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ABSTRACT
Early electrical activity and calcium influx regulate crucial

aspects of neuronal development. Small-conductance cal-

cium-activated potassium (SK) channels regulate action

potential firing and shape calcium influx through feedback

regulation in mature neurons. These functions, observed in

the adult nervous system, make them ideal candidates to

regulate activity- and calcium-dependent processes in neuro-

development. However, to date little is known about the

onset of expression and regions expressing SK channel sub-

units in the embryonic and postnatal development of the

central nervous system (CNS). To allow studies on the con-

tribution of SK channels to different phases of development

of single neurons and networks, we have performed a

detailed in situ hybridization mapping study, providing com-

prehensive distribution profiles of all three SK subunits

(SK1, SK2, and SK3) in the rat CNS during embryonic and

postnatal development. SK channel transcripts are

expressed at early stages of prenatal CNS development.

The three SK channel subunits display different developmen-

tal expression gradients in distinct CNS regions, with time

points of expression and up- or downregulation that can be

associated with a range of diverse developmental events.

Their early expression in embryonic development suggests

an involvement of SK channels in the regulation of develop-

mental processes. Additionally, this study shows how the

postnatal ontogenetic patterns lead to the adult expression

map for each SK channel subunit and how their coexpres-

sion in the same regions or neurons varies throughout

development. J. Comp. Neurol. 522:1072–1101, 2014.
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The development of neurons and neural networks involves

a sequential interplay between gene expression controlled

by transcription factors and patterned activity mediated by

the orchestrated action of receptors and ion channels (for

review see Ben-Ari and Spitzer, 2010). In this context, a

prominent role is played by transient calcium (Ca21) eleva-

tions driven by different Ca21-permeable ligand- and

voltage-gated channels. Ca21 influx, characterized by differ-

ent spatiotemporal patterns depending on the developmen-

tal stage, regulates various aspects of neuronal

development, including the proliferation of neural progeni-

tors (LoTurco et al., 1995; Nacher and McEwen, 2006; Dave

and Bordey, 2009), neuronal migration (Komuro and Rakic,

1996; Bortone and Polleux, 2009), axon guidance (Hong

et al., 2000; Li et al., 2005; Shim et al., 2005; Wang and Poo,

2005), neurotransmitter and receptor specification (Borodin-

sky et al., 2004; for review see Spitzer et al., 2004; Spitzer,

2006), and synapse formation (Chudotvorova et al., 2005;

Akerman and Cline, 2006; Wang and Kriegstein, 2008).
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After its influx into neurons, Ca21 activates various

Ca21-dependent ion channels with modalities and

dynamics that depend on their association with the

Ca21 sources in tighter or looser domains (for review

see Fakler and Adelman, 2008). In particular, Ca21-

dependent K1 channels couple intracellular Ca21 eleva-

tions to K1 efflux and hyperpolarization of the mem-

brane potential, thereby dampening membrane

excitability. Among them, small-conductance Ca21-acti-

vated K1 channels of the SK (KCa2) family are function-

ally coupled to Ca21 sources (e.g., voltage-gated Ca21

channels, IP3 receptors) in various neuronal compart-

ments, where they shape the spatiotemporal dynamics

of intracellular Ca21 transients through feedback mech-

anisms (Cai et al., 2004; Faber et al., 2005; Ngo-Anh

et al., 2005; Bloodgood and Sabatini, 2007; Faber,

2010; Giessel and Sabatini, 2010; Tonini et al., 2013).

Given the importance of the spatiotemporal patterns of

Ca21 elevations and patterned electrical activity in neu-

ronal ontogenesis, SK channels are therefore prime

candidates as potential regulators of various Ca21-

dependent processes in neurodevelopment.

Molecular cloning has identified three members of

the SK channel family, SK1 (KCa2.1), SK2 (KCa2.2), and

SK3 (KCa2.3; Kohler et al., 1996; Joiner et al., 1997;

Chandy et al., 1998). They are all voltage-insensitive,

gated by Ca21 binding to calmodulin, which is constitu-

tively bound to their carboxy-terminal region (for review

see Fakler and Adelman, 2008). By responding to

changes in intracellular Ca21, SK channels directly link

Ca21 signals to membrane excitability and modulation

of electrical activity in neurons. SK channels are

expressed in several tissues and prominently through-

out the adult central nervous system (CNS; Stocker and

Pedarzani, 2000; Tacconi et al., 2001; Sailer et al.,

2004). In the mature CNS, the three SK channel subu-

nits have partially overlapping but clearly distinct distri-

bution patterns, with SK1 and SK2 displaying extensive

colocalization and SK3 presenting a complementary dis-

tribution (Stocker and Pedarzani, 2000; Tacconi et al.,

2001; Sailer et al., 2004). Several studies suggest that

specific SK subunits contribute to adult neuronal excit-

ability and function in different brain regions and possi-

bly, on a cellular level, in different neuronal

compartments (for review see Pedarzani and Stocker,

2008; Adelman et al., 2012).

However, to date, the onset of expression and

detailed mapping of SK channel distribution in the CNS

during embryonic and postnatal development are miss-

ing. This information is essential to establish the
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contribution of SK channels to different phases of

development of single neurons and networks. The aim

of the present study is to provide comprehensive distri-

bution profiles of all three SK subunits in the rat CNS

during embryonic and postnatal development, to deter-

mine their onset of expression and the ontogenetic pat-

terns leading to the adult expression maps.

MATERIALS AND METHODS

Northern blot
Poly(A)1 RNA was isolated from heads (E12 and E13)

or whole-brain tissue (E15, E17, E19, E21, P1, P3, P6,

P12, and P24) using oligo(dT) cellulose (FastTrack 2.0;

Invitrogen, Carlsbad, CA). RNA concentrations were

estimated with a fluorescence-based RNA quantitation

assay (RiboGreen; Invitrogen), and 5 lg RNA was sepa-

rated for each developmental time point by formalde-

hyde agarose (1%) gel electrophoresis and transferred

to a positively charged membrane (Roche Applied Sci-

ences, Indianapolis, IN). Membranes were stained with

methylene blue to control for even transfer of RNA.

To generate probes specific for each SK channel sub-

unit, sequences spanning the carboxy-terminus and the

30-untranslated region for SK1 and SK2 were identified

in cDNA clones and confirmed by rapid amplification of

cDNA ends (30 RACE; Invitrogen). For SK3, a specific

probe was generated from a region within the extended

amino-terminus. The nucleotide ranges used to gener-

ate the three probes are given after the GenBank

accession numbers: SK1: NW_003812064, 941,552–

942,545 nt, SK2: NW_003812674, 312,752–313,332

nt, SK3: NM_019315, 553–1,075. The Northern was

probed with 32P-dCTP labeled fragments (2 3 106

cpm/ml) in 10 ml ExpressHyb hybridization solution

(Clontech Laboratories, Palo Alto, CA) for 1 hour. The

final wash was for 30 minutes in 0.1–0.23 SET (1xSET

is: 150 mM NaCl, 20 mM Tris-HCl, 1 mM EDTA, pH 7.5)

and 0.3% sodium dodecyl sulfate (SDS) at 60–68�C.

