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Universitat Autònoma de Barcelona
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que tú no estés. Has sido mami, hermana y amiga a la vez, muchas gracias. Carlos,
no he conocido en mi vida un amigo tan sincero como tú, que dice las cosas como
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vosotras el CVC no seŕıa lo mismo! Al departamento de Marketing, Ainhoa y Marc,
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A Fownie (y a Marc) por llevarme a mundos a los que no se si quiero ir. Algún dia
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Abstract

Colorectal cancer is the fourth most common cause of cancer death worldwide, with
about 143.460 new cases expected in 2012 by recent estimates of the American Cancer
Society. Colon cancer’s survival rate depends on the stage in which it is detected,
decreasing from rates higher than 95% in the first stages to rates lower than 35%
in stages IV and V, hence the necessity for a early colon screening. In this process
physicians search for adenomatous growths known as polyps, in order to assess their
degree of development. There are several screening techniques but colonoscopy is
still nowadays the gold standard, although it has some drawbacks such as the miss
rate. Our contribution, in the field of intelligent system for colonoscopy [8], aims at
providing a polyp localization and a polyp segmentation system based on a model of
appearance for polyps. In this sense we define polyp localization as a method which
given an input image identifies which areas of the image are more likely to contain
a polyp. Polyp segmentation aims at selecting the region of the image that contains
a polyp. In order to develop both methods we have started by defining a model of
appearance for polyps, which defines a polyp as enclosed by intensity valleys [13].
The novelty of our contribution resides on the fact that we include in our model other
elements from the endoluminal scene such as specular highlights and blood vessels,
which have an impact on the performance of our methods and also other elements
that appear as a result of image formation, such as interlacing. Considering this we
define our novel Depth of Valleys image which integrates valley information with the
output of the morphological gradient and also takes into account the presence of the
before mentioned elements of the endoluminal scene. In order to develop our polyp
localization method we accumulate the information that the Depth of Valleys image
provides in order to generate accumulation energy maps. In order to obtain polyp
segmentation we also use information from the energy maps to guide the process. Our
methods achieve promising results in polyp localization and segmentation. In order
to validate our methods we also present an experiment which compares the output of
our method with physician’s observations captured via an eye-tracking device. The
results show to be close to physician’s observations which point out a potentially
inclusion of our methods as part of a future intelligent system for colonoscopy.
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Resumen

El cáncer de colon es la cuarta causa más común de muerte por cáncer en el mundo,
presentando alrededor de 143.460 nuevos casos en 2012, según datos estimados por
la American Cancer Society. La tasa de mortalidad del cancer de colon depende de
la etapa en que éste es detectado, decreciendo desde tasas mayores del 95% en las
primeras etapas a tasas inferiores al 35% en las etapas cuarta y quinta, lo cual es mues-
tra de la necesidad de una exploración temprana del colon. Durante la exploración el
médico busca crecimientos adenomatosos que se conocen bajo el nombre de pólipos,
con el fin de averiguar su nivel de desarrollo. Existen varias técnicas para la exlo-
ración del colon pero la colonoscopia está considerada aún hoy en d́ıa como estandar
de facto, aunque presenta algunos inconvenientes como la tasa de fallos. Nuestra con-
tribución, encuadrada dentro del campo de sistemas inteligentes para la colonoscopia
[8], tiene como objetivo el desarrollo de métodos de localización y segmentación de
pólipos basándose en un model de apariencia para los pólipos. Definimos localización
de pólipos como el método por el cual dada una imagen de entrada se proporciona
como salida donde se señalan las áreas de la imagen donde es más probable encontrar
un pólipo. La segmentación de pólipos tiene como objetivo definir la región conc-
reta de la imagen donde está el pólipo. Con el fin de desarrollar ambos métodos se
ha comenzado desarrollando un modelo de apariencia para pólipos, el cual define un
pólipo como una estructura limitada por valles en la imagen de escala de gris [13].
Lo novedoso de nuestra contribución radica en el hecho de que incluimos en nuestro
modelo otros elementos de la escena endoluminal tales como los reflejos especulares
o los vasos sangúıneos que tienen un impacto en el rendimiento global de nuestros
métodos aśı como elementos derivados del proceso de formación de la imagen, como
el interlacing. Teniendo esto en cuenta definimos nuestra imagen de profundidad
de valles que integra la salida del detector de valles con el gradiente morfológico,
añadiendo asimismo la presencia de los ya mencionados otros elementos de la escena
endoluminal.

Para desarrollar nuestro método de localización de pólipos acumulamos la infor-
mación que la imagen de profundidad de valles proporciona con el fin de crear mapas
de enerǵıa. Para obtener la segmentación del pólipo también usamos información
de los mapas de enerǵıa para guiar el proceso. Nuestros métodos alcanzan resul-
tados prometedores tanto en localización como en segmentación de pólipos. Con el
fin de valdiar nuestros métodos presentamos también un experimento que compara
nuestro método con las observaciones de los médicos, obtenidas mediante un dispos-
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itivo eye-tracker. Los resultados muestran que nuestros métodos son cercanos a las
observaciones de los médicos, lo cual indica el potencial de los mismos de cara a ser
incluidos en futuros sistemas inteligentes para la colonoscopia.



Resum

El càncer de còlon és la quarta causa més comuna de mort per càncer en el món,
havent al voltant de 143.460 nous casos el 2012, segons dades de l’American Cancer
Society. La taxa de mortalitat d’aquest càncer depèn de l’etapa en què sigui detectat,
decreixent des de taxes majors del 95% en les primeres etapes a taxes inferiors al 35%
en les etapes quarta i cinquena, la qual cosa demostra la necessitat d’una exploració
precoç del còlon. Durant l’exploració, el metge busca creixements adenomatosos, que
es coneixen sota el nom de pòlips, per tal d’esbrinar el seu nivell de desenvolupament.
Hi ha diverses tècniques per a l’exloració del còlon, però la colonoscòpia és considerada
encara avui com estàndard de facto, encara que presenta alguns inconvenients com
una elevada taxa de errors.

La nostra contribució està enquadrada dins del camp de sistemes intelÂ·ligents per
a la colonoscòpia [13] i té com a objectiu el desenvolupament de mètodes de localització
i segmentació de pòlips basant-se en models d’aparença. Definim la localització de
pòlips com el mètode pel qual donada una imatge d’entrada es proporciona com a
sortida una altra imatge on es assenyalen les àrees de la imatge on és més probable
trobar un pòlip. Per altra banda, la segmentació té com a objectiu definir la regió
concreta de la imatge on es troba el pòlip.

Per tal de desenvolupar ambdós mètodes s’ha començat desenvolupant un model
d’aparença per a pòlips, el qual defineix un pòlip com una estructura limitada per valls
en la imatge de escala de gris [9]. La novetat de la nostra contribució rau en el fet que
incloem en el nostre model altres elements de l’escena endoluminal, com els reflexos
especulars o els gots sanguinis, que demostren tenir un impacte en el rendiment global
dels nostres mètodes i en elements derivats del procés de formació de la imatge com
l’interlacing. Tenint això en compte, definim una imatge de profunditat de valls que
integra la sortida del detector de valls amb un gradient morfològic, afegint-hi els altres
elements de l’escena endoluminal. Per desenvolupar el nostre mètode de localització
de pòlips capturem la informació de la imatge de profunditat de valls amb la finalitat
de crear mapes d’energia. Per obtenir la segmentació del pòlip també fem servir
aquests mapes de energia per guiar el procés.

Els nostres mètodes arriben resultats prometedors tant en localització com a seg-
mentació de pòlips. Per a validar la metodologia emprada, presentem un experiment
que compara el nostre mètode amb observacions fetes per metges obtingudes mit-
jançant un dispositiu de eye-tracking. Els resultats mostren que el rendiment de la

ix



x RESUM

contribució d’aquesta Tesi és comparable a l’obtingut a partir de les observacions
dels metges, la qual cosa indica el potencial de la nostra proposta en futurs sistemes
intelÂ·ligents de colonoscòpia.
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Chapter 1

Introduction

Before starting to develop the core of this thesis, it is necessary to introduce the scope
of our research, which is the development of polyp localization and segmentation
methods by means of a model of appearance for polyps in the context of colonoscopy.
Without entering into concrete details of our method, we will pave the way in this
chapter by making a first introduction to the problem we aim to solve. Therefore we
will present the basic aspects of colon cancer and colonoscopy by then introducing
the basics of our work, including a first description of our processing schemes, along
with sketching the contributions that will be explained in this thesis.

1.1 Colon cancer facts and figures

Colorectal cancer is the third most common in incidence and the fourth most common
cause of cancer death worldwide, with about 143.460 new cases expected in 2012 by
the most recent estimates of the American Cancer Society for the number of colorectal
cancer cases in the United States only [2]. Based on demographic trends, the annual
incidence is expected to increase by nearly 80% to 2.2 million cases over the next two
decades and most of this increase will occur in the less developed regions of the world.
Fortunately, experience in Europe [95] has shown that systematic early detection and
treatment of colorectal lesions before they become symptomatic has the potential to
improve the control of the disease, particularly if they are effectively integrated into
an overall programme of comprehensive cancer control.

Colon cancer’s survival rate depends on the stage in which it is detected, decreasing
from rates higher than 95% in the first stages to rates lower than 35% in stages IV and
lower than 5% in stage V [106] (see Figure 1.1); hence the importance of detecting it
on its early stages by using screening techniques, such as colonoscopy [44].

Colorectal cancer (CRC) is suitable for screening. The disease is believed to de-
velop in a vast majority of cases from non-malignant precursor lesions called adeno-

3
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Figure 1.1: Survival rate of colon cancer according to the stage it is detected on.

mas, according to the adenoma-carcinoma sequence, as can be seen in Figure 1.2.
Adenomas can occur anywhere in the colon rectum after a series of mutations that
cause neoplasia of the epithelium. Adenomas are most often polypoid, but can also be
sessile or flat. An adenoma may grow in size and develop into high-grade neoplasia.

At a certain point in time, the adenoma can invade the submucosa and become
malignant. Using the same stage-based scale than the one mentioned before, at
first this malignant cancer is not diagnosed initially and does not give symptoms
yet (preclinical stage). Then it can progress from localised (stage I) to metastasised
(stage IV) cancer, until it causes symptoms and is diagnosed. Although the average
duration of the development of an adenoma to cancer is unobserved, it is estimated to
take at least 10 years, which provides an extensive window of opportunities for early
detection of the disease. Screening techniques are needed to observe the colon and,
consequently, prevent any lesions.
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Figure 1.2: Schematic overview of the adenoma-carcinoma sequence [95].

1.2 Colonoscopy as the gold standard for colon screen-
ing. Another alternatives for colon screening.

The aim of screening is to lower the burden of cancer in the population by discovering
diseases in its early latent stages. It is necessary to mention the potential harm that
may be caused by CRC screening, which may include the creation of unnecessary anx-
iety and morbidity, inappropriate economic cost, and exposure to the risk of invasive
procedures for detection and diagnosis as well as for removal of lesions detected in
screening [61].

One of the most techniques for colon screening is optical colonoscopy (see Fig-
ure 1.3). Colonoscopy is useful in diagnosing and treating patients with neoplasms,
strictures or colonic mucosal disease previously diagnosed on radiological imaging.
Other uses include the evaluation of patients with gastrointestinal hemorrhage (hema-
tochezia and occult bleeding) ([32] or [56]), screening and surveillance for colonic neo-
plasms ([116, 60]) or diagnosis and surveillance of inflammatory bowel disease ([6],
among others.

Colonoscopy [44] consists of a procedure to see inside the colon and rectum and
it is able to detect inflamed tissue, ulcers, and abnormal growths [44]. By means of
colonoscopy, polyps as small as one millimetre or less can be removed in order to
be studied later to determine if they are precancerous or not. During colonoscopy,
patients lie on their left side on an examination table [36]. The phyisician inserts a
long and flexible tube called colonoscope into the anus and guides it slowly through
the rectum and into the colon. A small camera is mounted on the scope and transmits
a video image from inside the large intestine to a computer screen, allowing the doctor
to examine carefully the intestinal lining. The colonoscopy procedure itself consists
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of several stages, such as bowel preparation or sedation of the patient, apart from
the navigation through the colon. The former has a great impact in the overall
performance of the colonoscopy because if patient’s preparation is done poorly, the
physician will not be able to detect easily adenomas. During this process the physician
can remove polyps and later test them in a laboratory to look for signs of cancer.

Figure 1.3: Graphical example of a colonoscopy intervention [35].

It is important to understand how colonoscopy images are acquired as the resulting
frame will be the input of the several algorithms that we will describe in this thesis.
The colonoscope (see Figure 1.4) is a device that consists of a proximal housing, a
flexible insertion tube, and an ’umbilical cord’ connecting the light source and the
proximal housing. The proximal housing, which is designed to be held in one hand,
typically includes the eyepiece (fiberoptic models only), controls for distal tip (bending
section) angulation and suction, and the working channel port. Colonoscopes have
several hollow channels for suction, water and air delivery, and insertion of accessory
instruments and cannulae. The distal tip of video colonoscopes includes a charge-
coupled device (CCD) that serves as a small camera and electronically transmits
the image from the CCD to an external video-processing unit. Video colonoscope
insertion tubes contains a fiberoptic light bundle, which transmits light from the light
source to the tip of the endoscope. Each fiberoptic bundle consists of thousands of
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individual glass fibers coated with glass causing internal reflections that allow light
transmission through the fiber even when it is flexed. The light is used to illuminate
the field of view in the patient’s colon. Video images are detected by the CCD and
are then transmitted to the video processor and then display monitors or recording
devices.

(a) (b)

Figure 1.4: Example of real colonoscopes: (a) Olympus; (b) Pentax.

There are several companies that produce colonoscopes, being the most relevant
Olympus [82] and Pentax [83]. As it can be seen in Figure 1.5 and in the manufac-
turer’s websites cited before, there is a trend that consists of increasing the size of the
field of view (up to 170◦ in some models) to allow a more comprehensive observation
of the colon which may facilitate scope maneuvering for shorter examination times
and enhanced efficiency. The use of wide angle technology allows the physician to
cover a greater part on the endolumial scene but it has a drawback: there are some
parts of the image where the content is not clear enough to be shown on a screen.
The most common solution consists of adding a black border around the image to
cover these unclear areas.

Colonoscopy is not the only alternative for colon screening. For instance, sigmoi-
doscopy [94] is also used, being the difference between this and colonoscopy related
to the parts of the colon that each of them can examine: by using colonoscopy we
can examine the entire colon whereas by using sigmoidoscopy we can only examine
the distal part. Nevertheless sigmoidoscopy can potentially be used for preventing
colon cancer, as the benefits to cancer survival of colonoscopy have been limited to
detecting lesions in the distal part of the colon [7]. Another alternative is the use
of virtual colonoscopy [30], which uses 2D and 3D images reconstructed by means of
either Computed Tomography (CT) or Nuclear Magnetic Resonance (NMR) scans.
This procedure is meant to be totally non-invasive and needs of a smaller patient ex-
ploring time (around 10 minutes) but it has a big drawback: if a lesion is detected it
can not be removed without having to practice again an intervention to the patient (a
biopsia), leading frequently to performing a conventional colonoscopy after a virtual
one. As of today, conventional colonoscopy remains as the gold standard for colon
screening.
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Figure 1.5: Example of the use of wide angle field of view to acquire colonoscopy
images [82].

Other approaches include fecal occult blood test or fecal immunochemical test (FIT)
[87], because one of the symptoms of large polyps or colon cancer is bleeding. Blood
loss into the colon may be slow and chronic and not visible to the naked eye and a
stool test can be performed to occult blood loss. If blood is detected in fecal samples,
a colonoscopy is recommended to determine the cause of the bleeding. Another option
is double contrast barium enema [66], which consists of an X-ray test similar to virtual
colonoscopy but, in this case, barium is put into the colon and rectum using an enema.
The liquid barium enables a healthcare provider to see a detailed outline of the colon
and rectum in an X-ray. From the outlines of the procedure a health-care provider
may be able to detect polyp presence. A more newer method is fecal DNA testing [64]
in which a stool sample is collected and sent to a specialized lab to search for genetic
mutations that can arise in large colon polyps and colon cancer. Finally another
alternative is the use of wireless capsule endoscopy [49, 111] which provides a way to
record images of the digestive tract by means of a capsule which is introduced in the
patient. This capsule contains a camera and after it is swallowed by the patient, it
takes pictures of the inside of the gastrointestinal tract.

Although colonoscopy has been widely accepted as the gold standard for colon
screening, it has some drawbacks, such as the risk of perforation, the intervention cost,
or visualization difficulties among others. We will detail some of these drawbacks in
the next section.

1.3 Current challenges in colon cancer detection by
means of colonoscopy

Miss-rate is one of the most relevant problems associated to colonoscopy meaning this
that some polyps are still missed. The colorectal cancer miss rate of colonoscopy has
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been reported to be as high as 6% [20] and the miss rate for adenomas larger than
1 cm ranges from 12% to 17% rates [85]. There are several causes to the failures in
the detection, being the most relevants the complications in bowel preparation which
will not be discussed in this thesis. An interested reader may find useful information
about this topic in [70].

Since the scope of our thesis will be focused on the development of polyp localiza-
tion and segmentation methods, we should take into account the clinical importance
of missing a polyp. We can see how the size of the polyp has a direct relation with
the severity of the lesion, which results on having separate miss rates for the different
types of polyps. It is also necessary to be mentioned that physicians find it difficult
to deal with small (6 to 9 mm) or diminute (less or equal than 5 mm) adenomas [29].
As reported in the cited editorial and also mentioned in the previous section of this
chapter, there are two techniques in the field of colon screening that coexist: optical
colonoscopy and virtual colonoscopy. Referred to this last group, patients with any
polyp with diameter higher than 10 mm or more than three 6 to 9 mm adenomas on
virtual colonoscopy are later driven to optical colonoscopy. Still nowadays the removal
of polyps with diameter smaller than 5 mm leads to inconsistences on whether to re-
move them or not, although it seems to be a trend on removing them, as mentioned
in the previously-cited editorial. The clinical significance of diminutive adenomas is
small, which rarely harbor cancer [27] although they should be detected because they
can later grow up and develop into cancer.

Finally there are some other drawbacks that need to be mentioned although as
they are out of our scope of research such as the risk of bleeding or perforation [88] or
the high intervention cost, which also suffers from bowel preparation problems [90].
We will present in the next section the scope of this thesis, which aims at providing
tools that can aid on mitigate one of the drawbacks of colonoscopy, the miss rate on
polyp detection.

1.4 Scope of the research: intelligent systems for
colonoscopy

Before presenting the objective of this thesis, it is necessary to put in context our
research, which could be enclosed into the field of intelligent systems for colonoscopy.
During the last decades there is a trend that consists of developing intelligent sys-
tems for medical applications. Intelligent systems are currently being used to assist
in other medical interventions. For instance, there are systems that can interpret
medical data automatically, such as KARDIO [18], which was developed to interpret
electrocardiograms. It is possible to find many examples of intelligent systems built
to assist in cancer detection. The interested reader can consult some works in the field
of breast cancer detection [115] or prostate cancer detection [113], only to mention a
few examples.

The question that arises now is: how can intelligent systems help in colonoscopy?
What kind of applications these systems can be built for? In Figure 1.6 we depict
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some of the potential areas related to colonoscopy where an intelligent system can
play a key role.

Figure 1.6: Research lines and potential applications in the scope of intelligent
systems for colonoscopy.

As shown in Figure 1.6, we foresee four different areas where an intelligent system
can be introduced and add significant value to the colonoscopy procedure [8]:

1. The most manifest application of this kind of systems could be the assistance
in the diagnosis procedure during the intervention or in post-intervention
time. This could be very useful in order to reduce the miss rate associated to
polyp identification.

2. We can make use of the scene description provided by an automatic system
-including the presence of salient traits, such as informative frames, anatomical
structures, insertion or withdrawal phases, etc.- in order to automatically
annotate colonoscopy videos. This would potentially provide a very efficient
way of case annotation, with multiple uses in different applications.

3. In addition, an intelligent system may offer a quality assessment of the colonoscopy
intervention, which could provide a non-subjective way of assessment. This
could also be used as a way to train physicians in a way such they can assess
and improve their skills without the cost associated to a real interventions,
and it would allow to compare different performance metrics objectively.
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4. We can also think about intelligent systems that extend and provide additional
information from colonoscopy data. Belonging to this area we can think of
applications such as the development of patient-specific models, that can
be re-used later, when a new study arrives, to check for coincidences that can
help in the diagnosis and enrich in this way a final case report.

1.5 Objective of the thesis

Out of all the domains of application that we have presented in the previous subsec-
tion, the methods presented in this thesis could be enclosed in the first and second
topics. We present a polyp localization method in which given an input image we
offer as output an energy image where the brighter areas corresponds to those parts of
the image where the likelihood of having a polyp is higher. We also provide a polyp
segmentation method in which given an input image we offer as output an image
where we highlight the pixels that constitute the polyp.

To achieve good performance of both methods we have defined a robust model
of polyp appearance that does not only take into account how polyps appear on
colonoscopy images but also the presence of some elements of the endoluminal scene,
such as blood vessels or specular highlights, which could affect the performance of our
system. More specifically, we present a model of polyp appearance which is based on
how polyps do appear in colonoscopy frames. This implies a different path than some
other approaches in the literature as will be seen in Chapter 2 which are devoted to
detect polyps based on fitting to concrete shapes. Our model, along with a study
on how colonoscopy images are created, leads to infer an illumination model which
models polyps as structures delimited by intensity valleys. Taking this into account
we develop our algorithms by paying special attention to the valleys that surround
three dimensional objects such as polyps or folds, differentiating them from other
structures such as blood vessels or specular highlights. We also undertake the task
of eliminating specular highlights information in order to provide an input image
(which is the novel depth of valleys image) to our system where the majority of valley
information would ideally be constituted by polyp boundaries.

Once our input depth of valleys image is presented, we develop a polyp localization
method by integrating depth of valleys information. We offer two alternatives to polyp
localization, depending on whether we are interested in the shape of the boundaries or
their completeness. After polyp localization is performed, we offer again two possible
solutions to segment the polyp in the image, which will be explained in depth in later
chapters of this thesis.

We have built our methods on a model of polyp appearance which needs of a
deep study of several colonoscopy studies in order to define a general model. This
model needs to be tested on a large database and we offer in this thesis an introduc-
tion to the first public available database which we have generated from a series of
colonoscopy studies. Finally, as our aim is to provide tools that can be useful for sev-
eral applications (being in this case Computer Aided Detection (CAD), we compare
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the performance of our polyp localization method with the response that physicians
provide, which is captured by means of an eye tracking device.

We will present in the next section our polyp localization and polyp segmentation
processing schemes.

1.6 Introduction of polyp localization and segmen-
tation methods

Our polyp localization and segmentation methods will vertebrate the structure of this
thesis.

Polyp localization aims at providing, given an input image, an energy map which
indicates which part of the image is more likely to contain the polyp inside. In order to
achieve this, a first stage of image preprocessing is needed. In this first stage the effect
of several elements of the endoluminal scene is addressed, such as specular highlights
or blood vessels, in order to mitigate their contribution in terms of valley information.
As a result of this preprocessing and the application of the valley detector we obtain
the novel the Depth of Valleys (DoV) image. We will introduce this novel DoV in
chapter 5, along with introducing all the preprocessing algorithms before mentioned.

Figure 1.7: Polyp localization processing scheme.

In order to obtain the final energy map that indicates the ’likelihood’ of having a
polyp in a given are of the image, we integrate the values of the DoV image to elaborate
the DOVA energy map which will be superimposed to the original input image to
highlight interesting areas. We can see the whole polyp localization processing scheme
in Figure 1.7 and we can observe an example of the output of our polyp localization
method in Figure 1.8.

Polyp segmentation, on the other hand, aims at providing an output image where
the pixels inside the polyp are highlighted. The difference between polyp localization
and polyp segmentation is that the first method does not label which pixels on the
image are inside the polyp region and which are not, whereas the second clearly divides
the image in two regions: a polyp region and the rest. Polyp segmentation processing
scheme, as can be seen in Figure 1.9, needs of a first iteration of the polyp localization
scheme in order to identify seed points for the posterior polyp segmentation algorithm,
which is built on how the energy map is calculated.

In order to understand better what is the objective of our polyp segmentation
system we show a graphical example on Figure 1.10. As it can be seen, given an
input image our polyp segmentation method gives as output an image where the
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(a) (b)

Figure 1.8: Examples of: (a) Input image; (b) Output image where the polyp is
located by means of a green area.

Figure 1.9: Polyp segmentation processing scheme.

polyp region is highlighted.

1.7 Contributions of this thesis

The main contributions of this thesis are:

1. Definition of a model of polyp appearance based on how polyps appear in
colonoscopy frames.

2. Definition of the novel depth of valleys image.

3. Improvement of the previous state-of-the-art on specular highlights detection.

4. Definition of an inpainting method which is used for the black mask surrounding
the endoluminal scene and for specular highlights.

5. Preliminary study of the effect of blood vessels on the creation of the depth
of valleys image and their effect on polyp localization and polyp segmentation
results.

6. Development of a polyp localization method by means of DOVA energy maps.

7. Development of a polyp segmentation method.
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(a) (b)

Figure 1.10: Examples of: (a) Input image; (b) Output image with polyp region
highlighted in green.

8. Creation of COLON-DB: A database for assessment of polyp localization and
polyp segmentation.

9. Study of the effect of specular highlights and image formation and acquisition
on polyp localization and polyp segmentation results.

10. Development of a framework and study to compare polyp localization results
with physician’s observations.

1.8 Structure of the thesis

This thesis is structured as follows:

1. Chapter 1 includes the introduction to colon cancer and colonoscopy by following
with the presentation of the objectives of the thesis.

2. Chapter 2 contains a review of the existing literature on endoluminal scene
objects identification along with presenting the domains of application in which
the methods that we propose in this thesis could be included.

3. Chapter 3 is dedicated to the introduction and explanation of the model of
appearance for polyps.

4. Chapter 4 is centred on presenting how valley detection can be used to guide
the development of future polyp localization and polyp segmentation methods.

5. Chapter 5 comprises the explanation of the polyp localization methods.

6. Chapter 6 introduces the two proposed solutions to polyp segmentation.
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7. Chapter 7 presents the experimental setup and the result of the experiments
that have been carried out in the scope of the research.

8. Chapter 8 sketches how to make the transition from the research lab to real life
applications by introducing a framework and a study to compare the output of
our polyp localization methods with physicians’ observations.

9. Chapter 9 closes this thesis by exposing the main conclusions that can be ex-
tracted along with sketching the future lines of research that could be followed.
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Chapter 2

Endoluminal scene description:
challenges and methods

The objective of this thesis is to develop polyp localization and polyp segmentation
methods, which will be based on a model of polyp appearance. Polyps are not the only
part of the endoluminal scene and, as will be shown later, there are other elements
that can play a key role in the performance of our methods. Before starting with the
explanation of our method, we will review the existing works on describing some of the
elements of the endoluminal scene such as polyps, lumen or specular highlights. We
will also extend in this chapter the concept of intelligent systems for colonoscopy as
our method could potentially be incorporated for some applications such as Computer
Aided Detection (CAD).

2.1 Introduction to the Endoluminal Scene. The
elements of the endoluminal scene

As depicted in Figure 2.1 the endoluminal scene consists of several elements that we
will define next:

1. Lumen: In biological contexts lumen is defined as the interior space to a tubular
structure, such as the intestine. The lumen is the cavity where digested food
passes through and from nutrients are absorbed.

2. Folds: The haustral folds represent folds of mucosa within the colon [52]. They
are formed by circumferential contraction of the inner muscular layer of the
colon.

3. Blood vessels: They are the part of the circulatory system that transports
blood through the body. They can be identified by their tree-like shape with
ramifications.

17
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(a) (b)

Figure 2.1: Elements of the endoluminal scene: (1) Lumen; (2) Wrinkles and folds;
(3) Blood vessels; (4) A polyp; (5) Fecal content; (6) Specular highlights

4. Polyp: A polyp is an abnormal growth of tissue projecting from a mucous
membrane. If it is attached to the surface by a stalk, they are referred as
pedunculated polyps. If there is not stalk, they are known as sessile polyps.
They are found in the colon, stomach, nose among other locations. In the case
of colon, untreated colorectal polyps can develop into colorectal cancer. We will
extend the definition of polyp in the next chapter.

5. Fecal content: They are a waste product from the digestive tract which is ex-
pelled through the anus during the process of defecation.

6. Specular highlights: They are the bright spots of light that appear as a result
of the illumination on shiny objects.

Other elements of the endoluminal scene can be diverticulosis are shown as cavities
or holes in the intestinal wall. The lesions related with bleeding are generally identified
by its characteristic color. Polyps present a large variety in shapes, and seldom show
a discriminative change in texture and/or color in comparison to the surrounding
area. Due to the flexible and extendible nature of the colon, and in part owed to the
impact of the probe insertion or withdrawal in its deformation, it is difficult to find
a perfect tubular appearance in the colon lumen because intestinal walls can be bent
and folded. In addition, the wrinkles and folds associated to the colon physiological
structure appear in the scene as radial protuberances which modify the flat surface
of the intestinal walls. On the intestinal walls, blood vessels are observed with their
characteristic tree ramifications, presenting a certain variability associated to their
width.

Despite a preparation is required for most of the colonoscopy interventions -
with the aim of eliminating all fecal matter so that the physician conducting the
colonoscopy can have a clear view- in many cases intestinal content is still present
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after the preparation procedure, and this intestinal content will hinder the right visu-
alization of the intestinal walls. The procedure of elimination of the remaining fecal
matter, consisting of the direct injection of water through the colonoscope in order to
dilute the intestinal contents, turns out into the blurring of the video sequence and
the appearance of bubbles. Finally, during the time of intervention, some tools used
by the physician for different tasks -i.e., biopsy, cauterization, etc-. can be part of the
visual scene too.

Although in this thesis we will focus on the analysis of colonoscopy video frames,
we should not forget that there exist diverse endoscopy techniques, such as capsule
endoscopy (both for small bowel and colon), bronchoscopy, gastroendoscopy, etc. that
also show different endoluminal scenes, each of them with particular features. Besides
that, there is a wide variety of imaging methods used to enhance particular physiolog-
ical targets, which is the case for narrow band imaging or chromoendoscopy, just to
mention a few. This situation sets up a heterogeneous scenario from the perspective
of automatic analysis using computer vision, and makes it not feasible to tackle the
endoscopic image problem as a whole. However, it is possible to take some of the
methods used in a given technique and adapt them to the specific particularities of
colonoscopy video. For example, the automatic detection of intestinal content is a
topic addressed in the bibliography of capsule endoscopy [108] by means of the anal-
ysis of color distribution and texture, and its equivalent to the detection of intestinal
content in colonoscopy would require relatively minor modifications.

In addition to the difficulties associated to the characterization of the colonoscopy
scene due to its high variability and complexity, there are many visual artifacts the
impact of which should be taken into account in order to tackle a robust system for
the automatic analysis of colonoscopy video, such as color channel misalignment or
specular highlights, which will be covered in the next section.

2.2 Introduction to the review of methods devoted
to endoluminal scene object identification

We can group the existing literature related to computer vision applied to colonoscopy
in two main groups, namely: 1) Image preprocessing and non-informative frame defi-
nition and 2) Endoluminal scene objects description. In this section we will cover both
groups, paying more attention to the second, considering that the aim of the work
presented in this thesis is to provide a polyp localization and segmentation method.
Considering this, the majority of the existing literature devoted to endoluminal scene
description in colonoscopy video could be grouped according into two different top-
ics, lumen segmentation and polyp detection. We will also include in this review the
literature that studies the impact of specular highlights and blood vessels, since both
topics will be tackled later in Chapter 4. All the methods exposed in this review
correspond to optical colonoscopy unless otherwise stated. We have included some
methods used in CT or virtual colonoscopy, based on the potential application of these
techniques for the optical modality.
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2.3 Image Formation and Enhancement

Two different topics are studied here: 1) Image preprocessing and enhancement meth-
ods, which aim at improving the input to a posterior processing scheme, and 2) Non-
informative frame definition, which aim at defining which frames on the whole video
do not contain useful information.

2.3.1 Image Preprocessing and Enhancement

Image preprocessing methods are needed in order to eliminate or minimize the impact
of image artifacts associated to colonoscopy video, which fundamentally consist of the
color phantoms, interlacing and the presence of specular highlights.

The problem of color phantoms associated to the temporal misalignment of the
color channels has been addressed in literature [31]. Color phantoms occur because
most colonoscopy devices use monochrome CCD cameras in which the RGB compo-
nents are taken at different times. This causes a worsening in the quality of the images,
as can be seen in Figure 4.6, which may difficult posterior image analysis tasks. The
method presented in [31] involves both color channels equalization and the estimation
and compensation of the camera motion. The experimental results show a global
improvement in the quality of the images, failing only in cases when the quality of
the original image is very low, although the evaluation is done qualitatively.

(a) (b)

Figure 2.2: Examples of color channel misalignment.

One particular problem that also has to be addressed is interlacing. This technique
doubles the perceived frame rate without consuming extra bandwidth. By the use of
progressive scan, an image is captured, transmitted and displayed following a similar
path that we do when reading a page of a book: line by line and from top to bottom.
The interlaced scan pattern does the same process but only for every second line, that
is, one line out of two, from the top left to the bottom right of a display. Once this is
finished, the process is repeated but in this new iteration the scanned lines are those
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which were not scanned in the first one. The process of scanning every second line is
known as interlacing, which takes advantage of the fact that human visual system is
less sensitive to flickering details than to large-area flicker [33]. Deinterlacing doubles
the vertical-temporal sampling density and aims at removing the first repeat spectrum
caused by the interlaced sampling of the video. Although it may seem to be an easy-
to-solve problem in fact it is not, as usual TV signals do not fulfill the demands of
the sampling theorem.

In our case, we are concerned of some effects that interlacing may have in our
videos, such as the apparition of false contours/edges caused by the minimal time
difference between two consecutive frames, and for this reason we will address this
problem in Chapter 4.

