
Optimal Intermittence in Search Strategies under Speed-Selective Target Detection
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Random search theory has been previously explored for both continuous and intermittent scanning

modes with full target detection capacity. Here we present a new class of random search problems in

which a single searcher performs flights of random velocities, the detection probability when it passes

over a target location being conditioned to the searcher speed. As a result, target detection involves an

N-passage process for which the mean search time is here analytically obtained through a renewal

approximation. We apply the idea of speed-selective detection to random animal foraging since a fast

movement is known to significantly degrade perception abilities in many animals. We show that speed-

selective detection naturally introduces an optimal level of behavioral intermittence in order to solve the

compromise between fast relocations and target detection capability.
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Consider a predator trying to detect a sparse set of
immobile targets homogeneously distributed in space
from which no other previous information is available.
Formally, this can be studied as a first-passage problem
in a disordered media. For such situations it has been
shown both analytically and numerically [1–4] that Lévy
flights represent an optimal search strategy since they
minimize the mean time for detection or mean first-passage
time. The alternation between small jumps in a given
region (clustering) and relatively frequent long jumps typi-
cal of Lévy motion seems to represent the key to this
optimality, even in those cases when the Lévy process is
superposed to other types of motion [5].

Furthermore, intermittent search strategies have also
received great attention during the last years [6]. These
strategies are characterized by a distinction between scan-
ning periods (diffusive movement) and relocation periods
(ballistic movement) of random duration, so the target can
only be detected during the scanning phases. Although the
idea of intermittence is fundamental to understand many
foraging or search processes, the drastic distinction made
between scanning and relocation in previous models can be
relaxed assuming that target detection is speed selective. In
fact, intermittent search is based on the idea that in many
animals fast movement degrades perceptual abilities [7,8].
Hence, the role of fast or long moves is to relocate the
animal as fast as possible to new unexplored areas in
prejudice of successful target detection. In the following,
we address the question of what conditions make the
incorporation of fast or long relocation moves advanta-
geous in a search strategy. Under such conditions one
may expect intermittence to arise evolutionarily.

Let us consider the idealized situation depicted in Fig. 1.
The immobile targets are periodically located on a 1D
domain at positions�L,�3L,�5L; . . . The predator starts

from a random position x0 in the interval [� L, L] and
moves by performing consecutive flights. The flight dura-
tions and velocities are assumed to be independent random
variables distributed according to probability distribution
functions (PDFs) ’ðtÞ and hðvÞ, respectively. Note that
flight lengths and flight speeds are thus positively corre-
lated. When the predator passes through a target location,
detection occurs with probability �ðvÞ and the target is
missed otherwise. The function �ðvÞ is assumed to be
monotonically decreasing so the target detection gets
more difficult as the predator moves faster.
Intermittence can be implemented in a natural and easy

way within our speed-selective detection context. For in-
stance, separating relocation and scanning could lead us to
consider a bimodal distribution hðvÞ, with each peak in the
distribution representing one of the two phases. Instead, we
use here a different approach and define an intermittent
search strategy as that where faster flights (at the risk of
overpassing the target) and slower flights (to ensure target
detection) are promoted, while intermediate speeds are

FIG. 1. Schematic representation of a search trajectory with
speed-selective target detection. The individual performs flights
with random velocities v1, v2, v3; . . . and random durations. If it
passes over a target location with a speed that is too large (v2)
the probability to miss the target is high; a later passage at a
lower speed v3 results in target detection.
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avoided in consequence. To illustrate the idea, let us con-
sider a double exponential distribution (which is biolog-
ically sound [9,10])

hðvÞ ¼ 1

4v0

�
�e��jvj=v0 þ 1

�
e�jvj=�v0

�
(1)

where 0<� � 1, and v0 is an auxiliary parameter that
will be taken equal to unity arbitrarily. Then for � ¼ 1 this
becomes a single exponential distribution, and as � de-
creases a larger fraction of faster flights (as well as slower
flights) are allowed (see Supplemental Material [11]). So
that, � modulates the strength of intermittence (i.e., up to
what extent intermediate speeds are avoided), with � ! 0
representing a highly intermittent strategy.

We start our analysis by showing (Fig. 2) how the mean
search time to target detection hTi scales with the charac-
teristic system size L. To this end we have carried out
Monte Carlo simulations of the stochastic process depicted
in Fig. 1. The results provided in Fig. 2 correspond for
simplicity to the case x0 ¼ 0 and a fixed flight time ’ðtÞ ¼
�ðt� �Þ, with the speed flight distribution given by (1).
Finally, we have considered a critical detection speed v�,
so �ðvÞ ¼ Hðjvj � v�Þ is a Heaviside function equal to 1
for flight speeds below v� and 0 otherwise.