Autoradiography was performed with an intensifying

screen at 280�C. Exposure times were adjusted for

each blot to obtain the optimal signal-to-noise ratio,

prevent saturation of signals at highly expressing devel-

opmental stages, and stay within the linear range of the

intensifying screen (see Fig. 1A–F). To appreciate the

changes occurring across the developmental stages, it

is important to comprehend that the signal intensity of

bands at E21 and P1 reflects comparable RNA levels.

Tissue preparation
All procedures involving the use of animals were

approved by the local animal care committee according

to current laws for animal protection. Data were

obtained from at least three unrelated animals for each

embryonic and postnatal time point. Timed matings for

Wistar rats were set up in house, and embryonic (E11,

E12, E13, E15, E17, E19, E21) and postnatal (P1, P3,

P6, P12, P24) stages were used. Rats were paired for 3

hours early in the morning, and E1 was defined as 24

hours after impregnation. P1 was defined as 24 hours

after birth. The mother or pups were terminally anesthe-

tized and whole embryos (E1–E17), heads (E19 and

E21), or brains (P1–P24) were removed and frozen on

powdered dry ice (Wisden and Morris, 1994). To allow

a detailed comparative analysis, sagittal and horizontal

sections (10–16 lm) were cut with a cryostat, thaw

mounted onto silan-coated slides (30-aminopropyltriethox-

ysilan; Sigma, St. Louis, MO) and air dried. After 10–30

minutes of fixation in 4% paraformaldehyde dissolved in

phosphate-buffered saline (PBS; 130 mM NaCl, 7 mM

disodium hydrogen phosphate, 3 mM sodium dihydrogen

phosphate, pH 7.4), slides were washed in PBS and dehy-

drated in an ascending ethanol series. Sections were

stored in 100% ethanol at 4�C until use.

Oligonucleotide probes
Selection of two independent antisense oligonucleo-

tides for each the three channels subunits SK1, SK2,

and SK3 has been described by Stocker and Pedarzani

(2000). The sequences of the 45-nucleotide-long oligo-

nucleotides were as follows: SK1 (KCa2.1, KCNN1): 50-

GGC CTG CAG CTC CGA CAC CAC CTC ATA TGC GAT

GCT CTG TGC CTT-30, 50-CAG TGG CTT TGT GGG CTC

TGG GCG GCT GTG GTC AGG TGA CTG GGC-30; SK2

(KCa2.2, KCNN2): 50-AGC GCC AGG TTG TTA GAA TTG

TTG TGC TCC GGC TTA GAC ACC ACG-30, 50-CTT CTT

TTT GCT GGA CTT AGT GCC GCT GCT GCT GCC ATG

CCC GCT-30; and SK3 (KCa2.3, KCNN3): 50-CGA TGA

GCA GGG GCA GGG AAT TGA AGC TGG CTG TGA GGT

GCT CCA-30, 50-TAG CGT TGG GGT GAT GGA GCA GAG

TCT GGT GGG CAT GGT TAT CCT-30.

Oligonucleotides were 30 end labeled with [a35S]dATP

(1,250 Ci/mmol; PerkinElmer/NEN, Boston, MA) or

[a35S]dATP (1,200 Ci/mmol; Amersham Biosciences,

Arlington Heights, IL) using terminal deoxynucleotidyl

transferase (Roche, Mannheim, Germany); unincorporated

nucleotides were removed using Bio-Spin 6 columns (Bio-

Rad, Hercules, CA). For hybridization, 4 3 105 cpm (�2–

5 pg/ml) of each probe per slide was used.

In situ hybridization
Hybridization was performed as described by Stocker

and Pedarzani (2000). In brief, slides were air dried and

hybridized overnight at 42�C in 100 ll solution

M. Gymnopoulos et al.
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containing 50% formamide, 10% dextran sulfate, 50 mM

dithiothreitol (DTT), 300 mM NaCl, 30 mM Tris-HCl (pH

7.4), 4 mM EDTA, 13 Denhardt’s solution (Sigma), 0.5

mg/ml acid/alkali denatured salmon sperm DNA, and 0.5

mg/ml polyadenylic acid (Sigma). After hybridization, slides

were washed twice for 20 minutes each in 13 SSC con-

taining 50 mM b-mercaptoethanol, for 45 minutes in 13

SSC at 57�C, and for 5 minutes in 13 SSC, followed by 5

minutes in 0.13 SSC at room temperature. Sections were

once again dehydrated in an ascending ethanol series, air

dried, and exposed to Kodak Biomax MR X-ray film (East-

man Kodak, Rochester, NY) for 14 days. For cellular reso-

lution, slides were subsequently dipped in photographic

emulsion Kodak NTB, incubated for 12–20 weeks at 4�C,

and then developed in Kodak D-19 for 3.5 minutes. Sec-

tions were counterstained with 0.1% cresyl violet (Nissl

stain) to confirm cytoarchitecture and analyzed via bright-

and darkfield microcopy. Rat brain regions were identified

according to Paxinos et al. (1994), Altman and Bayer

(1995), and Paxinos and Watson (1998).

Data analysis
Autoradiograms (see Figs. 2, 3, 5–7) provided an

overview of the distribution of the three SK channel

subunits in different areas of the developing rat brain.

Analysis was performed on emulsion-dipped slides to

resolve cellular labeling. All slides were emulsion

coated, and the weak and strong signals in various

brain regions shown in Tables 1–6 were quantified

according to the relative silver grain density on the indi-

vidual cell bodies obtained with a given oligonucleotide.

Expression levels were assessed by two independent

observers. The scoring is the result of their joint assess-

ment. The results of this analysis are presented in

Tables 1–6 as 2, 1, 11, or 111, with 2 represent-

ing signals below the threshold limit of detection

Figure 1. Northern blots displaying SK channel subunit transcripts at different stages of embryonic (A–C) and postnatal (D–F) develop-

ment. Two bands 3.2 kb and 4.0 kb in length were observed for SK1 (A,D), two main bands of 2.8 kb and 3.6 kb for SK2 (B,E) and two

bands of 2.6 kb and 10 kb for SK3 (C,F).

SK channel ontogenesis in the rat nervous system
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and 1 a weak, 11 a moderate, and 111 the strong-

est level of expression. A scale of signal intensities with

representative examples for each SK channel subunit is

shown in Figure 3J–L. “Not clearly identifiable” (•) sig-

nifies that a given region could not be observed in our

sections or could not be clearly differentiated from

adjacent regions.

