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The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified 
leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization 
mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in 
Au + Au data with respect to the d + Au reference and the absence of such an enhancement for leading 
non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The 
correlated yield at large angles, specifically in the ridge region, is found to be significantly higher for 
leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic 
model and a mini-jet modification model description of the data are tested, providing further constraints 
on hadronization.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Experimental data from heavy-ion collisions at ultra-relativistic 
energies achieved at the Relativistic Heavy Ion Collider (RHIC), 
and more recently at the Large Hadron Collider (LHC), are con-
ventionally interpreted in terms of a unique form of matter, the 
strongly-interacting Quark Gluon Plasma (sQGP). It is estimated 
that temperatures reached in those collisions [1,2] are well above 
the critical values predicted by lattice quantum chromodynamics 
calculations for the phase transition between hadronic and de-
confined (partonic) matter [3]. The RHIC experiments concluded 
that the formed medium displays the properties of a nearly per-
fect liquid [4]. A distinct feature of the sQGP is jet quenching, 
which describes the large energy loss of “hard” (high transverse 
momentum, pT ) probes observed for example in measurements of 
inclusive hadron distributions [5].

Jet quenching is also evident in modifications of back-to-back 
di-hadron correlations with a leading (high-pT ) “trigger” hadron in 
Au + Au collisions in comparison to p + p and d + Au data [6–10]. 
One of the striking features found in di-hadron correlations from 
heavy-ion collisions is the emergence of a long-range plateau in 
relative pseudorapidity (�η) on the near-side of a trigger hadron 
(small relative azimuth �φ), referred to as the “ridge” [6–8]. The 
majority of recent theoretical descriptions of this phenomenon in-
voke a transport of initial-state to final-state anisotropy via hy-
drodynamic expansion, thus connecting measured observables to 
transport coefficients and properties of the medium [11–13]. Most 
of the proposed alternative explanations also require hydrody-
namic evolution of the medium to reproduce the ridge [14]. The 
latest observations of ridge-like correlations in high-multiplicity 
p + p and p + Pb collisions at the LHC provide new tests of theo-
retical explanations of the ridge [15,16].

Another anomaly, the enhancement of the relative baryon-to-
meson production, was discovered at RHIC in the intermediate-pT
range between 2 and 5 GeV/c, where the ridge happens to be most 
prominent [17–20]. The ratio of proton to pion yields in central 
Au + Au collisions exceeds by more than a factor of two that in 
d + Au and p + p events. Similar baryon enhancements were re-
ported in the strange-hadron sector [21,22]. In the same kinematic 
region, baryons and mesons exhibit different trends in azimuthal 
anisotropy, which at RHIC appear to scale with the number of 
constituent quarks [23]. Recombination models, which incorporate 
the coalescence of two or three constituent quarks as a formation 
mechanism for mesons and baryons, are able to reproduce the ob-
served enhancements in inclusive measurements [24]. Description 
of hadronization processes remains challenging for theoretical cal-
culations (see for example the unexpected measurements reported 
in Ref. [25]); we expect these new measurements will facilitate 
further developments in this area.
In this Letter, we use angular correlations of intermediate-pT
particles with identified leading hadrons to further explore pos-
sible hadronization mechanisms in the quark gluon plasma, in-
cluding changes to parton fragmentation patterns, dilution effects 
(reduction in per-trigger yields) due to recombination contribu-
tions, and quark number scaling behavior in correlations at large 
relative angles.

Two-dimensional di-hadron correlations in �φ and �η, with 
statistically separated pion and non-pion triggers, are studied for 
the 0–10% most-central Au + Au and minimum-bias d + Au col-
lisions at the center-of-mass energy per nucleon pair 

√
sNN =

200 GeV. No charge separation is considered; in this paper, the 
terms pion, proton, and kaon will be used to refer to the sum of 
particles and their respective anti-particles. We separately study 
the short-range (jet-like peak) and long-range (ridge) correlations 
in central Au + Au data, comparing to reference measurements 
performed in d + Au collisions. Details of the short-range cor-
relations can shed light on the interplay between parton frag-
mentation, energy loss, and recombination processes in the quark 
gluon plasma. The long-range correlations are studied with two 
approaches: (1) Fourier decomposition where we extract the az-
imuthal harmonic amplitudes which in some approaches are inter-
preted as hydrodynamic “flows” [12], and (2) a mini-jet (defined 
in [26]) modification model [26,27].