2.3.2 Specular highlights detection and inpainting

The specular highlights on the polyp can affect texture features obtained from the
polyp surface and may therefore interfere in the output of several methods such as
polyp detection. A negative effect of specular highlights was also reported by [78]
, in the context of the detection of indistinct frames in colonoscopic videos. There
are several approaches to segment specular highlights in images, which are usually
based either on detecting grey scale intensity jumps or sudden color changes. For
instance, the work presented in [19] present a detection of specularities based on a
characterisation of Lambertian surfaces. In computer graphics, Lambertian reflection
is often used as a model for diffused reflection. Lambertian reflection from polished
surfaces are typically accompanied by specular highlights (gloss) where the surface
luminance is highest when the observer is situated at the reflection direction. In our
case, this happens when the light of the probe impact into a prominent surface, as
can be seen in Figure 2.3.

(a) (b)

Figure 2.3: Example of apparition of specular highlights in colonoscopy video
frames: (a) Specular highlights inside and outside the polyp; (b) Specular highlights
inside the polyp.
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There are several works devoted to specular highlights detection and inpainting.
For instance the work presented in [40] uses sudden color changes as a cue to detect
specular highlights. A similar work can be found in [57], which faces the problem
that specular highlights cause in image segmentation. The work of [74] addresses
the problem of re-rendering images to high dynamic range (HDR) displays, where
specular highlights present a problem because of the operations made when capturing
and rendering to standard displays. A more recent approach is the one presented by
[101], where specular highlights are defined as a combination of diffuse and specular
reflection, which need of an explicit color segmentation.

Following a similar line of research based on obtaining the diffuse color component,
the work of [119] estimates the maximum diffuse chromaticity values of the specu-
lar pixels by directly applying low-pass filter to the maximum fraction of the color
components of the original image. The method presented in [120] is built on the fact
that specular-free two-band image are introduced to deal with specular reflections.
For given input images, specular-free two-band images are generated by using sim-
ple pixel-wise computations in real-time. More recently, the work presented in [92]
proposes a method that is based on a wavelet-based histogram denoising followed by
adaptative thresholding to isolate the specular spike. Once this spike is found, an
intensity descent is performed to select the specular lobe. This approach also exploits
chromatic information but uses histograms to speed up the process. The work of [50]
proposes a method for estimating the scene illuminant spectral power distributions of
multiple light sources under a complex illumination environment. The authors note
that specular highlights on inhomogeneous dielectric object surfaces include much
information about scene illumination according to the dichromatic reflection model.
Although our domain of application is very different, we can observe the work that
the authors refer on specular highlights detection. In the cited paper, the authors de-
scribe three different methods, namely: 1) use of variable thresholding of luminance;
2) use of luminance and hue components and 3) use of a polarization filter.

But, as it also happens in our case, we are not only interested in detecting the
specular highlights in the images but also in providing as input to our algorithm
an specular-free image. This can be achieved by means of an inpainting method.
Inpainting consists of filling the missing areas or modifying the damaged ones in a
non-detectable way for an observer not familiar with the original images. For instance,
the authors of [92] base their inpainting method in a previous work [81], which used
a very simple isotropic diffusion model extended with the notion of user-provided
diffusion barriers. This method provides results comparable to other methods existing
but is two to three orders of magnitude faster. In order to work properly, the method
needs of a mask that should include exactly the region to be retouched, hence the
importance of a correct specular highlights detection method. If the mask is smaller
its boundary will contain spurious information which will be incorporated into the
restored area and if it is bigger some important information can be discarded.

An interesting approach is the algorithm presented in [3], which addresses both
specular highlights detection and inpainting:

• Detection: The proposed method consists of two different modules. The first
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module uses color balance adaptative thresholds to determine the parts of spec-
ular highlights that show too high intensity to be part of nonspecular image
content (saturated parts of the image), taking also into account that specu-
lar highlights can appear only in one of the three RGB channels. The second
module compares every given pixel to a smoothed nonspecular surface color at
the pixel position, which is estimated from local image statistics. This module
aims at detecting the less intense parts of the specular highlights in the image
in a way such by looking at a given pixel, the underlying nonspecular surface
color could be estimated as the representative color of an area that surrounds
the pixels, only in cases when it was known that this particular area does not
contain specular highlights or at least which pixels in the area lie on specular
highlights. The authors also consider that, in some cases, the mucosal surface
in the close neighborhood of the camera can appear saturated without showing
really specular reflection but it is picked up by the detection algorithm. In order
to avoid this problem, the authors make use of the property that the image area
surrounding the contour of specular highlights generally shows strong image
gradients.

• Inpainting: Inpainting is done in two levels. First the specular region are filled
by replacing all detected pixels by the mean color of the pixels within a certain
distance range of the outline. This image is then filtered by using a Gaussian
kernel, which results in a strongly smoothed image free of specular highlights.
For the second level the binary mask marking the specular regions is converted
to a smooth weighting mask, in a way such the smoothing is performed by
adding a nonlinear decay to the contours of the specular regions. The weights
depend on the distance from each pixel to the contour of the specular highlight
region. That is, the weight will be higher if the point is far from the contour.

The main conclusion that can be extracted from the review of the bibliographic
sources is that specular highlights detection and inpainting is a problem that appears
for a wide range of images and has plenty of different solutions, depending on the
domain or the scope of the application. Unfortunately some of the most well-known
approaches (such as [101] or [119]) can not be used in their entirety as the inpainting
of the saturated pixels (which are part of the specular highlights) are based on having
information in the channels that are not saturated, which is not our case. We will
present our specular highlights detection and inpainting methods in Chapter 4.

2.3.3 Non-informative frame definition

As can be suspected from the description above, the analysis of the endoluminal scene
is a complicated task. There are several elements that can appear and sometimes bad
visualization or quality of the image can affect the performance of the algorithms.
In order to separate the analysis of frames where the content can be clearly seen
and those where the analysis is difficult, non-informative frames are defined. In this
domain of application, non-informative frames can be defined as those that, either
their quality is so damaged (by the artifacts, hindering intestinal content, etc.) that
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it is difficult to extract information from them, or they are clinically uninteresting for
a given task. For instance, frames where the instrumental take up great part of the
image may not be relevant for polyp detection tasks. An accurate detection of the
non-informative frames could also lead to a great reduction in the processing time of
a stored colonoscopy intervention. Fundamentally, this information may be used for
automatic video annotation and efficient video indexing and retrieval. Examples of
non-informative and informative frames are shown in Figure 2.4.

(a) (b)

Figure 2.4: Non-informative frame definition: (a) Non-informative frame; (b) In-
formative frame.

There are a few works that are centered on the identification of non-informative
frames. The work of [4] addresses the identification of clinically uninteresting frames
by analyzing the energy of the detail coefficients of the wavelet decomposition of a
given image, which is used as the input to the classification system. In this case
non-informative frames are those which do not carry any useful clinical information,
such as those that occur when the camera is covered with liquids or when it is very
close (even touching) the mucosa. These cases do occur frequently in colonoscopy
procedures leading to extremely blurry images. This method is based on the 2D dis-
crete wavelet transform which results in a set of approximation and detail coefficients.
The approximation coefficients represent the low frequency content of the image while
the detail coefficients hold the complementary high frequency information. The au-
thors use detail coefficients to distinguish between informative and non-informative
frames holding on the fact that the norm of the detail coefficients will be lower for
low contrast images, making them more likely to be classified as non-informative.

The work of [22] presents a method that extract those frames which correspond to
a diagnostic or therapeutic operation, following work done in other domains (i.e., de-
tecting important semantic units such as scenes and shots). This work takes profit of
several characteristics that colonoscopy videos present, such as the presence of many
blurred frames due to the frequent shifts of the camera position while it is moving
along the colon. The identification of the operation shots is based on the detection of
diagnostic or therapeutic instruments. In this case the authors map the problem of
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detecting instruments to the problem of detecting the cables of these instruments as
they are present in the operation, regardless of their type. The architecture scheme
shown in Figure 2.5 consists of five different steps which involve: 1) image preprocess-
ing, to remove the effects of the specular highlights; 2) identification of the insertion
direction of an instrument; 3) region filtering, where regions that are not part of the
cable are removed; 4) region merging, which combines regions where parts of the
instrument appears and 5) region matching, which matches the candidate regions in
the image with the cable and without the cable.

Figure 2.5: A system architecture for operation shot detection as described in [22].

Apart from the two methods presented related to the identification of non-informative
frames, other approaches have been carried out such as the work of [80] where a mea-
sure called the isolated pixel ratio (IPR) is used to classify the frames into informative,
ambiguous and non-informative. The IPR measure is calculated from the edges of
the image: an edge pixel that is not connected to any other edge pixel is defined as
an isolated pixel. Those isolated pixels are counted for each frame and are put in
relation with the total number of edge pixels to obtain the IPR ratio.

Finally, an example of an endoscopic full multimedia information system for video
annotation implementing many of these approaches is described in the work of [65].

2.4 Endoluminal scene object description

The existing literature concerned on describing the elements that constitute the en-
doluminal scene will be covered here. We will pay special attention here to methods
devoted to the description of three of the elements, namely lumen, polyps and blood
vessels.

2.4.1 Lumen Detection

The detection of the lumen and its position can be crucial, for example, in post-
intervention video processing. Frames where the proportion of lumen out of all the
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image is large can be related to the progression of the colonoscope through the gut
(Figure 2.6 a-b)). On the other hand, frames where the amount of lumen presence is
low (Figure 2.6 c)) may potentially indicate areas of the image where the physician
has paid more attention. In addition to that, an efficient lumen segmentation may
lead to remove great part of the image for a further computational analysis.

(a) (b) (c)

Figure 2.6: Examples of lumen (surrounded by a yellow boundary): a) and b) full
view and c) partial view.

Several works are centered on lumen detection, such as the work of [42], which
aims at decomposing the tissue image (where lumen may be present) into a set of
primitive objects and segment glands making use of the organizational properties of
these objects. In this approach, an image is first decomposed into its tissue compo-
nents that, as they are difficult to locate, are approximately represented transforming
the image into a set of circular objects (nucleus and lumen objects). The results pre-
sented in the paper show that the use of object-based information, instead of using
pixel-based information alone, leads to more robust segmentations with respect to
the presence of imaging artifacts. This is attributed to pixel intensities being more
sensitive to the noise that arises from the staining, fixation, and sectioning related
problems.

Following a similar line of research, the work of [103] presents an automatic seg-
mentation algorithm for lumen region and boundary extraction from endoscopy im-
ages. The proposed algorithm consist of two different steps: first a preliminar region
of interest that represents the lumen is segmented via adaptative progressive thresh-
olding. Later on an adaptative Iris filter is applied to the previously segmented region
of interest in order to determine the actual region. Experimental results show that by
applying this method unclear boundaries can be enhanced and detected, resulting in a
more accurate lumen region. The authors also present a method to improve boundary
extraction, based on an heuristic search on the neighborhood pixels. Following this
trend, the work of [15] addresses lumen segmentation by first estimating the center-
line, which can be achieved by first removing the background and then extracting air
regions with a threshold filter.

Some other works are devoted to automatic segmentation of the colon, which
includes the extraction of the lumen region although they belong to CT or virtual
colonoscopy fields. This task is not easy, as the high-contrast gas/tissue interface
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that exists in the colon lumen makes segmentation relatively easy but two factors
prevent from make this process automatic. First of all, colon is not the only gas-filled
organ in the data volume (lungs and stomach, among others, also meet this criterion).
User-defined seeds placed in the colon lumen have previously been required to isolate
spatially the colon. Secondly, portions of the lumen may be obstructed by peristalsis,
large masses and fecal content. These factors require user interaction in order to
isolate colonic segments. The work presented in [117] uses an automatic method
that locates automatically the seed points and segment the gas-filled lumen sections
without user supervision, aiming at an automatic colon segmentation. The method
presented also includes an improvement to lumen segmentation by digitally removing
contrast-enhanced fluid. Still in the field of CT colonography and also exploring
the use of seeds to guide lumen segmentation, we can see in the work of [89] how
lumen segmentation is done automatically by placing seeds automatically inside the
colon lumen. The seeds expand until they reach the bowel wall. A Computer Aided
Diagnosis (CAD) system is built having this lumen segmentation method as a feature.

2.4.2 Polyp Detection

The main objective of the colonoscopy procedures is to check the status of the colon
and to find possible lesions and cancer polyps on it. Therefore a polyp model is
needed in order to guide polyp detection. As it will be shown in the next chapter
there are several types of polyps, which differ on their general shape and relative
position with respect to the colon wall. We will develop more about this later but in
this section we will make a review of several polyp detection methods by means of
computer vision. The direct application of the methods presented in this section is
the potential assistance in the diagnosis, both during and in post-intervention time.
In this case we will focus on methods based on applying a certain feature descriptor
because the majority of available works can be enclosed into this kind of classification.

In the context of image processing, features can be defined as singular visual traits,
associated to the visual primitives that constitute an object, such as edges, corners or
lines, among others. The usual procedure is to use feature detection methods to locate
the potential regions of interest (ROIs) of the image and then describe them using one
or many feature descriptors. After doing an extensive research on the different types
of feature descriptors [14], we have divided them into four groups: shape, texture,
color and motion. As can be seen from Figure 2.7, there are many feature description
algorithms and, of course, mostly all of them are being used currently. Again, the
problem that we want to solve will tell us which feature descriptors we want to test.
Maybe we only need to find out the shape of an object to get to a decision but in
more complicated tasks (i.e. classification of images) some other characteristics, like
texture or colour can be discriminative as well.

We have divided the existing methods in four general classes: Shape Descriptors
(subdivided in Contour-based and Region-based, depending on which part of the
object we use to get to a description), Colour Descriptors, Texture Descriptors and
Motion Descriptors. For the concrete case of polyp detection in colonoscopy videos we
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will only explore approaches belonging to the Shape and Texture Descriptors groups,
although there are some works that combine texture and color information as will be
mentioned later.

Shape-based approaches

This group of approaches observe the structure of polyps as they appear in images and
find the shapes which polyps commonly have. More precisely, some of the methods
belonging to this group aim at approximating the boundaries detected to general
polyp shapes. As it can be thought, this leads to a big challenge, considering that in
many times we do not have a perfect shot of the polyp but an image where its pose,
size and appearance can vary largely. Thus, many of the approaches presented try to
detect polyps not by detecting its whole shape but by detecting parts of the image
that may indicate polyp presence.

For instance, flat polyps are meant to have elliptical shapes [114] so one way
to detect polyps is trying to find which structures in the image are surrounded by
boundaries that constitute ellipses. The difficulty in this case is that in many occasions
we do not have complete boundaries or the concrete view of the polyp that we have
makes it difficult to fit elliptical shapes (such is the case of lateral views). The works
presented in this subsection could also be classified into two categories, namely: a)
detection by curvature analysis ; b) detection by ellipse fitting and c) combination of
curvature analysis and ellipse fitting.

a) Detection by curvature analysis

In this case curvature is defined as the amount by which a given object differs from
being flat, for the case of 3D objects, or straight, in the case of a line. In the context
of polyp detection curvature can be used in several ways, as it will be shown next.
For instance, we can check the curvature profile of the boundaries that appear in the
image, which may have been detected by means of an edge detector. An example of
the former can be consulted in the work of [59]. The proposed method is built in
the following way: image contours correspond to haustra creases are extracted and
curvature of each contour is then performed after a non-parametric smoothing. Zero-
crossings of curvature along the previously extracted contour are detected. In this
case the method defines an abnormality when there is a contour segment between
two zero-crossing that have opposite curvature sign (that is, one concave and another
convex) to their neighboring segments. Experimental results show that the proposed
method can be useful when detecting lesions present along the creases of the haustra.
The method also provides a solution for specular highlights, which are discarded
through curvature analysis.

The work of [122] elaborates on the use of curvature-based shape measures (such
as the shape index, curvedness or mean curvature) to analyze the local shapes in the
colon wall. The proposed method estimates curvature by means of kernel methods.
The problem in this case may appear in spurious calculations indicating high cur-
vature, which is observed when the kernel contains two surfaces. This problem is
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Figure 2.7: Taxonomy of Feature Descriptors, highlighting those used in polyp
detection
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solved via the Knutsson mapping method, which consists of solving discontinuities by
observing the change in the surface normal. Another problem that can appear is the
discontinuities in curvature, which appears when the gradient magnitude necessary
to calculate the curvature vanishes.

One of the problems that optical colonoscopy image analysis present is that it is
very difficult to estimate how protruding an object is without having no information
about the distance between the light source and the colon walls. By using Virtual or
CT colnoscopy we can have a 3D map of the whole colon, which can be useful for
detecting protruding structures such as polyps. One example of this can be found in
the work of [107]. The authors present a method that enables automated detection
and segmentation of colorectal polyps, proposing a method that measures the amount
of protrudedness of a candidate object by means of scale adaptive methods.

Finally, during all the research that has lead to this thesis, we explored the use of
contour information in a way that seems similar to some of the alternatives presented
here. More precisely we designed our Valley Orientation DOVA which uses the orien-
tation of the intensity valleys that constitute the boundaries of objects. This method
will be fully explained in Chapter 5.

b) Detection by ellipse-fitting

The methods presented above explore the changes in curvature to detect them but
they are not concerned about the concrete shapes of the objects they are detecting
as polyps. We will present here some methods that, starting by contour information,
aim at detecting polyps by approximating their boundaries to ellipses.

Belonging to this group we can observe in the work of [53]. The presented method
introduces a processing scheme which aims at providing a real-time image processing
system for endoscopic applications. Although the system has three different modules,
we will focus on the image processing one. This module consist of several tasks: 1)
Contrast enhancement (to improve the visibility of the different structures); 2) Image
segmentation (by means of finding the edges on the image, which is performed in the
R, G and B channels separately); 3) Feature extraction (using features such as the
area, color or object’s shape) and 4) Object classification. It is important to mention
that the objective is not to univocally identify polyps but to highlight the regions of
the image which are more likely to contain polyp-like objects. Experimental results
show good performance qualitative performance although concrete polyp detection
results are not given.

One of the contributions that we will present in this paper belongs to this type of
techniques [11]. Our Ellipse Fitting DOVA method defines as polyp containing those
areas on the image enclosed by valleys where we can fit an ellipse.

c) Combined methods

For instance an approach that combines both curvature and ellipse fitting can be
found in the work of [47]. The method presented consists of fitting ellipses into the
frontiers obtained after a first segmentation, and then classifying candidate regions by
considering curvature, distance to edges and intensity value. Without entering into
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many details, in order to detect the ellipses an edge image is needed in which desirable
edges should be grouped. Taking into account the challenges that colonoscopy images
present, only some parts of the polyp boundary will have strong edge information so,
based on this, the method uses the marker-controlled watershed algorithm [112] for
polyp segmentation because it can handle the gap between broken edges properly.
Then, using the edges in each segmented region, the method generates an ellipse by
means of an ellipse fitting method. Finally the number of final ellipses is reduced by
removing those which do not represent actual polyps filtering by curve direction and
curvature, by edge distance and by intensity value.

The work of [34] also starts with a watershed segmentation but it performs its
detection scheme by using color information. MPEG-7 descriptors are used in polyp
detection tasks as it is introduced in the work of [28]. Region-based shape descriptor
(RBS) belongs to the broad class of shape-analysis techniques based on moments.
A set of separable angular radial transformation (ART) basis functions is defined
that classifies shape along various angular and radial directions. The RBS descriptor
obtains 35 coefficients from the ART transform.

Finally, the work of [58] is devoted to describe polyp appearance. Several param-
eters are evaluated, such as the response in the red channel of the image (which may
indicate the presence of malignant tumors), the perimeter, the enclosed boundary area
or the the form factor, which can give indication of possible presence of abnormalities
in the colon (the more irregular the shape of the lumen, the smaller the value of the
form factor).

We present a summary of the shape-based polyp detection methods in Table 2.1,
including the datasets used and the classification methodology applied.

Author Method Classification Datasets
Krishnan et
al. [59]

Edge detection to extract
contours. Curvature

- 2 normal and 4 abnormal
images

Hwang et al.
[47]

Ellipse fitting. Curvature - 27 polyp shots

van Wijk et
al. [107]

Amount of protrudness.
Curvature

5 measures (Max-
IntChange, LongAxis,
ShortAxis, MinHU,
MaxHU), distances

84 studies, 168 scans, 108
polyp shots

Dhandra et
al. [34]

Segmentation of color im-
ages followed by water-
sheds

- 50 normal and 50 abnor-
mal images

Zhu et al.
[122]

Curvature-based shape
measures

By segmentation results 1 phantom image and 1
colon patient

Bernal et al.
[12]

Valley orientation accumu-
lation

By segmentation results COLON-DB database

Bernal et al.
[11]

Ellipse fitting accumula-
tion

By segmentation results COLON-DB database

Table 2.1: Summary of shape-based descriptors for polyp detection.
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Texture-based approaches

The use of texture descriptors on polyp detection has been gaining interest during last
years. There is a number of works that are based on the use of wavelet descriptors.
In this case the wavelet transform is calculated for each frame and the attention is put
on the detail and approximation coefficients. Wavelets are defined as a representation
of square-integrable function by a certain orthonormal series generated by a wavelet.
A wavelet is a wave-like oscillation where the amplitude goes up from zero to come
back decreasing to the original value [21].

In this context we can observe the works of [54]. In these works the first oper-
ation that is done to the image is wavelet transformation, which is combined with
other texture descriptors, such as co-ocurrence matrices or local binary patterns [9].
The presented method is based on a color feature extraction scheme used to repre-
sent the different regions that appear on the frame. This method is built on wavelet
decomposition by means of color wavelet covariance and it is supported by a linear
discriminant analysis proposed to characterize image regions along video frames. The
objective of this work is to detect abnormal regions in order to indicate physicians
area where they may pay more attention. The method is tested on video sequence
that contain relatively small polyps and experimental results are compared with his-
tological results. The same group of researchers developed a tool to detect colorectal
lesions in endoscopic frame, which was named CoLD (colorectal lesions detector, [72]).
This tool provides a graphical user interface so both novice and experts user can take
advantage of its use. In this case wavelets information is used to discriminate amongst
regions of normal and abnormal tissue.

The work of [63] takes into account when detecting abnormalities in colonoscopic
images, the location, shape and size of the abnormal regions in the image. The
concrete locations are unknown and vary across images therefore it is difficult to
determine the appropriate patch-size to use for searching. In this case the solution is
to use multi-size patches and ensemble them in order to achieve good performance.
Experimental results show that combining classifiers that use multiple-size patches
leads to a better abnormal region recognition. The classification is done by means of
a binary Support Vector Machine (SVM). The features extracted from these patches
are taken from both approximating and detail coefficients from wavelet decomposition
of the image patches in the three channels of the CIE-Lab color space.

There are some other texture descriptors that have been used to develop polyp
detection method, such as the already mentioned local binary patterns or co-ocurrence
matrices. The work of [1] combine both of them, with the novel use of local binary
patters in opponent color space. As the authors state, texture can be seen as a
local property and therefore, each image is divided into small image patches and four
different methods were implemented, which combine co-ocurrence matrices (using
different statistical measures such as energy, homogeneity or entropy) and local binary
patterns.

As in the case of shape-based approaches, MPEG-7 also offers texture descriptors
that can be used to build polyp detection methods. In the work of [28], although
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applied to a different type of endoscopic process, several texture and color descrip-
tors are presented. In the sub-field of color descriptors, methods such as dominant
color, scalable color or color structure are presented (see [14] for a further explana-
tion of them). Related to texture descriptors, homogeneous texture and local edge
histogram are introduced. These methods are evaluated in a big database and, in or-
der to quantify the performance of each descriptor, several measures were used such
as descriptor’s redundancy or the variation of the descriptors’ value. The experimen-
tal results show the superiority of scalable color over other color descriptors due to
its higher resolution. On the other hand we have the apparently strong local edge
histogram that performs worse than other simpler approaches, such as homogeneous
texture, since it pays too much attention to the small texture variations in the image.

All the methods presented above are based on the use of a certain texture descrip-
tor (wavelets, local binary patterns) to build their polyp detection methods but there
is a separate group of techniques that do not follow this path. For instance, the work
of Tjoa et al. ([105, 104]) introduces the concept of texture unit (TU) and texture
unit number (NTU). Texture units characterize the local texture information for a
given pixel and its neighborhood, and the statistics of all the texture units over the
whole image reveal the global texture aspects. Without entering into details, each
pixel value is compared with the value of the pixels in its neighborhood and then
the value for this pixel in the TU matrix is assigned according to the comparison.
The texture information is presented in the texture spectrum histogram, which is ob-
tained as the frequency distribution of all the texture units. Six statistical measures
are used to extract new features from each texture spectrum, which include energy,
mean, standard deviation, skew, kurtosis and entropy.

In Table 2.2 we can see a summary of the main characteristics of recent approaches
for texture-based polyp detection,. As it happens with shape-based methods, it is
very difficult to make a comparison between them, due to the fact that there is no
common local database where to test the different methods. Therefore, we could only
compare different methods in terms of certain measures, such as precision or recall,
always taking into account that these measures will have been calculated for a specific
dataset.
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Author Method Classification Datasets
Coimbra et
al. [28]

MPEG-7 descriptors:
(Shape) Region-based
shape descriptor (texture)
homogeneous texture, lo-
cal edge histogram (color)
dominant color, scalable
color, color structure.

Mean of descriptor values
for each event group

Blood (832 images from
17 events), ulcers (400
images from 21 events),
polyps (899 images from
31 events), and normal
(55000 images from an en-
tire uneventful exam) im-
ages

Karkanis et
al. [54]

Wavelets applied in differ-
ent color spaces (CWC fea-
tures)

LDA 5 different videos

Li et al. [63] Division of image in
patches. Mean and stan-
dard deviation of DWT
coefficients

Support Vector Classifiers 46 colonoscopic images
with multiple categories of
abnormal regions and 12
normal

Tjoa et al.
[104]

Measures extracted from
texture spectra in chro-
matic and achromatic do-
main. Texture units

Helped by PCA, Nearest
Neighbor

12 normal and 54 abnor-
mal images

Ameling et al.
[1]

Local binary patterns
(also in opponent color
space) and grey-level
co-ocurrence matrices.

SVM 4 videos

Table 2.2: Summary of texture descriptor-based methods for polyp detection.

2.4.3 Blood vessels characterization

As will be shown in Chapter 4, blood vessels do have an impact in the performance of
our method and in this thesis we will provide a preliminary study on how to mitigate
their effect. Many different methods have been used to provide a segmentation of
blood vessels in two-dimensional images. Most of them have been tested in retinal or
angiography images. Despite the wide variability of enhancement steps and segmenta-
tion methods they are usually separated in two big groups: pixel-based methods and
tracking-based methods [73]. In the former category different approaches are included
such as kernel-based methods, model-based techniques, classifier-based methods or
morphology-based strategies. Kernel-based methods are based on the convolution
operator with some kind of kernel designed according to a model. Different kernels
and filters have been proposed. The aim of the convolution is usually to extract vessel
borders or centerlines. A matched filter approach based on Gaussian kernels is used
in some methods to model the cross-section of a blood vessel [23] [45]. These methods
use Gaussian-shaped templates in different orientations and scales to identify ves-
sel profiles. An example of model-based technique was presented in [51], where the
authors proposed a knowledge-guided adaptive thresholding framework where bina-
rization is used to generate object hypotheses. Those hypotheses are only accepted if
they pass a verification procedure.

Classifier-based methods intend to assign each pixel in the image to the vessel or
non-vessel class. In this group we find the primitive-based method in [100]. In this
method a ridge detection is performed as a first step to achieve a segmentation of
the image. Afterwards, that information is considered to classify regions and pix-
els. In [99] a bayesian classifier is used after computing feature vectors obtained by
Wavelet Gabor responses. A neural network is used in [71] after computing a feature
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vector based on moment invariants-based features. Morphology-based techniques use
morphological operators to take advantage of shape characteristics of blood vessels.
Morphological operators are usually combined with other techniques. The extrac-
tion of vessel centerlines combined with local information such as the vessel length is
followed by an iterative vessel filling phase based on morphological filters in [73].

In [121] mathematical morphology is combined with curvature evaluation to dif-
ferentiate vessels from other structures. Tracking-based methods aim to obtain the
vasculature structure using local information to follow vessel centerlines. Tracking
techniques trace vessels from selected starting points. At each point a neighborhood
is evaluated to decide whether they are vessel candidate pixels regarding some kind
of local information. The process finishes when the pixels evaluated are considered to
be end points. Other approaches that can be included in this category are based on
deformable or snake models. This techniques place an active contour model near the
aimed contour and evolve it iteratively to fit the desired object [38]. Many methods
using techniques in different categories can be found. For instance, some approaches
combine a classification based on support vector machine followed by a tracking stage
based on the Hessian matrix [118].

2.5 Domains of application of endoluminal scene de-
scription methods

The application of the methods that have been described in the previous sections could
be enclosed in the field of intelligent systems for colonoscopy. Intelligent systems for
colonoscopy are defined as systems which add key information to the colonoscopy
procedure, whether it is by assisting the physician during the intervention or helping
to provide metrics to assess the performance of the procedure.

It is clear that the most manifest use of this kind of systems could be the assis-
tance in the diagnosis procedure during the intervention or in post-intervention
time. This kind of systems could lead to a reduction of the miss rate associated to
polyp identification. Another possible domain of application could be the automatic
annotation of colonoscopy videos by providing a complete scene description. This
description may include the presence of salient traits such as anatomical structures
(blood vessels, folds, polyps) and could also indicate the limits between insertion or
withdrawal phases.

It is important to mention that an intelligent system could also be used to of-
fer automatically metrics that may be used to offer a quality assessment of the
colonoscopy intervention, which could provide a non-subjective way of assessment.
We can also think of using elements of the scene description to generate testing se-
quences that could be used as a way to train physicians in a way such they can assess
and improve their skills without the cost associated to a real interventions, and it
would allow to compare different performance metrics objectively.

Finally, we could also use intelligent systems to extend and provide additional in-
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formation from colonoscopy data. Belonging to this area we can think of applications
such as the development of patient-specific models, that can be re-used later,
when a new study arrives, to check for coincidences that can help in the diagnosis
and enrich in this way a final case report.

In this section we will introduce the role that our contributions may play in the
previously mentioned domains of application along with presenting works by other
authors.

2.5.1 Computer-aided Diagnosis as a potential domain of ap-
plication of our methods

The justification of the methods like the one we propose in this thesis is to aid in
the diagnosis. We can think of a system that highlights, in real-time, which part of
the image is more likely to contain a polyp inside. In this case we could think of two
different approaches, depending on the type of solution that we want to provide. We
can opt for only highlighting a given part of the image as having a high likelihood to
contain a polyp inside or to provide a segmentation of the polyp. In this thesis we
will introduce our polyp localization and polyp segmentation method, which could
potentially be incorporated into a Computer Aided Diagnosis system.

Intelligent systems have been already used to assist in other medical interventions.
For instance, there are systems that can be used to develop the knowledge bases
used by expert systems, such as KARDIO [18], which was developed to interpret
electrocardiograms. Another example can consist of developing a system that, in the
context of anesthesia, provides a robust/reliable control system that could determine
the optimal infusion rate of the drugs (muscle relaxant, anesthetic, and analgesic)
simultaneously, and titrate each drug in accordance to its effects and interactions.
Such a system would be a valuable assistant to the anesthetist during the procedure.
An example of such a system can be found in the work of [77]. More close to our topic
of interest, colonoscopy, we can find many examples of intelligent systems build to
assist in cancer detection. Such is the case of breast cancer detection [115] or prostate
cancer detection [113].

In particular, we think that the requirements that an intelligent system for colonoscopy
must fulfill to be incorporated into a computer-aided diagnosis system are:

• Real time performing: If we want to provide useful information to the physician
while he/she is performing the colonoscopy, we need to develop our systems to
be fast enough. This means that the processing time of each frame has to be
as fast as the frame rate in order not to slower the procedure. In this case
maybe we should not aim a giving a perfect segmentation of the polyp even if it
is hardly visible, but a good objective may be to indicate potential areas with
polyp presence.

• High specificity: In medical imaging, we have to be specially careful about the
kind of results that we are providing. In our case, it is clear that we prefer to
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highlight bigger areas of the polyp even if the polyp only constitutes an small
part of them than not highlighting the polyp at all. Considering this, we should
aim at a system that has a low number, the closest possible to zero, of False
Negatives, although we should also try to keep the number of False Positives
low.

• Easy user interface: We have to think that our system should not be intrusive
to the physician’s work. We cannot simply fill the colonoscopy frame with
lots of indicators that may distract the physician. Instead of that, we should
aim at provide just an easy-to-see but not invasive indicator. We can think of
highlighting the part of the image where we predict there is a polyp or just some
kind of arrow indicator to guide the physician.

The methods that we present in this thesis could be directly incorporated into
a computer aided diagnosis system. For instance we foresee as a use of our polyp
localization method to provide the physician with indications of which areas of the
image are more likely to contain a polyp inside by means of highlighting them. It is
clear that the methods presented work faster if they have to deal with smaller regions
of the image, which correspond to the informative areas. Regions such as the interior
of the lumen should be automatically discarded. We should also take into account the
clarity of the image [4], which can give us hints about if we can find useful information
on a particular frame or, because of its quality, we should indicate only the physician
to look for a better view.

As it has been presented in the previous sections, we count with a lot of theoretical
tools to build CAD systems for colonoscopy but we also have some key constraints.
As of now the majority of approaches only cover polyp detection and, when giving
performance results, they are only referred to their own polyp databases which makes
it difficult to compare between different approaches. We will present in Chapter 6
our contribution in terms of database building, hoping that it will be useful for future
researchers in order to develop good polyp localization, segmentation and detection
methods. More importantly, we provide in this thesis with the first transition between
the research lab and real life by means of comparing the results of our methods with
physicians observations, as will be shown in Chapter 8.

2.5.2 Other possible domains of application

As mentioned before, we foresee CAD as the main domain of application of our
methods but there are other domains where they may play a role, which will be
presented in this subsection.

• Automatic scene description: although polyp localization is by itself a
method that could be used for CAD, we also provide in this thesis our con-
tributions to identify some other elements of the endoluminal scene such as
blood vessels or specular highlights. These methods, along other existing in the
literature for elements that have not been covered in this thesis such as lumen
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or folds, could be used to provide a map of the elements that appear on the
endoluminal scene.