The specificity of the oligonucleotides used to study

the distribution of SK1, SK2, and SK3 was checked in

several control experiments. Hybridized sections showed

identical patterns, with each pair of oligonucleotides

used for each of the three genes. To determine nonspe-

cific hybridization to sections, adjacent sections were

hybridized with sense oligonucleotides. As a further con-

trol for specificity, the background signal was assessed

by competition hybridizations (examples of which are

shown in Figs. 3G–I, 5K,L, 6K,L 7K,L), in which radioac-

tively labeled probes were hybridized to sections in the

presence of excess (100-fold) unlabeled (cold) probe. All

these experiments displayed minimal levels of nonspe-

cific binding, barely distinguishable from the overall back-

ground (dipping of nonhybridized sections).

Several factors other than transcript levels (i.e.,

hybridization efficiency of individual probes, intrinsic

properties of tissue from different brains) can affect sig-

nal intensity. Therefore, this scoring reflects relative

amounts of each transcript in different brain areas

rather than comparisons among the three different SK

transcripts. However, the fact that we could observe

similar absolute signal intensities (in particular in the

strongest labeling range) with probes for each SK subu-

nit gene in different brain regions suggests that the

influence of factors such as the hybridization efficiency

was minor. Therefore, relative levels of the three differ-

ent SK mRNAs may cautiously be compared.

RESULTS

Analysis of SK-subunit mRNA levels in the
developing rat CNS

The developmental regulation of the expression of SK

channel subunits in the rat brain was first studied by

Northern blot analysis (Fig. 1). Northern blots for the

SK1, SK2, and SK3 channel transcripts isolated from

rat embryos at prenatal stages E12–E21 showed how

early SK subunit mRNAs were detectable in the CNS.

SK1 and SK2 transcripts were expressed weakly, if at

all, at E12 but were clearly detectable at E13 (Fig.

1A,B). By contrast, the SK3 mRNA levels could first be

detected at E15 and were weak if at all detectable at

E12 and E13.

Throughout development, two bands 3.2 kb and 4.0

kb in length were observed for SK1 (Fig. 1A,D).

Figure 2. SK subunit mRNA expression in rat embryos (E11: A–C;

E12: D–F; E13: G–I; E15: J–L; and E17: M–O). X-ray film images

of sections hybridized with oligonucleotide probes specific for

SK1 (left column), SK2 (middle column) and SK3 (right column)

show distribution of transcripts in the CNS and the body. Dark

areas contain high levels of mRNA. For abbreviations see list.

Abbreviations are according to Paxinos et al. (1994) and Paxinos

and Watson (1998). Scale bar 5 2 mm.
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Expression levels for SK1 mRNA decreased from a peak

value at E15 until P60 (Fig. 1A,D). The most drastic

change was observed at P24, when mainly the 3.2-kb

band of a substantially lower intensity was left, which

persisted in adulthood (Fig. 1D). There were also two

main transcripts (2.8 and 3.6 kb) for SK2, which

showed different time courses of expression during

development (Fig. 1B,E). The 2.8-kb transcript increased

gradually throughout embryonic and postnatal develop-

ment, doubling between P3 and P12 and reaching its

maximal expression at P24 (Fig. 1B,E). By contrast, the

3.6-kb transcript increased up to P6, when the strong-

est signal intensity was observed, and declined there-

after (Fig. 1B,E). The two transcripts (2.6 and 10 kb)

observed for SK3 increased throughout development,

reaching maximal levels at P12 (Fig. 1C,F). As in the

case of SK1, the SK3 expression levels decreased

thereafter (Fig. 1F). These results show that SK channel

mRNAs are expressed in the brain already at very early

stages of prenatal development and that their levels

are subject to developmental regulation with a pattern

that is specific for each SK channel subunit.

Embryonic distribution of SK1, SK2, and
SK3 transcripts: overview

The results of the Northern analysis raised the ques-

tion of whether the developmental changes in the SK

expression levels reflect changes in their distribution pat-

terns before birth. To address this question, we per-

formed a detailed in situ hybridization analysis and

mapped the distributions of SK1, SK2, and SK3 mRNAs

in the rat embryonic nervous system. An overview of the

prenatal distribution of the SK channel subunits was

obtained by examination of X-ray film images (Figs. 2, 3),

and, for cellular resolution, emulsion-coated sections

Figure 3. X-ray images of sagittal sections of rat heads at E19 (A–C) and E21 (D–F) show largely overlapping distribution of SK1 and SK2

transcripts in several cortical and subcortical areas, whereas SK3 mRNA has a complementary distribution pattern. Control sections at

E21 (G–I) hybridized in the presence of 100-fold excess cold oligonucleotide for each probe show a uniformly low, nonspecific labeling.

Darkfield photomicrographs from various brain regions at E19–E21 exemplifying signals of strong (111), moderate (11), and weak (1)

intensity for SK1 (J), SK2 (K), and SK3 (L). For abbreviations see list. Scale bars 5 2 mm in F (applies to A–F); 2 mm in I (applies to G–I).

SK channel ontogenesis in the rat nervous system
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were analyzed (Figs. 4, 8, 9, 11, 13, Tables 1–3). Over-

view pictures of whole embryos (E11–E17; Fig. 2) and

embryonic heads (E19–E21; Fig. 3) were obtained after

hybridization with radioactively labeled oligonucleotides

specific for each of the three SK channel subunits. Crite-

ria for strong vs. weak labeling of brain structures were

the number of silver grains accumulated above cell

somata relative to the strongest hybridization signal for

each given oligonucleotide (see also Fig. 3J–L).

The three SK channel subunits present clearly dis-

tinct distribution patterns throughout embryonic devel-

opment. SK1 and SK2 transcripts are expressed as

early as E11, when the neural tube is closed and the

three vesicles (prosencephalon, mesencephalon, and

rhombencephalon) are present (Fig. 2A,B). Conversely,

SK3 expression is below the detection limit at E11 (Fig.

2C). At E12, a clearer pattern of expression emerges

for SK2, which shows the strongest signals in the telen-

cephalic and rhombencephalic regions (Fig. 2E),

whereas the expression of SK1 mRNA is partially over-

lapping but more restricted (Fig. 2D) and SK3 is still

barely detectable (Fig. 2F). By E13, a clear increase in

the levels of SK1 (Fig. 2G) and SK2 (Fig. 2H) transcripts

can be observed, but SK3 is still weak (Fig. 2I). Both

SK1 and SK2 transcripts are present in the primordial

cortex, hippocampus, pons, and spinal cord. At E15

(Fig. 2J–L) and E17 (Fig. 2M–O), specific brain regions

are better defined, and the distribution of the SK1 and

SK2 transcripts overlaps in several but not in all brain

regions, whereas SK3 presents a clearly distinct distri-

bution pattern. At these stages, SK1 transcripts are

strongly expressed in the differentiating striatum, tri-

geminal ganglion, spinal cord, pons, and cerebellum,

and weaker signals are detectable in the cortex and

hippocampus (Fig. 2J,M, Table 1). SK2 mRNA presents

a similar distribution but at different levels, with cortex,

superior colliculus, and spinal cord showing the strong-

est expression and the striatum weaker signals (Fig.