The analysis was conducted using 1.52 × 108 central-triggered 
Au+Au events at 

√
sNN = 200 GeV from STAR’s 2010 data run, and 

4.6 ×107 events from the 2008 minimum-bias 200 GeV d+Au data 
set. Particle densities as well as Glauber Monte Carlo results for 
these centrality selections can be found in Ref. [28]. The STAR Time 
Projection Chamber (TPC) [29] was used for tracking, momentum 
reconstruction and particle identification. Contamination by tracks 
from another collision (“pileup”), which can distort the shape of 
di-hadron correlations [26], was removed by rejecting events with 
an abnormally large (over three standard deviations above the av-
erage) number of tracks not originating from the primary vertex.

Trigger particles are defined as the highest-pT charged hadron 
in a given event with ptrig

T between 4 and 5 GeV/c; charged 
hadrons between 1.5 and 4 GeV/c are associated with each trigger 
particle. This kinematic range focuses on a particularly interesting 
region where trigger particle production is thought to be domi-
nated by fragmentation, at least in pp and d+Au collisions. For the 
same range in Au + Au events, the baryon-to-meson enhancement 
is large, suggesting significant recombination contributions [30]. 
Since the medium induced jet quenching affects the correlations 
in essentially an opposite way from thermal parton recombina-
tion contributions, comparing the correlations for proton and pion 
triggers provides an additional handle for separating these effects. 

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. (Color online.) Two-dimensional �φ vs. �η correlation functions for charged hadron (left), pion (middle), and non-pion (right) triggers from 0–10% most-central 
Au + Au (top row) and minimum-bias d + Au (bottom row) data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges
4 < ptrig

T < 5 GeV/c and 1.5 < passoc
T < 4 GeV/c.
Also, the ridge and away-side modifications in this pT range are 
significant, and elliptic flow, and its pT dependence, are minimal, 
thus facilitating the present tests of constituent quark number scal-
ing. All trigger particles are required to have at least 30 TPC points 
per track (for optimal identification), otherwise, standard quality 
cuts and corrections are applied as described in Ref. [8]. After qual-
ity cuts, 3.5 ×106 Au+Au and 1 ×105 d+Au events with a trigger 
particle were used for the analysis. The statistical hadron identi-
fication procedure relies on the measured ionization energy loss 
(dE/dx) in the TPC gas. The dE/dx calibration was carried out in-
dividually for five pseudorapidity and two trigger pT bins. Details 
of the particle identification (PID) technique are identical to those 
in Refs. [17,28,31].

We construct a two-dimensional correlation with each trigger 
and all associated hadrons in an event, following the procedure 
outlined in Ref. [8]. Pion identification is straightforward: select-
ing triggers with dE/dx above the central (expected) pion value 
provides a sample with 98% pion purity and, by construction, 50% 
selection efficiency. The “pure-pion” correlation is constructed with 
those triggers. The remaining triggers are comprised of all protons, 
about 97% of all kaons, and the remaining 50% of pions.

We remove the pion contribution from the correlation with 
those remaining triggers by direct subtraction of the pure-pion-
triggered correlation. The resulting “non-pion” correlation is then 
associated with a mixture of proton and kaon triggers (about three 
protons for every two kaons [32]). Separating kaons from protons 
is complicated by the small dE/dx difference between the two and 
was not attempted in this Letter. The systematic uncertainty due 
to the pion subtraction procedure is included in the PID uncer-
tainty. The evaluation procedure is similar to previous identified 
particle analyses with the STAR Time Projection Chamber, where 
sensitivities of the final observables to systematic variations in the 
dE/dx cut parameters were determined. The feed-down contribu-
tion from weak decay daughters to the trigger particles cannot be 
disentangled directly. Due to decay kinematics, the dominant feed-
down contribution originates from � → pπ and is estimated to 
constitute about 5% of the non-pion triggers. Resonance contribu-
tions are greatly suppressed at high pT and shown to give only 
minor contributions to correlation structures [26]. All raw correla-
tion functions are corrected for detector inefficiency derived from 
Monte Carlo tracks embedded into real data as in Refs. [8,9,28]. 
Pair-acceptance effects are corrected using the mixed-event tech-
nique as in Ref. [9]. The resulting correlations are shown in Fig. 1, 
with visible differences between the two trigger types in both jet-
like peak and large �η region in Au + Au. A significantly larger 
ridge amplitude is seen for non-pion triggers, while the jet-like 
peak is more pronounced for the pion triggers. By comparison, 
the correlations in d + Au show no discernible ridge on the near-
side, while differences between trigger types in the jet-like region 
are qualitatively similar to Au + Au, suggesting that these may be 
partly due to kinematic effects. In the following, we analyze these 
modifications individually.