As can be observed from the plot, for large v� the speed-
selective condition does not play any significant effect;
then the detection time corresponds to the first-passage
time and the results are almost trivial to interpret. In
particular, for large L the Wald’s identity [12] from first-
passage processes is expected to hold; in our case this
implies that limL!1hTi ¼ L2=�hv2i. In Fig. 2 we have

plotted this asymptotic behavior (dotted line), which shows
that the results for large v� values can be satisfactorily
explained just in light of such approximation. However, as
v� decreases and the problem departs from a first-passage
process we observe a scaling hTi � L that persists even for
relatively large values of L (albeit the Wald’s identity is
finally fulfilled for L large enough). Hence, in the follow-
ing we derive an approximated method valid for the whole
range of v� values.
Consider a particle performing flights of random dura-

tions and velocities, as in Fig. 1, but where the effects of
target detection are not explicitly included. Since we are
studying movement in a periodic domain we will consider
equivalently that the particle moves in the finite domain
[� L, L] with periodic boundary conditions. We define
n1ðL; t; x0Þ as the flux of particles passing through the
boundary L (or �L) at time t while moving with a speed
small enough so that target detection would be possible.
This can be written as

n1ðL; t; x0Þ ¼
Z 1

0
v�ðvÞpðL; v; t; x0Þdv

�
Z 0

�1
v�ð�vÞpð�L; v; t; x0Þdv (2)

where pðx; v; t; x0Þ represents the probability density for
the particles being at position L at time t moving with
speed v. The first integral on the right-hand side of (2)
accounts for those particles reaching the boundary x ¼ L
from the left, while the second one stands for those reach-
ing x ¼ �L from the right. Note that the distribution of
first-detection times fðL; t; x0Þ we want to find is not equal
to n1ðL; t; x0Þ since the latter includes all possible paths
which have previously passed one, two, three,. . . times
through L or �L slowly enough to allow target detection.
So, we could subtract from n1ðL; t; x0Þ the probability
n2ðL; t; x0Þ that at least two of these slow passages have
occurred in the interval (0, t) and the last one of these two
occurs exactly at time t. Using an approach similar to that
used in the Wilemski-Fixman approximation in chemical
physics [13], this probability can be written as

n2ðL; t; x0Þ ’ n1ðL; t; x0Þ � n1ðL; t;LÞ (3)

where the asterisk denotes time convolution. This is clearly
a renewal approximation since we assume that, after the
first target detection event, the motion process starts anew
from x0 ¼ L, neglecting any possible correlations. Note,
however, that one will need to introduce as well a three
detection function n3ðL; t; x0Þ, and so on. In the end, if we
extend this discussion up to infinite order, we can approxi-
mate the first-detection time distribution (a more detailed
derivation is provided in [11]) through

fðL; t; x0Þ ’
X1
i¼0

ð�1Þin1ðL; t; x0Þ � n1ðL; t;LÞ�i (4)

FIG. 2. Mean time required for target detection as a function of
L. Different values of v� are considered (legend). Symbols
represent results obtained from Monte Carlo simulations (aver-
aged over 2� 104 realizations) and solid lines correspond to the
theoretical approximation (10). Dotted line represent the asymp-
totic theoretical results valid for first-passage processes. In all
cases arbitrary values � ¼ 0:2 and � ¼ 1 have been used.

PRL 108, 028102 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

13 JANUARY 2012

028102-2



where f�i � f � . . . � f is an ith convolution product. After
transforming from the time domain to the Laplace domain
(with argument s) this takes the very simple form

fðL; s; x0Þ ’ n1ðL; s; x0Þ
1þ n1ðL; s;LÞ : (5)

We note that a similar derivation to that presented here was
provided in [14] for the case of first-passage processes,
while we have extended here the idea to our first-detection
(N-passage) problem.

Hence, from (2) and (5) it follows that the problem of
finding the first-detection time distribution reduces to find-
ing a solution for pðL; v; t; x0Þ. This can be achieved from a
continuous-time random walk formalism as follows. First,
we introduce the probability density jðx; t; x0Þ that a parti-
cle finishes a single flight (lands) at position x at time t.
Then

jðx; t; x0Þ ¼ jðx0Þ�ðtÞ þ
Z t

0
d&

Z L

�L
dzjðz; &; x0Þ

��ðx� z; t� &Þ (6)

holds, with both x and z restricted to the finite domain
[� L, L]. The first term in the right-hand side of (6) stands
for the initial conditions, while the second term contains
the contribution from all particles that fly from any position
of the domain to x, with�ðx; tÞ being the PDF that a single
flight has length x and duration t. The function �ðx; tÞ is
then related to the PDFs ’ðtÞ and hðvÞ through [15–17]

�ðx; tÞ ¼
Z 1

�1
dv�ðx� vtÞ’ðtÞhðvÞ: (7)

The probability density jðx; tÞ is connected to pðx; v; t; x0Þ
through

pðx;v;t;x0Þ¼
Z t

0
d&jðx�v&;t�&;x0ÞhðvÞ

Z 1

&
d&0’ð&0Þ:

(8)