2K,N, Table 2). Expression of SK3 is detectable in the

cortex, pons, and spinal cord (Fig. 2L,O, Table 3).

Analysis of sections through rat embryos from E11 to

E17 showed that early expression of all subunits is not

restricted to the nervous system. The embryonic heart

expresses the three subunit mRNAs, with clear signals

at E15–E17 (Fig. 2J–O). At E17, expression of SK3 (Fig.

2O), but not of SK1 or SK2, was observed in the

Figure 4. Distribution of SK channel transcripts in the spinal cord at E15 (A,E,I) and E17 (C,G,K) and in the dorsal root ganglia (DRG) at

E15 (B,F,J) and E17 (D,H,L). The darkfield photomicrographs show that all three SK channel transcripts are expressed in both dorsal (DH)

and ventral horn (VH) neurons of the embryonic spinal cord (SK1: A,C; SK2: E,G; SK3: I,K) and in dorsal root ganglia neurons (SK1: B,D;

SK2: F,H; SK3: J,L). Bright areas contain high levels of mRNA. SK3 transcripts are also present in spinal nerves (spn, J,L). For abbrevia-

tions see list. Scale bars 5 150 lm in I (applies to A,E,I); 150 lm in J (applies to B,F,J); 150 lm in K (applies to C,G,K); 150 lm in L

(applies to D,H,L).
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metanephron. SK1 and SK2 are expressed in vertebral

cartilage at E15 and E17 (Fig. 2J,K,M,N). Finally, SK2

(Fig. 2K) and SK3 (Fig. 2O) are visible in the intestine

wall starting at E15 (Tables 2, 3).

At later stages of brain development (E19, E21; Fig.

3) SK1 and SK2 transcripts still show overlapping pat-

terns, although their relative levels of expression vary in

different brain regions, with strong signals for both

Figure 5. Distribution of SK1 channel subunit mRNA in the CNS at postnatal stages P1, P3, P6, P12, and P24 is shown in X-ray images of

sagittal (A,C,E,G,I,K) and horizontal (B,D,F,H,J,L) sections hybridized with an oligonucleotide probe specific for SK1. Strong hybridization

signals are present in the anterior olfactory nucleus (AO) and olfactory tubercle (Tu), cerebral cortex (Cx), hippocampal formation (Hi), and

several thalamic nuclei. For details on the distribution see Table 4. Control sections (K,L) were hybridized in the presence of 100-fold

excess cold oligonucleotide, showing a uniformly low background signal. For abbreviations see list. Scale bar 5 4 mm.

Figure 6. SK2 subunit mRNA expression in the postnatal rat brain. X-ray images of sagittal (A,C,E–G,I,K) and horizontal (B,D,H,J,L) sec-

tions at postnatal stages P1, P3, P6, P12, and P24 showing strong SK2 hybridization signals in the olfactory system, cerebral cortex (Cx),

hippocampus (Hi), and cerebellum (Cb). For details on the distribution see Table 5. Control sections (K,L) were hybridized in the presence

of 100-fold excess cold oligonucleotide, showing a uniformly low, nonspecific labeling. For abbreviations see list. Scale bar 5 4 mm.

SK channel ontogenesis in the rat nervous system
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subunit transcripts in the cortex and hippocampus (Fig.

3A,B,D,E, Tables 1, 2). SK2 displays a strong expression

in developing Purkinje cells (Fig. 2B,D, Table 2). The

expression of SK3 in the cortex and hippocampus

changes dramatically, decreasing from E17 (Fig. 2O) to

E21 (Fig. 3C,F, Table 3).

Embryonic distribution of SK1, SK2, and
SK3 transcripts in the spinal cord and
peripheral nervous system

Whole-embryo hybridizations reveal SK channel subu-

nit expression in the developing spinal cord, with a dif-

fuse expression of SK1, SK2, and SK3 in both dorsal

and ventral horns (Fig. 4, Tables 1–3). While the overall

expression level of SK1 increases from E15 to E17 (Fig.

4A,C, Table 1), the level of SK2 is relatively stable at

these developmental stages (Fig. 4E,G, Table 2), and

SK3 expression increases especially in the ventral horn

and is very pronounced in the ventral commissure (Fig.

4I,K, Table 3).

All three SK channel subunits are expressed in sen-

sory neurons of the dorsal root ganglia (DRG; Figs. 2M–

O, 4). SK1 (Fig. 4B,D) and SK2 (Fig. 4F,H) show a clear

increase, reaching strong expression at E17 in DRG

neurons (Tables 1, 2), but SK3 displays a more diffuse

pattern, with an increase between E15 and E17 and

labeling also of the proximal part of the spinal nerves

extending from the DRG (Fig. 4J,L, Table 3). Together

with the intense labeling of the ventral commissure in

the spinal cord, the SK3 signal in spinal nerves sug-

gests active axonal transport of SK3 mRNAs.

In the cranial sensory ganglia, strong signals for SK1

and SK2 (Tables 1, 2), but not for SK3 (Table 3), were

observed at E19 (Fig. 3A–C) and E21 (Fig. 3J,K left) in

the inferior ganglion of the glossopharyngeal nerve,

innervating the pharynx, tonsils, tongue, middle ear,

auditory tube, and ear canal. In the trigeminal ganglion,

all three SK subunits were observed at E15 (Fig. 2J–L)

and E17 (Fig. 2M–O, Tables 1–3). SK1 displayed strong

expression (Fig. 2J,M). At E19 and E21, SK1 expression

persists (Fig. 3A, Table 1) and SK2 levels increase (Fig.

3B, Table 2), but SK3 shows a pronounced decline in

expression (Fig. 3C, Table 3).

Embryonic and postnatal distribution of SK1,
SK2, and SK3 transcripts in specific brain
regions

To analyze the distribution patterns of SK transcripts

after birth, we extended our in situ hybridization analy-

sis and mapped the distributions of SK1, SK2, and SK3

mRNAs in the rat postnatal nervous system between P1

and P24 by examination of X-ray film images (Figs. 5–7)

and emulsion-coated sections (Figs. 10, 12, 14, 15).

Figure 7. X-ray images of sagittal (A,C,E,G,I,K) and horizontal (B,D,F,H,J,L) sections hybridized with an oligonucleotide probe specific for

SK3 show the distribution of this channel subunit in the rat CNS at postnatal stages P1, P3, P6, P12, and P24. The hybridization pattern

differs substantially from the patterns of SK1 (Fig. 5) and SK2 (Fig. 6) and shows strong SK3 mRNA expression in the accessory olfactory

bulb, anterior olfactory nucleus (AO) and olfactory tubercle, hippocampus (Hi), basal ganglia, septum, amygdala, thalamus (Th), and several

hypothalamic and brainstem nuclei. For details on the distribution see Table 6. Control sections (K,L) hybridized in the presence of 100-

fold excess cold oligonucleotide show a low and uniform background signal. For abbreviations see list. Scale bar 5 4 mm.
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The results of the evaluation at the cellular level are

summarized in Tables 4–6.