Initially, we study the small-angle jet-like correlated signals. 
Assuming that all background contributions are �η-independent, 
as shown in Refs. [8,33], we subtract those contributions aver-
aged over large |�η| = 0.9–1.5 from the full correlations, resulting 
in “pure-cone” distributions. This procedure is supported by the 
two-dimensional fits to the data described below. We then cal-
culate the fiducial jet-like yield in |�η| < 0.78, |�φ| < π/4 as in 
Ref. [7]. To isolate medium effects from initial-state nuclear effects, 
the Au + Au results are then compared to the correlation func-
tion constructed in an identical way for d + Au data (see Fig. 2). 
We report significant differences in the jet-like yield per trigger 
between the two systems for pion triggers. At the same time, cor-
relations with non-pion triggers show, within uncertainties, similar 
yields for the two systems. For quantitative comparisons, the in-
tegrated yields are presented in Table 1. The yield extrapolation 
outside the fiducial range is performed using cone-shape modeling 
described below. The systematic errors are dominated by the track-
ing efficiency uncertainty (5%); other sources include uncertainties 
from pT resolution (3%), PID uncertainty (2–3%), background level 
determination (2% for Au + Au, 2–5% for d + Au; found by vary-
ing the range for the �η-independent ridge structure between 
|�η| = 0.8–1.4 and |�η| = 1.0–1.6), track splitting/merging cor-
rection (1%), and pair acceptance (<1%). The effect of feed-down 
protons on the jet-like yield is estimated to be less than 1%. 
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Fig. 2. (Color online.) The �φ and �η projections of the pure-cone correlations for |�η| < 0.78 and |�φ| < π/4, respectively, for pion triggers (left two panels) and non-pion 
triggers (right two panels). Filled symbols show data from the 0–10% most-central Au + Au collisions at 200 GeV; open symbols show data from minimum-bias d + Au data 
at the same energy. Shaded boxes centered at zero show the uncertainty in background level determination; colored bands show the remaining systematic uncertainties.
Table 1
Fiducial ([|�η| < 0.78] × [|�φ| < π/4]) and extrapolated pure-cone yields for pion, 
non-pion and charged hadron (unidentified) triggers (see text), and the associated 
yield ratios.

Trigger Au + Au 0–10% d + Au MinBias

Fid. Ext. Stat. Sys. Fid. Ext. Stat. Sys.

π 0.211 0.214 3% 7% 0.171 0.171 4% 6%
non-π 0.136 0.142 5% 6% 0.142 0.148 7% 8%
All 0.176 0.180 2% 5% 0.161 0.168 2% 5%
Y(non-π)

Y(π)
0.643 0.662 6% 5% 0.835 0.866 8% 8%

The jet-like yield in the pT range 1.5-4 GeV/c associated with 
pion triggers in central Au + Au collisions is enhanced by 24 ±
6(stat.) ± 11(sys.)% with respect to the reference measurement in 
d + Au. The yields for non-pion triggers are found to be similar be-
tween the two systems. A previous work found similar trends in 
near-side associated yields [34]; however, in that one-dimensional 
analysis, no separation between jet-like peak and ridge contribu-
tions was possible. We find that the jet-like yield for unidenti-
fied charged hadron triggers is also enhanced, consistent with our 
identified trigger results. The enhancement of the jet-like yield 
of soft hadrons associated with pion triggers could be caused by 
the jet-quenching effect and/or medium-induced modification of 
fragmentation functions, and is qualitatively consistent with other 
observations from non-identified correlations [35] and direct jet 
measurements [36–38] for low pT hadrons. It is expected that a 
larger fraction of non-pion triggers are produced from gluon-jets 
rather than quark-jets compared to pion triggers [32,39,40]. A pre-
dicted higher energy loss for in-medium gluons should then result 
in even larger jet-like yields for non-pion triggers [41]. On the 
other hand, particle production from recombination should pro-
duce smaller yields than particle production from hard processes 
(fragmentation) [30], thus diluting (reducing) per-trigger associated 
yields. This dilution effect would be stronger for baryons, as more 
intermediate-pT baryons than mesons are expected to be formed 
through such a mechanism. The associated yields for non-pion trig-
gers combine both of these competing effects. Thus the observed 
reduction could be due to a larger recombination effect relative to 
that from the increased energy loss expected for non-pion leading 
particles.