• Quality assessment: Currently, there are several metrics for the assessment
of the quality of the colonoscopy intervention, such as the insertion time and
withdrawal time. For instance, current ASGE (American Society for Gastroin-
testinal Endoscopy) and ACG (American College of Gastroenterology) guide-
lines suggest that, on average, withdrawal time should last a minimum of 6
minutes. Other works propose the use of additional metrics that include the
quality of preparation, among others [75]. In the case of Europe, a very good
work on quality assessment in colonoscopic interventions can be found in the
work of [95], which defines from how to prepare conveniently the patient to an
intervention to a classification of the polyps that can be found. These metrics
can be potentially used into training programs for physicians, in order to assess
their skills. Unfortunately, there is not a lot of information about what metrics
could be extracted from a colonoscopy video in terms of computer vision analy-
sis. One interesting approach can be found in the work of [46], which was later
extended in [79]. These works presents a method to measure automatically the
quality metrics for colonoscopy videos, based on analysis of a digitized video file
created during colonoscopy and produces information regarding insertion time
or withdrawal time.

• Training: one possible domain of applications of the methods that we propose
could be to provide information to build up training systems for the physicians
to improve and test their skills. The work of [109] proposes the evaluation of
the skills of the trainees, and their evolution during learning processes, by us-
ing eye-tracking methodologies as a tool for the assessment of abilities such as
active visual search and reaction time to the presence of polyps, among others.
This study presents a novel method which compares visual search patterns be-
tween the skilled specialists and the trainees. This is done by tracking the eye
position of two groups of physicians (experts and novices) while they are shown
a set of colonoscopy videos. Several measures were computed by analyzing the
eye-tracker results, such as eye movement speed or number of fixations. The
obtained results show that colonoscopy experts and novices show a different be-
havior in their visual search patterns, and therefore the proposed eye-tracking
based procedure can provide automatic and objective measures for their evalu-
ation. A method similar to the one presented in [109] can be potentially used
both for assessment of the skills of the trainees during their learning process or
to assess the quality of the whole procedure in intervention time. In addition,
the inclusion of the models of appearance and the item categorization from the
tools for scene description can provide an objective ground-truth against which
to check the abilities of the trainee. This can potentially be implemented by
analyzing the extent to which the trainee identifies the regions of interest, which
could be provided by means of our polyp localization method.

• Development of patient-specific models: Since some of the methods pre-
sented allow the detection, segmentation and characterization of anatomical
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structures, lesions and physiological behavior, there is a manifest potential to
use these strategies in order to endow current techniques with architectures
ready to work with patient-specific models. The patient-specific approach has
been one of the main trends in clinical research lately and it has been one of
the pillars of the research funding schemes for Information and Communica-
tion Technologies related to health care in Europe during the last Framework
Programs [48]. The patient-specific orientation focuses on the adaptation of
existing methodologies so that they can take profit of the particular informa-
tion, traits, clinical details or characteristics associated to each patient. Thus,
the patient-specific viewpoint aims at the focalization of the (general) outcomes
provided by each technique onto the (particular) specificities of each case. The
extent to which this perspective can be exploited by using intelligent systems in
colonoscopy is an open field of work. Here, we expose only as a matter of exam-
ple a tentative list of a few prospective ideas. On the one hand, the use of feature
detection in colonoscopy video could provide a way to the characterization of the
inner walls of the colon, based on the identification of unique traits, which could
be used for the tagging or annotation of physiological features as markers, and
apply this information in a further step for the identification of the exact place
of the situation of region close to a polyp. These visual traits of the colon could
be used in order to find those very specific locations when a new colonoscopy
intervention is performed on that patient. This could provide a method for a
precise spatial localization of regions of interest. The straightforward applica-
tion of this potential implementation would be oriented to the registration and
study of evolution of lesions in time (or whatever other item of interest) in the
sequential routine interventions carried out on a particular patient, by automat-
ically providing the specialist with a measure of certainty about the location of
those lesions. The generalization of this methodology could be addressed to-
wards the definition of a patient-specific atlas of the colon, in a way in which
the specialist could have track of landmark positions in intervention time. This
perspective presents a scenario in which the specialist is endowed with a road
map for the navigation in intervention time, allowing the specialist to address
specific targets with high reliance, reduced time and a potential shrinking of the
miss rates.



40 ENDOLUMINAL SCENE DESCRIPTION: CHALLENGES AND METHODS



Chapter 3

A model of appearance for polyps

3.1 Introduction

In other to develop our polyp localization and polyp segmentation methods we need
a robust definition on what a polyp is and how it appears in colonoscopy frames
in order to develop accurate polyp localization and segmentation methods. These
methods will be depicted in other chapters and we will dedicate this current chapter
to introduce our model of appearance for polyps, which is based on how polyps appear
in colonoscopy frames. Before entering into details of our model, we will introduce and
define what a polyp is and how they appear in actual frames, along with presenting
some of the challenges that polyps present. After this, we will explore the connection
between how images are acquired and Phong’s illumination model, which leads to one
of the contributions of this thesis, which is a model of appearance for polyps. We will
also introduce some tools that could be used to aid in polyp localization and polyp
segmentation. We will finish this chapter by introducing our polyp localization and
segmentation schemes, which will vertebrate the following chapters.

3.2 Definition of polyp

Polyp is a general term used to describe a benign (non-cancerous) growth on the
lining, or inside, of a mucous membrane which includes those that are found in the
colon. In general polyps are considered pre-cancerous but if left untreated, they may
develop into cancer. There are several different classifications for polyps, depending
on the scope of the analysis. If our aim is to classify polyps by their shape, the most
general classification divides them into pedunculated and sessile [16]. Pedunculated
polyps are mushroom-like tissue growths which are attached to the mucous membrane
by a peduncle or stalk. On the other hand, sessile polyps lay directly on the surface of
the mucous membrane. Depending on their protrudness they can be subdivided into
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salient, flat and depressed polyps. We can observe graphical examples of the several
polyp types in Figure 3.1. In our case we aim at localize and segment polyps like the
ones shown in Figure 3.1 (a), (b) and (c).

(a) (b) (c) (d)

Figure 3.1: Type of polyps: (a) Pedunculated poly; (b) Salient sessile polyp; (c)
Depressed sessile polyp; (d) Flat sessile polyp .

As we have mentioned, polyp classification by means of shape is not the only
possible classification [16]. Another criteria is the type of polyp. The most common
types of colon are inflamatory, adenomatous, hyperplastic, villous, lymphoid and
juvenile. In our case we are interested in the first classification criteria because it
provides an initial cue to localize polyps in colonoscopy frames, which is shape. It is
clear that by means of this first polyp classification, we obtain some general shapes
that may have but, as we are dealing with frames from colonoscopy studies, it is rare
that we will obtain clear perfect shots of polyps which are easy to localize. In our
case we will build our model of appearance for polyps by taking a look at how polyps
do appear in colonoscopy frames, which also considers how the colonoscopy frames
are acquired.

3.3 Phong’s illumination model

The colonoscope has a light source and a camera attached to it in a way such both
the camera and the source of light are in the same direction. We will use this in
order to develop our model of appearance for polyp. For this aim, we need both
an a priori model about the polyp and a model of the illumination. For the sake of
simplicity let us consider a polyp as a semi-spherical shape protruding from the colon
wall plane. It is important to mention that polyps and folds are the only elements on
the endoluminal scene that could be considered as having a three-dimensional shape
whereas other elements such as blood vessels and specular highlights could not. We
will also consider that the polyp surface is regular and that its reflectance can be
approximated by the Phong’s illumination model [84].

Phong reflection is an empirical model of local illumination, which describes the
way a surface reflects light. This model defines the illumination of each surface point
as a combination of the diffuse reflection of rough surfaces with the specular reflec-
tion of shiny surfaces. It is based on Bui Tuong Phong’s informal observation that
shiny surfaces have small intense specular highlights, while dull surfaces have large
highlights that fall off more gradually. Phong’s illumination model also includes an
ambient term to account for the small amount of light that is scattered about the
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Figure 3.2: Decomposition of the light reflected by the surface into the three com-
ponents: ambient; diffuse and specular.

entire scene. We can see in Figure 3.2 a graphical example that decomposes the light
reflected into three components, namely: ambient, diffuse and specular.

Combining how the image is acquired 1 and Phong’s illumination model (see Figure
1.5 and Figure 3.2) it is somehow easy to infer a model of polyp appearance, as polyps
can be approximated as protruding surfaces where the light is reflected. We can model
the colonoscope itself by a pinhole camera and a punctual illumination source placed
in the same position. Figure 3.3 (a) shows a schematic representation of this scenario.
Under such assumptions, the image provided following these approaches is calculated
as:

I = Ia ∗Ka + fatt ∗ Ip ∗ [Kd ∗ cos θ +W (θ) ∗ cosn α] (3.1)

where I is the light reflected by the surface towards the camera, Ia is the ambient
intensity, Ka is the ambient reflection constant, fatt is the attenuation factor, Ip is
the punctual intensity, Kd is the diffuse reflection coefficient, θ the angle between the
surface normal and the illumination source, W (θ) is the fraction of light reflected in
a specular way, α is the angle between the surface normal and the camera, and n
modulates the decay in the specular reflection. This model is implemented with a
set of arbitrary values for the sake of visualization in Figure 3.3 (b) and (c), which
show a rendering of a synthetic polyp for tilt angles of α = 0◦ and α = 60◦. In
this scenario, sharp edges, gradual shading and specular reflections are created (these
same elements can be visualized in the real example of Figure 3.3 (d)).

To close this section and to assess the validity of our model in real images, we
present in Figure 3.4 a comparison between the grey level intensity under a given
region of the image for both a model image and a real image. As it can be seen in
Figure 3.4 (c) and (d), the boundaries between the polyps and the rest of the image
appear as jumps in the grey level, which confirms our initial assumption of shadings
surrounding polyps and therefore constituting polyp boundaries.

1We have explained how colonoscopy frames are acquired in Chapter 1.2 of this thesis
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(a) (b) (c)

(d)

Figure 3.3: Model of appearance and illumination of polyps: (a) Scheme of an
illuminated prominent surface; (b) and (c) synthetic model rendering for 0 and 60
degrees. (d) a real example.
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(a) (b)

(c) (d)

Figure 3.4: Validation of the theoretical model in real images: (a) Synthetic 3D
model of a polyp; (b) Real polyp example; (c) Grey level of the model image; (d)
Grey level of the real image. In this Figure the blue line represents the portion of the
image which gray level variation we will check and the red line marks the boundary
of the polyp.
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3.4 Cues on polyp characterization by means of an
illumination-based model

The characterization of the polyp is obtained through the shadings, which are related
to valleys in the intensity image, but these are not the only cues that can be used
to guide a model of appearance for polyps. Moreover, colonoscopy frames present
some challenges which can hinder polyp localization and segmentation that have to
be taken into account, as they result on a a great variability in polyp appearance in
colonoscopy videos. These challenges are:

1. Non-uniform appearance of polyps (see Figure 3.5 a-b).

2. Variability in shape: sessile or peduncular (Figure 3.5 a-c).

3. Effects of image acquisition, such as changes in pose, blurring, occlusions, spec-
ular highlights (Figure 3.5 d-e-g).

4. High similarity between the tissues inside and outside the polyp, which disables
the possibility of relying only on texture or color cues (Figure 3.5 h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Challenges in polyp detection: (a-d) non uniform appearance, e) partial
(lateral) views, f) blurred images, g) specular highlights, and h) uniform texture and
color inside and outside the polyp.

By observing several polyp examples from the available studies and acknowledging
the challenges that we have already presented, we have compiled a list of cues that
can be used to develop our model of appearance for polyps, which are enumerated
next.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Valley detection to guide a model of appearance for polyps: (a-d)
Original images; (b-e) Valley images and (c-f) Valley image with polyp boundary
valleys highlighted in yellow.

3.4.1 Valleys surrounding the polyp

We can see in Figure 3.6 some examples that illustrate how the output of a valley
detector, conveniently treated, can be useful to guide a model of appearance for
polyps.

As it can be seen from the examples, the output of a valley detector can be linked
with the boundaries of polyps (painted in yellow in Figure 3.6 (c) and (f)) although,
as we can see, in some cases we do not have a high valley response for every pixel of
the boundary.

3.4.2 Contours and edges in lateral view

The model presented previously defines polyps as surrounded by shadings, which
constitute valleys on the intensity image. But depending on the view of the polyp
that we are observing, this definition may fall a little short, as shown in Figure 3.7.
In this case we observe that for the case of lateral polyps we do not have complete
valley information. Even more, for the part of the polyp that is closer to the lumen,
we do not have any valley information at all, as it can be seen in Figure 3.7 (d).
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(a) (b)

(c) (d) (e)

Figure 3.7: Model of appearance applied to lateral polyps: (a) Scheme of an illu-
minated prominent surface; (b) Intensity profile and (c) a real example (d) Valley
image and (e) Gradient image.

Figure 3.7 shows that, for the case of lateral polyps some of the boundaries do not
convey any valley information but they provide results by means of a contour or edge
detector. We can how this is represented on the grey level intensity image in Figure
3.8. As it can be seen from Figure 3.8 (c) and (d) we obtain valley response for one
of the extremes of scope, but for the other we only see a great decay in the intensity
level which indicates edge or gradient information.

The solution that we propose is to use gradient or edge information. As can be
seen in Figure 3.7 (e) by doing this, we can recover one part of the boundary of
the polyp that was missed by using only valley detector information. But, as we
can also see, by using only gradient information we lose the boundary that we have
already obtained by means of a valley detector. Therefore we are in a situation where
by using separate valley or gradient information we only obtain half of the needed
information. As it can be suspected, a good solution to this will be to combine both
types of information and we will develop more about this in the Chapter 4.
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(a) (b)

(c) (d)

Figure 3.8: Validation of the theoretical lateral polyps model in real images: (a)
Synthetic 3D model of a polyp; (b) Real polyp example; (c) Grey level under the
selected region for the model image; (d) Grey level under the selected region for the
real image. In this Figure the blue line represents the portion of the image which
gray level variation we will check and the red line marks the boundary of the polyp.
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3.4.3 Internal shadings of the polyp

Another cue that could be used to guide our methods will be the content of the polyp
regions by means of its internal shadings. But, as it can be seen in Figure 3.9, it is
very difficult to see internal shadings as a key cue, as the grey level inside the polyp
does not vary enough to make it relevant.

(a) (b)

(c) (d)

Figure 3.9: Variation of grey level inside the polyp. : (a) Original image; (b) Zoom
of original image; (c) Overall gray level below the blue line; (d) Zoom of gray level
below the blue line. In this Figure the blue line represents the portion of the image
which gray level variation we will check and the red line marks the boundary of the
polyp.

As we can see from Figure 3.9 there is not a great variation of gray level inside
the polyp and we even have to make a zoom (see Figure 3.9) to find some differences,
which are not high anyway. We do see a great jump in terms of gray level that
coincides with the boundary of the polyps (marked with a red line in both Figures 3.9
(c) and (d)), which also leads to the use of measures based on difference of intensity
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levels such as valleys or gradient to determine polyps’ contours.

3.4.4 Specular highlights

Specular highlights appear as the light falls perpendicularly into protruding objects,
such as polyps which return part of the light that impinges them, as it can be seen
from Phong’s illumination model. Because of this, one possible cue to guide a model
of appearance for polyps could be the presence of specular highlights.

The property that we want to take advantage from here is that protruding 3D
objects such as polyps reflect the light as it falls into them therefore if we find specular
highlights in some area of the image we can assume that a protruding object is present.
Unfortunately, after observing frames with polyp from our available studies, we have
found that specular highlights are not always present. We show in Figure 3.10 some
examples of frames with polyp and with or without presence of specular highlights.

(a) (b)

(c) (d)

Figure 3.10: Use of specular highlight as a cue to define a model of appearance
for polyps. (a-b) Examples of frames with polyps and specular highlights. (c-d)
Examples of frames with polyps and without specular highlights.



52 A MODEL OF APPEARANCE FOR POLYPS

Taking this into account and considering that there are some examples where
specular highlights are not present, we can not affirm that the presence of specular
highlights could be included as a necessary condition that can indicate a polyp pres-
ence, even considering that this is true for the majority of the cases. And we can not
forget that there are other protruding objects on the endoluminal scene apart from
polyps, such as wrinkles and folds, which also contribute to the presence of specular
highlights.

(a) (b) (c)

(d) (e) (f)

Figure 3.11: Challenges of using valley detection to guide a model of appearance for
polyps. (a-d) Original images; (b-e) Valley detection images; (c-f) Valley detection
marked images. Blood vessels valleys are marked in blue and specular highlights-
caused valleys in yellow, whereas polyp contour valleys are marked in red.

3.4.5 Discussion

We have detailed in this section some cues that could be used to guide our polyp
localization and segmentation method and we will close this section by exposing which
of them we will consider for our algorithms. Our model defines a polyp as a prominent
shape enclosed in a region with presence of valleys around its frontiers. Therefore the
use of the output of a valley detector as a cue seems logical, as the examples provided
show that valleys do indeed constitute part of the polyp’s boundaries. But we have
also shown that for some views of the polyp this valley information may not be enough
to define polyp boundaries and, because of this, we will also use gradient information
to complement the output of a valley detector.
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As was shown in Figure 3.9 we can not obtain enough useful information from
internal shadings of the polyp that can be used to differentiate polyp regions from the
rest therefore we will not use this kind of information. The case of specular highlights
is different in some way: they appear for many of the images where polyps are present
but they also appear in parts where there is no polyp presence. Moreover, not even
for all the polyps we have a specular highlight, as it has been shown in Figure 3.10.
Taking this into account we will not use specular highlights as a cue to indicate polyp
presence but, as shown in Chapter 4, we will address the effects that they produce in
our methods.

Finally, it is important to mention that although we will base our methods on
valley information that polyp boundaries provide, we have also taken into account the
contribution in terms of valley information of image acquisition and other elements
of the endoluminal scene in order to develop our polyp localization and segmentation
methods. Consequently, we will have to expand our model or treat these elements
separately in order to make our algorithms work as intended. As an example, we
show in Figure 3.11 the output of a valley detector on a complete endoluminal scene.
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Chapter 4

Valley detection for polyp
localization and segmentation

4.1 Introduction

We will base our polyp localization and polyp segmentation methods on a model of
appearance for polyps. This model defines a polyp as a prominent shape enclosed in a
region with presence of edges and valleys around its frontiers. We have also explained
how the use of valley detectors seems suitable for our concrete case although this model
has to be extended in order to overcome some of the challenges that the sole use of
valley detection present, such as the presence of other elements from the endoluminal
scene such as blood vessels and specular highlights.

We will present in this section how we will use the information that valley detec-
tion methods provide to guide polyp localization and segmentation, starting with the
definition of what a valley detector is and presenting some alternatives that can be
used. Once our final valley detector is introduced, we will detail how we do solve the
challenges that were sketched at the end of the previous chapter, in order to both
generate our enhanced input and depth of valleys images.

4.2 Valley detection

4.2.1 Introduction

As we are going to base our polyp localization and segmentation methods on the
shadings that surround polyps and their relationship with the output of a valley
detector, it is clear that we need to define what a valley detector is and present some
different approaches that we can use to obtain a valley image. The characterization
of the polyp is obtained through the shadings, which are related to valleys in the
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intensity image. But, as was shown in Chapter 3, the model of intensity valleys as
boundaries of the polyp is not valid for a certain type of polyp appearance such as
lateral polyps, as it can be seen in Figure 3.7.

Therefore, we need to extend our initial approximation of intensity valleys as the
shades that define polyp boundaries in order to cope with cases such as the one showed
in Figure 3.7. We will use in this thesis the term valleys, although in the literature the
general concept is known as ridges and valleys detection. In mathematics the ridges
of a smooth function of two variables are the set of curves which points are local
maxima of the function in at least one dimension. For our case, we are interested in
the valleys that surround polyps, as the grey level in these valleys will be lower than
the intensity of the pixels in a neighborhood.

There are several approaches to detect intensity valleys in images. In our case,
we have decided to use multilocal creaseness [67], although other alternatives such as
second derivative of gaussians [41] could have been considered. We will present both
methods in the next subsections.

4.2.2 Second Derivative of Gaussians

The difference in contrast between structures such as the boundaries of the polyp
point out the potential that second derivatives of anisotropic Gaussian kernels as
valley detector. The kernel values are defined by the oriented Gaussian function
described by:
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where (σx, σy) are the scales in the corresponding axis and θ is the rotation angle of
the filter. x̃ and ỹ are the coordinates given by the rotation angle. Hence they are
defined as:

x̃ = x cos θ + y sin θ
ỹ = x sin θ − y cos θ

(4.2)

As we use anisotropic Gaussians with σ = σx = 2σy the Gaussian function results
in:
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Therefore, as we are modelling polyp boundaries with second derivatives of anisotropic
Gaussian kernels, the kernel will be defined as:

∂2
ỹGσ,θ =

ỹ2 − 1

σ4
Gσ,θ (4.4)
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(a) (b)

(c) (d)

Figure 4.1: Second derivative of Gaussians applied on colonoscopy frames: (a) and
(c) Original image; (b) and (d) Corresponding valleys image.

We apply a normalization so that the geometry of the polyp boundaries is prior-
ized:

GN
σ,θ :=

∥∂2
ỹGσ,θ ∗ I∥

∥∂2
ỹGσ,θ∥∥I∥

(4.5)

where ∥ · ∥ stands for the L2 integral norm and ∗ denoting the convolution operator.

The kernels are applied for 8 equally distributed orientations and scales σ =
[2, 4, 8], which cover the majority of polyp contours from our test dataset. It all means
we have 24 output images, each of them corresponding to a determined orientation
and scale. Hence, the output Ivalleys must be a combination of all of them, defined
as follows:

Ivalleys = max
i,j

(
GN

σi,θj

)
(4.6)



58VALLEY DETECTION FOR POLYP LOCALIZATION AND SEGMENTATION

We show some examples on valley detection by means of second derivative of
gaussians in Figure 4.1.

4.2.3 Multilocal Creaseness-based Valley Detector

As mentioned in the previous chapter, by combining Phong’s illumination model
with a priory shape model of polyps in colonoscopy images, we can approximate the
shadings that protruding objects generate as intensity valleys. Ridges and valleys in
n-dimensional images are commonly identified as loci of minimum gradient magnitude
along the relief’s level curves [67]. If |λ1| ≥ ... ≥ |λd| are the eigenvalues of ∇∇L and
v1, ..., vd their corresponding eigenvectors, then a n−dimensional crease (1 ≤ n ≤ d)
is characterized as:

∀i ∈ Id−n ∇L · vi = 0 (4.7)

where L is the scale-space representation of the image intensity, obtained by convolv-
ing the image with a gaussian function and I is the image. Considering this, we can
state that if for a given eigenvector, λi < 0 we have a ridge, and if λi > 0, a valley.

In 2D, ridges/valleys can be also identified as positive maxima/negative minima
of the curvature of the relief’s level curves. Maxima are connected from one level
to the next therefore constituting a subset of the vertex curves. In d dimensions
we generalize the level curves of L to level sets. A level set of L consists of the set
of points Sl = xϵΩ : L(x) = l for a given constant l. Then, if |k1| ≥ ... ≥ |kd| are
the principal curvatures of the level hypersurface Sl and t1, ..., td their corresponding
principal directions, a nD crease (1 ≤ n ≤ d) is characterized as ([67]):

∀iϵId−n∇ki · ti = 0 (4.8)

and

tti · ∇∇ki · ti < 0 andki > 0 if ridge (4.9)

tti · ∇∇ki · ti > 0 andki < 0 if valley (4.10)

The condition of positive maxima or negative minima of k can be translated to
high values of |k|, where values greater than 0 measures ridgeness and values smaller
than 0 measures valleyness. In 2D when the height condition holds, we can equal v1
to v and λ1 to Lv, where v = (Ly −Lx)

t is the tangent vector of the level curves of L.
Consequently Lvv can be seen as a creaseness measure: if its value is high there are
higher chances that the highest value in magnitude of the second order directional
derivative is reached along v. The measures Lvv and k are related by

k = −Lvv/Lw =
(2LxLyLxy − L2

yLxx − L2
xLyy)

(L2
x + L2

y)
3/2

(4.11)
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where w = (Lx, Ly)
t is the 2D gradient vector of L. By this we can consider Lvv as

the measure k weighted by the gradient magnitude in order to eliminate its response
in isotropic regions. In our case we are interested in those pixels that have creaseness
value smaller than 0 in the creaseness image, as it can be seen in Figure 4.2.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Intensity valleys in colonoscopy frames: (a) and (d) Original image; (b)
and (e) Creaseness image; (c) and (f) Valleys image.

4.2.4 Comparison between Second Derivative of Gaussians and
Multilocal Creaseness

Once we have presented two of the available methods of valley detection we will make
a brief comparison of the output that they provide for several colonoscopy frames. We
have to mention that for the sake of the comparison both methods have been applied
with the default parameter values. We show some representative examples in Figure
4.3.

The scope of this thesis is not to select which of the available valley detector
performs better because an analysis of this type will require to define a complete
experimental setup and would involve a fine tuning of the several parameters that
both methods need. Preliminary qualitative studies show that the use of multilocal
creaseness provide with less noisy valley images while both give similar output in
terms of polyp boundary detection. For instance we can see from Figures 4.3 (b) and
(c) where we can see that second derivative of gaussians seems to give much more
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3: Intensity valleys in colonoscopy frames: (a),(d) and (g) Original im-
age; (b),(e) and (h) second derivative of gaussians output; (c),(f) and (i) multilocal
creaseness output.
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importance to valleys constituted by non-interesting elements of the endoluminal scene
such as the black mask or specular highlights whereas multilocal creaseness gives
higher importance to polyp boundaries. We can see from Figures 4.3 (e) and (f)
that blood vessels seems to impact more the output of multilocal creaseness, but the
three examples that we present show that in order to get complete polyp boundaries
multilocal creaseness is the option to take. We have to take into account thatmultilocal
creaseness also gives high valley value to some other elements of the endoluminal scene
which we will address in the next section.

4.3 Issues on polyp boundary characterization by
means of valley information

4.3.1 Introduction

As we mentioned in last chapter, although the use of valley detection methods seem to
suit our model of appearance for polyps, there are some challenges that valley output
images present that should be addressed in order to aid in our polyp localization
and polyp segmentation methods. As it can be seen in Figure 4.4 there are several
elements on the image, whether they are elements from the endoluminal scene or just
artifacts caused by the image acquisition process, that have an impact in terms of
valley detection and present challenges that have to be addressed. These elements
are:

1. Interlacing: Because of the interlacing process, the time difference between the
difference in acquisition time of the odd and even lines of a frame may result in
small differences in the image, which may give response in terms of valleys.

2. Black mask: Because of the image acquisition process and the lens shape [102],
there is some part of the image where we do not have scene information. As it
can be seen in Figure 4.4, the black mask that surrounds the endoluminal scene
do generate a high response in terms of valley information.

3. Specular highlights: Specular highlights appear as a result on the light of the
camera falling into protruding objects which reflect the light back to the camera.
As specular highlights result on highly saturated regions of the image, they do
generate valleys surrounding them which may be taking into account when
developing our methods.

4. Blood vessels: Blood vessels appear as darker line segments due to its lower
reflectance with respect to colon walls. Because of this, they constitute valleys
as the grey level below them is low compared to the grey level of the pixels on
their neighborhood.

5. Lateral views: As mentioned in Chapter 3, lateral views of polyp result on
not having valley response in the contour of the polyp that touches the lumen.
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Because of this we may lose some polyps as the decrease in terms of polyp
contour information may be high.

In the next sections we will provide solutions for all the presented challenges in
order to improve our valley image but we will start by making a brief explanation
on how colonoscopy images are created and which elements of the endoluminal scene
are generated directly from the image acquisition process. In this case we will divide
the solutions in two groups: 1) Image preprocessing to enhance valleys generated by
polyps and 2) Extension of the valley image to provide with better valley quantifica-
tion and completeness.

(a) (b) (c)

Figure 4.4: Valley detection on an endoluminal scene: (a) Original image (b) Val-
leys image. Black mask-generated valleys are marked in green, specular highlights-
generated in yellow and blood vessels-generated in red. Polyp contour valleys are
marked in blue.

As we will apply an inpainting operation to both the black mask and the specular
highlights we will explain our inpainting method before starting with explaining the
solutions to the challenges.

4.3.2 Inpainting method

To do the inpainting of a certain are we first need to define which pixels of the image
are going to be inpainted. Once this mask is obtained, we can start with the inpainting
algorithms which consists of two stages, namely diffusion and obtention of the final
inpainted image.

• Diffusion: The objective of this stage is, once detected the pixels that constitute
the specular highlight, to diffuse values from the original image into the specular
highlights mask in the following way:
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Algorithm 1: Inpainting diffusion algorithm

Data: Difussion(Io,M ,sth
Arg:(Io: input image, M : input mask, sth: stop threshold)
Result: Diffused image(Id)

1 V m = ¬M ;
2 Id = Io;
3 repeat while the image is modified over sth
4 mod = false;
5 forall the x⃗ ∈ I,M(x⃗) do
6 Neigh = {p⃗|p⃗ ∈ Neighborhood(x⃗), V m(p⃗)};
7 if #Neigh > 0 then

8 nv =
∑

p⃗∈Neigh Ip⃗
#Neigh ;

9 if V m(x⃗) then
10 if |nv − Id(x⃗)| > sth then11 mod = true;

else
12 mod = true;

end
13 Id(x⃗) = nv;

end

end

until ¬mod;

The algorithm starts by creating an inner matrix which keeps track of the po-
sitions of the pixels under the input M mask and then initializes the diffused
image with the input one (lines 1 and 2 of the algorithm). For each pixel under
the original input mask we do the following: we obtain a neighborhood around
the pixel (line 6) and change its original value by the mean value of the neighbor
pixel’s values (line 8). It has to be mentioned that we only take account in the
mean operation those pixels which were not part of the original input mask,
that is, pixels which have zero value in the M mask. This process is repeated
until every pixel with 1 value in the M mask has obtained a new value. Once
this happens, we repeat the process until the stop criteria is met. The stop
criteria halts the algorithm when the difference between the new value and the
previous value under the pixels with 1 value input mask M is smaller than a
sth threshold value (line 10).

• Obtention of the final inpainted image: In order to obtain the final image we
take into account that if we want to assure that the pixels under M do have
their new value on the final image but we also have to consider that if we do a
direct substitution there will still remain a clear frontier between pixels inside
and outside the final image. In order to solve this we create an extended mask
which ponders the way we combine Io and Id in the Inp image. This M1 mask
is created by dilating the original M mask with a circle structural element and
later convolving the result with a gaussian kernel (see Eq. 4.3.2.
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M1 = M ⊕ Cσ ∗Gσ (4.12)

Once this mask is obtained the final inpainted image Inp is calculated in the
following way:

Inp = M1 · Io + (1−M1) · Id (4.13)

As can be seen in Figure 4.5, Io value of pixels under the original M mask
are completely replaced by their corresponding values in the Id. On the other
hand, as we depart from the original M mask, the contribution of the original
Io values increases.

Figure 4.5: Graphical example of the extension of the M mask.

where Io(x, y) and In(x, y) correspond, respectively, to the original image and
the image where the values of the pixels belonging to pixels under the original
M mask have been changed and α corresponds to the decay factor of the mask.
The α factor is used to weight in the final image the contribution of the original
version of the image and its smoothed version. By doing this, pixels close to
the boundary of the mask will have more content of In(x, y) image and pixels
further from the mask will keep their original value.

4.4 Image preprocessing to enhance polyp boundary-
originated valleys.

We cover in this section those challenges that are derivated from either artifacts
generated in the image formation process or derivated from other elements of the
endoluminal scene, such as specular highlights or blood vessels.
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4.4.1 Image formation-derived artifacts

Color channel misalignment

As mentioned in Chapter 2, due to the way color images are created in colonoscopy
videos, color channel misalignment could be present in colonoscopy video frames,
specially in those where the movement of the colonoscope is abrupt (see Figure 4.6).
There are methods devoted to correct color channel misalignment [31] but we have
not considered the problem of misalignment as we will deal with still colonoscopy
video frames which are chosen to test our model of polyp appearance. As it will
be shown later in this thesis, we have selected frames that cover the widest range
possible of polyp appearances and one of the constraints we have self-imposed was
to provide a clear view of the polyp, which is difficult to achieve in frames from an
abrupt transition. In this case color channel misalignment is out of the scope of this
thesis. As color channel misalignment is directly related with strong motion which
blurs the image and therefore damages its quality, we prefer to discard directly those
non-informative frames (by using some of the methods detailed in Chapter 2) and
continue with the processing of the informative ones.

(a) (b)

Figure 4.6: Examples of color channel misalignment: (a) Frame presence of color
channel misalignment. (b) Frame without presence of color channel misalignment
from the same scene.

Deinterlacing

Interlacing is also due to the image acquisition process. We have already introduce
the problem of interlacing in Chapter 2 and, as it was mentioned there, because
of interlacing we may find contours/edges on images caused by the minimal time
difference between two consecutive frames. Although we suspect that for the majority
of the frames the difference will be minimal, we have decided to address the problem
of interlacing in a rather drastic way. In order to prevent the possible effects of time
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misalignment between odd and even lines, we will only take one of each two lines and
we will resize the image in order to keep the proportions. The process is as it follows:
The original size of the image is 1148×1000. If we take only one of each two lines, we
obtain two images of size 1148 × 500. We discard one of them and, in order to keep
the proportion we have to pass from size 1148× 500 to size 574× 500, which can be
done by resizing along the horizontal direction by a 0.5 factor.

Inpainting of black mask

Due to the shape of the lens of the camera that acquires the image, a black mask
surround the endoluminal scene. As our model of appearance for polyps is based on
the output of a valley detector, we have to take into account that these black borders
do provide a high valley response, as there is a great difference in grey level inside and
outside the black border. This difference results in a valley placed in the separation
between the black mask and the endoluminal scene.

There are several ways to mitigate the effect of this black mask. One alternative
could be to cut the image in a way such we eliminate all the black mask (see Figure
4.7), resulting in an smaller image but keeping as much original image information
as possible. The problem that this alternative present is that we may lose interesting
parts of the image (even part of polyp contours) while cutting the image. Because of
this, we have decided to extend the image in the area that the black mask occupies
via an image inpainting method that has already been presented. We only show here
some graphical examples of the inpainting method applied to the black mask in Figure
4.8.

(a) (b)

Figure 4.7: Losing part of polyp contour by eliminating all black mask content: (a)
Original image (with superimposed cutting mask); (b) Cropped image.