Cerebral cortex
The cerebral cortex, the largest structure in the mam-

malian telencephalon, includes the neocortex and limbic

cortex, the piriform cortex, and the hippocampal region

(Bayer and Altman, 1995). The three SK channel subu-

nits display different ontogenetic changes during the

embryonic development of the neocortex. SK1 (Fig. 2G,

Table 1) and SK2 (Fig. 2H, Table 2) are clearly

expressed in the differentiating cortex at E13, but SK3

is barely detectable at this developmental stage (Fig.

2I, Table 3).

SK2 transcripts are present in the cortical neuroepi-

thelium at E15, with strong expression in the thin pri-

mordial plexiform layer of differentiating neurons, likely

formed by Cajal-Retzius and subplate neurons (Fig.

8E,F, Table 2). SK2 is strongly expressed in layer V neu-

rons during postnatal development (P12 and P24; Fig.

10K,N, Table 5) and is present in both layer V and layer

VI neurons in the adult neocortex (Stocker and Pedar-

zani, 2000). Layer VI and V neurons have largely

reached the cortical plate by E17–E18 (Bayer and

TABLE 1.

Prenatal Distribution (E15–E21) of the Small-Conductance Calcium-Activated Potassium Channel Subunit SK11

Brain region E15 E17 E19 E21

Olfactory system
Olfactory bulb

Glomerular layer np np 2 2

Mitral cell layer np np 2 2

Internal granular layer np np np 1

Accessory olfactory bulb np 2 2 2

Anterior olfactory nucleus np � 11 111

Olfactory tubercle np np 11 111

Cerebral cortex
Piriform cortex � � 11 11

Primordial plexiform layer 111 np np np
Cortical neuroepithelium 2 2 2 2

Molecular layer np 1 1 1

Cortical plate np 11 11 11

Intermediate zone np 1 1 111

Subventricular zone np 11 11 2

Hippocampal formation
Subicular neuroepithelium 1 11 np np
Subiculum (or diff. field) np 11 11 111

Hippocampal neuroepithelium 1 11 np np
Hippocampus (or diff. field) 111 111 np np
CA1 np np 111 111

CA3 np np 111 111

Dentate gyrus granule cells np np 2 1

Basal ganglia
Striatum (or diff. field) 111 111 111 111

Thalamus
Anterior thalamus (or diff. field) 2 11 111 111

Posterior thalamus (or diff. field) 2 1 1 1

Intermediate thalamus (or diff. field) 2 � 11 11

Trigeminal ganglion 111 111 111 111

Inferior glossopharyngeal ganglion � � 111 111

Pons (or diff. field) 11 11 111 �
Cerebellum

Cerebellar neuroepithelium 2 2 np np
Cerebellum (or diff. field) 11 11 np np
Deep nuclei np np 111 111

Purkinje cell layer np np 2 2

External germinal layer np 2 2 2

Granule cell layer np np 2 2

Spinal cord 111 111 � �
Dorsal root ganglia 111 111 � �
Intestine 2 2 � �
1111, strong; 11, moderate; 1, weak; 2, signals very low or below the threshold limit of detection; np, not present; �, not clearly identifiable;

Diff. field, differentiating field.
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Altman, 1995), when SK2 displays maximal expression

levels in the cortical plate (Fig. 8G,H). The strong sig-

nals observed in the cortical plate at E17 suggest early

expression of SK2 in layer V–VI neurons. Expression of

SK2 mRNA is still strong in the cortical plate and mod-

erate in the intermediate zone at E19 (Fig. 9B) and

strong in both cortical plate and intermediate zone at

E21 (Fig. 9E, Table 2).

SK1 and SK3 transcripts are detectable in the corti-

cal neuroepithelium at E15, with both transcripts

expressed at moderate to strong levels in neurons of

the primordial plexiform layer (Fig. 8A,B,I,J). At E17,

SK1 displays moderate expression in the subventricular

zone and a weak expression in the cortical plate, sug-

gesting an early expression in layer V–VI neurons (Fig.

8C,D, Table 1), which display moderate levels of SK1

transcripts during postnatal development (P12 and P24;

Fig. 10J,M, Table 4) and in the adult neocortex. The

SK1 overall expression pattern in the neocortex partially

overlaps the SK2 pattern. In contrast, the expression

pattern of SK3 in the neocortex at E17 is substantially

different from that of the other two SK subunits, dis-

playing moderate to strong signals in the subventricular

zone, intermediate zone, and cortical plate (Fig. 8K,L,

Table 3). At E19 and E21, SK3 expression is preserved

in the subventricular and intermediate zones (Fig. 9C,F,

TABLE 2.

Prenatal Distribution (E15–E21) of the Small-Conductance Calcium-Activated Potassium Channel Subunit SK21

Brain region E15 E17 E19 E21

Olfactory system
Olfactory bulb

Glomerular layer np np 2 2

Mitral cell layer np np 1 1

Internal granular layer np np np 1

Accessory olfactory bulb np 2 2 2

Anterior olfactory nucleus np � 11 11

Olfactory tubercle np np 1 11

Cerebral cortex
Piriform cortex � � 11 11

Primordial plexiform layer 111 np np np
Cortical neuroepithelium 11 1 11 1

Molecular layer np 2 2 2

Cortical plate np 111 111 111

Intermediate zone np 1 11 111

Subventricular zone np 1 1 2

Hippocampal formation
Subicular neuroepithelium 11 11 np np
Subiculum (or diff. field) np 111 111 111

Hippocampal neuroepithelium 11 11 np np
Hippocampus (or diff. field) 111 111 np np
CA1 np np 111 111

CA3 np np 11 11

Dentate gyrus granule cells np np 2 2

Basal ganglia
Striatum (or diff. field) 111 11 2 2

Thalamus
Anterior thalamus (or diff. field) 2 11 11 11

Posterior thalamus (or diff. field) 2 11 11 11

Intermediate thalamus (or diff. field) 2 � 11 11

Trigeminal ganglion 11 111 111 111

Inferior glossopharyngeal ganglion � � 111 111

Pons (or diff. field) 111 11 111 �
Cerebellum

Cerebellar neuroepithelium 2 2 np np
Cerebellum (or diff. field) 111 111 np np
Deep nuclei np np 2 2

Purkinje cell layer np np 111 111

External germinal layer np � 2 2

Granule cell layer np np 2 2

Spinal cord 111 111 � �
Dorsal root ganglia 11 111 � �
Intestine 111 11 � �
1111, strong; 11, moderate; 1, weak; 2, signals very low or below the threshold limit of detection; np, not present; �, not clearly identifiable;

Diff. field, differentiating field.