The expressions (6) and (8), defined just in [� L, L], can
be formally extended to x 2 R by using periodic summa-
tion as shown in [18,19]. So we are able to find an exact
solution for pðx; v; s; x0Þ in the Laplace space as a Fourier

series pðx; v; s; x0Þ ¼ P1
m¼�1 cmðv; s; x0Þe�i�mx=L (see

[11] for details). The exact expression of the Fourier
coefficients reads

cmðv; s; x0Þ ¼
hðvÞe�i�mx0=L½1� ’ðsþ im�v

L Þ�
2ðLsþ im�vÞ½1� �̂ðn�L ; sÞ� ; (9)

where �̂ðk; sÞ represents the Fourier-Laplace transform of
�ðx; tÞ. From this result, the general form of the first-
detection time distribution and its mean value can be
computed analytically (see [11]). The result becomes
specially simplified if we explore the limit m�=L 	 1,
which is equivalent to assuming that the Fourier series is
basically dominated by the first m modes; in principle this

approximation is expected to work better as L increases.
Taking the case x0 ¼ 0 in concordance with the simula-
tions presented in Fig. 2 we finally obtain

hTi ¼ 2L

hjvj�ðvÞi þ
htiL2

ht2ihv2i ; (10)

where hti and ht2i are the first and second order moments of
the flight time distribution ’ðtÞ, and hv2i, hjvj�ðvÞi are
averages over the speed distribution hðvÞ, so hjvj�ðvÞi can
be understood as the mean detection speed. Note that this
result is completely independent of the explicit choice of
’ðtÞ, hðvÞ and the detection probability �ðvÞ, provided
that their first and second order moments converge.
In Fig. 2 we provide the corresponding results (solid

lines) obtained from (10), which are in excellent agreement
with the Monte Carlo simulations (even for rather small L,
surprisingly). Not only can we reproduce the numerical
results, but our approximation also allows us to justify the
transition from hTi � L to hTi � L2. When the speed-
selective condition becomes very restrictive the first term
in (10) increases and the linear scaling holds. Instead, if
hjvj�ðvÞi is large enough then the dominant term in (10) is
the second one (specially as L increases), which recovers
theWald’s identity [note that for ’ðtÞ ¼ �ðt� �Þ this term
becomes L2=�hv2i].
We finally focus on the question of intermittence and the

optimality of fast relocations. In Fig. 3(a) we plot the
values of hTi as a function of � and for different values
of v�, using the same distributions as in Fig. 2. It is clear
that there exists an optimal level of intermittence �,
specially for intermediate v� values (for v� ! 0 and
v� ! 1 the optimal � tends asymptotically to 0). This is

FIG. 3. Upper panels: Mean times to target detection as a
function of � for the speed distribution (1) with �ðvÞ ¼
Hðjvj � v�Þ (left) and �ðvÞ ¼ e�jvj=� (right). Lower panels:
Optimal values of the intermittence parameter � as a function
of v� and �, respectively. Solid lines correspond to values
obtained from the approximation (10). In all the cases, � ¼ 1.
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complemented by Fig. 3(c), where the optimal values of �
are plotted as a function of v� for different L. We observe
that for larger L the optimal level of intermittence tends to
smaller �, since in that case strategies based on fast
relocations get more benefit. We stress that different
choices of ’ðtÞ, hðvÞ and �ðvÞ (including the Lévy case,
which has also attracted attention within the context of
intermittence [20]) have been explored, and the results are
always qualitatively similar. For instance, we also show

[Figs. 3(b) and 3(d)] the case �ðvÞ ¼ e�jvj=� to confirm
that our results do not depend on the particular form of the
detection probability. Actually, our expression (10) allows
us to reach rather general conclusions regarding the ques-
tion of optimality. For typical speed distributions found in
tracking experiments with animals or microorganisms
(e.g., exponential, Gaussian, Weibull,. . .) increasing the
mean speed also involves increasing hv2i but at the expense
of reducing considerably hjvj�ðvÞi; on the other hand,
very low mean speed results in small hv2i. So, from (10)
both situations are detrimental, which means that neces-
sarily a compromise between fast relocations and slow
scanning must be reached, that is, an optimal level of
intermittence. A different solution to this trade-off would
be that searchers use a bimodal distribution (one slow
mode and one fast mode, as in [6]); then it would be
possible to increase hv2i very much without reducing
hjvj�ðvÞi. A relevant biological question would be what
types of intermittence (e.g., bimodal strategies, suppres-
sion of intermediate speeds) would emerge under different
evolutionary conditions.

In summary, we have explored both numerically and
analytically a search problem in which target detection is
conditioned to the searcher speed. We have proved that this
plays a critical role in search efficiency. Under speed-
selective detection, the mean detection time shows a
different scaling with the system size compared to the
mean first-passage time: the convergence to hTi � L2

(Wald’s identity) is much slower than in a first-passage
problem, with a linear transient, i.e., hTi � L which has
been analytically justified. Our approach can be extremely
relevant in animal foraging where prey detection dynamics
has been suggested to resemble more an N passage rather
than a first-passage search problem [5,21]. We also show
that speed-selective detection imposes a trade-off between
fast relocation to unexplored areas and target detection.
The solution to this trade-off determines the optimal fre-
quency of fast or long relocation moves that maximizes the
search efficiency. This can naturally introduce an optimal
level of behavioral intermittence as an evolutionary force
in animal search strategies.
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