Because of the problems that cutting the image presents,
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(a) (b)

(c) (d)

Figure 4.8: Example of black mask inpainting: (a-c) Original images; (b-d) Image
with inpainting of black mask.

4.4.2 Effect of elements of the endoluminal scene

Specular highlights

As can be seen in Figure 4.9, specular highlights do have an incidence in our polyp
detection scheme as their apparition produces intensity valleys around the boundaries
of the specularities.

Taking into consideration that the depth of valleys image that we will use to in
our polyp localization and polyp segmentation methods is directly related with the
output of a valley detector and that specular highlights alter the valley image, we
need to address their effect. In this case we will combine both specular highlights
detection and inpainting, as our aim is to mitigate as much as possible their effect.

Specular highlights detection method
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.9: Specular highlights detection and inpainting (1st column) Original im-
ages; (2nd column) Valley image; (3rd column) Specular-free images; (4th column)
Valley image (the most significative differences with the valley image calculated with
specular highlights are marked with a blue circle).
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We base our specular highlights detection method on the method explained by [3],
which has two different modules: the first one uses color balance adaptative thresholds
to determine the parts of specular highlights that present too high intensity to be part
of nonspecular image content, that is, the saturated pixels on the image. The second
module refines the previous specular highlight detection by including pixels nearby to
saturated regions of the image that appear to be either shadows of the original artifacts
or correspond to the less intense parts of the specular highlights in the image.

Our contribution to specular highlight detection aims at improving the already
good results achieved after completing the second module. In our case, we are con-
cerned on those pixels that are suspected to be part of a specular highlight but they
can not be easily labelled as to be part of them due to a simple threshold value.
We use the following assumption: the intensity value inside the specular highlight
is higher than its surroundings. Even considering that, pixels nearby to specular
highlights will continue having higher intensity values, although smaller than inside
the specular highlight. We aim at finding these pixels by calculating the difference
between the original image and its median but in this case we do not consider pixels
we already know that they are part of the specular highlight.

By doing this, we will find which pixels or regions in the image have a intensity
value marginally higher than its neighborhoods and, applying a threshold value, we
can only keep those where the difference is higher. We also assume that the pixels
that we will denote as specular highlights by using this method will be connected
with regions that were originally labeled as specular highlights. We will compare the
performance of several specular highlight detection methods in Chapter 7.
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(a) (b)

(c) (d)

Figure 4.10: Extension of the specular highlights mask: (a) Original image; (b)
Original specular highlights mask; (c) Extended specular highlights mask (differences
with the original are painted in blue). (d) Zoom of the extended specular highlights.

Specular highlights inpainting method

To do the inpainting of specular highlights we have also used our inpainting method
that has been explained before and used for the inpainting of the black mask. We
show in Figure 4.11 some examples on specular highlight detection and inpainting.

Blood vessels mitigation

We have introduced in Chapter 2 the bibliography related to blood vessels detection
but, as we have mentioned, as far as we know there is no single work with deals with
blood vessels in colonoscopy images. In order to tackle the effect of blood vessels
in terms of valley information we have carried out a prelimiary study which will be
detailed in Chapter 7.
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(a) (b) (c)

Figure 4.11: Specular highlights detection and inpainting qualitative results. (a)
Original images; (b) Specular highlights detection masks; (c) Final inpainted images.

As blood vessels segmentation is a complicated task that is not in the scope of this
thesis, we have opted to mitigate their effect by observing their impact on the valley
image. Blood vessels do generate valleys that could be confused with polyp bound-
aries therefore their mitigation could be crucial for our localization and segmentation
algorithms. The objective of this experiment is to check if blood vessels-generated
valleys have different presence depending on the color channel that we use.In our case
at this moment we do not aim as far as to detect accurately blood vessels but to
mitigate their response in the valley image. The preliminary study indicates that the
contrast between blood vessels and the rest of the image is higher in channel G of the
RGB image (Figure 4.12 (c)) and smaller for channel B (Figure 4.12 (d)) so if we are
interested in mitigating their contribution we should use channel B.

We will develop more on how blood vessel information can be mitigated according
to several cues (color channel, type of information) in Chapter 7 but we show in
Figure 4.13 how, using the same example than in the figure above, we observe some
differences in the valley images generated by each of the channels of the RGB image.
We can see that the valley image for the green channel seems to provide higher contrast
for blood vessels valleys than other channels.
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(a) (b)

(c) (d)

Figure 4.12: Difference in contrast of blood vessels according to the channel ob-
served: (a) Original image; (b) R channel (c) G channel; (d) B channel.

(a) (b) (c)

Figure 4.13: Valley image obtained from separate channels of the RGB image. (a)
R channel valley image; (b) G channel valley image (c) B channel valley image.
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4.5 Depth of Valleys image as a method to capture
the boundaries of polyps

As mentioned before, by using only valley information we may lose some polyp bound-
aries. In order to solve the potential problem that lateral views of polyps generate
and also to provide with more meaningful metrics, we have extended our initial ap-
proximation into the novel Depth of Valleys image (DoV image).

The objectives behind the creation of the DoV image are:

• Provide strong polyp boundaries by means of valley detection, following the
model of appearance for polyps.

• As the output of multilocal creaseness detector is good in terms of valley lo-
calization but not in terms of valley intensity, incorporate another measure in
order to define how deep a point is inside a valley.

The idea behind the DoV is to complement the information that a valley detector
provides with the morphological gradient in order to achieve a method that enhances
both valley and contour information (which appear in some problematic cases such
as lateral polyps, as (Figure 3.7 (b)). The rationale of this approach is that in certain
type of views -in general, in lateral views- we do not have a whole valley surrounding
the polyp, but still non-connected edges are available in these cases. By combining
valley and edge/gradient information we are able to keep all the contour pixels that
we need in order to define the polyp boundary. We also have to stress that the output
of the multilocal creaseness valley detector informs us about where valleys are in the
image but not about their depth inside the valley. We use morphological gradient
because as its performance is more useful for our case than normal gradient’s. More
precisely, as can be seen in Figure 4.14, by means of morphological gradient not only
we obtain values for the case of abrupt contours in lateral views but also for those
parts of the image where there is valley information.

Figure 4.14: Difference in performance between gradient and morphological gra-
dient. The image shows three different grey level profiles that should be taken into
account.
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(a) (b) (c) (d)

Figure 4.15: Morphological gradient in colonoscopy frames: (a) and (c) Original
image; (b) and (d) Morphological gradient image

The morphological gradient is defined as the difference between the dilation and
the erosion of a given image [96] and it gives as output an image where each pixel
value indicates the contrast in intensity in the close neighborhood of that pixel. As
depicted in Figure 4.15 by using the morphological gradient we can also solve some
of the issues of our initial valley model such as the absence of valley information in
some part of the contours of lateral polyps (see Figure 4.2 (f) and Figure 4.15 (d)).

Therefore if we combine valley information, which gives us information on which
are the pixels that constitute the boundaries of the pixel, and morphological gradient
information, which helps by weighting the intensity of the valley information along
with completing the contours for the case of lateral polyps, we get as result the DoV
image. As shown in Figure 4.16, the depth of valleys image is achieved through the
pixel-wise multiplication of the ridges/valleys detector and morphological gradient.
In the points where we have a valley (marked as a green line) and the morphological
gradient value is high the result is high value of the depth of valleys image. Conversely,
in the points where there exist a valley but the morphological gradient is low (or vice
versa) the depth of valley will not result in a maximal value. The orange line surrounds
an area with no local features, and the yellow circles surround the frontal reflections
with a typical saturation pattern. The mathematical representation for this definition
of the depth of valleys image is as follows:

DV = V (σd, σi) ·MG = V (σd, σi) · (I ⊕ Cσi − I ⊖ Cσi) (4.14)

where DV stands for the depth of valleys image, V for the output of the ridges and
valleys detector, I for the original input image and C for structural element used in
the dilation and erosion morphological operations that constitute the morphological
gradient MG calculation, both normalized to unit. Formulated in this way, the depth
of valleys has higher values in the points that constitute the relevant valleys of the
image and lower to points inside the valley.

It must be noticed that in order to calculate the morphological gradient, the ridge
and valley extractor needs two parameters to be set in correspondence to the size of
the structural element (sd) [67]. These parameters are the differentiation scale σd and
the integration scale σi. In our case, the structural element is a disk. More precisely,
σi should span the of the same size as sd in order to work in the same scale. If this
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Figure 4.16: Example of the calculation of a depth of valleys image.

does not happen, maximal points of the ridge and valley extractor could be located in
places where the morphological gradient is not maximal, and therefore the desirable
properties of the resulting depth of valleys image would be lost.

We designed the DoV image in order to keep with high value those pixels which
constitute the boundaries of the polyp (shades in the original image) while leaving
with near zero value those pixels which are not part of a protruding object. This DoV
image will be the input image that we will use to guide our polyp localization and
polyp segmentation methods, which will be detailed in the next chapters. We also
have to mention that as DoV image is composed by the output of a valley detector, all
the improvements that we are detailing in this section (black mask, specular highlights
or blood vessels) will also affect the final DoV image.

4.6 Discussion and summary of the chapter

The objective of this chapter was to show how the output of the valley detector infor-
mation, considering some of the challenges that we introduced in the previous chapter,
can be potentially useful to guide further polyp localization and segmentation meth-
ods. As it has been mentioned, polyps are not the only elements of the endoluminal
scene that produce valley information and there are some of them which may have
a high impact on the valleys image. Furthermore, there are some undesired results
on the valley image that are caused by means of how the colonoscopy frames are
acquired, such the superimposition of the black mask around the endoluminal scene
or interlacing.

We show a complete scheme of all the preprocessing and valley detection operations



76VALLEY DETECTION FOR POLYP LOCALIZATION AND SEGMENTATION

that we apply to the input image in Figure 4.17.

Figure 4.17: Image preprocessing and valley detection processing scheme.

First of all we have to solve the effects of interlacing which is achieved by selecting
one of each two lines and resampling. Black masks appear in the image due to the
lens of the shape. In this case we opt for inpainting them because a simple cut will
result in a loss of information. Another direct effect of the image formation process
are specular highlights which also generate response in the valleys image. In order to
mitigate their effect we also perform an inpainting method after a specular highlights
detection. We also address the problem of blood vessels mitigation by exploring their
impact according to the color channel that we use.

Finally, in order to cope with incompleteness of boundaries due to lateral views
of polyps we extend our valley image to the novel Depth of Valleys image, which
combines the information of the valley detector with the one provided by the mor-
phological gradient. This combination not only helps at recovering some parts of the
boundaries in lateral views that are lost by means of valleys but also provides with a
better intensity metric which reflects how deep a given pixel is inside a valley.

Although we will show in Chapter 7 a full experimental analysis on the influence of
the endoluminal scene objects that we have sketched, we present in Figure 4.18 to end
this chapter a qualitative comparison of the valley image before and after addressing
the mentioned challenges.

We can see in Figure 4.18 how the most significative improvement on the Depth of
Valleys image is the elimination of the valleys generated by the borders and specular
highlights. We have marked some of the suppressed valleys by circling them by a
green shape. As it can be seen, we eliminate some valleys in the image but in the
next chapter we will develop more on how to use this valley information in our polyp
localization and segmentation algorithms.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.18: Improvement on the valley image. (First column) Original images;
(Second column) Depth of Valleys image before addressing challenges: 1) Black mask;
2) Specular highlights detection and inpainting; 3) Blood vessels mitigation; (Third
column) Depth of Valleys image after addressing challenges; (Fourth column) En-
hanced input image;
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Chapter 5

Polyp localization

5.1 Introduction

In this chapter we will present algorithms for polyp localization, which general pro-
cessing scheme can be seen in Figure 5.1.

Figure 5.1: Polyp localization processing scheme.

Polyp localization algorithm consists of several stages, namely: 1) Image pre-
processing, which consists of image deinterlacing, inpainting of the black mask and
specular highlights detection and inpainting; 2) Valley detection; 3) Development of
depth of valleys image (which includes blood vessels mitigation and the use of mor-
phological gradient) and 4) DOVA energy map calculation. The first three stages have
been explained in the previous chapter and we will dedicate this to the definition and
calculation of DOVA energy maps, which accumulate the information that the DoV
image provides.

The general idea that we will use for polyp localization is, considering that polyp
boundaries appear as intensity valleys in the image due to the illumination process,
to define whether a pixel is interior or exterior to an object based on either the shape
that the boundary that surrounds it or the completeness of the cited boundary. As
it may seem logical, we need to have a Depth of Valleys (DoV) image as clean as
possible from undesired contributions from other elements of the endoluminal scene,
which is performed via stages 1 to 3. Once this is achieved we can take the next step
and start to develop our polyp localization method.

In order to define which pixels are inside and outside an object we still can use

79
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the information that the DoV image provides by measuring in how many different
directions a given pixel is surrounded by high DoV image values. We can see in Figure
5.2 a synthetic example where the pixel represented by the red square is surrounded
by a high number of directions, creating a boundary constituted by pixels with high
value of the depth of valley image. On the other hand we can see that the pixel
represented by the blue square is surrounded only by a few pixel values with high
value of the DoV image. It is clear that there are some other factors to consider, such
as the distance to a given point to a boundary or the shape of the objects that we
want to detect.

Figure 5.2: Definition of interior and exterior points to objects.

We may take two different approaches: a) Boundary-shape approaches, where the
objective is to fit boundaries to previously-known shapes that represent a polyp and b)
Boundary-completion approach, where we define points interior to objects according
to how complete are the boundaries that surround them.

Both approaches present at a glance their own pros and cons. For instance, we
have developed a method that fits the boundary to a generic shape of a polyp (such
as ellipses) but then we process a video where the polyp that appears never fits a
general shape so the method fails. Furthermore, we may define erroneously a point
as interior to an object which is not a polyp due to the real polyp on the image has
less complete boundaries than the false positive.

We have developed 4 different algorithms for polyp localization, namely: 1) EF-
DOVA (Ellipse Fitting Depth of Valleys Accumulation), which aims at fitting ellipses
in the DoV image; 2) SA-DOVA (Sector Accumulation Depth of Valleys Accumula-
tion), which defines a metric based on accumulating the maxima of DoV in a series
of sectors around a given point; 3) WM-DOVA (Windows Median Depth of Valleys
Accumulation), which extends SA-DOVA in order to look for more complete bound-
aries and 4) VO-DOVA (Valley Orientation Depth of Valleys Accumulation), which
pays attention to the orientation of the valleys that constitute the boundaries of the
objects in the image. We will detail the four algorithms, ordered in increasing level
of complexity, along the following sections of this chapter.
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5.2 Depth of Valleys accumulation based on the
shape of polyp boundaries

5.2.1 Ellipse Fitting Depth of Valleys Accumulation (EF-DOVA)

On Chapter 2 we studied several shape-based polyp detection methods. We subdi-
vided the existing methods in two different categories, namely: detection by curvature
analysis and detection by ellipse-fitting. Methods belonging to this last group aim at
fitting previously detected contours by means of ellipses. Following this same line of
research, we have explored fitting the points with high value on our depth of valley
image to ellipses, which should be constituted by protruding object contours.

Therefore, our Ellipse-Fitting Depth of Valleys Accumulation Algorithm (EF-
DOVA) algorithm belongs to the boundary-shape fitting approaches. EF-DOVA relies
on a general assumption that polyps tend to have elliptical shapes in order to define
as polyp boundaries those that fit the equation of the ellipse. The algorithm that
calculates the likelihood of each point being the center of a polyp (measured by the
number of boundaries points that coincide with the ellipse equation) consist of five
different steps:

Algorithm 2: EF-DOVA algorithm

Data: EF-DOVA(DoV ,spflag,DoVth,db,tol,Accth
Arg:(DoV : Input depth of valleys image, DOVth: Depth of valleys
threshold,db: distance threshold,tol: tolerance threshold, Accth: accumulation
threshold)
Result: Accumulation image(Acc)

1 Definition of starting points by means of the starting point flag;
2 Eliminate the contribution of pixel with DoV value less or equal than DoVth;
for Each starting point do

3 Obtain the positions of the maxima of DoV image (distance from starting
point should be higher than db) to calculate major axis’ position;

4 Calculate the minor axis of the ellipse;
5 Calculation of the ellipse points following equation 5.1;

for Each ellipse point do
6 Definition of a search neighborhood of size 3× 3 centred on the ellipse

point;
7 In order to define the ellipse point as boundary point check if the closer

maxima of DoV image is at distances less or equal than tol from it;
8 To eliminate contribution of noise check if at least Acth% of the

neighborhood points are above the DoVth threshold;

end

end

As can be seen EF-DOVA needs of 5 different parameters, namely: 1) Starting
point flag (which defines if the starting point is any pixel on the image or the min-
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ima of the creaseness image); 2) Depth of Valleys threshold (DoVth) which aims at
eliminating the contribution of pixel with low DoV value; 3) Minimum distance from
the starting point to the approximated ellipse (db); 4) Tolerance in distance from
the calculated ellipse points to pixels with higher-than-threshold DoV value (tol) and
5) Percentage of pixels in the neighborhood around the ellipse point that have a
higher-than-threshold DoV value (Acth).

The algorithm starts by calculating the starting point and, for each of them,
calculates the distance to the closest maxima of the DoV image, which will constitute
the major axis. The minor axis is calculated by rotating the position of the major
axis 90◦. Once the axis are defined, the equation of the ellipse can be defined by
means of Eq 7.3. From this equation we can calculate all the points that we want
from the ellipse although for our experiments, like is shown in Figure 5.3, we have
considered 8 directions that go from Θ = 0◦ to Θ = 360◦ separated by 45◦ each point
from another. In order to calculate the position of the rest of the points we have to
equal (see eq. 7.3) the equation of our approximated ellipse (eq. 5.1) at the equation
of the line with slope the tangent of each angle (eq. 5.2). In this case we will consider
that the ellipse may not be placed above the x-y axis but it can be rotated by a ϕ
angle.
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Once we have all the ellipse points calculated we start checking if in a neighborhood
around each of them we find a maxima of the DoV image in a distance less or equal
than tol from the ellipse point and if a given Acth percentage of the neighborhood
pixels are above the DoVth threshold value. If both conditions are fulfilled we in-
crement the accumulation value for that pixel in 1, as it can be seen in Figure 5.3,
where we show how EF-DOVA would work on an ideal binary depth of valleys image.
Accumulation values go from 2 (the approximated ellipse only touches the depth of
valleys image only in minor and major axis) to 8. In our experiments we will denote
as high accumulation values those higher or equal than 5. As it was shown in Figure
4.16 abrupt changes in texture may result in artificial high values in the depth of
valleys image so, to avoid this, we consider a distance factor that gives less weight
to accumulation in points of the image very close to maxima of the depth of valleys
image.

In Figure 5.4 we can see how our algorithm works on synthetic images that resem-
ble to some of the regular and irregular shapes that we may find (with both closed
and unclosed contours). As we can see EF-DOVA places the maxima of accumulation
(represented by a circle) near of the center of the structures and, what is more impor-
tant, does not place any maxima inside non-closed structures such as the one on the



5.2. Depth of Valleys accumulation based on the shape of polyp boundaries 83

Figure 5.3: Graphical explanation of the depth of valleys accumulation algorithm.

(a) (b) (c)

Figure 5.4: EF-DOVA algorithm on synthetic images: (a) Original image (b) Ac-
cumulation image (threshold 5). (c) Original image with accumulation values super-
imposed. Global maximas of accumulation are surrounded by a yellow circle.

upper left corner of the image. The energy DOVA image will be directly composed
by the accumulation values for each pixel and its range of values will depend on how
many directions we are considering. As we have already mentioned, we consider a
distance factor to accumulate less those points close to high values of the DoV image
but we have also included tolerance values that measure how far is a given ellipse
point to its closer boundary. By using this tolerance value we can obtain those in-
termediate accumulation values therefore achieving better maxima points in those
centers of ellipse that fits perfectly an ellipse.

We show some preliminary EF-DOVA results in Figure 5.5. In this case we have
superimposed in the original image the polyp mask via a blue circle. In the output
image, apart from the polyp mask, we have painted in green those pixels with high
accumulation value (higher than 5) that are inside the polyp mask (True Positives
(TP)) and in red those which are outside the polyp mask (False Positives (FP)). As
it can be seen EF-DOVA performs better when the view of the polyp is zenithal (see
Figure 5.5 (c) and (d)) and the approximated polyp contour has an elliptical shape
although the number of pixels with high accumulation value outside the polyp mask
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(a) (b)

Figure 5.5: Examples of EF-DOVA energy maps superimposed to the original im-
age. Green points represent TP whereas red points represent FP.

(a) (b)

Figure 5.6: Examples of bad functioning of EF-DOVA energy maps. Green points
represent TP whereas red points represent FP.

is relatively higher.

We can see from Figure 5.4 that EF-DOVA works good when the polyp that we
have in the image has an elliptical shape but, as we can see in Figure 5.6, when the
polyp’s shape departs from elliptical, EF-DOVA performance is damaged. We can see
from Figure 5.6 (a) that when we have a lateral view of a polyp, the lack of one half
of the contour results on a bad accumulation by means of EF-DOVA. And, even for
cases where we have a complete boundary (see Figure 5.6 (b)), as the polyp cannot
be approximated by an ellipse the accumulation process fails.

As it has been shown EF-DOVA performs well in cases where the view that we
have of the polyp let it be approximated by an ellipse but as we diverge from elliptical
shapes its performance is damaged. Considering this we proceed to explain in the next
chapter different accumulation methods which are not based or focused on concrete
polyp shapes but aim at accumulating based on the completeness and continuity of
contours.
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5.3 Depth of Valleys accumulation based on the
continuity of polyp boundaries

5.3.1 Sector Accumulation Depth of Valleys Accumulation (SA-
DOVA)

The method presented in the previous section aims at fitting boundary pixels obtained
by means to the depth of valleys image to ellipses. Although EF-DOVA could work
perfectly for a certain group of polyp views, we can not guarantee that the polyp is
fully surrounded by strong valleys in all directions due the different points of view of
the colonoscope and the potential presence of occlusions. In this case we will change
the way we calculate our accumulation image by taking into account the complete-
ness of the boundaries in the following way. We will measure the completeness of a
boundary by counting in how many directions (expressed as angles from 0◦ to 360◦

we find a high value of the depth of valleys image. We also take into account that
pixels tend to that constitute the boundary of a polyp should be in the same range
of distances from the polyp’s center, we define a series of radial sectors. There radial
sectors, centred on a given point, are used to accumulate the maxima of the DoV
image under the sector’s area of influence. Therefore we calculate our accumulation
operator as:

Acc(x) =

∫ α=2π

α=0

max
r∈[Rmin,Rmax]

DV (x+ r ∗ (cos(α), sin(α))) dα (5.4)

where DV is the Depth of Valleys image, x represents the coordinates of pixel in the
image, Rmin and Rmax define the area in which the valleys are searched, and α allows
the angular integration of the maximum values in all directions.

Acc will be large when the structure present strong valleys in all directions. How-
ever, the presence of multiple valleys in the same angle will not affect the value of
Acc. Because of that, weak valleys coming from thin vessels or wrinkles will not be
computed at a given angular orientation, and only the strong valleys associated to the
polyp would tend to provide high outputs, as can be seen in the graphical example
shown in Figure 5.7. We can see in Figure 5.7 (b) how by using our new accumulation
method we enhance the accumulation output for structures such polyps, which should
provide in their boundaries with high values in the DoV image whereas the output
for also closed structures such as blood vessels is smaller, due to the difference in the
DoV value that each shape’s boundaries convey.

It is important to notice that the ring structure defined byRmin andRmax provides
invariance to rotation. Defined in this way, this approach will perform well in circular
or elliptical patterns, but the Acc operator will not be linked to any particular shape,
as long as a substantial amount of (strong) valleys reside under the ring. This property
makes Acc robust to occlusions and potential lack of information for a number of
directions. Acc can be digitally implemented in an efficient way as the sum of the
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(a) (b)

Figure 5.7: Graphical explanation of SA-DOVA accumulation: (a) Input depth of
valleys image with two polyp boundaries and blood vessels; (b) SA-DOVA accumu-
lation map. The position of the maxima of accumulation is painted as a red square.
The original shapes are painted in yellow.

valley maxima that are found in the sectors by following the method that will be
described next.

SA-DOVA needs of 3 different parameters which are related to the radial sectors
that we use to accumulate the maxima of the DoV image. The parameters are: 1)
Minimum radii of the sectors (rmin); 2) Maximum radii of the sectors (rmax) and
3) Number of sectors (nsectors). Conversely to EF-DOVA, we do not have to define
which points will be the seed of the algorithm as the current implementation let us
do the whole accumulation process at once.

In order to accumulate values from the DoV image, an array of sectors centered
in each pixel position is built taking into account the parameters mentioned before.
The circular shape of the detector provides invariance to rotation, which is mandatory
in the case of polyp detection. The number of sectors is linked to the definition of
structures to be detected, and minimum and maximum radii are associated to an
implicit scale factor in which the detector provides optimal results. For each sector
of the array we will accumulate, in each pixel position, the value of the maxima of
the DoV image that falls under it. This process can be performed in an efficient way
for all the pixels in the image by approximating the acquisition of the maxima to a
dilation operation, using each sector as the structural element, and then adding up
all the contributions from each partial dilation.

The way this algorithm works can be better understood by following a graphical
example, as shown in Figure 5.8. We start with the original image and we calculate the
DoV image (see Figure 5.8 (b)) as it was mentioned in Chapter 4. Once this is done,
we start with the accumulation method. The sectors that guide the accumulation
process are directly applied to calculate the accumulation image. In Figure 5.8 (c) we
can see in yellow the area that each different sector covers (in this case, in order to
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enhance the understanding of the algorithm, we only plotted one third of the sectors).
We can also see how, for each sector, there are some pixels that are painted in blue.
This represents the value of the DoV image that will be accumulated for the given
pixel. We can see in Figure 5.8 (d) our resulting accumulation image, where brighter
areas correspond to higher values in the accumulation image. The final DOVA energy
map will correspond to the accumulation image calculated in this way.

(a) (b)

(c) (d)

Figure 5.8: Explanation of SA-DOVA algorithm: (a) Original image; (b) depth of
valleys image; (c) sector accumulation, and (d) final accumulated image.

We show some preliminary SA-DOVA results in Figure 5.9. Following the same
criteria than with EF-DOVA, we have superimposed in the original image the polyp
mask via a blue circle. In the output image, apart from the polyp mask, we have
painted in green those pixels with high accumulation value that are inside the polyp
mask and in red those which are outside the polyp mask, As it can be seen SA-DOVA
performs well for several types of polyp shapes, giving a smaller number of maxima
of accumulation outside the polyp.

Although we have shown how by means of SA-DOVA we can cover more general
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(a) (b)

(c) (d)

Figure 5.9: Examples of SA-DOVA accumulation superimposed to the original
image. Maxima of accumulation inside the polyp are painted in green (TP) and
maxima outside the polyp are painted in red (FP).

shapes, the method still has some drawbacks: 1) SA-DOVA does not differentiate (in
terms of maxima of accumulation) between a boundary composed by medium values
of DoV image and noise generated by an isolated pixel with very high value in the
DoV image (see Figure 5.10 (a) and (b)); 2) SA-DOVA does not take into account
the completeness and continuity of the boundaries, giving a similar output in terms
of maxima of accumulation in examples like the one shown in Figure 5.10 (c) and
(d). In order to overcome this drawbacks we propose in the next section our improve
WM-DOVA algorithm.
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(a) (b)

(c) (d)

Figure 5.10: Examples of bad performance of SA-DOVA energy maps. (a) and (b):
Effect of isolated pixels of high DoV value; (c) and (d): Completeness and continuity
of boundaries.

5.3.2 Windows Median Depth of Valleys Accumulation (WM-
DOVA)

Median Depth of Valleys Accumulation

In order to obtain the final accumulation image until now we have simply added
the maxima of DoV image below each sector but this way of accumulating may lead to
some errors like the ones we show in Figure 5.10. By using a sum-based accumulation
method there is no difference in terms of maxima of accumulation between the two
shapes that we show in the image. In this case, having few pixels with a very high
value of the DoV image equals in terms of maxima of accumulation the output of
another profile where we have a more complete boundary constituted by pixels with
smaller value of the DoV image. One possible solution to this will be to use instead
of the sum of the maxima of DoV image the median. In this case we punish those
boundaries constituted by few pixels with high value.
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In this case, we will calculate the accumulation as:

MaxList(x, α) = max
r∈[Rmin,Rmax]

DV (x+ r ∗ (cos(α), sin(α))) αϵ[0, 2π] (5.5)

Acc(x) = Median(MaxList(x, :)) (5.6)

We show in Figure 5.11 a comparison between the results obtained by SA-DOVA
and median-based accumulation. We can see that by using median-based accumula-
tion the accumulation output differs from the one obtained by using the sum and by
means of this new accumulation the difference of maxima of accumulation inside the
two shapes is higher than in the previous case. Considering this new accumulation
method and also having as objective to strengthen the notion of continuity of bound-
aries, we have developed a new iteration of our DOVA energy maps which will be
explained next.

(a) (b) (c)

Figure 5.11: Improvement of median DOVA against SA-DOVA energy maps: (a)
Synthetic example image; (b) SA-DOVA energy map; (c) Median DOVA energy map.

In order to solve the other drawback that SA-DOVA presents, the assessment of
continuity and completeness of boundaries we take a new approach by considering
not only the maxima of DoV under a sector but under a whole window of sectors, as
it will be explained next.

WM-DOVA algorithm

The objective of WM-DOVA is to add a sense of continuity and completeness
to the boundaries we are looking for. In this case, instead of just accumulating the
maxima of the DoV image in each direction, we will take into account if the maxima
is located near maximas for consecutive angles. This can be better understood by
taking a look at Figure 5.12. We see that if we use our SA-DOVA accumulation
algorithm, there is not a big difference in terms of maxima of accumulation between
the output of the two different contours. If we apply the DOVA iteration that we
present here, Window Median Depth of Valley Accumulation (WM-DOVA), we get
a more useful accumulation profile, where the accumulation value depends on the
number of consecutive directions we find close maxima points of the DoV image.
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This results on a more concentrated and accurate DOVA profile, as it will be seen
later, and we obtain a DOVA profile more accurately place on the polyp’s center.

(a) (b)

(c) (d) (e) (f)

Figure 5.12: Graphical interpretation to SA-DOVA and WM-DOVA results: (a)
Synthetical DoV image with an imcomplete non-consecutive contour; (b) Synthetical
DoV image with an imcomplete consecutive contour; (c) and (e) SA-DOVA accumu-
lation image; (d) and (f) WM-DOVA accumulation image.

Therefore, we build this final iteration of DOVA by using the following assumption:
boundaries that enclose a polyp are constituted by pixels with high value in the Depth
of Valleys image. The pixels that constitute the boundaries are located in a position
such the difference between pixels with consecutive direction is small. This means
that the distance from the center point of the polyp, which should be the maxima
of accumulation for the whole image, and each boundary pixel position should be
similar or, at least, have no significative jumps from one direction to another. As
it has been seen in the previous section if the pixels that constitute the boundary
follow a similar distance pattern we get an smooth polyp boundary as result but if
they do not convey to a distance pattern, the final boundary will have abrupt jumps.
WM-DOVA algorithm is as follows:

As can be seen from the algorithm, WM-DOVA starts by defining a search window
which comprises for each direction sectors up to distance (+/−)wsize/2, which is
shown as a blue cone in Figure 5.13. The general idea is to define complete contours
by means of nearby pixel positions with high DoV value. Once the search window
is defined, we obtain the maxima of DoV image under the current direction’s sector.
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Algorithm 3: WM-DOVA algorithm

Data: DoV ,rmin,rmax,nsec,wsize

Arg:(DoV : input DoV image, rmin: minimum radii of the sectors, rmax:
maximum radii of the sectors, nsec: number of sectors, wsize: size of
the search window) Result: Accumulation image

1 Define the nsectors sectors with minimum radii rmin and maximum radii
rmax;
for Each pixel position do

for Each sector do
2 Define a search window from sector’s corresponding angle -wsize/2 to

sector’s corresponding angle + wsize/2;
3 Obtain the maxima of DoV image below current sector maxi;
4 Obtain the maximas of accumulation of each sector below the search

window (Eq. 5.3.2);
5 Calculate the median of the maximas of accumulation of each sector

under the search window medi (Eq. 5.3.2;
6 Accumulate the median pondered as depicted in Eq 5.3.2;
7 Ponder the value to accumulate according to the distance to the

position of medi−1;

end

end

The next step is to obtain the median of the maxima of DoV image under the different
sectors contained in the search windowmedi. The final accumulation value is obtained
by pondering this maxima with respect to two different criteria: 1) Difference between
the difference between medi and maxi and 2) Distance between the position of maxi

and the median of distances from the sector’s center to each direction’s maxima of
DoV image. We can see in Figure 5.13 that in this case the accumulation value pixel
labeled as A will not be damaged by the distance criteria whereas the pixel labeled
as B will be punished in this sense.

MaxList(x, θ) = max
r∈[Rmin,Rmax]

DV (x+ r ∗ (cos(θ), sin(θ))),

θϵ[α− winsize

2
, α+

winsize

2
] (5.7)

Acc(x) = Median(MaxList(x, :)) (5.8)

Acc(x) = Acc(x) · 1

|disti − distmedi−1 |
(5.9)

WM-DOVA needs of four different parameters. In this case rmin, rmax and
nsectors play the same role than in SA-DOVA algorithm. The new parameter is the
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Figure 5.13: Graphical scheme of WM-DOVA accumulation algorithm.

size of the window search wsize which defines the width of the angular search window.
We can understand better how this works by taking a look at the scheme presented
in Figure 5.13: If we start at the given direction, which is determined by the yellow
sector with center in the start point, we find that the maxima of accumulation below
the current sector is found in point A. We assume that the median of position of
the maximas is marked by the red line and therefore the point A falls on this line.
Consequently the decay factor (calculated by Eq. 5.3.2) applied to the accumulation
value will be close to zero. On the other hand, for the point B we see that the
position of the maxima of the DoV image does not fall above the median distance’s
line, therefore the decay factor in this case will be different from zero.

To close with this section, we have developed WM-DOVA as a way to reward those
boundaries that apart from complete, keep continuity. In this case we have defined
continuity not only by checking if the boundaries are closed but also measuring how
far are the boundary pixels from a possible object’s center, as it has been described
in the algorithm. We show several examples of WM-DOVA performance in Figure
5.14.
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(a) (b)

(c) (d)

Figure 5.14: Examples of WM-DOVA maxima of accumulation superimposed to the
original image. Maxima of accumulation are represented as yellow squares surrounded
by a blue square to ease the visualization.