M. Gymnopoulos et al.

1082 The Journal of Comparative Neurology |Research in Systems Neuroscience



Table 3), and it is still evident in the cortical plate and

subplate at moderate levels at P1 and at strong levels

at P3 (Fig. 10C,F, Table 6). At P1 and P3, SK3 expres-

sion is strong also in layers V and VI (Fig. 10C,F, Table

6). At P6 (Fig. 10I) and P12 (Fig. 10L), moderate levels

of SK3 transcripts are confined to layers II–III, but they

decrease by P24 (Fig. 10O, Table 6), resembling the

weak expression of SK3 detected in the adult neocor-

tex (Stocker and Pedarzani, 2000).

In the piriform cortex, expression of SK1 and SK2 tran-

scripts is detectable at E19 as moderate to strong signals

(Fig. 3A,B, Tables 1, 2) and persists without major changes

throughout most postnatal development (Figs. 5, 6, Tables

4, 5), with a decline at P24 toward the weak to moderate

levels observed in adulthood (Stocker and Pedarzani,

2000). SK3 transcripts are present at E19 (Fig. 3C, Table

3) and increase progressively, reaching a peak of expres-

sion between P1 and P6 (Table 6). They subsequently

decline to a moderate level, maintained from P12 to adult-

hood (Table 6; Stocker and Pedarzani, 2000). Changes in

expression such as those reported here and below, albeit

small in some cases, were consistently observed at the

cellular level of resolution in more sections. Their actual

functional significance remains to be established.

TABLE 3.

Prenatal Distribution (E15–E21) of the Small-Conductance Calcium-Activated Potassium Channel Subunit SK31

Brain region E15 E17 E19 E21

Olfactory system
Olfactory bulb

Glomerular layer np np 11 1

Mitral cell layer np np 2 2

Internal granular layer np np np 2

Accessory olfactory bulb np 2 111 11

Anterior olfactory nucleus np � 111 11

Olfactory tubercle np np 1 1

Cerebral cortex
Piriform cortex � � 1 11

Primordial plexiform layer 111 np np np
Cortical neuroepithelium 1 1 1 1

Molecular layer np 2 2 2

Cortical plate np 111 2 2

Intermediate zone np 111 1 1

Subventricular zone np 111 111 11

Hippocampal formation
Subicular neuroepithelium 1 11 np np
Subiculum (or diff. field) np 111 11 11

Hippocampal neuroepithelium 1 1 np np
Hippocampus (or diff. field) 111 11 np np
CA1 np np 111 11

CA3 np np 1 1

Dentate gyrus granule cells np np 1 1

Basal ganglia
Striatum (or diff. field) 2 2 2 2

Thalamus
Anterior thalamus (or diff. field) 1 111 111 11

Posterior thalamus (or diff. field) 2 11 11 11

Intermediate thalamus (or diff. field) 111 111 111 11

Trigeminal ganglion 111 11 2 2

Inferior glossopharyngeal ganglion � � 2 2

Pons (or diff. field) 1 111 11 �
Cerebellum

Cerebellar neuroepithelium 2 2 np np
Cerebellum (or diff. field) 2 2 np np
Deep nuclei np np 2 2

Purkinje cell layer np np 2 2

External germinal layer np � 2 2

Granule cell layer np np 2 2

Spinal cord 111 111 � �
Dorsal root ganglia 11 11 � �
Intestine 111 111 � �
1111, strong; 11, moderate; 1, weak; 2, signals very low or below the threshold limit of detection; np, not present; �, not clearly identifiable;

Diff. field, differentiating field.

SK channel ontogenesis in the rat nervous system

The Journal of Comparative Neurology | Research in Systems Neuroscience 1083



TABLE 4.

Postnatal Distribution (P1–P24) of the Small-Conductance Calcium-Activated Potassium Channel Subunit SK11

Brain region P1 P3 P6 P12 P24

Olfactory system
Endopiriform nucleus 1 1 11 111 11

Olfactory bulb
Glomerular layer 2 2 1 1 2

Mitral cell layer 2 2 1 11 11

Int. granular layer 1 1 11 11 11

Accessory olfactory bulb 2 2 2 2 2

Anterior olfactory nucleus 111 111 111 111 111

Olfactory tubercle 111 111 111 111 111

Islands of Calleja 111 111 111 111 111

Cerebral cortex
Piriform cortex 111 111 111 111 11

Entorhinal cortex 111 111 111 111 111

Marginal zone 2 1 np np np
Cortical plate 111 111 np np np
Subplate 1 1 np np np
Alternative layer II/III np np 11 1 1

Alternative layer IV np np 111 1 1

Alternative layer V 111 111 111 111 111

Alternative layer VI 111 111 11 11 11

Hippocampal formation
Subiculum 111 111 111 111 111

CA1 11 111 111 111 111

CA2/CA3 11 11 11 111 11

Dentate gyrus granule cells 1 1 1 1 1

Tenia tecta 111 111 111 111 111

Basal nuclei
Caudate putamen 11 11 11 11 11

Globus pallidus 1 1 1 1 1

Entopeduncular nucleus 111 111 111 111 111

Nucleus accumbens 11 11 11 1 1

Claustrum 1 1 1 11 11

Substantia nigra
Pars reticulata 111 111 111 111 1

Pars compacta 2 2 2 2 2

Septum
Septum 11 11 11 11 1

Bed nucleus stria terminalis 2 2 2 2 2

Amygdala
Anterior amygdaloid area 11 11 11 11 11

Anterior cortical amygdaloid nucleus 2 2 2 2 2

Medial amygdaloid nucleus 11 11 11 11 11

Posterior cortical amygdaloid nucleus 111 111 11 11 2

Basolateral amygdaloid nucleus 2 2 11 111 111

Basomedial amygdaloid nucleus 2 2 1 1 1

Amygdalohippocampal area 1 1 11 111 111

Amygdalopiriform transition 2 2 2 2 2

Central amygdaloid nucleus 2 2 2 2 2

Thalamus
Reticular thalamic nucleus 111 111 111 111 111

Anterodorsal nucleus 111 111 111 111 111

Anteroventral nucleus 111 111 111 111 111

Anteromedial nucleus 2 2 2 2 2

Laterodorsal nucleus 2 2 2 2 2

Paratenial nucleus � � 11 11 11

Mediodorsal nucleus 111 111 111 111 111

Ventrolateral nucleus 111 111 111 111 1

Paraventricular nucleus, anterior � � � 111 111

Paraventricular nucleus, posterior � � � 111 111

Central medial nucleus 111 111 111 2 2

Ventromedial nucleus � � 111 111 1

Ventroposterolateral thalamic nucleus � � 111 111 1
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TABLE 4. Continued

