ�maxfqigTrð�WÞ¼maxfqigTr½ð1��?ÞW�. As
�? is separable and W is normalized, 0 � TrðW�?Þ and
hence TrðBWÞ � maxfqig. j
Finally, it would be of interest to understand when this

construction leads to tight Bell inequalities and if the
ability to do so may be inferred from some properties of
the set of product states. From a more general perspective,
it remains an open question as to whether there exist
bipartite Bell inequalities without a quantum violation.
We thank M. Piani, G. Prettico, and A. Winter for

discussions. This work was supported by EU projects
AQUTE, NAMEQUAM, Q-Essence, and QCS, ERC
Grants QUAGATUA and PERCENT, Spanish MINCIN
Projects No. FIS2010-14830, No. FIS2008-00784,
No. FIS2008-01236, and No. FPU AP2008-03043, and
QOIT, Generalitat de Catalunya, and Caixa Manresa.

[1] J. S. Bell, Physics (Long Island City, N.Y.) 1, 195 (1964).
[2] S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994).
[3] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[4] A. Acı́n et al., Phys. Rev. Lett. 98, 230501 (2007).

PRL 107, 070401 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

12 AUGUST 2011

070401-4

http://dx.doi.org/10.1007/BF02058098
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.98.230501


[5] S. Pironio et al., Nature (London) 464, 1021 (2010); R.
Colbeck, Ph.D. thesis, University of Cambridge, 2007; R.
Colbeck and A. Kent, J. Phys. A 44, 095305 (2011).

[6] H. Buhrman et al., Rev. Mod. Phys. 82, 665 (2010).
[7] N. Linden et al., Phys. Rev. Lett. 99, 180502 (2007).
[8] M. L. Almeida (private communication).
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