We have shown in this subsection how by means of WM-DOVA we have incorpo-
rated a sense of continuity and completeness to the boundaries we are looking for.
We can also observe that by using WM-DOVA we obtain DOVA energy maps where
the energy is really concentrated inside the boundaries, with a great reduction of the
energy outside. But there are some cases where even WM-DOVA still provides with
erroneous outputs, as it can be seen in Figure 5.15. We can see in this image that in
terms of accumulation the difference between a point interior to the four objects and
a point in the middle of the four objects is not the one we would expect. Our DOVA
energy map should give a zero accumulation in the point in the middle of the four
objects. As a final improvement of our algorithm, we explore the use of the orienta-
tion of the valleys, as they should point to the interior of the object and, for the case
of the point in the middle of the objects, the orientations will annulate themselves
therefore correcting the accumulation value in this point.

5.3.3 Valley Orientation Depth of Valleys Accumulation (VO-
DOVA)

Considering that polyp’s boundary pixels are meant to appear as valleys in the in-
tensity image, those valleys will be oriented towards areas of the image with higher
intensity value. If we think of intensity profiles inside the polyp look like the ones
shown in Figure 3.9, we could assume that valleys on the boundary pixels of the polyp
have radial orientation. We have developed our Valley Orientation Depth of Valleys
Accumulation (VO-DOVA) algorithm based on this assumption taking into account,
when accumulating, not only the value of the boundary pixel on the Depth of Valleys
image but if its orientation is towards the polyp or that it follows the same orientation
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(a) (b) (c)

Figure 5.15: Examples of cases where WM-DOVA fails: (a) Original synthetic
image; (b) Corresponding Depth of Valleys image; (c) WM-DOVA accumulation.

profile than neighbour boundary pixels.

We can see how VO-DOVA would ideally work by observing Figure 5.16. For each
point we define a series of sectors (which are the same sectors that we defined for
SA-DOVA), shown in red, and we only accumulate those maxima points with similar
orientation to the particular sector (see the algorithm for more detail on this). In
this case we will only accumulate those maxima whose orientation coincides with the
range of angles covered by the sector (depicted as green arrows surrounded by yellow
boxes) and not those whose orientation is very different (depicted as blue arrows).

VO-DOVA algorithm consists of the following steps:

VO-DOVA needs of 4 different parameters, the already mentioned rmin,rmax and
angth and the novel angth, which indicates the maxima deviation that we accept

(a) (b) (c)

Figure 5.16: Example of calculation of VO-DOVA energy map: (a) Original image;
(b) Depth of valleys image. (c) VO-DOVA , where points with suitable orientation
are marked with green arrows and surrounded by a yellow box, points with wrong
orientation are marked with blue arrows and sectors are shown in red.
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Algorithm 4: VO-DOVA algorithm

Data: Input DoV image, Valley Orientation,rmin,rmax,nsectors,angth
Result: Accumulation image
Define the nsectors sectors with minimum radii rmin and maximum radii
rmax;
for Each pixel position do

for Each sector do
Place the sector’s center in the pixel position;
Obtain the maxima of accumulation below the sector;
if valley orientation in the maxima of accumulation belongs to range
[sectorangle− angth, sectorangle+ angth] then

Increment the accumulation value of the given pixel by the maxima
of accumulation previously obtained;

end

end

end

from the current sector’s direction. We show in Figure 5.17 how VO-DOVA algo-
rithm would perform in the whole frame. We can see in Figure 5.17 (c) VO-DOVA
accumulation results. Brighter areas in the image correspond to pixels whose accu-
mulation value is high, conversely to dark areas which correspond to pixels with low
accumulation value. In order to make the results more understandable, we shown in
Figure 5.17 (d) how VO-DOVA places points with high accumulation value inside the
polyp region, placing also the maxima of the accumulation inside the polyp region.

It is clear that VO-DOVA is based on the strong assumption that all the pixels
from the boundary of a polyp share a same objective in terms of valley orientation.
This assumption needs consequently a good definition of valley orientation, which will
depend on the output of a valley detector. This method also needs again a good input
image (in this case, a clean DoV image) in order to obtain the correct pixels which
orientation we want to check. We will close this section by showing in Figure 5.18
some preliminary visual results on how VO-DOVA works for a series of images. In
this case, as the number of maxima points for each image is very reduced (for most
of the cases is 1) we show a green square centered in the maxima point.
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(a) (b)

(c) (d)

Figure 5.17: Example of VO-DOVA (a) Original image; (b) Depth of Valleys image,
and (c) Accumulation image. (d) Result image, where the polyp is surrounded by
a blue line, the points with high accumulation value are shown in green and the
maxima of the VO-DOVA descriptor is marked as an orange square.
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(a) (b)

(c) (d)

Figure 5.18: Examples of VO-DOVA energy maps. Maxima of accumulation are
represented as yellow squares surrounded by a blue square to ease the visualization.
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5.4 Discussion and Qualitative comparison

We have exposed during the last sections all the different approaches that we have
developed as our polyp localization method:

• Ellipse Fitting-DOVA: This methods assumes that points with high values of the
depth of valley image will constitute polyp’s boundaries. Taking this into ac-
count, EF-DOVA aims at fitting those polyp boundaries to some general shapes
that polyps presents, such as ellipses.

• Sector Accumulation-DOVA: In this case the method does not assume polyps
as having any concrete form and only checks if a given point is surrounded in
an elevated number of directions by pixels with high value of the DoV image
by means of placing radial sectors centred in each point and accumulating the
maxima of DoV image that falls under the sector.

• Windows Median-DOVA: This different iteration of DOVA is not only concerned
about the completeness of the boundaries like SA-DOVA, but also takes into
account the continuity of contours. That is, it aims at finding continous closed
contours in order to accumulate the maxima of DoV image but also taking into
account how the position of this maxima deviates from the mean distance of
maximas to the centre point.

• Valley Orientation-DOVA: The final version of DOVA integrates information
of the valleys that appear to surround protruding objects such as polyps. In
this case, apart from accumulating the maxima of DoV image that falls under
the radial sector, it also takes into account if it follows the same pattern of
orientation that its neighbours maximas.

While an extensive analytical comparison will be showed in Chapter 7, we will close
this chapter by doing an analysis of the pros and cons of every method along with
presenting some comparative visual results.

We started this chapter by doing a separation between the methods according
on how they use boundary information. The approach belonging to the first group,
EF-DOVA, aims at fitting boundary pixels (which should consist of pixels with high
value in the DoV image), performs well in zenithal views where polyp contour has
a regular shape (Figure 5.19 (a) y (b)) but it fails to perform well in more irregular
shapes, as it can be seen in Figure 5.19 (c). Even for the cases where the maxima
of accumulation is placed inside the polyp, the number of false positives is high, as
shown in Figure 5.19 (d).

As it can be seen, EF-DOVA works well where it is supposed to, but as the
variability of polyp appearance is high, it seems to fall a bit short if we want to use
it for a general polyp localization algorithm.

The other group of methods aim at accumulating values of the DoV image by
checking boundaries continuity. We have exposed 3 different methods, which vary
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(a) (b)

(c) (d)

Figure 5.19: Discussion of EF-DOVA energy map results (a) and (b) show a high
number of high accumulation pixels inside the polyp (painted in green), with some
false positives (painted in red). (c) Shows a result with a non balanced number of
true and false positive whereas (d) shows an image where no maxima is placed inside
the polyp.

depending on how the accumulation is done. Starting from a basic sector accumulation
(SA-DOVA), alternatives include the use of median window pondering (WM-DOVA)
or the use of valley orientation. We show in Figure 5.20 additional examples on SA-
DOVA performance, in order to analyze those images where it fails to put the maxima
of the accumulation inside the polyp mask.

The results show that by using SA-DOVA we obtain good results for a high number
of images, as it can be seen in Figure 5.20 (a) and (b), providing with a lower number
of false positives than EF-DOVA (we will show examples on this at the end of this
chapter). Nevertheless, there are some images where SA-DOVA fails. Among the
causes of errors are: influence of lumen contours (Figure 5.20 (c)) or lateral views
that in some cases, even by using morphological gradient, as it can be seen in Figure
5.20 (d).

As mentioned in previous sections, SA-DOVA may lead to inconsistences due to
accumulating only according to the number of directions where a maxima is found
but not to the continuity. Because of this we developed WM-DOVA, results of which
we show in Figure 5.21 to discuss its performance.

WM-DOVA results also show a good performance for many images and, in this
case, we can see that the number of false positives is very low. In fact, for a great
number of images there are no false positives at all (see Figure 5.21 (a) and (b).
There are some images where WM-DOVA fails at providing an energy map where
the maxima is placed inside the polyp, caused again by lumen contours (Figure 5.21
(c)) or a high number of folds, blood vessels or the particular texture of the mucosa
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(a) (b)

(c) (d)

Figure 5.20: Discussion of SA-DOVA energy map results (a) and (b) show a high
number of high accumulation pixels inside the polyp, with some false positives. (c)
Shows a result with a non balanced number of true (in green) and false positive
(in red) whereas (d) shows an image where no maxima is placed inside the polyp.
Maxima of accumulation are represented as yellow squares surrounded by a blue
square to ease the visualization.

(a) (b)

(c) (d)

Figure 5.21: Discussion of WM-DOVA energy map results (a) and (b) show a
high number of high accumulation pixels inside the polyp, with no false positives.
(c) Shows a bad result due to lumen contour influence. (d) Shows an image where
no maxima is placed inside the polyp because of the incidence of elements of the
endoluminal scene such as folds or blood vessels not fully mitigated.
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(Figure 5.21 (d)).

Finally we show a visual analysis of some VO-DOVA results. We can see that we
achieve a good performance for several frames (Figure 5.22 (a) and (b)). There are
several causes that make VO-DOVA fail, being the inherent reason bad placing of
polyp boundary pixels with affect the orientation calculation. Some other causes of
errors are the incidence of wrinkles and folds (Figure 5.22 (c) or blood vessels ((Figure
5.22 (d))

(a) (b)

(c) (d)

Figure 5.22: Discussion of VO-DOVA energy map results (a) and (b) show a high
number of high accumulation pixels inside the polyp, with some false positives. (c)
Shows a result with a non balanced number of true and false positive whereas (d)
shows an image where no maxima is placed inside the polyp. True positive pixels are
painted in green whereas false positives are painted in red.

We will close this chapter with a visual comparison of DOVA energy maps. We will
make an analytical comparison on Chapter 7, but we can start to see some differences
here. There are some cases where EF-DOVA performs better than SA-DOVA or
VO-DOVA, as they are more affected by wrinkles and folds as their accumulation
methods admit any particular shape (Figure 5.23 (a)). There are also some studies
where all the methods perform well on placing the maxima of accumulation inside the
polyp, although EF-DOVA and SA-DOVA provide a higher number of false positives
(Figure 5.23 (b)). One special case that has brought our attention is the case of lateral
views of polyps, which EF-DOVA, SA-DOVA and VO-DOVA solve but WM-DOVA
does not, placing the maxima far from the polyp, as it can be seen in Figure 5.23
(c)). Figure 5.23 (d)) summarizes well what happens in the majority of cases: all the
methods place maxima of accumulation inside the polyp mask but EF-DOVA and
SA-DOVA also places a high number of maxima of accumulation outside the polyp
therefore they are less discriminative.

Without entering into details of the results, which will be presented in Chapter
7, by means of EF-DOVA we are able to place the maxima of accumulation inside
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the polyp mask in about 32% of the images, by means of SA-DOVA in 42% of the
images, by means of WM-DOVA in 54% of the images and finally by means of VO-
DOVA we place the maxima inside the polyp mask in 45% of the images. These
preliminary qualitative result, althoug each method performs qualitatively differently
although WM-DOVA provide with the best results in terms of balance between TP
and FP. We also have to mention that VO-DOVA performance is damaged not by
the algorithm itself but by the valley orientation that is passed as input parameter
therefore with a better definition of valley orientation (which is out of the scope of
this thesis) may provide with different results. Finally it has to be mentioned that
we have shown here results achieved with the best combination of parameters for all
4 methods where the best combination is the one that provides the highest number
of true positives and true negatives and the lowest number of false positives and false
negatives.
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(a)

(b)

(c)

(d)

Figure 5.23: Visual comparison of DOVA. (First column) Original image; (Second
column) EF-DOVA results; (Third column) SA-DOVA results; (Fourth column) WM-
DOVA results; (Fifth column) VO-DOVA results. True positive results are marked in
green, false positives in red and the maxima of accumulation is marked by an orange
square surrounded by a blue square to ease the visualization.



Chapter 6

Polyp segmentation

6.1 Introduction

In the last chapter we have explained our method for polyp localization on which,
given an input image, our algorithm gives as output an energy map where high val-
ues correspond to areas of the image where protruding objects, such as polyps, are
present. We have to mention that the whole processing scheme is built on our model
of appearance for polyps, which defines polyps as surrounded by valleys. Polyp local-
ization aims at indicating which area of the image is more likely to contain a polyp
but it does not provide information about which concrete pixels belong to the polyp
region.

We present in this chapter our polyp segmentation algorithms which, given an
input image, indicate the region of the image that corresponds to the polyp. We have
tackled the segmentation problem in two different ways that will be explained here.

The first method, polyp segmentation after region merging, starts by means of
an initial segmentation which is refined via region merging until obtaining a reduced
number of regions. In this case we only incorporate specific polyp constraints in
the last stage of the region merging process. Finally the polyp region will be the
one where the maxima of WM-DOVA energy map falls on. The second method
incorporates polyp-specific information from the beginning, describing as the initial
region the one limited by the pixels that contributed to the maxima of WM-DOVA
energy map. This initial segmentation is then refined by means of median filtering in
the polar coordinates.

Both methods share the same polyp localization info but use it in different way,
as it will be seen throughout the next sections.

105
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6.2 Polyp segmentation by smart region merging

As mentioned in the introduction of this chapter, in this case we faced the problem of
polyp region segmentation as a classic Pattern Recognition problem in which, given
an input image, we segment it into a number of initial regions by then arriving to the
final output region by discarding non-polyp containing regions according to the values
of a certain region descriptor, in this case DOVA. Therefore the processing scheme
consist of four separated stages, as it can be seen in Figure 6.1. As DOVA energy
map creation has been covered in Chapter 5, we will focus here on the rest of stages.

Figure 6.1: General processing scheme of polyp segmentation.

6.2.1 Image preprocessing

In the first stage, image preprocessing, we apply the following operations to the
the input image in order to avoid possible errors in the segmentation: 1) Image
deinterlacing (Figure 6.2 (b)) and 2) Specular highlights detection and inpainting
(Figure 6.2 (c)). Both operations have been explained in Chapter 4. In this case we
do not apply black mask inpainting because we will tackle its effect by means of our
region labeling method.

(a) (b) (c)

Figure 6.2: Image preprocessing stage: (a) Original image; (b) Greyscale image;
(c) Specular highlights-corrected image.
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6.2.2 Watershed segmentation

To perform initial segmentation we have chosen to apply watersheds [112], following
the same line of thinking than protruding objects are surrounded by intensity valleys.
One novel point of this initial segmentation is that we have explored the use of different
versions of the input image in order to provide a better initial set of regions. More
precisely, we have explored both the use of gradient and morphological gradient image.
The first one is obtained by calculating the modulus of the output of the gradient
function on each pixel position, and it is able to follow better the edges structure of the
image. The second method corresponds to the morphological gradient (i.e. calculated
by subtracting two versions of the image, one dilated and the other eroded), which
can give us a first representation on the valley structure of the image. The results of
watershed segmentation by using morphological gradient approaches suit better the
structure of the image, as it can be seen in Figure 6.3 although they lead to deal with
a higher number of regions [10].

(a) (b) (c)

Figure 6.3: Comparison of starting segmentation by using the original image and
morhpological gradient image: (a) Original image; (b) Watershed segmentation of
the complement of the original image; (c) Watershed segmentation on morphological
gradient of the complemented original image.

6.2.3 Region and boundary labeling

Once we have a first segmentation of the image the following step is to reduce the
number of regions until it is stabilized, which will be done by means of the region
merging stage. We will merge regions according to two types of information:a) The
degree of information of the region and b) The boundaries that separate them.

In the context of our region segmentation method, we define the degree of infor-
mation of a region by observing the mean and the standard deviation of the intensity
values of the pixels that belong to the particular region, following the criteria shown
in Table 6.1.

[!h]

As it can be seen, this criteria let us discard directly some regions with a low
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Region label Mean grey value Standard deviation

Non-informative dark (NID) [0, 25] [0, 10]

Informative dark (ID) [25, 60] [0, 40]

Informative (I) [60, 195] [0, 40]

Informative bright (IB) [195, 230] [0, 40]

Non-informative bright (NIB) [230, 255] [0, 10]

Table 6.1: Region labeling criteria.

visibility (NID regions) such as the parts of the image that are on the darker part of
the lumen or the black mask that surrounds the endoluminal scene. Our preliminary
study confirmed that our non-informative regions do not contain polyp information
so discarding them for future processing steps causes no damage to the system’s
performance. We show an example of region labeling in Figure 6.4 (b).

The criteria to label the boundaries that separate the segmented regions is:

1. Non-informative dark boundary (NIDB): boundary pixels present both a low
mean and standard deviation of grey level. They will typically constitute dark
contours difficult to distinguish, which will be located in dark areas of the image
such as the lumen.

2. Non-informative dark boundary (NIBB): boundary pixels present both a high
mean and standard deviation of grey level.

3. Informative boundary (IB).

We can see an example of region labeling in Figure 6.4 (b). We can see a complete
example of the application of region merging by means region and boundary labeling
in Figure 6.4 (d).
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(a) (b)

(c) (d)

Figure 6.4: Example of region labeling to prepare the image for region merging:
(a) Original image; (b) Watershed segmentation with region labeling; (c) Contour
labeling. (d) Final segmentation after region mergin

6.2.4 Region Merging

The objective of this region merging stage is twofold: 1) Reduce the number of regions
so the final segmentation consist of a few regions one of them containing the polyp
and 2) Label the resulting images so we can discard some of them and not process
them in later stages of the processing scheme. In order to merge regions, we have
followed the criteria presented in Table 6.2:

Our region merging stage consists of two different phases:
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NID ID I IB NIB
NID If separated by

NIDB
Merge if sepa-
rated by NIDB
and similar
grey level
profile

Not merge Not merge Not merge

ID Merge if sepa-
rated by NIDB
and similar
grey level
profile

Merge if sim-
ilar grey level
profile

Not merge Not merge Not merge

I Not merge Not merge Not merge Not merge Not merge
IB Not merge Not merge Not merge Merge if sim-

ilar grey level
profile

Merge if sepa-
rated by NIBB
and similar
grey level
profile

NIB Not merge Not merge Not merge Merge if sepa-
rated by NIBB
and similar
grey level
profile

Merge if sim-
ilar grey level
profile

Table 6.2: Criteria used to merge regions.

Region information-based region merging

In this first phase we start by calculating the neighborhood map of the image, which is
obtained directly from the region labeling. Once we know this neighborhood map we
can start with this first stage, which aims at merging close small regions into bigger
ones. In this case in order to merge two regions we calculate a frontier weakness
measure (Eq. 6.1) which is applied only to the boundary pixels that separate these
two regions.

FrontierWeakness = α ∗ gradient+ β ∗median (6.1)

The frontier weakness measure is composed by two different terms. The first one,
pondered by means of the α variable, takes into account the strength of the gradient
in the boundary pixels. The second term is built on the assumption that if a frontier
between two regions is weak, if we apply two consecutive increasing window size
median filter to the whole image this frontier would have disappeared in the filtered
image. If this proves to happen, the contribution of the second term will stop the
merging of the two involved regions. α and β optimal values were set respectively as
1 and 2 in a previous experiment [10] and both the gradient and median magnitudes
have been normalized to 1 so the frontier weakness measure goes from value 0 (weak
frontier) to 3 (strong frontier).

We merge regions until one of the following stop criteria is met:

• The number of final regions after two consecutive iterations remains the same.
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• There are no weak frontiers left. In this case our frontier weakness threshold
has been set to 1.

Depth of valleys-based Region Merging:

We introduce our model of appearance for polyps in this second stage of the region
merging by means of using the DoV image (explained in Chapter 4). In this case we
want to assess if the boundaries that separate the remaining regions are constituted
by pixels with high DoV value or not. Our model of appearance for polyps state that
protruding objects are surrounded by valleys so the boundaries that separate the
protruding object from the rest of the image should have a high DoV value whereas
points close to the center of the polyp should have a very low DoV value.

Taking this into account, we continue by merging compatible regions (according to
Table 6.2) that are separated by boundary pixels whose mean DoV value is higher than
a given threshold value DoVth. We merge regions until there are no weak frontiers
according to the depth of valleys threshold value or when the number of regions is
stabilized.

We can see a graphical summary of the results of the region merging stage in
Figure 6.5.

(a) (b) (c) (d)

Figure 6.5: Region merging stage in region segmentation: (a) Complemented
specular-corrected image; (b) Initial watershed segmentation; (c) Segmented image
after region information-based region merging; (d) Final segmented image

The final step in this polyp segmentation by smart region merging is to decide
which of the final regions that we will have will be the polyp region. At this step
in the processing scheme we incorporate the information from DOVA energy maps.
Taking this into account, the final polyp region will be the one where the maxima
of the DOVA map falls on. Preliminary segmentation results are good for a high
number of images but there are others where, although the final region contains the
polyp in full, the region boundaries do not overlap the polyp contour, as it can be
seen in Figure 6.7. We present some preliminary segmentation results in Figure 6.6.
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(a) (b)

(c) (d)

Figure 6.6: Polyp segmentation after region merging method results. For all the
examples the polyp region mask is superimposed to the original image.

The experimental results showed that segmentation results depend on the DoVth

threshold that we apply to the DV image in a way such the higher the value, the
lower the number of final regions. But, in this case, as the threshold is increased, the
performance is damaged, as we can lose, for some images, some of the boundaries of
the polyp region if we apply a high threshold value, as it can be seen in Figure 6.7
(b) and (c). This makes the method not robust and for this reason we propose an
alternative method which does not start by a previous segmentation.

Another problem that this segmentation method presents is that the final polyp
regions in some cases are much bigger than the actual polyp in the image, as can
be seen in Figure 6.8. This happens because of two different reasons: first of all,
the method does not incorporate polyp-specific constraints until the very last step
of the region merging and secondly, and more important, by means of excluding this
polyp specific information we have to rely on the DoVth threshold value to keep
polyp boundaries. The problem here is that there are some images where the polyp
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(a) (b) (c)

Figure 6.7: Problems in segmentation: (a) Original image; (b) segmentation result
with depth of valleys threshold 0.7, and (c) Segmentation result with depth of valleys
threshold 0.8.

boundary is weak and if we increase the DoVth value, we will lose the whole boundary
and our final polyp region will not approximate the actual polyp, as can be seen in
Figure 6.8. Because of this we present in the next section another polyp segmentation
algorithm that does take into account the model of appearance for polyps from its
first step.

(a) (b) (c)

Figure 6.8: Polyp segmentation after region merging method results. For all the
examples the polyp region mask is superimposed to the original image.

6.3 Polyp segmentation from the output of an en-
ergy map

As it has been mentioned before, we will take a different approach on how to identify
which region in the image contains the polyp. In this case, we will start our polyp
region identification method by calculating the DOVA descriptor. In the example
we will use as DOVA energy map SA-DOVA descriptor which accumulates, for each
pixel, the contribution in terms of DoV value that a group of pixels under a series of
sector made. The idea that we present here is to obtain the pixels that constitute the
boundary of the final polyp region by extracting the pixels that contributed to the
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maxima of accumulation, as can be seen in Figure 6.9.

(a) (b) (c)

(d) (e) (f)

Figure 6.9: Examples of polyp segmentation from the output of an energy map:
(first column) Original images; (second column) : Accumulation images; (Third col-
umn): Examples of obtaining the points that contribute to the maxima of SA-DOVA
accumulation image.

As can be seen from the results shown in the Figure above, if we just join the
points that contribute to the maxima of accumulation, we get for the majority of the
cases irregular boundaries that do not fit the real contour of the polyp. Our proposal
for improving these contours is based on the direct observation of the current results.
As it is shown in Figure 6.10, when we obtain the maxima contributing pixels, we can
observe some abrupt jumps. These jumps may have several sources such as high DoV
values caused by folds, blood vessels not fully mitigated or simply that the radius
parameter values of SA-DOVA let include further valleys.

Our polyp segmentation from the output of an energy map algorithm consists of
the following steps:
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(a) (b)

Figure 6.10: Example of contour enhancement: (a) Original image; (b) Original
image with initial segmentation boundary pixels painted in blue.

Algorithm 5: Polyp segmentation from the output of an energy map algorithm

Data: Io: Input image, Idov: Input DoV image, ws: window size
Result: Polyp segmentation

1 Acum = WM −DOV A(Idov) // Calculate WM-DOVA energy map;
2 cx, cy = maxima(Acum) // Calculate the position of the maxima of the
WM-DOVA energy map;

3 (⃗po) = contrib(Acum, cx, cy) // Obtain the pixel position of the points that
contributed to the maxima of WM-DOVA energy map;

4 [ρ, ϕ] = polarcoord(⃗(po)) // Convert to polar coordinates;
for Each different ϕ value do

5 Neig(ρi) = {ρi−ws/2, ρi−ws/2+1, .., ρi+ws/2−1, ρi+ws/2};
6 ρfi = median(ρ(Neigh(ρi))) // Compute the new polar coordinate by

means of the median of the ρ values of its neighbors;

end

7 (⃗pf ) = cartesiancoord(ρf , ϕ) // Revert the conversion to cartesian coordinates;
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The algorithm first starts by calculating the WM-DOVA energy map of the input
image, with all the preprocessing and definition of DoV image explained in Chapter
4. Once we have this energy map we obtain the first rough polyp segmentation by
joining the points that contributed to the maxima of accumulation of the calculated
WM-DOVA map (lines 2 and 3 of the algorithm). We showed before in Chapter
5 that we accumulate for each radial sector the maxima of DoV image that falls
under the sector’s area of influence. What we do here is to store the pixel position of
the maximas of DoV image for each sector and by joining them in angle-increasing
order we achieve the first segmentation. As we can see from Figure 6.11 (a) this first
segmentation may present some spikes that make its shape far from regular. In order
to solve this we pass the coordinates of the region boundary to polar domain and we
apply a median filter of size ws to eliminate the abrupt jumps (see Figure 6.11 (c) and
(d) (lines 5 an 6 of the algorithm). The final segmentation will be calculated by simply
inverting the polar domain conversion in order to have final cartesian coordinates (line
7 of the algorithm).

(a) (b)

(c) (d)

Figure 6.11: Softening of boundaries by median filtering in polar space: (a) Orig-
inal image with initial segmentation marked in white; (b) Original image with final
segmentation marked in white; (c) Polar representation of the initial segmentation;
(d) Polar representation of the final segmentation.
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As can be seen, we base our method on the fact polyp contours tend to follow a
closed uniform path where the distances between two consecutive contour points are
around a certain value and if we find the distance between two consecutive points is
higher than usual we will have an abrupt jump. We show in Figure 6.12 a complete
example of the contour refinement algorithm.

(a) (b) (c)

Figure 6.12: Examples of our contour refinement method: (a) Original image; (b)
Original image with initial segmentation marked in white; (c) Original image with
final segmentation marked in white.

Finally we show in Figure 6.13 some examples of this method’s performance. As
can be seen, the method leads to good segmentation results whenever the maxima of
WM-DOVA energy map is placed inside the polyp (Figure 6.13 (a), (b) and (c)) but
when this does not happen, the results obtained do not represent the polyp region at
all (Figure 6.13 (a), (b) and (d)).

6.4 Visual comparison of segmentation methods. Dis-
cussion

We have detailed in the previous two sections the two different approaches that we
have undertaken to provide a polyp segmentation method. Although both approaches
share the same information, which is the DOVA energy map, they use it in a differ-
ent way. The first method uses DOVA information to decide which of the available
regions contains the polyp whereas the second method uses it to directly guide the
segmentation process.

Although a more extensive comparison of the performance of both methods will
be carried out in the next chapter, we will close this chapter by offering a preliminary
visual comparison of the outputs of both methods. We can see in Figure 6.14 that
we obtain similar results for some images, specially in those where we can see clearly
the polyp boundary and DOVA energy map performs well.

As can be seen from Figure 6.14, there are some images where the results for both
methods are very similar (Figure 6.14 (b) and (c)) and some where even considering
that the maxima of the DOVA is common, the second method covers more polyp area
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(a) (b)

(c) (d)

Figure 6.13: Polyp segmentation from the output of an energy map results.

(Figure 6.14 (h) and (i)). In general, when the maxima of DOVA is placed inside the
polyp, calculating the final polyp segmentation from the contributions of the maxima
of DOVA leads to better segmentation results. As they share the same DOVA energy
map, although used differently, they inherit the same behaviour, that is, if DOVA fails
to place the maxima inside the polyp, both segmentations will provide bad results,
as it can be seen in Figure 6.15.

As can be seen, where DOVA fails the segmentation follows therefore one of the
main sources of segmentation errors are those that make DOVA fail, which include
contours generated by lumen or the presence of wrinkles and folds. In the next
chapter we will evaluate both polyp segmentation algorithms, along with presenting
our complete Experimental Setup.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.14: Comparison between the segmentation performed by the two methods
presented: (First column) Original images; (Second column) Polyp segmentation by
smart region merging results; (Third column) Polyp segmentation from the output
of an energy map results.
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(a) (b) (c)

(d) (e) (f)

Figure 6.15: Segmentation errors achieved by the two methods presented: (First
column) Original images; (Second column) Polyp segmentation by smart region merg-
ing results; (Third column) Polyp segmentation from the output of an energy map
results.



Chapter 7

Experimental Results

7.1 Introduction

The objective of this thesis is to provide with polyp localization and segmentation
methods based on a model of appearance for polyps, also taking into account some
other elements of the endoluminal scene. We have presented our complete methodol-
ogy in Chapters 4 to 6 and we expose in this chapter experimental results to assess
the performance of the methods explained.

The aim of this chapter is to assess the performance of each of the methods that
we have proposed in this thesis, from image preprocessing to polyp segmentation. In
some of them we have presented several approaches to the solution and by means of
the results presented here we provide the evidences that led us to decide among them.
More precisely, the experiments presented in this chapter cover:

1. Image preprocessing results:

• Specular Highlights detection and inpainting.

• Blood vessels mitigation.

2. Polyp localization results.

3. Effect of image preprocessing on polyp localization results:

• Impact of black mask inpainting.

• Impact of specular highlights correction via detection and inpainting.

• Impact of blood vessels mitigation on polyp localization results.

• Combined effect of preprocessing on polyp localization results.

4. Polyp segmentation results.

121
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As it can be seen, in order to ease the understanding of the experimental results
combined with the theoretical explanation that has been exposed in the previous chap-
ters, we have used the same structure going from preprocessing to polyp localization
and polyp segmentation but also taking into account the separate effect of some of
the preprocessing methods that have been explained. We will present the complete
experimental results in the following sections, giving for each of them the following
information: 1) Objective of the experiment; 2) Experimental Setup; 3) Metrics; 4)
Experimental results and 5) Analysis and discussion of the results.

In order to truly assess the performance of these methods we need first to define
a complete experimental setup, which will be exposed in the first sections of this
chapter. Moreover, we introduce here the first public database available in our domain
of research.

7.2 Experimental setup.

Before presenting the results of our experiments, it is necessary to define on which
database we are working. Sadly up to our knowledge there is no public database that
can be used to assess the performance of methods like the ones we have introduced
and, in order to fix this, we developed the first public database on colonoscopy videos
along with the corresponding ground truth, which will be introduced later in this
section after doing a brief review on how to create databases such as the one that we
present.

7.2.1 Ground truth and database building

In order to carry out an objective assessment of a given method or system, a ground-
truth must exist. The ground truth consists of set of samples from a given number
of case studies, with the corresponding annotations provided by an expert or group
of experts. In our context, a video annotation can be of different natures, among
which we can highlight, only to mention a few: 1) a whole frame, indicating that
it is that frame which contains a particular event -e.g., the first image in a sequence
showing a polyp-; 2) a given region of interest (ROI) -e.g., indicating the bounding box
surrounding the polyp itself-; 3) any textual information -e.g., a qualitative assessment
of the clinical relevance of a polyp-, etc. These annotations are used to check the
performance of a new expert or a new method against the results provided by the
annotator, who is considered the reference. In the ideal case, the annotation procedure
should be repeated by each expert, in order to get a intra-observer variability measure,
and by different experts, in order to get a inter-observer variability measure. A good
database with a solid ground-truth is an invaluable resource and a key point for the
objective assessment of different methods under a common context of evaluation.

Unfortunately, databases of annotated colonoscopy videos are scarce, and even the
access to small databases is very restricted (few examples can be found at [76]). The
reason of this (without taking into account the natural motivations related to ethical
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and administrative issues) has to do with the generalized fact that colonoscopy video
interventions are not routinely saved, since no a-posteriori analysis is needed after the
intervention. In many cases, the only image saved consist of a single picture of the
ileo-cecal valve, which serves as a prove of the its achievement during the phase of
introduction and indicates the start of the withdrawal phase [69]. In the computer
vision bibliography, some authors proposed pilot approaches that were validated in
a few frames, with no significant inference for the case of a large video. In other
cases, when the number of cases was higher, the database used for the results was not
available. As mentioned before, we address this problem by publishing publicly our
database.

Building up of a database

The building-up of a colonoscopy database consists of two different parts, namely: 1)
The video acquisition system, and 2) the video annotation procedure.

1. The video acquisition system must be able to grab HD frames from the colonoscopy
source and store them to hard disk, with no lose of frame rate or frame quality.
Although the posterior analysis of the frames must not need HD size, by storing
the HD version of the video we assure the maximum image quality provided by
the device. In order to capture the HD frames, a HD frame grabber must be
installed into a PC which will play the role of data repository. Finally, in order
to keep the frame rate and video quality, the frames must be compressed with
a fast compression codec to be efficiently stored later.