Brain region P1 P3 P6 P12 P24

Ventroposteromedial thalamic nucleus � � 111 111 1

Posterior thalamic nucleus � � 111 11 1

Centrolateral nucleus � � 111 111 1

Parafascicular nucleus 11 11 111 111 111

Lateral geniculate nucleus, dorsal � � 111 111 2

Lateral geniculate nucleus, ventral � � 1 11 1

Medial geniculate nucleus � � 111 111 2

Lateroposterior nucleus 111 111 11 1 2

Habenula 2 2 2 2 2

Hypothalamus
Preoptic nuclei 11 11 1 1 11

Magnocellular preoptic nucleus � � 11 11 11

Anterior hypothalamic area 11 11 2 2 2

Lateral hypothalamic area � � 2 2 1

Arcuate nucleus 2 2 2 2 2

Ventromedial hypothalamic nucleus 11 11 1 2 2

Dorsomedial hypothalamic nucleus 2 2 2 2 2

Tuberomammillary nucleus � � 111 111 111

Premammillary nucleus 2 2 2 2 2

Medial mammillary nucleus 11 11 11 11 11

Lateral mammillary nucleus 1 1 1 1 1

Magnocellular nucleus of lateral hypothalamus � � 111 111 111

Zona incerta 111 111 111 111 111

Brainstem
Reticular formation and related tegmental nuclei

Medullary reticular formation � � 111 111 111

Gigantocellular reticular nucleus 111 111 111 111 111

Paragigantocellular reticular n. � � 11 11 11

Intermediate reticular nucleus � � 111 111 111

Parvocellular reticular nucleus 11 11 111 111 111

Pontine reticular formation 11 111 111 111 11

Dorsomedial tegmental field � � 2 2 2

Laterodorsal tegmental nuclei � � 111 111 111

Dorsal tegmental nucleus 2 2 2 2 2

Monoaminergic systems
Dorsal raphe nucleus 2 2 2 2 2

Locus coeruleus 2 2 2 2 2

Ventral tegmental area 2 2 2 2 2

Nuclei associated with respiratory, cardiovascular and other autonomic functions
Nucleus of the solitary tract 11 11 11 111 111

Parabrachial nucleus 2 2 2 2 2

Dorsal motor nucleus of vagus 2 2 2 2 2

Ambiguus nucleus � � 111 111 111

Orofacial motor nuclei
Motor trigeminal nucleus 11 11 111 111 111

Facial nucleus 11 11 111 111 111

Hypoglossal nucleus 11 11 11 111 111

Nuclei belonging to the somatosensory system
Gracile/cuneate nucleus 111 111 111 111 111

Principal sensory trigeminal nucleus 1 11 111 111 111

Spinal trigeminal nucleus 111 111 111 111 111

Nuclei belonging to the auditory system
Cochlear nuclei 111 111 111 111 111

Lateral superior olive 111 111 111 111 11

Nucleus trapezoid body 2 2 111 111 111

Nuclei of the lateral lemniscus 11 111 111 111 111

Inferior colliculus 111 111 111 111 1

Nuclei belonging to the visual system
Superior colliculus 11 11 1 1 1

Parabigeminal nucleus 111 111 111 111 111

Vestibular and precerebellar nuclei
Vestibular nuclei 111 111 111 111 111

Pontine nuclei 11 11 111 111 111

Inferior olivary nucleus 111 111 111 2 2

Red nucleus 111 111 111 111 111
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TABLE 4. Continued

Brain region P1 P3 P6 P12 P24

Cerebellum
Deep nuclei 111 111 111 111 111

Purkinje cells 2 2 2 2 2

Golgi cells 2 2 2 2 2

Granule cells 2 1 1 1 1

1111, strong; 11, moderate; 1, weak; 2, signals very low or below the threshold limit of detection; np, not present; �, not clearly identifiable.

TABLE 5.

Postnatal Distribution (P1–P24) of the Small-Conductance Calcium-Activated Potassium Channel Subunit SK21

Brain region P1 P3 P6 P12 P24

Olfactory system
Endopiriform nucleus 11 11 11 11 11

Olfactory bulb
Glomerular layer 2 2 2 1 2

Mitral cell layer 1 1 11 11 11

Int. granular layer 1 1 11 11 11

Accessory olfactory bulb 2 2 2 2 2

Anterior olfactory nucleus 11 11 11 111 111

Olfactory tubercle 11 11 1 11 11

Islands of Calleja 11 11 11 11 11

Cerebral cortex
Piriform cortex 11 11 11 111 11

Entorhinal cortex 111 111 11 111 111

Marginal zone 2 2 np np np
Cortical plate 111 111 np np np
Subplate 1 11 np np np
Alternative layer II/III np np 11 1 1

Alternative layer IV np np 111 1 1

Alternative layer V 111 111 11 111 111

Alternative layer VI 111 111 11 11 111

Hippocampal formation
Subiculum 111 111 111 111 111

CA1 11 11 111 111 111

CA2/CA3 11 11 11 111 111

Dentate gyrus granule cells 1 1 1 1 1

Tenia tecta 111 111 111 111 111

Basal nuclei
Caudate putamen 1 1 1 1 1

Globus pallidus 2 2 2 2 2

Entopeduncular nucleus 11 11 11 11 11

Nucleus accumbens 2 2 2 2 2

Claustrum 2 2 2 1 1

Substantia nigra
Pars reticolata 2 1 11 11 11

Pars compacta 2 2 2 2 2

Septum
Septum 11 11 11 11 11

Bed nucleus stria terminalis 1 1 1 1 1

Amygdala
Anterior amygdaloid area 11 11 11 11 11

Anterior cortical amygdaloid nucleus 11 11 11 11 11

Medial amygdaloid nucleus 1 1 11 11 11

Posterior cortical amygdaloid nucleus 11 11 11 11 11

Basolateral amygdaloid nucleus 111 111 111 111 111

Basomedial amygdaloid nucleus 1 1 11 111 111

Amygdalohippocampal area 111 111 111 111 111

Amygdalopiriform transition 1 11 11 11 11

Central amygdaloid nucleus 11 11 11 11 11
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TABLE 5. Continued