The ratio of associated yields for non-pion and pion leading 
hadrons is shown in Table 1 for Au + Au and d + Au systems. 
In these ratios, dominant contributions to systematic uncertainties 
from the tracking efficiency estimate cancel out. The double-ratio 
constructed from these two results quantifies the relative decrease 
in associated jet-like yields for non-pion triggers with respect to 
leading pion results in Au + Au compared to d + Au. This double-
ratio, 0.76 ± 0.08(stat.) ± 0.07(sys.), can measure the net effect 
of the competition between higher energy loss/higher associated 
yields at lower pT for gluon jets versus reduced yields due to re-
combination in central Au+Au collisions. Currently, no quantitative 
predictions for either of these two mechanisms are available for di-
rect comparison with data.

Outside of the jet-like cone region, we find no �η-dependence 
in the correlated yields within our fiducial range. To character-
ize the long-range contributions in Au + Au, we perform two-
dimensional fits to the full correlation with two different models. 
One model attributes the ridge to modified fragmentation of pro-
duced mini-jets, and the other explains it in terms of higher-order 
hydrodynamic flows. In both models, the near-side jet-like peak 
is mathematically characterized by a two-dimensional generalized 
Gaussian e−(|�φ|/αφ)

βφ
e−(|�η|/αη)βη

. The resulting fit parameters for 
the jet cone are found to be identical between the two models and 
were used for extrapolation of the jet-like cone yields presented in 
Table 1.

The �φ projections of the pseudorapidity-independent parts 
of the two-dimensional correlations (after subtracting the jet-like 
peak), are shown in Fig. 3, panel (a), together with both fit func-
tions discussed below. Also shown is the corresponding projection 
for d + Au data, shifted by an arbitrary offset. We performed the 
Fourier analysis on this data as well; without an appreciable near-
side ridge, the above mini-jet model is not applicable here.

In the flow-based approach, based on a hydrodynamic ex-
pansion of an anisotropic medium, all �η-independent parts 
of the correlations are described via Fourier expansion: A(1 +∑N

n=1 2Vn cos n�φ), where A describes the magnitude of the un-
correlated background, V 2 is conventionally associated with “el-
liptic flow”, and V 3 with “triangular flow”. In this work, the first 
five terms (N = 5) exhaust all features of the correlation to the 
level of statistical uncertainty, and Vn represents the combined 
trigger and associated hadron anisotropy parameters. We note that 
in this approach, the fragmentation contributions to the away-side 
correlations in central Au + Au data are expected to be strongly 
suppressed relative to flow effects by quenching, and they are 
therefore neglected [11,12]. In the d + Au data, on the contrary, 
the away-side jet contributions dominate and no appreciable near-
side correlated yield at large �η is present.

The Fourier fit results are shown in Fig. 3 (b). In Au + Au, the 
second harmonic is dominant in all long-range correlations for the 
central data, followed by the triangular (V 3) term. Higher-order 
harmonic amplitudes rapidly decrease. All harmonic amplitudes 
for non-pion triggers are found to be larger than those for pion 
triggers, which is qualitatively consistent with recombination ex-
pectations.

The corresponding Fourier harmonics in d + Au are found to 
be consistent with expectations for a decomposition of a Gaussian 
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Fig. 3. (Color online.) (a) �φ projections over |�η| < 1.5 in 0–10% Au + Au and minimum-bias d + Au data at 200 GeV after subtracting the jet-like fit components. 
Overlapping dashed and dotted lines illustrate the results of the two-dimensional fits for the flow- and mini-jet based models, respectively. Only statistical errors are shown. 
(b) Solid symbols show extracted Fourier coefficients from fitting in ( π

2 < �φ < 3π
2

) × (|�η| < 1.5) (1.52 for d + Au), for pion, non-pion, and charged hadron triggers in the 
flow-based model. Open symbols show d + Au data, scaled by the ratio of background levels. (c) V 3/V 2 ratio for pion and non-pion triggers in Au + Au, and the extrapolated 
value for “pure protons”, as described in the text. In all panels, statistical errors are shown as lines (smaller than symbol size for some points), and systematic uncertainties 
as colored boxes in panels (b) and (c).
peak at π , i.e. rapidly falling and with alternating signs. For n = 3, 
the harmonics are already consistent with zero within errors, con-
firming that the Fourier and mini-jet approaches are indistinguish-
able in this case.