2. The video annotation procedure can be performed in different ways. In the case
of frame annotation, a keyboard interaction can be potentially enough to select
the desired frames. A navigation system must be implemented if the the expert
is allowed to go forward and backwards in the video sequence. If the annotation
task consist of the definition of ROIs, a mouse, a digital pen, or a tactile device
can be used. More sophisticated techniques, such as the use of eye-tracking
[110], can be implemented in case that the video is to be annotated by using
attention/perception models -see Figure 7.1 b) for a general scheme.

7.2.2 CVC COLON DB database

Our CVC Colon DB database, has been generated from 15 different video studies
[68]. For each study a sequence containing a polyp was extracted. In Table 7.1 we
present the key data the videos that compose our database: length, number of frames,
polyp shape (flat or peduncular) and correspondence with the number of frame in the
published database.

As the work presented in this thesis is focused on testing the validity of our model
of polyp appearance, our database consists only of frames which contains a polyp.
Consequently, a set of frames were selected from each sequence, paying particular
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(a) (b)

Figure 7.1: a) Schematics of the HD colonoscopy data acquisition system. b) Data
annotation scheme. [110]

attention in showing several points of view of the polyp. More precisely, a random
sample of around 20 frames per sequence was obtained, with frame size of 1000×1148
pixels. The final size of CVC Colon DB database is of 380 images. The experts
guaranteed that all the selected frames showed a significantly different point of view
within the scene by rejecting similar frames. As mentioned in Chapter 4, these frames
come from an interlaced video so the final frames that will compose our database are
already deinterlaced therefore the final size of the frames of our database is 500×574.
In Figure 7.2 the reader can observe the great variability between the different types of
polyp appearance along the different videos. This allows us to maximize the variability
of the images used, while not jeopardizing any bias.

Along with the selection of the frames that constitute our database, the expert
also provided with ground truth for the polyp mask and non-informative regions
(following the criteria expressed in Chapter 6). As we also present results on specular
highlights detection, the expert also labeled the specular highlights for every frame
of the database. We can see some examples of the frames of our database and their
corresponding ground truths in Figure 7.3:

However, not all the sequences annotated in CVC Colon DB are suitable for our
experiments and we rejected frames belonging to some videos because of the following
reasons:

• Sequence 4 presents fecal content which makes it difficult to provide a proper
polyp mask.

• Sequence 8 also presents a lot of fecal content.

• Sequence 12 has a bad quality of visualization of the polyp.

• Sequence 13 does not present frames with enough quality of point of view.
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(a) video 1 (b) video 2 (c) video 3

(d) video 4 (e) video 5 (f) video 6

(g) video 7 (h) video 8 (i) video 9

(j) video 10 (k) video 11 (l) video 12

(m) video 13 (n) video 14 (o) video 15

Figure 7.2: Examples of the type of polyp present in each colonoscopy video. Polyps
are surrounded by a blue contour.
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Video Length (mins) Frames Shape Correspondence
1 1:02 1570 Flat 1-38
2 1:30 2252 Flat 39-60
3 1:07 1679 Flat 61-76
4 1:05 1648 Peduncular 301-320
5 1:15 1885 Flat 77-97
6 1:09 1773 Peduncular 98-148
7 0:54 1361 Peduncular 149-155
8 2:44 4121 Flat 321-340
9 1:05 1639 Flat 156-203
10 2:36 3912 Flat 204-208
11 0:37 947 Flat 209-263
12 1:21 2038 Flat 341-360
13 0:36 923 Flat 361-380
14 0:43 1097 Flat 264-273
15 0:35 879 Peduncular 274-300

Table 7.1: Database description.

Taking this into account, the database that we use in our experiments is composed
by 300 frames and consequently we will be mention it as CVC 300 Colon DB. CVC
300 Colon DB database is composed by the frames selected by the experts for the rest
of the videos, but the expert did not select the same number of frames from each of

Figure 7.3: Some examples of the content of COLON-DB database: (first column)
Original images; (second column) Polyp masks; (third column) Non-informative re-
gions; (fourth column) Polyp contour masks. (fifth column) Specular highlights
masks.
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them. Sequences 1,9 and 15 are especially rich in terms of number of different views
of the polyp. Sequences 3 and 10 are short, they have few frames with polyp presence,
and for this reason the number of different views is lower.

Finally, as another of our objectives is to mitigate the impact of blood vessels,
the expert labeled 29 frames of the CVC 300 Colon DB database which were rich in
vessel content.

7.3 Image preprocessing results

7.3.1 Experimental results on specular highlights detection
and inpainting

Objective of the experiment

As it has been mentioned in chapters 3 and 4, specular highlights are meant to have
an impact on our polyp localization and polyp segmentation results, as their presence
generate response in the valleys image (see Figure 4.9 for a graphical example. As our
polyp localization and segmentation methods have as input the depth of valleys image,
created by combining the output of a valley detector with the morphological gradient,
the valley response generated by specular highlights will be propagated through the
following stages of our algorithms.

In terms of specular highlights detection we will compare the several approaches by
measuring how many specular highlights pixels are detected with respect to the ground
truth. For the case of specular highlights inpainting, as our objective is to mitigate as
much as possible the response of specular highlights in terms of valley detection, we
will measure the creaseness of a region centered in each specular highlight to check
which of the available methods reduces most the response of specular highlights.

Experimental setup

The expert segmented manually the specular highlights (pure and saturated) from the
300 images. An example of some images and their corresponding specular highlight
masks can be seen in Figure 7.3. For the case of specular highlights inpainting, we
will use as specular highlights influence area a dilated version of the ground truth for
specular highlights, as it is shown in Figure 7.4.

As it can be observed from the figure, by dilating the original specular highlights
mask we achieve a bigger ground truth. The objective of this dilation is to have a
ground truth that covers the area of influence of the specular highlight, as valleys
will surround them. Therefore, we will measure the creaseness under this extended
specular highlights mask (see Figure 7.4 (d)) in order to compare different inpainting
methods.

We present in Table 7.2 the approaches that we will compare in this experiment.
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(a) (b) (c) (d)

Figure 7.4: Inpainting of specular highlight masks. (a) Original image; (b) Specular
highlights mask; (c) Extension of the specular highlights mask; (d) Dilated specular
highlights mask.

Method Operation
Specular Highlight Removal Using Bilateral Filtering [119] Detection
Correspondence Search in the Presence of Specular Highlights
Using Specular-Free Two-Band Images [120]

Detection

Extension of Specular Highlights Detection masks by observ-
ing neighborhoods around specular items (Our contribution,
Chapter 4)

Detection

Automatic segmentation and inpainting of specular highlights
for endoscopic imaging [120]

Detection and
Inpainting

Automatic specular highlights inpainting by means of
weighted contributions of the original and specularity-less im-
age (Our contribution, Chapter 4)

Inpainting

Table 7.2: Methods use in the specular highlights detection and inpainting experi-
ments.

We also tried the method described on [101] but after having several conversations
with the author, it has been discarded because it does not suit our type of images.

Metrics of the experiment

The metrics that we will use to make the comparison between the different methods
are:

• Specular highligths detection: We count the number of True Positives (TP),
False Positives (FP), True Negatives (TN) and False Negatives (FN) and we
also provide two additional measures, the Detection Rate and the Error. We
define Detection Rate as the percentage of specular highlights pixels that have
been detected by each method and we define as Error the percentage of specular
highlights pixels that have not been detected by each method.

• Specular highlights inpainting: As we want to obtain as a result an inpainting
image where the intensity valleys caused by the specular highlights have less
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impact, we will compute the sum of valley energy below the dilated mask before
and after applying the inpainting operation.

Experimental Results

In our first experiment we compared the output of four specular highlight detection
methods. Experimental results on specular highlights detection can be consulted at
Table 7.3 and Table 7.4.

Method TP FP TN FN
[119] 561.890 208.956 83.669.107 612.371
[120] 697.358 698.172 83.179.891 476.903
[3] 826.203 1.461.264 82.416.799 348.058
Our contribution
(Chapter 4)

868.210 1.457.537 82.420.526 306.051

Table 7.3: Comparison of specular highlight detection methods (I).

Method DR % Error %
[119] 53.04% 46.95%
[120] 42.12% 57.87%
[3] 81.44% 18.55%
Our contribution
(Chapter 4)

84.2% 15.55%

Table 7.4: Comparison of specular highlight detection methods (II).

Results from Table 7.3 show that our contribution improves state-of-the-art spec-
ular highlight detection [3] in the two most important categories for detection, which
are TP and FN, although we provide a slightly higher number of FP. There is another
approach that wins in two categories ([119]) but in this case the good performance
that it provides in terms of FP and TN is not compensated by the decrease in per-
formance in terms of TP and FP. We can see more clearly in Table 7.4 the difference
in performance by observing the Detection Rate and Error measures, where our con-
tribution outperforms current state-of-the-art results, detecting above 84% of the
specular highlights in the images.

Method E0 Einp %(Einp/E0)
[3] 1083.99 574.38 52.98%
Our
contri-
bution

1083.99 445.84 41.13%

Table 7.5: Comparison of specular highlights inpainting methods.
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We present in Table 7.5 experimental results on specular highlights inpainting. In
this case we have only compared our method with the state-of-the-art on specular
highlights inpainting in colonoscopy. There are other inpainting approaches, most
of them linked with some of the specular highlights detection methods that we have
compared, but after contacting several authors we have decided not to use these
methods for comparison, as the type of images we are working on seem to generate
problems with inpainting, as big part of the specular highlights are actually saturated
and, because of this, reliable information under these pixels cannot be recovered by
applying methods such as the one proposed in [101].

We have to mention that for this second experiment we have used as input to
both algorithms the same specular highlights mask, so E0 the valley energy under the
dilated mask will be the same. This is done aiming at a fair comparison where the
differences in performance are only caused by the inpainting algorithms and possible
errors from specular highlights detection could be dragged. As it can be seen from
Table 7.5, by using our method we improve the mitigation of specular highlights-
originated valleys. More precisely, we can see that, by means of our method, the
energy after inpainting under the dilated mask Einp is lower than the one achieved
with [3]. More precisely we can see that by our inpainting method we are able to
reduce the energy under the dilated mask to a 41.13% of the original value whereas
the method presented in [3] only reduces it to a 52.98%.

Analysis and discussion of the results

For the case of specular highlights detection, it is true that the difference in perfor-
mance is minimal nevertheless we improve current state-of-the-art in two key cate-
gories which are TP and FN, although we obtain a higher number of FP. We show
some qualitative examples on specular highlights detection in Figure 7.5. In this case
we only offer visual comparison of the two methods that have been developed with
specular highlights in colonoscopy in mind. As it can be seen from the Figure, there
are some images where the difference is significant, although we have to mention that
both approaches seem to be on par and we do not have to forget that our contribution
extends the other method’s detection, that is why the number of TP is higher for our
contribution in the majority of images (243 out of the 300 images have a positive
difference).

Finally, in order to end this section, we offer comparative results on specular
highlights inpainting in Figure 7.6. As it can be seen, by using our method we obtain
smoother results than by using the one proposed in [3]. More precisely we can see
clearly in Figure 7.6 (b) and (e) the contours of the specular highlights in the original
image whereas the contours are more difficult to see in Figure 7.6 (c) and (f).

We can conclude that by means of our specular highlights detection and inpaint-
ing we have improved the performance of current state of the art methods in the
scope of colonoscopy video analysis. Therefore, we will use our complete specular
highlights correction scheme as a preprocessing stage for our polyp localization and
polyp segmentation methods.
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(a) (b) (c)

(d) (e) (f)

Figure 7.5: Specular highlights detection comparison. (a) Original image; (b)
Ground truth; (c) [3] output (d) Our contribution’s output. (e) Pixels detected
by [3] but not by our contribution (complemented image to ease visualization of the
difference pixels, shown here in black); (f) Pixels detected by our contribution but
not by [3] (complemented image to ease visualization of the difference pixels, shown
here in black).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7.6: Specular highlights inpainting comparison. (First column) Original
image; (Second column) Inpainting by means of [3] method; (Third column) Our
contribution’s inpainting (Fourth column) Zoom of results of [3] method (Fifth col-
umn) Zoom of results of our contribution’s inpainting.

7.3.2 Preliminary study on blood vessels mitigation

Objective of the experiment

As mentioned in Chapter 3, one of the challenges that we must overcome when us-
ing valley detection for our polyp localization and polyp localization methods is that
there are some other elements of the endoluminal scene which also generate valley
information. We present in this Chapter a preliminary study on blood vessels miti-
gation, as an accurate detection and segmentation of blood vessels is out of the scope
of this thesis.

Experimental setup

In order to study the effects that blood vessels have in the performance of our algo-
rithms, we have created a blood vessels database, consisting of examples extracted
from our CVC 3000 COLON DB database that are rich in blood vessels information
(that is, presence of lots of blood vessels in the image). To do so, an expert has man-
ually marked each pixel of the image that is part of a blood vessel. Some examples
can be seen in Figure 7.7.

We will also use the polyp contour masks that were provided by experts. Our
initial hypothesis consist of the assumption that blood vessels may potentially have
a higher presence on certain color channels therefore we will test the effect of blood
vessels in several well-known color spaces such as: sRGB, linear RGB, HSV, CieLAB
or XYZ. Taking this into account, we show in Table 7.6 the 31 possible input images
that we will use for the experiments detailed in this section:
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Color space Input images
sRGB Grey scale (baseline), sR, sG, sB, sR-sG, sR-sB, sG-sB
lRGB lR, lG, lB, lR-lG, lR-lB, lG-lB
XYZ X, Y, Z, X-Y, X-Z,Y-Z
CieLab L, a, b, L-a, L-b, a-b
HSV H, S, V, H-S, H-V, S-V

Table 7.6: Possible input images.

where: sR, sG and sB are the three components of the sRGB image; lR, lG and lB are
the three components of the linear RGB image; X, Y and Z are the three components
of the XYZ image; C, a and b are three components of the CieLAB image and H,S
and V are the three components of the HSV image.

The objective of this experiment is to test, by the two low-level image processing
algorithms that we use to generate the DoV image (valley detection and morphological
gradient), how we can mitigate the effects of blood vessels in the image without losing
polyp information. To do so we will measure for each input image the difference in
energy under both vessels and polyp contour masks from the original value obtained
from the grey scale image. The final aim of this experiment is to find out if there
is any input image where the blood vessels information is mitigated whereas polyp
information is kept the same or enhanced.

Metrics of the experiment

We will use two measures in order to assess the performance of blood vessels in
different color spaces. As we are using our Depth of Valleys images as input of our
polyp localization and polyp segmentation algorithms, we will use the two tools that
generate it, namely valley detection [67] and morphological gradient. In both cases
we will check the energy under blood vessels masks in each different combination from
all the possible input images that have been defined in 7.6.

The experiments will check for every possible input image the energy below blood
vessels and polyp contour masks in order to compare the behaviour of both elements
under different color spaces.

Experimental Results

Analysis of Valley information

For the valley detector we have used the following parameter values (Table 7.7).
In this case we have considered that σd must be lower or equal than σi and that the
difference between both parameter’s values should not be high.

We have run a complete experiment to check if there is any difference in behaviour
between pixels under polyp and vessels mask. In general, vessels valley information
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Combination of σ σd σi

1 2 4
2 4 4
3 4 8
4 8 8

Table 7.7: Combination of parameters used for the ridges and valleys detector.

does not seem to depend highly on the parameters of the valley information whereas
the relative increment/decrease for the polyps shows more difference, being the in-
crease/decrease in the valley measure more strong when the sigma values are set to
the higher values in combination 4. We present in Table 7.8 a summary of the most
relevant results. In this case we aim at either an increase of blood vessel energy and
decrease of polyp contour’s energy or the contrary, a mitigation of blood vessels while
enhancing polyp contour’s information. We can observe from Table 7.8 that by using
the B channel of the sRGB image we mitigate blood vessels’ energy while enhancing
polyp contours. We can also see that by using the difference between channels G and
B of the sRGB image we achieve the contrary effect, mitigation of polyp contours and
enhancement of blood vessels.

Measure Input Image Combination of parameters Polyp Vessel
Highest difference polyps-vessels sB 4 20.33 % -6.61 %
Highest difference vessels-polyps sG - sB 4 -24.45 % 43.46 %

Table 7.8: Summary of results.

Analysis of Morphological Gradient information

In this case, and considering that we use the morphological gradient as one of
the two necessary ingredients to cook the depth of valley images, we have taken the
same 3 different values: [2, 4, 8] for the size of the structural disk than we take for
the integration sigma, as both integration sigma value and size of the disk should be
the same in order to work in the proper scale. After running a complete experiment,
we have observed that in this case the morphological gradient information takes the
following pattern: when we use the blue channel or the difference between sRGB’s
red and blue channels. In this case we can see that the size of the structural element
has no impact on the results. As with valley information, we present in Table 7.9
a summary of the most important results of the global difference of performance for
both polyp and vessels.

Measure Input Image σ Polyp Vessel
Highest diiference polyps-vessels sB 4 9.21 % -0.44 %
Highest difference vessels-polyps sR - sB 4 -14.5 % 0.7 %

Table 7.9: Summary of results.
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Analysis and discussion of the results

In Table 7.10 we show the best results (in terms of contrary difference in perfor-
mance by using a certain image input and considering all the five types of contour
information).

Type of contour information Maximum difference polyps vs vessels Input image

Valleys 26.95 % sB

Morphological Gradient 9.65 % sB

Type of contour information Maximum difference vessels vs polyps Input image

Valleys 67.91 % sR, sG-sB %

Morphological Gradient 15.21 % sR,sR-sB %

Table 7.10: Summary of results.

By observing this table we observe that the use as the input image the B channel
leads to an enhancement for polyp contours information and a mitigation of blood
vessels information for both valley detection and morphological gradient therefore we
use this B channel as the input image for our algorithms. Finally we show in Figure
7.8 some examples of both the B and G−B images for some of the database images.

7.4 Polyp localization results

7.4.1 Polyp localization results on the original input image

Objective of the experiment

Following the polyp localization processing scheme that was presented in Chapter 5,
we offer in this section results for polyp localization over the CVC 300 COLON DB
database. First of all we will present polyp localization results considering that no
preprocessing operation has been done to the input image, in order to obtain results
of the isolated performance of each method.

Experimental setup

For each of the polyp localization methods, we have set up a series of parameter
values, which will be detailed next. As the tuning of parameters have been covered in
our publications (EF-DOVA [11], SA-DOVA [13] and VO-DOVA [12]), we will only
offer the best results achieved for all the combinations of a certain polyp localization
method.

We carried out a research on finding the optimal parameter values for EF-DOVA
[11]. The initial values of the parameters and the optimal are shown in Table 7.11.

SA-DOVA itself has only three parameters, but in order to find the combination
of values that gives as a better results in terms of polyp localization, we added to
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Parameter Values Optimal Value
DV threshold [0.6, 0.8] 0.8

Distance [20, 40] 40
Tol x [8, 16] 8
Tol y [8, 16] 16

Accum. threshold [0.4, 0.6] 0.4

Table 7.11: Parameters of EF-DOVA.

the experimental setup the two parameters of the DoV image, differentiation and
integration sigma [13]. Therefore, the parameters that SA-DOVA needs of are:

1. Radius 1: Minor radius of the sector.

2. Radius 2: Major radius of the sector.

3. Number of sectors: Number of sectors used to guide the accumulation method.

We have fixed 3 possible values for each parameter, which are shown in Table 7.12
along with the optimal value. In order to fix the optimal value for each parameter we
performed a preliminary study on 30 different images from our database, which showed
different views and types of polyps. For these images we run complete experiments
varying the parameters values as shown in Table 7.12. The optimal parameters were
those that lead to obtain the highest number of TP and lowest of FN, keeping FP
number as low as possible.

Parameter Values Optimal value
Differentiation sigma [2, 4, 8] 8
Integration sigma [4, 8, 10] 10

Rad 1 [30, 40, 50] 40
Rad 2 [80, 100, 120] 120

Number of sectors [60, 120, 180] 180

Table 7.12: Parameters of SA-DOVA.

VO-DOVA uses the same parameters than SA-DOVA but it also adds one more
which is the threshold difference between the angle of the sector and the orientation
of the valley which maxima is found in this sector. As with SA-DOVA, we have fixed
3 possible values for each parameter, which are shown in Table 7.13 along with the
optimal value.

Finally we show in Table 7.14 the possible parameter values for each parameter
of WM-DOVA:

Metrics of the experiment

As it has been mentioned before, the objective of this experiment is to provide with
several comparison criteria in order to decide which energy map is more discriminative
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Parameter Values Optimal value
Differentiation sigma [2, 4, 8] 8
Integration sigma [4, 8, 10] 10

Rad 1 [30, 40, 50] 40
Rad 2 [80, 100, 120] 120

Number of sectors [60, 120, 180] 180
Angle threshold [5, 10, 15] 10

Table 7.13: Parameters of VO-DOVA.

Parameter Values Optimal value
Differentiation sigma [2, 4, 8] 8
Integration sigma [4, 8, 10] 10

Rad 1 [30, 40, 50] 40
Rad 2 [80, 100, 120] 120

Number of sectors [60, 120, 180] 180
Window size [4, 8, 12, 18, 20, 24, 36] 18

Table 7.14: Parameters of WM-DOVA.

in terms of polyp localization. In this case we will denote as good results those where
the maxima of the DOVA energy map falls on the polyp mask. Consequently we will
have a bad result whenever the maxima of the DOVA energy map falls outside the
polyp mask.

Experimental Results

We offer a comparative of polyp localization results in Table 7.15:

Method OK OK [%] No OK No OK [%]
EF-DOVA 96 32% 204 68%
SA-DOVA 128 42.66% 172 57.33%
VO-DOVA 134 44.66% 166 55.33%
WM-DOVA 162 54 138 46

Table 7.15: Comparison between the different DOVA maps for polyp localization.

We can see from Table 7.15 how WM-DOVA offers the best performance, surpass-
ing in more than a 20% the results of EF-DOVA, which coincides with our original
hypothesis that constraining our method to a certain shape could lead to good par-
ticular result for those polyps that fit it, but a bad overall result. We can also see how
WM-DOVA performs better than its radial counterparts SA-DOVA and VO-DOVA
although in this case the difference is lower. Finally we can observe how VO-DOVA
fails at performing best, damaged by a poor definition of valley orientation.

In order to provide more information to the comparison, we have calculated the
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mean processing time per image. Results of this are shown in Table 7.16:

Measure EF-DOVA SA-DOVA WM-
DOVA

VO-DOVA

Number of experi-
ments

9600 72900 218700 218700

Mean processing
time per experiment
(mins)

1521 15 80 30

Mean processing
time per image (secs)

304.2 3 16 6

Table 7.16: Processing time comparison results.

Analysis and discussion of the results

Several conclusions can be extracted by observing Table 7.15:

• There is a big difference in results between the two groups, where EF-DOVA
provides worse results than any other method for all the categories. As we
can see in Figure 7.9, when the polyp boundary can not be approximated by
an ellipse, EF-DOVA fails at locating its maxima of accumulation inside polyp
mask for the majority of images.

• Once discarded the use of EF-DOVA for our polyp localization method, we
continue by comparing the three remaining accumulation methods. As it can be
seen from Table 7.15 the difference in performance between the three methods is
not as big as between group of methods. We show in Figure 7.10 some examples
where WM-DOVA has obtained a better localization result than SA-DOVA and
VO-DOVA.

• VO-DOVA offers slightly better results than SA-DOVA but the difference in
processing time is significant enough to propose its use among other faster al-
ternatives.

• Finally, if we want our system to be incorporated into an intelligent system
for colonoscopy (for instance, a CAD) we must be fast enough to provide a
response to the input image. In this case SA-DOVA, WM-DOVA and VO-
DOVA present comparable results, much faster than EF-DOVA. Between all
the radial approaches, SA-DOVA is the fastest, followed by VO-DOVA and
WM-DOVA.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.7: Examples of the blood vessels database: (1st column) Original im-
ages; (2nd column) Blood vessels masks examples; (3rd column) Blood vessels masks
superimposed on the original image;.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.8: Blood vessel impact on several channels (left column) Original images;
(center) Blue channel; (right column)Green - Blue channel.
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(a) (b)

(c) (d)

Figure 7.9: EF-DOVA performance results. We show for every example two images.
The one on the left corresponds to the original image whereas we have superimposed
in the image on the right the position of the maxima of accumulation, which is painted
in green if it falls in the polyp mask and painted in red in the contrary case.
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(a)

(b)

(c)

Figure 7.10: Improvement of WM-DOVA against SA-DOVA and VO-DOVA. (First
column) Original image; (Second column) EF-DOVA results; (Third column) SA-
DOVA results; (Fourth column) WM-DOVA results; (Fifth column) VO-DOVA re-
sults.
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7.4.2 Impact of image preprocessing techniques on polyp lo-
calization results

Objective of the experiment

In this subsection we will measure the impact of each preprocessing technique (spec-
ular highlights detection and inpainting, black mask inpainting and blood vessels
mitigation) in polyp localization results. We also measure the impact of a correct
identification of non-informative regions may have in the performance of our polyp
localization method.

Experimental Setup

In this case we will also use CVC 300 COLON DB, along with their corresponding
polyp masks.

Metrics of the experiment

As the aim of this experiment is to assess the effect that some elements of the endo-
luminal scene have on overall polyp localization results, we will use the same metrics
than in the previous section: number and percentage of good results and number
and percentage of errors. We have to mention that we will only offer results for
WM-DOVA energy map, as its superior performance has been proven in the previous
subsection.

Impact of black mask inpainting

We see a comparison of results with and without black mask inpainting in Table
7.17:

Metric Baseline Baseline + Black
mask inpainting

Difference

OK 162[54%] 163 [54.33%] +1 [0.33%]
Error 138[46%] 137 [45.66%] -1 [-0.33%]

Table 7.17: Impact of black mask inpainting on polyp localization results.

As we can see the inpainting of the black mask does not have a big impact on
global polyp localization results. In fact there is only one image which benefits from
the inpainting of the black mask (Figure 7.11).

Impact of specular highlights detection and inpainting

We present in Table 7.18 results on the impact of specular highlights detection
and inpainting in polyp localization results.

In this case we can see that the correction of specular highlights do has an impact
in polyp localization results. We have improved polyp localization in 11 images.
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(a) (b) (c)

(d) (e) (f)

Figure 7.11: Improvement of polyp localization results by inpainting of the black
mask. (a) Original image with black mask; (b) Original WM-DOVA energy map;
(c) Polyp localization by means of WM-DOVA (maxima of WM-DOVA is painted
as a green square); (d) Image with black mask inpainted; (e) WM-DOVA map after
inpainting of black mask; (f) New polyp localization by means of WM-DOVA.

We show an example of this improvement in Figure 7.12, where we can see how the
inpainting of specular highlights has an impact on the energy image, leading to bigger
concentrations of energy inside polyps.

Impact of blood vessels mitigation

After a preliminary study we have concluded that they seem to have less presence
in channel B or a higher contrast from polyp contours in the subtraction of channel G
and channel B of the standard RGB image. We can observe polyp localization results
by using as input channel sB or channel sG− sB in Table 7.19 and Table 7.20:

In this case we have confirmed our initial assumption about using separate color
channels to mitigate the effect of blood vessels. More precisely, we have shown in Table
7.20 how, by using the G − B channel, we improve our polyp localization results in
11 images whereas if we use the B channel we improve our results in 20 images. We
show some examples on blood vessels-rich images in Figure 7.13.

As can be seen from Figure 7.13 in images with heavy presence of blood vessels by
using information of the B channel we are able to mitigate their presence and change
the maxima of accumulation which, in this case, gives a clear indication on where the
polyp is in the image.



7.4. Polyp localization results 145

Metric Baseline Baseline + Specu-
lar Highlights cor-
rected

Difference

OK 162[54%] 173 [57.66%] +11 [3.66%]
Error 138[46%] 127 [42.33%] -11 [-3.66%]

Table 7.18: Impact of specular highlights on polyp localization results.

Metric Baseline Baseline + channel
sB

Difference

OK 162[54%] 182 [60.66%] +20 [6.66%]
Error 138[46%] 112 [39.66%] -11 [-6.66%]

Table 7.19: Impact of blood vessels mitigation on polyp localization results (sB
channel as input).

(a) (b) (c)

(d) (e) (f)

Figure 7.12: Improvement of polyp localization results by correcting specular high-
lights. (a) Original image with specular highlights; (b) Original WM-DOVA energy
map; (c) Polyp localization by means of WM-DOVA (maxima of WM-DOVA is
painted as a green square); (d) Image with specular highlights inpainted; (e) WM-
DOVA map after inpainting of specular highlights; (f) New polyp localization by
means of WM-DOVA.
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Metric Baseline Baseline + sB-sG Difference
OK 162[54%] 173 [57.66%] +11 [3.66%]
Error 138[46%] 127 [42.33%] -11 [-3.66%]

Table 7.20: Impact of blood vessels mitigation on polyp localization results (sG-sB
as input).

(a) (b) (c)

(d) (e) (f)

Figure 7.13: Improvement of polyp localization results by mitigating blood vessels
effect. (a) Original image; (b) Original WM-DOVA energy map; (c) Polyp localiza-
tion by means of WM-DOVA (maxima of WM-DOVA is painted as a green square);
(d) Channel B of the original image; (e) WM-DOVA map after mitigating blood
vessels effect; (f) New polyp localization by means of WM-DOVA.
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Impact of non informative region identification

As mentioned in Chapter 6, one of the steps taken in order to reduce the number
of final region is non informative region identification. In this experiment we will take
into account this small part of the whole polyp segmentation method in order to check
if polyp localization results could improve by just eliminating all the information
belonging to these areas on the Depth of Valleys image. We present experimental
results in Table 7.21:

Metric Baseline Baseline + Non-
informative

Difference

OK 162[54%] 172 [57.33%] +10 [3.33%]
Error 138[46%] 128 [42.66%] -10 [-3.33%]

Table 7.21: Impact of non informative region identification on polyp localization
results.

In this case we can see that the elimination of the contribution from non-informative
regions do has incidence in polyp localization results. We have improved polyp local-
ization in 10 images. We show an example of this improvement in Figure 7.14.

(a) (b) (c)

(d) (e) (f)

Figure 7.14: Improvement of polyp localization results by suppressing contribution
of non-informative regions. (a) Original image; (b) Original WM-DOVA energy map;
(c) Polyp localization by means of WM-DOVA (maxima of WM-DOVA is painted as
a green square); (d) Image with non informative regions suppresed; (e) WM-DOVA
map after eliminating contributions from non-informative regions; (f) New polyp
localization by means of WM-DOVA.
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Combined effect

We have shown the individual impact of image preprocessing and non-informative
region identification in polyp localization and to finish this section, we present results
obtained by combining all the techniques presented. Experimental results can be
consulted at Table 7.22.

Metric Baseline Baseline + Preproc
+ Non-Inf

Difference

OK 162[54%] 208 [69.33%] +10 [15.33%]
Error 138[46%] 92 [31.66%] -10 [-15.33%]

Table 7.22: Combined impact of image preprocessing and non informative region
identification on polyp localization results.

As it can be seen from the results, by combining all the methods that we have
presented earlier, we improve our polyp localization results in 46 images, which cor-
respond to an increment of 15% from our original results, leading to an almost 70%
of success on polyp localization by only using the maxima of the WM-DOVA energy
map. Of course, these results can be improved and we will show later negative exam-
ples in order to find out the causes of our errors. First of all we show in Figure 7.15
some examples where we have improved the results by combining all 3 enhancement
methods.

As it can be seen from Figure 7.15 we have improved our polyp localization results
even on images where many of the challenges that we mentioned back in Chapter 3
are present. For instance, we can see that Figure 7.15 (a) presents a high number
of specular highlights and blood vessels and we are able to place the maxima of
accumulation in the very center of the polyp. Our method also works for images
with bad quality, such as Figure 7.15 (c) where the blurring leads to have specular
highlight shadows that even touch the polyp boundary. Another of the challenges
that we mentioned in Chapter 3 was that sometimes we do not have a zenithal view
of the polyp but a lateral one, which could potentially cause a problem for our method
which is based on the presence of valleys. We prove the efficiency of use of the Depth
of Valleys image by taking a look at Figure 7.15 (d). We can see for this example how
the initial high influence of specular highlights lead to a misplacing of the maxima of
DOVA energy map, which is solved by applying the corrections before mentioned.

It is true that our method still have mistakes, images where the maxima of polyp
localization is not placed inside polyp mask. We show some examples in Figure 7.16.

By observing some of the mistakes of our polyp localization method, we can sketch
which future lines of research could be taken in order to improve our current results.
For instance, we can observe in Figure 7.16 how the presence of folds and wrinkles
do have an impact in our method. This can also be observed in Figure 7.16 (b)
and somehow in Figure 7.16 (d), where we can see that even by inpainting both
specular highlights and black mask and using the channel B of the image, we still
fail at localizing the polyp. There are some other elements that can have an impact
on our method and have not been covered on this thesis. The example shown in
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Figure 7.16 (c) is a clear one: we have a lateral polyp which touches lumen which
has high presence of fecal content. We have not covered at all lumen or fecal content
detection and, although our results improve by applying the corrections we still do
not locate the maxima of WM-DOVA inside the polyp. Finally, the case of Figure
7.16 (d), apart from highlighting the effect of folds, also points out the necessity of
evolving our algorithms to cover this kind od sessile polyps in images where they do
not protrude much from mucous membrane.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 7.15: Improvement of polyp localization results by combining all the meth-
ods explained. (First row) Original images; (Second row) Original WM-DOVA energy
map; (Third row) Polyp localization by means of WM-DOVA (maxima of WM-DOVA
is painted as a green square); (Fourth row) WM-DOVA map after applying all meth-
ods; (Fifth row) New polyp localization by means of WM-DOVA.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 7.16: Errors of polyp localization results obtained even by combining all
the methods explained. (First row) Original images; (Second row) Original WM-
DOVA energy map; (Third row) Polyp localization by means of WM-DOVA (maxima
of WM-DOVA is painted as a green square); (Fourth row) WM-DOVA map after
applying all methods; (Fifth row) New polyp localization by means of WM-DOVA.
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7.5 Polyp Segmentation results

We present in this chapter by exposing our polyp segmentation results. In this case we
propose two different methods: polyp segmentation after region merging and polyp
segmentation from the output of an energy map.

Objective of the experiment

The objective of this experiment is to check which polyp segmentation algorithm
provides better results. In this case, a good result will be a final segmented region
which covers the polyp in great extent. However we will not accept as a result a
big region that covers a great part of the image and, by chance, the polyp. More
precisely we want our final polyp segmentation to fit the original polyp’s shape as
much as possible.

We will make two types of analysis in order to compare the alternatives that we
will present. The first analysis will be focused only on pure segmentation results via
specific metrics. The second analysis will compare classification results, understanding
in this case that, for every image, we will have only two regions: the polyp region and
the background. The polyp region will be the one where the maxima of WM-DOVA
energy map falls whereas the background region will be the rest of the image. As it
can be seen, by using this scheme we balance the number of positive and negative
examples, which in this case makes it possible to use general performance metrics, as
it will be explained in the next subsection. Before entering with segmentation results,
we will make a brief introduction to another segmentation techniques which we have
compared our methods with.

Approximation to the segmentation problem

In general segmentation, which is one of the most difficult and critical tasks in com-
puter vision, can be viewed as a perceptual grouping problem in which the image
is divided into homogeneous regions, which can represent different features in the
images depending on the methodology adopted. Some simple ways of segmentation
exist however they prove to be over simplified for semantic grouping of image regions
in more complex scenarios, as they are more sensitive to noise and other artifacts [91].
More sophisticated methods of image segmentation can be mainly divided into two
different categories: segmentation by fitting and segmentation by clustering [39]. In
the former, the problem of segmentation is viewed as an assertion that the pixels in
an image conform to a model while, in the latter, the pixels are grouped according
to some criteria such as gray level, color or texture. In order to perform efficiently,
segmentation by fitting methods need strong gradient differences pertaining to the ob-
jects in the images which have to be segmented, which is not our case. Given that we
want to segment informative regions containing polyps from clinically uninteresting
areas, methods that segment by clustering seem well suited for our scenarios. Doing
an extensive review of the state-of-the-art on segmentation is out of the scope of this
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thesis and we will only make a brief review of some techniques whose performance
is similar that the want our methods to have. Because of this, we have chosen three
methods from this group to carry out our research and we will compare the output of
our polyp segmentation methods with the output that some of this methods provide:

• Normalized Cuts: The normalized cuts method [98] is a graph theoretic ap-
proach for solving the perceptual grouping problem in vision. In normalized cuts,
all the sets of points lying in the feature space are represented as a weighted,
undirected graph. The weight of each arc is assigned using a set of pre-defined
criteria. These can be based on the spatial distance among the pixels, their
brightness values, etc. Usually the easiest way to perform segmentation in
graph theoretic algorithms is to disconnect the edges having small weights usu-
ally known as the minimum cut [25].

• Watersheds: Watershed transformation [112] is one of the clustering based meth-
ods used as a tool for image segmentation. Watersheds operate on intensity
gradients to perceive an image as a combination of catchment basins in a hilly
area (a hill corresponds to high gradient) simulating the formation of image
regions with projected flow of water. After identification of an intensity valley
in an image, region growing algorithms are used to combine all the pixels which
have similar intensities.

• Turbo pixels: this algorithm [62] start by computing a dense oversegmentation
of an image by means of a geometric-flow-based algorithm. This first segmen-
tation results on segments that respect local image boundaries while limiting
undersegmentation by using a compactness constraint. The method is guided
by five basic principles, namely: 1) Uniform size and coverage of the final seg-
mented regions; 2) Connectivity: each final region should represent a simply
connected set of pixels; 3) Compactness; 4) Smooth and edge-preserving flow
and 5) No overlap between the final regions.

Metrics of the experiment

As mentioned before, we will make two different analysis of the results and each of
them needs of different metrics. For the case of segmentation results, we will use
AAC and DICE. We evaluate the performance of our segmentation methods by using
two different measures: Annotated Area Covered (AAC) (Eq. 7.1 and Dice Similarity
Coefficient (DICE) (Eq. 7.2) [91].

AAC = 100 · #oftruepolyppixels

#oftotalpolyppixels
; (7.1)

DICE = 100 · #oftruepolyppixelsinthefinalregion

#oftotalpixelsofthefinalregion
; (7.2)

Both measures are complementary, as the former calculates the amount of an-
notated polyp area while the latter complements it with the amount of non-polyp
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information that is kept in the region. We can see in Figure 7.17 two different seg-
mentation results that can help to understand the decision about using these two
concrete measures. The segmentation results for the first image (Figure 7.17 (a-c)) is
be very good in AAC but bad in terms of DICE, since the region that contains the
polyp also contains lots of non-polyp information. In the other hand, segmentation
results for the second image (Figure 7.17 (d-f)) may be a little worse in terms of accu-
racy but the final polyp region will contain more polyp than non-polyp information.

(a) (b) (c)

(d) (e) (f)

Figure 7.17: Examples of AAC and DICE results: (a) and (d) Original image; (b)
and (e) polyp masks (the polyp is shown in white), and (c) and (f) segmentation
results.

For the second type of analysis we will use the well-known classification metrics,
which are:

Precision =
TP

TP + FP
; (7.3)

Recall =
TP

TP + FN
; (7.4)

Accuracy =
TP + TN

TP + FP + TN + FN
; (7.5)

Specificity =
TN

TN + FP
; (7.6)

Fallout =
FP

FP + TN
; (7.7)
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F2measure = 5 · TP

5 · TP + 4 · FN + FP
; (7.8)

In this case a True Positive (TP) will correspond to a final segmented region which
contains the polyp and on which the maxima of WM-DOVA falls. A False Positive
(FP) will correspond to a final segmented region where the maxima of WM-DOVA
has fallen but does not contain a polyp inside. A True Negative (TN) will consist of
assigning correctly as non polyp containing region the background of the image and
consequently a False Negative (FN) will correspond to an erroneous assignment of
the polyp region by means of the maxima of WM-DOVA falling outside the polyp.
Considering the domain of application of our algorithms, we will be interested in a
high number of TP and TN and a low number of FP and FN but in this case, as it
will be shown later, we will also take into account the size of the region with respect
to the polyp size.

Experimental Results

Segmentation Results

In this subsection we will compare the results achieved by using the current state of
the art on polyp segmentation with the ones achieved by several techniques, including
our new contribution. We present a comparison of our polyp segmentation after region
merging with the output of other segmentation methods in Table 7.23:

Measure / Method Polyp Segmentation
after Region Merging

NCuts TurboPixels

AAC 70.29% 69.06% 69.2%
DICE 44.6% 37.75% 38.04%

Table 7.23: Comparison between the results obtained by our method, Normalized
Cuts and TurboPixels with respect to the depth of valleys threshold.

As mentioned in [13], our first polyp segmentation method constitutes up to our
knowledge the state-of-the-art on polyp segmentation and considering that it outper-
forms both normalized cuts and turbo pixels in terms of AAC and DICE (see Table
7.23), we will use its results as the starting point for the comparison with our new
method. We can see that, by using our first method, we achieve high AAC results,
which indicate that our final regions cover, in mean, a 70% of the polyp. But as we
can see, DICE results are not that good. In our final regions the percentage of polyp
content out of all the region is below 50%, that is, our final regions are composed by
more non-polyp information than by polyp information. We show some qualitative
comparison results in Figure 7.18.

Therefore our efforts should be concentrated on improving this DICE results. From
this point we will compare the previous state-of-the-art results on polyp segmenta-
tion, achieved by our polyp segmentation after region merging method, with the ones
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(a) (b) (c) (d) (e)

Figure 7.18: Comparison of segmentation results: (a) Original images; (b) polyp
masks; (c) polyp segmentation after region merging output; (d) normalized cuts’
output, and (e) turbo pixels’ output [13].

obtained with our new proposal: polyp segmentation from the output of an energy
map. Taking this into account, we offer a comparison of segmentation results between
our two methods in Table 7.24.

Measure / Method Polyp segmentation after
region merging

Polyp segmentation from
DOVA map

AAC 70.29% 63.98%
DICE 44.6% 52.53%

Table 7.24: Comparison between the results obtained by our two methods.

We can see from Table 7.24 that by using our new method we outperform current
state-of-the-art in terms of DICE, although we are worse in terms of AAC. That
means that our final regions contain more polyp information with the new method,
but they fit worse the shape of the polyp. We show some comparison examples in
Figure 7.19. As can be seen from the image, there are some cases were the first
method offers better performance than the second (Figure 7.19 (b) and (c)) and some
cases were we obtain the opposite result (Figure 7.19 (e) and (f)).
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(a) (b) (c)

(d) (e) (f)

Figure 7.19: Comparison of segmentation results after applying our two segmenta-
tion methods: (a) and (d) Original image; (b) and (e) Segmentation results achieved
with method proposed in [13], and (c) and (f) Segmentation results obtained with
the new method.

But we have to take into account that both results are calculated according to
the placing of DOVA maxima, which affects the segmentation results specially the
ones obtained by the second method. In this case, if the placing of DOVA maxima is
incorrect, the second method will find more difficulties to capture part of the polyp
than the second, which only decides which is the final region by selecting the one
where the maxima of DOVA falls. This can be better understood by taking a look at
Figure 7.20.

We can see from Figure 7.20 (b) that in this case the maxima of WM-DOVA is
placed outside the polyp. For the case of the second segmentation it means that the
polyp region will contain hardly any part of the polyp, as it is calculated from the
points that contributed to the maxima and in this case they are also placed outside
the polyp. But by using the segmentation method proposed in [13] even considering
the misplacing of the polyp, the final segmentation covers great part of it, despite of
being a very rough segmentation that seems to cover incidentally the polyp.

In order to really assess the performance of both segmentation methods, we have
decided to offer segmentation results only for the images where we place the maxima
inside the polyp. By doing this we can really check if the final polyp regions ob-
tained by both methods capture both the shape and content of the polyp. We show
comparison results in Table 7.25.
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(a) (b) (c)

Figure 7.20: Comparison of segmentation results after applying our two segmen-
tation methods: (a) Original image; (b) Segmentation results achieved with method
proposed in [13], and (c) Segmentation results obtained with the new method.

Mean AAC SD AAC Mean DICE SD DICE
Polyp segmentation after
region merging

59.95% 41.19 30.77% 21.33

Polyp segmentation from
DOVA map

83.86% 19.24 74.81% 15.68

Table 7.25: Comparison between the results obtained by our two methods only for
images with correct placing of maxima of DOVA.

As we can observe from Table 7.25 by only comparing segmentation results from
the 208 images of our database where we place the maxima of WM-DOVA inside
the polyp, our new method outperforms current state-of-the-art, specially in terms of
DICE results, where the performance of the method exposed in [13] decreases as we
do not consider as good results like the ones shown in Figure 7.20. We can also see
from Table 7.25 that the results achieved by the new method do not only outperform
the ones obtained by the first one in terms of mean value of both AAC and DICE
but we can also see that the difference is also high in terms of standard deviation.
As we have mentioned before, for the case of the first method we can have a final
segmented region that covers almost all the frame and, by incidence, the polyp. This
will result on a high AAC value, almost 100% for this particular image but the DICE
value will be very low. We present some final segmentation results obtained with
the final proposed method, polyp segmentation from the output of an energy map,
in Figure 7.21. We can see how by means of the new segmentation method we are
able to get good final polyp regions, no matter how the view of the polyp is. We can
see examples from zenithal polyps (see Figure 7.21 (b)), images with high specular
and blood vessel content (Figure 7.21 (c)), lateral views of polyps (Figure 7.21 (h),
(n) and (p)) and even in poor quality images such as Figure 7.21 (l) we are able to
provide with a polyp region that fits the area that the polyp occupies on the original
image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 7.21: Segmentation results obtained by polyp segmentation from the output
of an energy map.

Classification results

This final experiment treats the polyp segmentation as a classification problem in
which, given an input image, we classify the final regions into polyp containing or
not. In order to fit our experimental setup to this classification paradigm, we will
assume the following:

• For every frame from the database, our polyp segmentation method will deliver
only two regions as output: polyp region and background. For regions obtained
by the first method the final region will be the one where the maxima of WM-
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DOVA falls. For polyp segmentation from the output of an energy map the
polyp region is the direct output of the algorithm.

• We will consider as True Positive when the polyp region contains fully or par-
tially the polyp, a False Positive when the polyp region does not contain any
polyp information. Following this criteria, we will label a True Negative when
the background does not contain any polyp information and a False Negative
when the background contains the polyp.

Taking into account these assumptions, we will expose in this subsection classi-
fication results using the metrics explained in a previous subsection of this chapter.
Moreover, we will compare classification results achieved after performing polyp seg-
mentation with our two methods with previous state-of-the-art classification results,
which were presented in [13]. We will compare classification results from four experi-
ments which are:

1. State-of-the-art results: achieved with the first polyp segmentation method and
by means of SA-DOVA energy maps [13] (Baseline). In this case we choose as
polyp region the one where the maxima of SA-DOVA falls, no matter if it is not
the region with more polyp content out of all the final regions (Baseline).

2. State-of-the-art results improved by means of using WM-DOVA instead of SA-
DOVA (Baseline with WM-DOVA).

3. Polyp Segmentation after region Merging and WM-DOVA (Method 1). Con-
versely to the previous case, we choose as final segmented region the one with
more polyp content and we will check if the maxima of WM-DOVA falls on it
or not.

4. Polyp Segmentation from the output of an energy map.

We present classification results in Table 7.26:

Baseline Baseline with WMDOVA Method 1 Method 2
TP 265 280 252 249
FP 31 20 48 51
TN 269 280 252 249
FN 35 20 48 51

Precision 88% 93.3% 84% 83%
Recall 89% 93.3% 84% 83%

Accuracy 89% 93.3% 84% 83%
Specificity 88% 93.3% 84% 83%
F2Measure 0.89 0.9 0.77 0.765

Table 7.26: Comparison between the results obtained by our two methods.

The results shown in Table 7.25 can be analyzed in several ways. First of all, we
can see that the improvements on polyp localization lead to an overall improvement
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on every classification measure, as it can be seen in the table. But, as it has been
mentioned before, these results have been obtained by considering a good classified
polyp region even those where the amount of polyp information in it is very small.

In this case, we want to stress the importance of a good segmentation and, because
of this, we have recalculated all the measures considering for the first method as final
region the one with bigger AAC and, more importantly, DICE. As it can be seen in
the Table, classification results are not the same, in fact, there is a global decrease
in all the classification measures, leading to losing almost 30 polyps. The difference
in this case is related to the fact that, by discarding regions with non significative
polyp content, the maxima of WM-DOVA may fall in a big region that contains very
small polyp information. In our case we prefer to deliver regions closer to how polyps
appear on the image.

In our case, thinking about a possible application that our polyp segmentation
could have, we prefer to offer as output regions obtained by our new method, even
considering that, for some cases, we are losing polyps. We can see an example of a
good result but a bad polyp region in Figure 7.22 (b) and (d). We can see that by
using the second method the size of the polyp region is reduced. We can observe an
example of a bad result but with a more reduced final region in Figure 7.22 (c) and
(e).

(a) (b) (c)

(d) (e) (f)

Figure 7.22: Comparison of classification results after applying our two segmenta-
tion methods: (a) and (d) Original image; (b) and (d) Classification results achieved
with method proposed in [13], and (c) and (e) Classification results obtained with
the new method.
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As a way to confirm our preferences, we can observe the result shown in Figure
7.22 (b) and (c). In the first case, we would be indicating the physician that the
interesting area is almost all the frame. In the second case, the indicated area will
be smaller. In both Figure 7.22 (b) and (c) the polyp is captured but we are more
precise with our new method and therefore, the results obtained by this method could
be potentially more useful, although worse in region classification terms. Even when
we do not capture the polyp, the final region obtained by means of the output of an
energy map is smaller than the one achieved with polyp segmentation after region
merging method.



Chapter 8

Use of a polyp localization method
to model physicians’ observations

8.1 Motivation

We have presented in the previous chapter the core of the thesis, which is to de-
velop polyp localization and polyp segmentation methods in the scope of analysis of
colonoscopy videos. These methods are based on a model of appearance for polyps,
which has been created by observing how polyps appear on video frames but also by
considering the presence of some other elements of the endoluminal scene. We have
also expressed in both chapters 1 and 2 that the methods that we have developed
could be enclosed into the field of Endoluminal Scene object description but, as it can
be expected, these methods have been built in order to be incorporated in the future
into intelligent systems for colonoscopy.

We have sketched in chapter 2 some of the domains of application of an intelli-
gent system for colonoscopy, such as providing tools to assist on the diagnosis (via
Computer Aided Diagnosis systems) or as a way to calculate performance metrics.
Related to the first domain of application, we could think of incorporating our polyp
localization methods as a way to indicate the physician which are the regions of in-
terest of the image. But before thinking about the potential future of our methods,
we must assess that they can provide key information to the process.

Taking this into account we will present in this chapter the first available study
that compares the output of a computer vision method with the observations of
the physicians during a colonoscopy procedure. More precisely, we will compare the
output of our WM-DOVA energy maps with the fixations captured via an eye-tracker
device, in order to check if our polyp localization method offers comparable results
with the ones achieved by the physicians. In this case we will use the concept of
saliency, understood as a way to point out which are the most interesting parts of
the image. We will develop a little more about saliency in later sections but as an
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introduction, the basic idea is to compare regions of interest calculated either by
means of our WM-DOVA descriptor or by interpreting the physicians information.

8.2 Objective of the analysis

The objective of the analysis that we will present in this chapter is to create a frame-
work that permits to stablish correspondences between physicians’ fixations (human
regions of interest or hROIs) and the output of interest region detection algorithms
(aROIs). We can think of three different scopes of analysis:

1. Comparison between the output of different hROIs.

2. Comparison between the output of different aROIs.

3. Comparison between the output of hROIs and aROIs.

We show a graphical representation of the three types of analysis in Figure 8.1,
where we show the objective of our analysis which is to check for correspondences
between computer vision algorithms (our polyp localization method) and visual at-
tention models obtained via capturing physicians’ observations with an eye-tracking
device.

As mentioned before, there are three different analysis that can be performed but,
as the objective of this chapter is to offer a first study on the potential of inclusion
of some of our applications into real-life systems, we will concentrate on the first and
third scope of analysis. We will first make a comparison between the observations of
physicians, grouped according to their expertise and later we will compare the output
of our polyp localization method with hROIs.

Our analysis will try to answer some of the following questions: Are the different
hROIs attracted to the same regions of the image? Is there any difference in behaviour
between experts and novices? Does our polyp localization method approximate physi-
cians’ observations? In order to tackle some of this questions, we need to define a
framework of analysis. In this case, we will integrate our scopes of analysis into eye
tracking and saliency theory domains, as we want to compare the output of hROIS
(which could be analyzed in terms of fixations’ types) with aROIS (which could be
seen as saliency maps as they try to highlight which are the regions of interest of the
image).

Before entering into the details of the experiments, it is necessary to make a brief
theoretical introduction of the elements that constitute the basis of the analysis, which
are: 1) Eye tracking devices; 2) Saliency theory and 3) Integration of eye tracking
fixations into saliency maps. Therefore we will use the next section to perform this
study and after this, we will continue with the experimental setup and the results.
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Figure 8.1: Graphical representation of the scope of the analysis.

8.3 From eye tracking to saliency theory. Integrated
analysis of fixations via task-driven saliency maps.

In this section we will make a brief introduction of eye tracking although in our
experiments we will only analyze the results that an eye tracker device provides,
without entering into details such as how to configure correctly the eye tracker device.
As mentioned in [37], when approaching the topic of eye tracking, we should star
from considering the motivation for recording human eye movements. Taking this
into account, when we are fixing our attention at a certain point of the field of view,
we move our eyes to bring a particular portion of this view into high resolution so we
can see in finer detail whatever the focus of our attention has been. In this sense, we
can think of following the path of attention of a given observer by tracking his/her
eye movements. In our case we will be interested on finding out which parts of the
image attracts the visual attention of the physicians. This problem is tackled on the
literature in two specific domains: analysis of fixations and saliency theory. In this
section we will settle the basics of both eye tracking devices and saliency theory in
order to provide a framework for our later study.
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8.3.1 Analysis of the fixations

One important aspect that must be clarified is how to identify and label the different
types of fixations that we may find [93]. More specifically we must distinguish between
fixations and saccades. In order to understand its difference we must take a look at
the physical structure of the eye itself. The fovea is the part of the eye located at the
center of the macular region of the retina and it is responsible for sharp central vision,
which is a characteristic in humans that enables us to read or watch television, coming
into play in any human activity where visual detail is of primary importance. Taking
this into account, a fixation occurs when our foveal attention stays on a particular
object and the movement of our eyes from one fixation to another are known as
saccades. Some works extends these definitions to another concepts such as smooth
pursuit, blink and noise. In order to capture the observer’s focus of attention an eye
tracker device is used.

Eye tracker devices measure the rotation of the eyes in several ways, although the
methods could be grouped into three categories. The first one uses an attachment to
the eye, such as a special contact lens with an embedded mirror and the movement of
this attachment devices is measured under the assumption that it does not slip along
the eye rotation. The second group uses non-contact optical methods to measure eye
motion by using the assumption that light (typically infrared) is reflected from the
eye and sensed by a video camera or some other optical sensor. The information is
later analyzed to extract eye rotation from changes in reflections. The last group of
methods uses electric potentials measured with electrodes placed around the eyes, as
they are the origin of a steady electric potential field which could also be detected in
total darkness and with eyes closed. For our experiments we will use an eye tracker
device from the second group, where a camera is mounted in a helmet-like device
which is attached to the head of the person whose fixations we want to track.

In our case, as it will be explained in the Experimental Setup subsection, we
have information from 22 different physicians. We will use this information in two
different ways: first of all we will analyze separately the performance of each type of
physicians and, after this analysis is done, we will compare physicians’ performance
with the output of our polyp localization method. This last comparison will be done
in the framework of saliency theory, which fundamentals we will explain next.

8.3.2 Introduction to saliency theory

As mentioned before, we can define saliency of an item (object, person or pixel) as
a state or quality which it stands out relative to its neighbours. More precisely, we
will use the definition of saliency to identify which objects on the image are meant
to attract more attention. Visual attention is a process that enables biological and
machine vision systems to select the most relevant regions from a scene. Modeling
visual saliency has attracted much interest recently and there are several frameworks
and computational approaches available. Before enumerating some of the available
alternatives, we must make a distinction between saliency and attention. Visual



8.4. Linking eye tracking with saliency. Task-driven saliency maps 167

attention is a broad concept that covers many topics such as bottom-up/top-down
or spatial/spatio-temporal. Visual saliency has been recurrently referred as bottom-
up process that delimits which image regions hinder different features from their
neighbors [17].

In this sense, bottom-up saliency has been studied in search tasks such as finding
an odd item among distractors as well as in eye movement prediction on free viewing
of images or videos. In contrast to bottom-up, top-down attention deals with high-
level cognitive factors that make certain areas of the image more relevant. In this
concept we can included task demands or emotions. As it can be seen, our DOVA
energy maps could be enclosed to this last group, as it models which areas of the
image are meant to contain a polyp, which is the main objective to find for the case
of physicians during a colonoscopy procedure.

Visual attention studies can also be categorized in other ways, depending on what
they are interested in. For instance another division groups existing approaches into
spatial (still images) or spatio-temporal models (video stimuli). Considering this
classification, the analysis that we will perform is based on the individual analysis
of frames extracted from a video and therefore we will concentrate on methods that
cover still image analysis.

Another classification divides the models of attention into space-based or object-
based. The first group has as goal to create saliency maps that may predict which
locations have higher probability of attracting human attention, which is the aim
of our polyp localization method. The later group aims at segmenting or detecting
objects to predict salient regions. We could fit our polyp segmentation methods into
this last group, as our aim is to provide with an accurate polyp region segmentation.

As it can be seen there are several classification criteria and there are many meth-
ods with are devoted to define visual attention maps and saliency maps. At this point
of our research we are not interested on comparing our DOVA energy map to another
saliency maps but, as we will depict in the last chapter of the thesis, it is a task that
we would like to perform in the near future. As we have mentioned before, we could
group our polyp localization methods into the field of top-down attention saliency.
Referring to this concepts, there are several works in the literature that tackle the
problem of task driven attention in videos, and we will make a brief review of some
of them in the next section.

8.4 Linking eye tracking with saliency. Task-driven
saliency maps

As we have mentioned before, with an eye tracking device we are able to capture
physicians observations. At this point we can perform two different analysis: we can
compare the individual observations of each physician to the output of our polyp
localization methods or to group physicians according to the number of interventions
and compare group results with the output of polyp localization methods.
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In this case we aim at the second type of analysis and, in order to compare the
output of a group of physicians with DOVA energy maps, we should find a way to
integrate physicians information. Related to this, there are several approaches in the
literature that provide with interesting methods to integrate this information. It has
to be noted that there are very few works which deals with video studies, although
some of them are very interesting.

For instance, we can find a preliminary study on how to extract visual features with
eye tracking for saliency driven registration in [26]. Although the method presented
is interesting the scope of the analysis is different from ours, because the creation of
saliency maps from fixations is not task oriented. Another relevant work is the one
presented in [86], where a comparison very similar to the one we will present (hROIs
vs aROIS) is introduced. In this case, the analysis is performed on still images and,
as the method presented before, it is not task oriented. What is interesting about this
work is that it introduces a way to compare different ROIs such as using a distance
measure after clustering results of aROIs.

More related with the scope of our analysis is the work presented in [43], where the
concept of task driven saliency maps is introduced. In this case in order to compare
the performance of difference saliency maps the authors propose a thresholding on
saliency levels and then check if the higher values correspond to positions of the object
of interest. Although under a different name, the work presented in [55] also builds
on the idea of defining consistent locations (task driven objectives) and also provides
with methods to create region of interest detector’s saliency maps from the output of
aROIs.

Among all the references that we have found, we will use for our experiments
the process of creating task-driven saliency maps explained in [24]. In this work the
attention of an image region is measured by fixation density, that is, the salience of
an image is represented by a fixation density map. The fixation map is created from
a set of discrete fixation points (xf

n,y
f
n),n = 1, ...N where N is the total number of

fixation points found in a frame and (xf
n,y

f
n) is the location of the n-th fixation point.

Those fixation points are interpolated by a Gaussian function to generate a fixation
density map s(x, y):

s (ω, l) =
1

N

N∑
n=1

1

2πσ2
s

.exp

(
−
(ω − ωfn)

2
+
(
l − lfn

)2
2σ2

s

)
(8.1)

, where x and y denote, respectively, the horizontal and vertical positions of an
observation pixel and s is the standard deviation of the Gaussian function, determined
according to the visual angle accuracy of the eye tracking system. More precisely,

σs = L× tan
0.5π

180
(8.2)

, where L is the viewing distance between the subject and the display (in this
case, 60 cm). By using this method, the value of each fixation pixel is propagated to
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its neighbor pixels. Therefore, a pixel in a densely populated fixation area is more
attractive than a pixel in a sparsely populated fixation area. For the same reason,
a region is more attractive if it is brighter on the fixation density map, as shown in
Figure 8.2:

(a) (b)

Figure 8.2: Creation of task-driven saliency maps: (a) Position of physician’s fixa-
tions; (b) Task-driven saliency maps

We will use these task-driven saliency maps to integrate the physicians observation
and, as it will be mentioned later, to create saliency maps from the output of our polyp
localization methods. In the following sections we will present the experimental setup
along with some definition of the metrics that we will use, before proceeding with the
experimental results.

8.5 Experimental Setup

8.5.1 COLON-PHYS database

In order to measure how close computer vision algorithms are to physician’s knowl-
edge, a series of experiments have been run in association with physicians from Beau-
mont Hospital and St. Vincent’s Hospital. The experiments consisted of showing,
to each physician, a series of videos and, by using an eye tracking device, acquiring
the gaze position for each frame. Before starting with the analysis of the results, we
present the basic data of the experiments.

As mentioned before, these experiments have been made with the collaboration of
22 different physicians from Beaumont Hospital and St. Vincent’s Hospital. Although
their identities cannot be exposed here, we show in Table 8.1 a summary of the number
of interventions done by each physician. It has to be noted that some of them have
not done any intervention whereas some of them have participated in a great number
of procedures. This fact leads us to distinguish between two classes of physicians,
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Physician Number of Inter-
ventions

Physician Number of Inter-
ventions

1 50− 100 12 20000
2 2000 13 80
3 5 14 1250
4 0 15 200
5 600 16 8
6 800 17 200
7 > 100 18 20
8 400− 500 19 80
9 0 20 10
10 2000 21 500
11 600 22 50

Table 8.1: Number of interventions performed by each physician.

experts and novices. In this case, the threshold number of interventions used to
classify the physicians has been set to 100, as it is the number of interventions each
trainee should have performed in order to be considered as experts, following the
guidelines depicted by the Joint Advisory Group on Gastrointestinal Endoscopy [5].

One of the objectives that we want to achieve with the analysis of eye tracking
data is to measure if there is any difference in behaviour between experts and novices,
taking into account that we have the number of interventions that each physician has
made. This analysis can be done in two ways: we can create a ’mean expert’ and
’mean novice’, by integrating all the fixations from each group by using task-driven
saliency maps or by analyzing separately the behavior of each physician.

Before starting with this analysis, we have to define the experimental setup. We
count with 12 different videos and we have, for each of them, a ground truth that
consists of a elliptical mask centred in the polyp’s centre along with major and minor
radii values. We can see one example from each video (along with the superimposed
ground truth) in Figure 8.3.

8.5.2 Metrics used in the analysis

As it has been mentioned before, the objective of the analysis presented in this chap-
ter is to compare the observations of the physicians’, obtained via an eye-tracking
device, with the output of our polyp localization methods. But before going to this
comparison, we will make a first analysis of pure eye tracking information. This first
analysis is done with the purpose of checking if the degree of expertise, defined from
the number of procedures that each physician has performed, has an impact on the
discovering of polyps. Therefore we must define a series of metrics in order to perform
this analysis:

1. First Fixation: If we integrate each group’s fixation information, we will refer as
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8.3: Ground-truth for Eye Tracking analysis. We show, for each video, one
representative frame containing a polyp with the ground truth label superimposed:
(a) Video 2; (b) Video 3; (c) Video 4; (d) Video 5; (e) Video 8; (f) Video 9; (g) Video
10; (h) Video 12; (i) Video 13; (j) Video 14; (k) Video 15; (l) Video 18;
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first fixation the number of frame where the maxima of the task-driven saliency
map falls over the polyp mask. In the case of individualized analysis of the eye
tracking data, we will define as the first fixation the number of frame where the
distance between the physician’s fixation and the polyp mask is zero.

2. Reaction time: Reaction time is the elapsed time between the presentation of a
sensory stimulus and the subsequent behavioral response. In this case, we will
refer as reaction time as the difference in number of frames between the first
apparition of the polyp on the video and the first frame where the maxima of
the task-driven saliency maps fall over the polyp mask (first fixation).

3. Dwelling time: The total time spent looking at a stimulus. In our experiments,
we will measure the dwelling time as the number of frames (non-necessarily
consecutive) that the ’mean expert’ and the ’mean novice’ place the maxima of
the task-driven saliency map over the polyp mask.

4. Concentration Rate: As we are integrating physician’s information into a task-
driven saliency map we have to define a measure that inform us about how
concentrated are the fixations in a certain point on the image (in our case,
inside the polyp’s mask). We define as concentration rate the percentage of
energy that falls inside a certain area of the image.

We will present in the next two sections the experimental results obtained by this
analysis. Although it may seem a little obvious, we must mention that in this case
the task that both physicians and DOVA energy maps perform is to find polyps in
colonoscopy studies and we will compare the performance of each group of methods
according to how fast they are on detecting a polyp or to how focused is the attention
on the polyp once it is discovered.

8.6 Eye tracking data analysis

In this section we will present analysis of pure eye tracking data, that is, we will
compare the performance of experts and novices according to the metrics presented
in the previous section.

8.6.1 Reaction time

In order to calculate the reaction time we have taken the following steps:

1. Elaboration of the ground truth.

2. Calculation of the task-driven saliency maps.

3. For each frame that appears on the ground truth, calculation of the position of
the maxima of the task-driven saliency map and check if the maxima falls inside
the polyp’s mask.



8.6. Eye tracking data analysis 173

The results of the reaction time for experts can be seen in Table 8.2 whereas the
results for novices can be consulted in Table 8.3. We have to mention that for the
case of video 4 the polyp appears briefly from frames 252 to 260 and after disappears
until frame 714, therefore for this case we will consider when calculating reaction time
the video to be cut from frame 260 to 714.

Video First Apparition
of Polyp

1st Fixation Ex-
perts

Reaction Time
(#offrames)

2 266 272 6
3 393 393 0
4 252 252 0
5 382 387 0
8 370 378 0
9 144 193 49
10 553 660 107
12 1373 1373 0
13 126 182 0
14 235 235 0
15 195 198 3
18 369 369 0

Table 8.2: Experts’ fixation results.

Video First Apparition
of Polyp

1st Fixation
Novices

Reaction Time
(#offrames)

2 266 275 9
3 393 400 7
4 252 736 30
5 382 389 2
8 370 392 14
9 144 175 31
10 553 565 12
12 1373 1373 0
13 126 185 3
14 235 236 1
15 195 212 17
18 369 370 1

Table 8.3: Novices’ fixation results.

The difference between Experts and Novices’ reaction time is presented in Table
8.4.

We can see from Table 8.2 that experts tend to detect the polyp soon after its
first apparition with the exceptions of videos 9 and 10. In the other hand, we can see
from Table 8.3 that novices detect the polyp later, although the difference in number
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Video First Apparition of Polyp Difference in Reaction
Time

2 266 3
3 393 7
4 241 30
5 382 2
8 370 14
9 144 −18
10 553 −95
12 1373 0
13 126 3
14 235 1
15 195 14
18 369 1

Table 8.4: Difference Reaction time.

of frames is not critical (considering that the videos are codified at 25 frames per
second).

We can observe a comparison between experts’ and novices’ fixation rate by con-
sulting Table 8.4. The difference between both groups are not large, although we can
see that for 9 of the 12 videos the experts detect the polyp earlier than novices, which
may suggest that the difference in the number of procedures has a relative impact in
the reaction time.