In central Au + Au collisions at RHIC, elliptic flow parameters 
of identified hadrons have been shown to scale with the number 
of constituent quarks nq, suggesting collective behavior at the par-
tonic level [23]. The estimated baryon/meson ratio for V 2 in this 
analysis is also consistent with 3/2, see below. We note that in our 
trigger pT range, azimuthal anisotropy is approximately indepen-
dent of pT [42], eliminating the need to address quark momentum 
dependence. To test whether this scaling extends to the triangu-
lar term, we examine the V 3/V 2 ratios. This test assumes that 
the measured Fourier coefficients factorize into Vn = 〈vtrig

n 〉〈vassc
n 〉, 

where vtrig
n and vassc

n measure azimuthal anisotropies of trigger 
and associated hadrons, respectively [12]. The factorization has 
been demonstrated experimentally for V 2 in [43]. The extracted 
V 2 coefficients are found consistent with the product of previously 
measured identified and unidentified v2 values. Since the selection 
of associated particles is identical for all correlations in this anal-
ysis, the anisotropy contributions from associated hadrons should 
cancel in the ratios of Vn coefficients. Fig. 3 (c) shows V 3/V 2 ratios 
extracted from long-range correlations versus average nq per par-
ticle for pion and non-pion triggers. The systematic uncertainty, 
determined by varying the fitting range and the dE/dx cut posi-
tion for pion/non-pion separation, was found to be similar to, or 
smaller than, the statistical uncertainty. We find that the ratio of 
triangular and elliptic flow is 0.546 ± 0.025(stat.) ± 0.018(sys.) for 
pion triggers and 0.681 ± 0.025(stat.) ± 0.015(sys.) for non-pions. 
If the measured final-state azimuthal anisotropies are indeed of 
collective partonic origin which transform into final-state hadronic 
observables through the coalescence/recombination of constituent 
quarks, then we would expect the same dependence of all vtrig

n on 
constituent quark number. Even with the significant meson contri-
bution to non-pion triggers, the ratios give a strong indication of a 
breaking of the simple nq scaling behavior between the second and 
third Fourier harmonics. Assuming that kaons, as mesons, adhere 
to the pion scaling trend, and using the known p/π ratio reported 
in Ref. [32], we construct an estimate of the V 3/V 2 ratio for pure 
protons in Fig. 3 (c). The systematic uncertainty in the estimated 
“pure-proton” V 3/V 2 value of 0.736 ±0.038(stat.) ±0.032(sys.) in-
cludes an additional 1% uncertainty from PID. Feed-down protons 
from � closely preserve the original parent direction, and we ex-
pect no measurable effect on the �η-independent terms, as � and 
protons have very similar azimuthal anisotropy in our kinematic 
range.
Table 2
First and second harmonic extracted using the mini-jet model in 0–10% most central 
Au + Au data at 200 GeV. Note that the amplitudes are multiplied by 100.

Trigger 100( V 1 ± stat. ± sys.) 100( V 2 ± stat. ± sys.)

π −0.86 ± 0.09 ± 0.07 −0.017 ± 0.045 ± 0.034
non-π −1.53 ± 0.13 ± 0.08 −0.343 ± 0.059 ± 0.041
all −1.19 ± 0.05 ± 0.01 −0.173 ± 0.025 ± 0.004

The observed violation of constituent quark number scaling 
for V 3, based on the “pure proton” extrapolated value for V 3, 
V 3(baryon)/V 3(meson) = 2.03 ± 0.12(stat.) ± 0.20(sys.) compared 
to V 2(baryon)/V 2(meson) = 1.50 ± 0.06(stat.) ± 0.07(sys.), is in-
triguing because recombination/coalescence models are the only 
ones presently capable of describing constituent quark scaling be-
havior among the V 2 parameters for many identified hadrons.