Finally, there are two cases where experts’ detect the polyp later than novices:
videos 9 and 10. We can observe in Figure 8.4 the frames where experts and novices
place their maxima of the task-driven saliency map.
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(a) (b)

(c) (d)

Figure 8.4: Difference in reaction time: cases of videos 9 and 10 where novices have
their first fixation earlier than experts: (a) Video 9 Experts’ first fixation; (b) Video
9 Novices’ first fixation; (c) Video 10 Experts’ first fixation; (d) Video 10 Novices’
first fixation;



176USE OF A POLYP LOCALIZATIONMETHODTOMODEL PHYSICIANS’ OBSERVATIONS

8.6.2 Dwelling time

In this case we compute the dwelling time by counting the number of frames where
each group of physicians place the maxima of the task-driven saliency map over the
polyp mask. We can see results on dwelling time on Table 8.5

Video Dwelling time
Experts

Dwelling time
Novices

Difference
Experts-Novices

2 85 60 25
3 70 56 14
4 146 103 43
5 78 73 5
8 106 80 26
9 71 70 1
10 3 10 −7
12 119 119 0
13 75 59 16
14 74 35 39
15 104 68 26
18 67 26 41

Table 8.5: Dwelling time results.

As it can be seen from Table 8.5 for 11 of the 12 videos the dwelling time for experts
is higher than for novices. This can be seen in two different ways. On the one hand
we can see that experts place their maxima of saliency on the polyp for more frames
than novices. This can be interpreted as the experts have more confidence on where
the polyp is on the image whereas novices do not and because of this the saliency
map of novices is more scattered than experts’, which seem to be more focused on
polyp position. We present in Table 8.6 the number of frames with polyp for each
video, in order to stress this last sentence’s hypothesis.

In order to close this subsection we show in Table 8.7 the percentage of frames
where polyps attract the attention of experts and novices, measured as placing the
maxima of task driven saliency map on the polyp mask:

As it can be seen from this last experiment, there is a significative difference
between experts and novices in terms of dwelling time. For 9 out of the 12 videos
the differences is greater than 10% and, in this case, considering than once a polyp
appears the physician that performed the intervention wanders around it, we can
conclude that experts perform better than novices when the polyp is present, as they
focus their fixation in the polyp on more frames.



8.6. Eye tracking data analysis 177

Video Total number of frames Frames with polyp
2 1097 133
3 1500 138
4 2268 159
5 1688 133
8 1885 145
9 1733 149
10 1361 112
12 1500 120
13 1639 134
14 1501 132
15 946 137
18 923 101

Table 8.6: Number of frames with polyp for each video.

Video Dwelling
time Ex-
perts

Percentage
Experts

Dwelling
time
Novices

Percentage
Experts

Difference
Experts -
Novices

2 85 63.9% 60 45.11% 18.79%
3 70 50.72% 56 40.58% 10.14%
4 146 91.82% 103 64.78% 27.04%
5 78 58.65% 73 45.91% 12.74%
8 106 73.1% 80 55.17% 17.93%
9 71 47.65% 70 46.98% 0.67%
10 3 0.027% 10 0.09% −0.06%
12 119 99.17% 119 99.17% 0%
13 75 55.97% 59 44.03% 11.94%
14 74 56.06% 35 26.52% 29.54%
15 104 75.91% 68 49.64% 26.27%
18 67 66.34% 26 25.74% 40.6%

Table 8.7: Dwelling time percentage results.

8.6.3 Energy concentration rate

The results obtained from the previous experiment indicate a slight difference in
behaviour between experts and novices, we can not forget that we are basing our
analysis on the creation of a ’mean expert’ and a ’mean novice’. Because of that,
we may have that the maxima of fixation falls under the polyp mask but the energy
of the image is not concentrated on the polyp, hence the importance of having not
only a strong decision on which frame results on the first fixation, but to also have a
concentrated view.

Therefore, we have measured, once we have decided in which frame occurs the
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first fixation, the concentration rate of the task-driven saliency map under the polyp
mask, calculated as shown in Eq. 8.3.

CR = 100 · Ep

Eall
[%] (8.3)

, where CR stands for concentration rate, Ep stands for the energy under the polyp
mask and Eall stands for the energy of all the image. The energy is calculated as the
sum of the value of every pixel in the task driven saliency map.

Experimental results can be consulted in Tables 8.8 and 8.9. In this sense define
as concentration rate the percentage of energy of the task driven saliency maps that
falls under the polyp mask therefore a high concentration value will mean that nearly
all the physicians for the particular group were looking inside the polyp whereas a
low value will denote a random pattern of physicians fixations whose combined task
driven saliency maps incidentally places the maxima inside the polyp mask.

Video % Concentration
Experts

% Concentration
Novices

Difference
Experts-Novices
in %

2 13.59% 13.15% 0.44%
3 78.09% 65.39% 12.7%
4 22.27% 49.15% −26.87%
5 52.47% 32.48% 19.98%
8 46.44% 17.53% 28.91%
9 75.6% 16.8% 58.8%
10 7.9% 14.82% −4.09%
12 73.84% 70.79% 3.04%
13 53.28% 1.82% 51.45%
14 9.67% 9.15% 0.51%
15 34.43% 0% 34.43%
18 5.14% 2.7% 2.44%

Table 8.8: Difference in concentration rate in the experts’ first fixation frame.

We can sketch some interesting results by observing Table 8.8 and Table 8.9 but,
in order to organize better the information we will compile the results of the difference
experts-novices in Table 8.10.

The before mentioned tables show that, for the majority of the cases, once the
experts find the polyp, their concentration rate is higher than novices’(see Table 8.8)
but, perhaps more interesting is the fact that, even when the novices find the polyp,
the expert’s concentration rate continues to be higher (see Table 8.9). We can observe
from Table 8.10 that for a great number of videos (7 out of 12) even when novices
find the polyp, experts’ concentration rate is higher. Moreover, for some of the cases
when this does not happen (videos 9 and 18) the difference is very small.

Taking into account these results we can conclude that not only experts localize
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Video % Concentration
Novices

% Concentration
Experts

Difference
Novices-Experts
in %

2 45.31% 23.37% 21.93%
3 67.26% 76.04% −8.77%
4 13.31% 19.26% −5.95%
5 29.75% 36.31% −6.56%
8 17.53% 46.44% −28.91%
9 93.57% 92.89% 0.68%
10 7.9% 14.82% −6.92%
12 70.8% 73.84% 3.04%
13 27.18% 22.22% 4.95%
14 22.8% 7.9% 14.9%
15 10.3% 22.97% −12.67%
18 4.76% 4.38% 0.37%

Table 8.9: Difference in concentration rate in the novices’ first fixation frame.

Video Difference Experts-
Novices in % on First
Fixation Experts

Difference Novices-
Experts in % on First
Fixation Novices

2 0.44% 21.93%
3 12.7% −8.77%
4 −26.87% −5.95%
5 19.98% −6.56%
8 28.91% −28.91%
9 58.8% 0.68%
10 −4.09% −6.92%
12 3.04% −3.04%
13 51.45% 4.95%
14 0.51% 14.9%
15 34.43% −12.67%
18 2.44% 0.37%

Table 8.10: Difference in concentration rate in the experts’ first fixation frame.

earlier the polyp than novices but, once they localize it, they are more focused on the
polyp and this focus is kept for the rest of the frames. We can see in the Figure 8.5
an example of experts’ and novices’ concentration rates during all the frames with
polyp for video 13. As it can be observed, the difference between experts and novices
is higher than 0% for a big number of frames.
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Figure 8.5: Difference in concentration rate between experts and novices during all
the frames with polyp.

8.7 From polyp localization to saliency maps: DOVA
saliency maps

After a preliminary study on physicians’ fixations, we start with the second phase
of the analysis which consists of correlating the output of hROIs with our polyp
localization method. In this case we will use for polyp localization the method that
has offered better performance, which is WM-DOVA and we will also perform specular
highlights correction and blood vessels mitigation on the original images. As we want
to compare the performance of DOVA with the physicians, we must transform one of
the two members of the comparison in order to make a fair analysis.

Therefore, before presenting results of the comparison, we introduce in this section
the new DOVA saliency maps, which are created from the output of our polyp local-
ization method. In order to make comparable the output of our polyp localization
methods and task-driven saliency maps, we will use energy map information in order
to create ’virtual’ physicians. This virtual physicians are placed in the position of
the local maximas of the WM-DOVA energy maps. In this case we have imposed a
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(a) (b)

(c) (d)

Figure 8.6: DOVA saliency maps from the output of polyp localization. (a) Orig-
inal image; (b) WM-DOVA energy map; (c) WM-DOVA saliency map; (d) Saliency
regions by means of WM-DOVA saliency map.

distance constraint of 50 pixels, which coincides with the mean radius of the polyps
from our CVC 300 COLON DB database. Once we have calculated the position of
the virtual physicians, we create the DOVA driven saliency map as depicted in Eq.
8.4.

s (ω, l) =
1

N

N∑
n=1

1

2πσ2
s

.exp

(
−
(ω − ωfn)

2
+
(
l − lfn

)2
2σ2

s

)
(8.4)

We explain graphically the process on how to create DOVA saliency maps from
polyp localization in Figure 8.6.

As it can be seen from Figure 8.6 what we do is to extract the same number of
local maxima of our DOVA energy maps and fit them to physicians so we can create
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the task driven saliency map in the same way. It has to be noted that we will not
accept any local maxima value, we will use only local maxima value up to a certain
threshold from the maxima of DOVA map. In this case we have used as threshold
value 0.9 in order to assess the performance of DOVA in a similar way that we have
done before for polyp localization results.

8.8 Comparison of DOVA saliency maps with physi-
cians’ task driven saliency maps

As the objective of the analysis presented in this chapter is to check if our novel polyp
localization method can approximate physicians’ observations and therefore we will
use the same metrics that we have introduced before in order to compare the results
achieved via hROIs and aROIs.

8.8.1 Reaction time

We present in Table 8.11 the reaction time for our DOVA saliency maps. We can
extract several conclusions from the results presented in the table:

• We localize the polyp for all the videos. That is, our method is robust enough
to be useful for new studies.

• The reaction time is low for all the videos: only for the cases of videos 9 and
10 DOVA saliency maps last longer to localize the polyp. For the rest of the
videos, considering that frames are acquired at 25 fps, the reaction time could
be considered as good.

As it has been repeated during this chapter, the aim of this analysis is to compare
DOVA saliency maps’ performance with the output of hROIs therefore we provide
comparison results in Table 8.12 and Table 8.13.

We can extract the following conclusions by observing the results from Table 8.12
and Table 8.13:

• On the one hand, we can observe at a glance that WM-DOVA obtains better
results than novices for more than half of the videos. This difference is higher
for video 4 although we can see that for videos 10 and 13 there is a big difference
between novices and the performance of WM-DOVA. We will make a case-by-
case review of this videos later on this section.

• On the other hand, we observe that WM-DOVA performs worse than experts
for the great majority of the videos. It is true that for some of the cases, as it
also happens for novices, that the difference in most of the cases is less or equal
than 7 frames, which means that the delay is of about 0.25 seconds. We obtain
better results than WM-DOVA for 2 videos, 9 and 15.
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Video First Apparition
of Polyp

1st Fixation
DOVA

Reaction Time

2 266 267 1
3 393 397 4
4 252 254 2
5 382 389 7
8 370 382 12
9 144 163 19
10 553 660 107
12 1373 1373 0
13 126 184 58
14 235 237 2
15 195 195 0
18 369 376 0

Table 8.11: DOVA saliency maps fixation results.

Video Reaction Time
DOVA

Reaction Time
Novices

Difference
DOVA - Novices

2 1 9 -8
3 4 7 -3
4 2 30 -28
5 7 2 5
8 12 14 -2
9 19 31 -12
10 107 12 95
12 0 0 0
13 58 3 55
14 2 1 1
15 0 17 -17
18 7 1 6

Table 8.12: Comparison of DOVA saliency maps’ reaction time with novices.

• By taking a look at the tables, we can conclude that WM-DOVA performs
better than novices when localizing first the polyp and worse than experts. In
both cases the difference are not enough to consider them as significant but the
numbers show that WM-DOVA performs comparably with the output of several
hROIs.

Before closing with this section, we will make a review of those videos where
DOVA’s reaction time is different from zero in order to learn why we have not being
able to localize the polyp in its first apparition.
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Video Reaction Time
DOVA

Reaction Time
Experts

Difference
DOVA - Ex-
perts

2 1 6 5
3 4 0 4
4 2 0 2
5 7 0 7
8 12 0 12
9 19 49 -30
10 107 107 0
12 0 0 0
13 58 0 58
14 2 0 2
15 0 3 -3
18 7 0 7

Table 8.13: Comparison of DOVA saliency maps’ reaction time with experts.

Case by case analysis of videos

For the case of video 3 we can observe in Table 8.11 that the reaction time is of 4
frame. We can observe in Figure 8.7 (a) that in this case the reason behind this small
delay may be related to the excessive blurring of the image, which may provide with
less clear contours. Even considering that WM-DOVA places the maxima real close
to the polyp mask, as it can be seen in the image.

The delay for video 4 is slightly smaller than for video 3. We can observe in Figure
8.7 (b) that in this case we can justify the delay of WM-DOVA because of the high
density of wrinkles and folds and also because of the bad visibility of the polyp.

We obtain a delay of 7 frames for video 5. As we can see in Figure 8.8 (a), we can
also associate the difference due to the presence of folds and wrinkles, although we
have to mention than for this case the contours of the polyp are weaker than in later
examples of this same video.

The delay for video 9 (Figure 8.8 (b)) is clearly caused by a profusion of elements
of the endoluminal scene, specially folds and fecal content. Some other cause of error
could be the small size of the polyp because , as we have mentioned in previous
sections, we are applying directly our best polyp localization method and, in this
image, the polyp may not fit even the minor radius size.

Similarly to the video 9, the delay for video 10 is caused by folds, fecal content
and, in this case, blurring (see Figure 8.9 (a)).

We can see for the case of video 13 that the delay seems to be caused by the
elements that we can consider to be part of the lumen or not clearly visible parts of
the image, although we also have to consider than in this case fold contours are much
clearer than polyps’, as it can be seen in Figure 8.9 (b).
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Video 14 present strong folds and a polyp which only present clear contours for
one of its sides, as it can be observed in Figure 8.10 (a).

Finally the delay for video 18 is caused by folds and lumen but in this case we also
observe that the mix of specular highlights and color channel misalignment deviates
the maxima of WM-DOVA saliency map to an erroneous part of the image, as it can
be seen in Figure 8.10 (b).
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(a)

(b)

Figure 8.7: (a) Video 3: Comparison between WM-DOVA, experts and novices
saliency maps. (b) Video 4: Comparison between WM-DOVA, experts and novices
saliency maps. In both examples the maxima of WM-DOVA is painted by a yellow
square, the maxima of experts is represented by a blue square and the maxima of
novices is represented as a red square. Polyp mask is painted as a yellow ellipse.
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(a)

(b)

Figure 8.8: (a) Video 5: Comparison between WM-DOVA, experts and novices
saliency maps. (b) Video 9: Comparison between WM-DOVA, experts and novices
saliency maps. In both examples the maxima of WM-DOVA is painted by a yellow
square, the maxima of experts is represented by a blue square and the maxima of
novices is represented as a red square. Polyp mask is painted as a yellow ellipse.
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(a)

(b)

Figure 8.9: (a) Video 10: Comparison between WM-DOVA, experts and novices
saliency maps. (b) Video 13: Comparison between WM-DOVA, experts and novices
saliency maps. In both examples the maxima of WM-DOVA is painted by a yellow
square, the maxima of experts is represented by a blue square and the maxima of
novices is represented as a red square. Polyp mask is painted as a yellow ellipse.
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(a)

(b)

Figure 8.10: (a) Video 14: Comparison between WM-DOVA, experts and novices
saliency maps. (b) Video 18: Comparison between WM-DOVA, experts and novices
saliency maps. In both examples the maxima of WM-DOVA is painted by a yellow
square, the maxima of experts is represented by a blue square and the maxima of
novices is represented as a red square. Polyp mask is painted as a yellow ellipse.
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8.8.2 Dwelling time

As we did for the case of task-driven saliency maps for experts and novices, we
present here dwelling time results obtained by our DOVA saliency maps, along with
a comparison with the data obtained from physicians. We can see in Table 8.14 the
experimental setup:

Video Dwelling time
DOVA

Dwelling time
Experts

Dwelling time
Novices

2 40 85 60
3 44 70 56
4 32 146 103
5 13 78 73
8 29 106 80
9 28 71 70
10 1 3 10
12 120 119 119
13 5 75 59
14 10 74 35
15 44 104 68
18 6 67 26

Table 8.14: Dwelling time results.

As it can be seen from Table 8.14 for almost all the videos the dwelling time for
DOVA saliency maps is lower than for experts’ and novices’. There are several reasons
for this difference:

• As expressed at the end of the previous subsection, WM-DOVA is still affected
by some other elements of the endoluminal scene that have not been studied in
this thesis such as folds, bubbles or fecal content.

• We have to consider that there are some cases where WM-DOVA will always
fail because of the size of the polyp. If the polyp is too big (see Figure 8.11
(a)) or too small (Figure 8.11 (b)), the sectors that we use to accumulate will
probably not catch the contours of the polyps.

• Finally, we have to mention that we have always used the maxima of WM-
DOVA value in order to localize the polyp but maybe by lowering the threshold
we could catch some polyps that we miss. We will sketch more about this in
the Future Work.

8.8.3 Concentration rate

Finally in order to end the comparison between DOVA saliency maps and physicians’
observations, we offer experimental results about concentration rate in Table 8.15 and
Table 8.16:
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(a) (b)

(c) (d)

Figure 8.11: Some reasons for errors on locating polyps. (a) Original image with a
big polyp; (b) Image with polyp mask superimposed; (c) Original image with a small
polyp; (d) Image with polyp mask superimposed.
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Video % Concentration
DOVA

% Concentration
Experts

Difference
DOVA-Experts

2 18.7% 26.66% −7.96%
3 4.74% 3.22% 1.52%
4 15.21% 22.27% −7.06%
5 13.02% 6.47% 6.55%
8 16.44% 22.44% −6%
9 17.52% 25.6% −8.08%
10 14.3% 17.9% −3.6%
12 52.80% 72.84% −20.04%
13 17.33% 23.28% −5.95%
14 8.2% 9.47% −1.27%
15 26.15% 34.43% −8.28%
18 13.4% 5.34% 8.06%

Table 8.15: Difference in concentration rate in the DOVA saliency maps’ first fixa-
tion frame.

Video % Concentration
DOVA

% Concentration
Novices

% Difference
DOVA-Novices

2 18.7% 24.14% −5.44%
3 4.74% 2.39% 2.35%
4 15.21% 20.15% −4.94%
5 13.02% 5.48% 7.54%
8 16.44% 17.53% −1.09%
9 17.52% 23.8% −6.28%
10 14.3% 15.82% −1.52%
12 52.80% 69.78% 16.98%
13 17.33% 16.82% 0.51%
14 8.2% 7.45% 0.75%
15 26.15% 27.0% −0.85%
18 13.4% 3.7% 9.7%

Table 8.16: Difference in concentration rate in the DOVA saliency maps’ first fixa-
tion frame.

As it can be observed from Table 8.15 and Table 8.16, in this case our DOVA
saliency maps offer worse concentration rate than experts in most of the cases but
these results improve if we compare our DOVA saliency maps results with novices,
where we get better or comparable results for half the videos. This results are clearly
damaged by all WM-DOVA’s original failures that have been expressed before. We
also can observe that our concentration rates, except for some cases, are lower than
20% in mean which should indicate that although we place the maxima of DOVA
saliency map inside the polyp, we are highlighting (in terms of giving saliency re-
sponse) to another bigger parts of the image. This indicates that we should continue
working on those challenges in order to reduce their contribution in terms of valley
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information and, consequently, in terms of DOVA saliency maps.

8.9 Preliminary results of the use of DOVA saliency
maps as polyp detectors

In the experiments that we have shown until this moment we have been working in
frames with polyps in order to validate our methods, which are based on a model of
appearance. In this final experimental section we show preliminary results on what
happens in frames without polyps, in order to see if our current version of polyp
localization method could also be used as a tool for a further polyp detection system
or not.

We show in Table 8.17 results of the mean and standard deviation of WM-DOVA
energy map for all the frames in each video.

Video Mean WM-
DOVA (all)

Mean WM-
DOVA
(polyp)

Mean WM-
DOVA (no
polyp frames)

Difference

2 1173.3 1209.3 1136.2 154.1
3 1217.7 1217.9 1217.2 0.67
4 44.7 6.05 59.09 −53.04
5 2739.8 2731.8 2740.7 -8.94
8 374.5 257.27 386.4 −129.12
9 1460.8 751.55 1556.1 −814.5
10 6265.6 9163.2 5964.6 3198.6
12 235.4 141 391.5 −249.5
13 1146.6 854.9 1184.6 −329.7
14 127.8 120.3 155.1 −35.1
15 4.78 4.0 6.6 −2.6
18 86.1 127.81 44.42 83.39

Table 8.17: Comparison of mean of WM-DOVA energy map for all the image,
frames with and without polyp.

We can see from this table that there are half of the videos where the mean value
of WM-DOVA energy map is higher for frames with polyps and without polyps but
we can also see that there are videos such as video 8 and video 9 where the opposite
difference is higher. One of the objectives of this final experiment was to test if we
can obtain a threshold value that can determine if a frame contains a polyp or not.
To do so we have done two different analysis, one considering all the frames of the
video and the other one considering only what happens inside and outside the polyp
mask in those frames that contain a polyp.

Concerning to the first analysis, we can observe in Table 8.18 that we cannot say
by means of the maxima of WM-DOVA for the whole image that a frame contains a
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polyp or not, because there are a few videos where it seems the maxima of WM-DOVA
is higher for frames with polyp but the general trend is the contrary.

Video Max WM-
DOVA (frame
withpolyp)

Max WM-DOVA
(frame without
polyp)

Difference

2 1.6 1.16 0.44
3 1.12 5.9 −4.77
4 0.54 0.53 0.01
5 1.69 5.86 −4.17
8 0.51 2.15 −1.64
9 1.86 11.45 −9.58
10 0.92 2.62 −1.7
12 0.3 0.11 0.19
13 1.4 0.945 0.462
14 0.14 0.89 −0.75
15 0.12 0.34 −0.22
18 0.339 0.479 −0.14

Table 8.18: Comparison of maxima of WM-DOVA energy map for frames with
polyp and without polyp.

Finally, in order to find out if this trend keeps going for frames with polyp, we have
calculated the maxima of WM-DOVA inside and outside the polyp mask for frames
with polyp. We can observe results of this analysis in Table 8.19, where again the
conclusion is that, at its current state, we cannot use only the maxima of WM-DOVA
energy map to determine if a frame contains a polyp or no because for half of the
videos we obtain good results (maxima of WM-DOVA inside the polyp is higher than
outside the polyp) but for the other half we obtain the opposite result.

As we can see from the experiments of this section, at this stage of development
we cannot use the direct result of WM-DOVA to decide if a frame contains a polyp
or not. As mentioned before, there are several reasons that could have led us to
these results, such as not considering some elements of the endoluminal scene or just
problems of the algorithm itself such as the parameter value dependance. Nevertheless
these results encourage us to keep on improving our algorithms in order to provide in
the future better polyp detection results.

8.10 Discussion

Our polyp localization and polyp segmentation methods perform well in our database,
which consist of 380 examples of polyp appearance. Once these methods have been
tested in our experimental setup, we want to check if their performance is at least
comparable to physicians’ in order to potentially incorporate some of our tools in
future intelligent systems for colonoscopy.
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Video Max WM-DOVA
(inside polyp)

Max WM-DOVA
(outside polyp)

Difference

2 0.6852 1.33 −0.65
3 0.57 0.5 0.075
4 0.4 0.36 0.04
5 1.3 1.01 0.29
8 0.24 0.48 −0.24
9 1.56 1.63 −0.07
10 0.14 0.98 −0.84
12 0.3 0.22 0.08
13 1.4 0.945 0.462
14 0.14 0.19 −0.05
15 0.43 0.34 0.09
18 0.151 0.327 −0.17

Table 8.19: Comparison of maxima of WM-DOVA energy map for frames with
polyp, inside and outside the polyp mask.

In order to do so, we were provided with several videos where the physicians’
observations were captured by means of an eye-tracking device. The objective of the
experiments shown in this chapter is to provide a first framework where to compare the
performance of humans against computer vision algorithms. Another of the objectives
planned for this experiment was to check if our polyp localization method can be used
as a way to measure the expertise of a physician, in order to incorporate our methods
in training systems.

Therefore, the first step was to determine the expertise of the physicians that
participated on the experiments according to the number of procedures they have
done and then we have integrated their fixations into task driven saliency maps, which
highlight for a given frame the area of the images where the group of physicians has
paid more attention. We have also calculated metrics related to eye tracking in order
to compare factors such as reaction time or concentration rate, which have shown a
difference between experts and novices.

Once the comparison between the different types of physicians have been done,
we continue our analysis by incorporating our polyp localization method, which has
to be transformed into a saliency map in order to make a fair comparison. Our polyp
localization methods perform comparably to physicians in terms of reaction time but
suffers from some limitations of the method (such size constraints or no description of
some elements of the endoluminal scene) that make dwelling time and concentration
rate results worse.

Considering the limitations of our method, we have finally performed an experi-
ment in order to find out if our DOVA energy maps could be used in some way to
indicate polyp presence in a general frame, which may or not contain a polyp. Pre-
liminary results show that we get comparable results in reaction time but worse for
other measures. There results encourage us to improve our current methods in order
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to provide with better polyp detection results.



Chapter 9

Conclusions and Future Work

9.1 Conclusions

We have proposed in this thesis our polyp localization and segmentation methods
based on a model of appearance for polyps. The scope of the research included in this
thesis is the building of intelligent systems for colonoscopy, which aim at providing
additional information to the colonoscopy procedure. In this section we expose the
main conclusions that can be extracted from this work:

• Polyp appearance varies a lot within a colonoscopy study and between different
colonoscopy studies. Instead of relying on a model based on the general shape
that polyps may have, we have developed our model of appearance for polyps
based on how they do appear in colonoscopy frames. In order to develop this
model we have taken into account how colonoscopy frames are acquired and
generated. The aim of modelling the polyp appearance has been to find common
elements that may lead to automatize its localization in further examples. After
an exhaustive observation of several studies, we have found that intensity valleys
appear to surround polyps therefore we use as a first cue for our algorithms the
presence of valleys.

• Our model of appearance defines polyps as surrounded by valleys but polyps
are not the only source of valley information in the endoluminal scene. There
are other elements such as specular highlights, blood vessels or folds that also
generate a response in terms of valley information. We state that by tackling
the effect of these elements our polyp localization and segmentation methods
will improve their performance, as was shown in Chapter 7. Therefore we have
defined a novel depth of valleys image which aggregates and acknowledge the
effect of the before mentioned elements.

• We have developed our polyp localization method by taking into account that
protruding objects such as polyps should be enclosed by valleys. Our localization

197
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methods integrate this depth of valleys information in order to assess if a given
point is interior to an object. We have introduced several alternatives, from
a more shape-specific approach such as EF-DOVA to more general approaches
such as SA-DOVA or WM-DOVA. We have proven that as polyp appearance
varies a lot it, shape-specific approaches tend to work well only in very specific
cases. This led us to discard these type of approaches and develop more general
algorithms. In this case WM-DOVA has proved to perform better than the
other approaches, being more discriminative in terms of polyp localization.

• We have presented our two approaches for polyp segmentation and by comparing
them we have shown that including polyp-specific constraints from the beginning
such as the information that polyp localization provides leads to an improvement
of the final polyp region. We have shown that our method outperforms more
general segmentation methods such as normalized cuts [97] or TurboPixels [62].
We have also presented promising results on polyp region classification based
on the output of our polyp localization methods.

• In general our DOVA energy maps have been proved as a successful method to
localize polyps in images with polyp presence but they have yet to be proved as
polyp detectors. DOVA maps also suffer from a worsening of the quality of the
image. Although a first approach to solve the problem that lateral views may
represent was presented via our Depth of Valleys image, there are still some
cases where this approach fails to perform well. The lack of information about
other elements of the endoluminal scene, such as lumen or folds, may also have
an impact in our method. In order to go towards the development of polyp
detection method we should be able to overcome these issues.

• We have also shown promising results on the correlation between DOVA energy
maps and physicians’ observation, which may indicate a potential use of our
methods in application such as computer aided diagnosis or as a part of training
systems. It is true that our preliminary results indicate that we should improve
our methods in certain areas such as temporal coherence between consecutive
frames or solving scale-based issues.

9.2 Future Work

Although we have presented promising results on both polyp localization and polyp
segmentation, there is room for improvement in all the areas that have been covered
in this thesis. Following the same structure of the thesis, we introduce some of the
future lines of research that could be followed in the future:

• As mentioned before we should be able to find a better solution for lateral
views of polyps because our first approximation by means of the use of the
morphological gradient still does not work well for all the cases. By detecting
these lateral contours better we should be able to differentiate between polyp-
generated contours and the rest.
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• As we have expressed in the experimental results for polyp localization and
polyp segmentation, there are elements of the endoluminal scene that still have
an impact on the performance of our system, such as lumen, folds or fecal
content. We believe that addressing these elements may provide with better
localization results and, consequently, with better defined polyp segmentation
regions. We also plan to extend the work done about blood vessels, as we think
the mitigation process can be improved by studying some other color spaces or
different metrics.

• We have shown experimental results obtained by the best parameter combina-
tion of each algorithm but, in the case of DOVA energy maps there are some
parameters than could be automatized such as the minimum and maximum ra-
dius. We plan to explore this in the near future and we expect to improve by
catching some either too small or too big polyps that we could have missed.

• There are some methods that still can be improved such as VO-DOVA polyp
localization where, by means of better valley orientations, we could discard some
non-polyp boundaries.

• All our polyp localization and polyp segmentation results have been obtained
only by means of the maxima of accumulation as we wanted to assess the degree
of validity of our models but we can think of adding more complex classification
systems that could yield better results.

• In order to be incorporated in future intelligent systems, our methods needs
to be faster. Although we only last less than 5 seconds in the whole process
of localization and segmentation, images needed of a preprocessing that also
affects performance cost. This cost should be reduced in order to reach real-
time performance levels.

• We have presented a preliminary study on how to compare physicians’ observa-
tions with the output of computer vision methods. It is clear that this compari-
son could be extended by adding more players to the comparison, such saliency
models (Itti, GVBS) or feature detectors (such as SIFT or SURF), which should
be done in the near future. This comparison will also help us to improve our
polyp localization and segmentation methods by learning where our systems do
not perform well and others do.

• In order to progress towards a polyp detection method we should be able to
discard automatically those frames with bad quality, following the trend that
was shown in Chapter 2 about non-informative frame identification. We should
also include temporal and spatial coherence to improve polyp localization in
videos. This could be done by considering for a given frame polyp localization
results from anterior and posterior frames. This could lead to an improvement
of polyp localization in bad quality frames.
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Appendix A

Technical data

Although we have provided some technical results when comparing the several polyp
localization methods, we will use this appendix to measure the time each stage of the
processing scheme, in order to provide with more data for comparison purposes.

A.1 Technical equipment

All the results have been obtained by a PC with an Intel Core i7-3930 K twelve-core
processor with 8 GB of RAM Memory. In order to develop the different algorithms
we have used Matlab scripts and also MEX functions to incorporate functions of the
GIPL library. All the processing times that will be exposed along the next sections
are calculated per image.

A.2 Image preprocessing and Valley Detection

In both polyp localization and polyp segmentation methods we have explained the
reason why we use several image preprocessing techniques, which impact in processing
time we show in Table A.1.

A.3 Polyp localization

We present again in Table A.2 the processing time for each of the four DOVA energy
maps calculation methods.

As it was mentioned in the corresponding chapter, polyp localization needs of
three stages namely: image preprocessing, valley detection and DOVA energy map.
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Technique Chapter Time (seconds)
Image deinterlacing 4 0.1

Black mask inpainting (along with specular highlights) 4 8.53
Specular highlights detection 4 15.57

Specular highlights inpainting (along with black mask) 4 8.53
Calculation of the DoV image 4 2.57

Blood vessels mitigation 4 0
Combined image preprocessing time 4 30.77

Table A.1: Computation time of preprocessing methods.

Measure EF-DOVA SA-DOVA WM-DOVA VO-DOVA
Number of experi-
ments

9600 72900 218700 218700

Mean processing
time per experiment
(mins)

1521 15 30 80

Mean processing
time per image (secs)

304.2 3 6 16

Table A.2: DOVA energy map processing times.

We offer in Table A.3 a summary of all the processing times for each of the stages
along with the accumulative result.

A.4 Polyp segmentation

We have explained in Chapter 6 the two different approaches that we have developed
to obtain polyp segmentation. We present processing time results in Table A.4

As it was also mentioned in Chapter 6, our polyp segmentation methods consists
of different stages, which include image preprocessing and polyp localization. We offer
total segmentation results in Figure A.5.

As it can be seen by using polyp segmentation from the contributors to the maxima
of the DOVA energy map we are three times faster than with the previous method.
In order to finish this appendix, we show in Figure A.1 some graphs to illustrate the

Technique Chapter Time (seconds)
Image preprocessing 4 28.2

Calculation of Depth of Valleys image 4 2.54
WM-DOVA energy map 5 6

Polyp localization 5 36.77

Table A.3: Computation time of preprocessing methods.
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Technique Chapter Time (seconds)
Segmentation after Region Merging 6 81.38
Polyp Segmentation by means of maxima
contributors

6 3.07

Table A.4: Computation time of preprocessing methods.

Technique Chapter Time (seconds)
Polyp segmentation after Region Merging 6 118.15
Polyp Segmentation by means of maxima
contributors

6 39.74

Table A.5: Polyp segmentation computation time.

percentage of processing time that is spent on each stage.

Analyzing image preprocessing graph (Figure A.1 (a)) we can see that the biggest
part of the computation time goes to specular highlights detection followed by the
inpainting of both specular highlights and black mask. Image preprocessing consti-
tutes more than the 75% of total processing time for polyp localization (Figure A.1
(b)) and around 70% for the case of polyp segmentation from the contributors of the
maxima of DOVA map. On the other hand, as region merging process takes a lot of
time, the incidence of image preprocessing or DOVA energy maps is minor for polyp
segmentation after region merging, as it can be seen in Figure A.1 (c).
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(a) (b)

(c) (d)

Figure A.1: Summary of processing time graphs: (a) Image preprocessing + DoV
image; (b) Polyp localization; (c) Polyp segmentation after Region Merging and (d)
Polyp segmentation by means of maxima contributors.
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