The difference between the V 3 and V 2 scaling behavior demon-
strated in Fig. 3(c) therefore suggests the need for other contribu-
tions to long-range correlations to explain the data. We note that 
deviations from nq scaling of elliptic flow have been observed at 
the LHC [44], and at RHIC for non-central collisions [45]. The vn
scaling proposed in Ref. [46] better describes our measured V 3/V 2
ratios, but still under-predicts the enhancement for non-pion trig-
gers.

In the mini-jet model, in which the major component is in-
medium modification of fragmentation, only the first two terms 
(N = 2) of the Fourier expansion are kept and the near-side ridge 
in this analysis is modeled by a one-dimensional Gaussian, re-
sulting in A(1 + 2V 1 cos�φ + 2V 2 cos 2�φ) + B e−�φ2/2σ 2

. Here 
A is the uncorrelated yield, B is the ridge amplitude, and σ is 
the ridge width parameter. The dipole V 1 is designated to describe 
the away-side jet and/or momentum conservation effects, and V 2
describes a non-jet quadrupole (potentially of flow origin). The ad-
dition of the 1D near-side Gaussian, which differs from the original 
model elements in Ref. [26], was necessary to reproduce the data, 
as noted in Ref. [27]. The mini-jet model fit describes the measured 
Au + Au correlations for all three trigger types as well as the flow-
based approach (Fig. 3(a)), yielding identical uniformly distributed 
residuals and χ2 values. The extracted harmonic amplitudes are 
shown in Table. 2. As the away-side structure is for the most part 
described by the dipole term, the magnitude of the V 1 amplitude 
is found to be significantly larger for leading non-pions than for 
pions. For back-to-back jets, this V 1 increase is supposed to bal-
ance the near-side (leading) jet contributions, which would have to 
consist of both the jet-like peak and the ridge because the jet-like 
peak alone decreases for non-pion trigger particles. Understanding 
the behavior of the V 2 term in the mini-jet model fits is challeng-
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ing: the V 2 amplitude, while consistent with zero for pion triggers, 
is significantly negative for non-pion triggers. This negative value 
for V 2, which is conventionally associated with elliptic flow, is not 
expected from any known source and calls into question the ap-
plicability of the assumed parameterization for the centrality and 
pT range studied here, the validity of the “mini-jets + quadrupole 
only” physics scenario, or both.

In summary, a statistical separation of pion and non-pion trig-
gers was performed to study the systematic behavior of di-hadron 
correlations from central Au + Au and minimum-bias d + Au col-
lisions at 200 GeV with the STAR experiment. The correlations, 
decomposed into short- and long-range parts in �η, are analyzed 
for different identified trigger types to test the consistency of two 
models in order to improve our understanding of hadronization 
mechanisms in the quark gluon plasma. We find significant en-
hancement of intermediate-pT charged-hadron jet-like yields as-
sociated with pion triggers relative to a d + Au reference measure-
ment. The enhancement is qualitatively consistent with observed 
modifications of jet fragmentation functions measured at the LHC, 
suggesting it results from the energy loss process. For the non-pion 
trigger sample, a larger contribution from gluon fragmentation is 
expected compared to pion triggers [32,39,40]. Due to the color-
charge factor, a larger energy loss for gluons is expected relative to 
that of quarks. No enhancement is observed for non-pion triggers 
in contrast to pQCD-based expectations for color charge depen-
dence of energy loss. This lack of enhancement may indicate a 
competition between parton–medium interaction effects and dilu-
tion of jet triggers by quark recombination contributions.

No statistically significant ridge is found associated with either 
trigger type in minimum bias d + Au data. In Au + Au data, we 
find a significantly larger ridge-like yield and away-side correlation 
strength for non-pion than for pion triggers. Two fitting models 
which are mathematically similar but which are based on distinct 
physical assumptions were applied to the Au + Au data. Both mod-
els, while describing the correlations well, attain parameter values 
which are problematic within the assumed physical scenarios. In 
the flow model, the observed differences of V 3/V 2 ratios imply 
that the explanation of the ridge and away-side modifications as 
resulting only from hydrodynamic flow of a partonic medium with 
constituent quark recombination at hadronization is incomplete. 
On the other hand, the negative V 2 result for the mini-jet based 
model for leading non-pions indicates that for the data reported 
here, either the assumed scenario or the mathematical parameter-
ization for jets and dijets is inadequate, or both. These results may 
have significant implications for understanding the origin of the 
ridge and hadronization in the QGP.
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