Brain region P1 P3 P6 P12 P24

Thalamus
Reticular thalamic nucleus 111 111 111 111 111

Anterodorsal nucleus 11 111 111 111 111

Anteroventral nucleus 11 11 11 11 11

Anteromedial nucleus 1 11 11 11 11

Laterodorsal nucleus 1 2 2 1 11

Paratenial nucleus � � 1 1 1

Mediodorsal nucleus 11 11 11 11 11

Ventrolateral nucleus 111 11 11 11 11

Paraventricular nucleus, anterior � � � 2 2

Paraventricular nucleus, posterior � � � 1 1

Central medial nucleus 2 2 2 1 1

Ventromedial nucleus � � 11 11 11

Ventroposterolateral thalamic nucleus � � 111 111 111

Ventroposteromedial thalamic nucleus � � 111 111 111

Posterior thalamic nucleus � � 1 1 11

Centrolateral nucleus � � 11 11 11

Parafascicular nucleus 11 11 111 111 11

Lateral geniculate nucleus, dorsal � � 11 1 1

Lateral geniculate nucleus, ventral � � 1 1 11

Medial geniculate nucleus � � 11 11 11

Lateroposterior nucleus 2 2 1 11 11

Habenula 11 11 11 11 11

Hypothalamus
Preoptic nuclei 11 11 1 1 11

Magnocellular preoptic nucleus � � 11 11 11

Anterior hypothalamic area 2 2 2 2 2

Lateral hypothalamic area � � 11 11 11

Arcuate nucleus 2 2 2 2 2

Ventromedial hypothalamic nucleus 1 1 1 1 1

Dorsomedial hypothalamic nucleus 1 1 1 1 1

Tuberomammillary nucleus � � 11 11 11

Premammillary nucleus 1 1 1 1 1

Medial mammillary nucleus 11 11 11 11 11

Lateral mammillary nucleus 2 11 11 11 11

Magnocellular nucleus of lateral hypothalamus � � 2 2 2

Zona incerta 11 11 11 11 11

Brainstem
Reticular formation and related tegmental nuclei

Medullary reticular formation � � 11 111 111

Gigantocellular reticular nucleus 11 111 111 111 111

Paragigantocellular reticular nucleus � � 11 111 111

Intermediate reticular nucleus � � 11 11 11

Parvocellular reticular nucleus 11 11 11 11 11

Pontine reticular formation 111 111 111 111 111

Dorsomedial tegmental field � � 1 1 11

Laterodorsal tegmental nuclei � � 11 11 11

Dorsal tegmental nucleus 2 2 1 11 11

Monoaminergic systems
Dorsal raphe nucleus 2 2 2 11 11

Locus coeruleus 2 2 2 2 2

Ventral tegmental area 2 2 2 2 2

Nuclei associated with respiratory, cardiovascular, and other autonomic functions
Nucleus of the solitary tract 1 1 1 1 1

Parabrachial nucleus 2 2 11 11 11

Dorsal motor nucleus of vagus 2 2 2 2 2

Ambiguus nucleus � � 111 111 111

Orofacial motor nuclei
Motor trigeminal nucleus 111 111 111 111 111

Facial nucleus 1 111 111 111 111

Hypoglossal nucleus 11 111 111 111 111
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TABLE 5. Continued

Brain region P1 P3 P6 P12 P24

Nuclei belonging to the somatosensory system
Gracile/cuneate nucleus 111 111 111 111 111

Principal sensory trigeminal nucleus 111 111 111 111 111

Spinal trigeminal nucleus 111 111 111 111 111

Nuclei belonging to the auditory system
Cochlear nuclei 111 111 111 111 111

Lateral superior olive 11 11 111 111 111

Nucleus trapezoid body 111 111 111 111 111

Nuclei of the lateral lemniscus 11 11 111 111 111

Inferior colliculus 111 111 11 11 11

Nuclei belonging to the visual system
Superior colliculus 11 11 11 11 11

Parabigeminal nucleus 11 11 11 111 111

Vestibular and precerebellar nuclei
Vestibular nuclei 111 111 111 111 111

Pontine nuclei 111 111 111 111 111

Inferior olivary nucleus 111 111 111 111 111

Red nucleus 11 11 11 11 11

Cerebellum
Deep nuclei 11 11 11 111 111

Purkinje cells 111 111 111 111 11

Golgi cells 2 2 2 2 2

Granule cells 2 2 1 11 11

1111, strong; 11, moderate; 1, weak; 2, signals very low or below the threshold limit of detection; np, not present; �, not clearly identifiable.

TABLE 6.

Postnatal Distribution (P1–P24) of the Small-Conductance Calcium-Activated Potassium Channel Subunit SK31

Brain region P1 P3 P6 P12 P24

Olfactory system
Endopiriform nucleus 11 111 11 111 111

Olfactory bulb
Glomerular layer 11 11 11 11 11

Mitral cell layer 11 1 1 1 11

Int. granular layer 11 11 11 11 11

Accessory olfactory bulb 111 111 111 111 111

Anterior olfactory nucleus 111 111 111 111 111

Olfactory tubercle 11 111 111 111 11

Islands of Calleja 11 11 11 11 11

Cerebral cortex
Piriform cortex 111 111 111 11 11

Entorhinal cortex 111 111 11 111 111

Marginal zone 11 2 np np np
Cortical plate 11 111 np np np
Subplate 11 111 np np np
Alternative layer II/III np np 11 111 1

Alternative layer IV np np 11 1 1

Alternative layer V 111 111 11 1 1

Alternative layer VI 111 111 11 1 11

Hippocampal formation
Subiculum 11 11 111 111 111

CA1 2 1 11 111 2

CA2/CA3 2 2 1 11 1

Dentate gyrus granule cells 2 2 111 111 111

Tenia tecta 111 111 111 11 11

Basal nuclei
Caudate putamen 111 111 111 111 111

Globus pallidus 11 11 11 11 11

Entopeduncular nucleus 2 2 2 2 2

Nucleus accumbens 111 111 111 111 111

Claustrum 2 2 1 11 11
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TABLE 6. Continued

Brain region P1 P3 P6 P12 P24

Substantia nigra
Pars reticulata 11 11 2 2 2

Pars compacta 111 111 111 111 111

Septum
Septum 111 111 111 111 111

Bed nucleus stria terminalis 111 111 111 111 111

Amygdala
Anterior amygdaloid area 11 11 11 11 11

Anterior cortical amygdaloid nucleus 111 111 111 11 111

Medial amygdaloid nucleus 111 111 111 111 111

Posterior cortical amygdaloid nucleus 111 111 111 111 111

Basolateral amygdaloid nucleus 111 111 111 111 111

Basomedial amygdaloid nucleus 111 111 111 11 111

Amygdalohippocampal area 111 111 111 111 111

Amygdalopiriform transition 111 111 11 11 11

Central amygdaloid nucleus 111 111 111 111 111

Thalamus
Reticular thalamic nucleus 2 2 2 2 2

Anterodorsal nucleus 111 111 111 111 111

Anteroventral nucleus 1 1 1 1 111

Anteromedial nucleus 111 111 11 111 111

Laterodorsal nucleus 111 111 111 111 111

Paratenial nucleus � � 11 11 111

Mediodorsal nucleus 11 11 11 11 111

Ventrolateral nucleus 11 11 11 11 111

Paraventricular nucleus, anterior � � 111 11 111

Paraventricular nucleus, posterior � � 11 11 11

Central medial nucleus 2 2 11 11 111

Ventromedial nucleus � � 11 11 11

Ventroposterolateral thalamic nucleus � � 111 111 11

Ventroposteromedial thalamic nucleus � � 11 11 11

Posterior thalamic nucleus � � 111 111 111

Centrolateral nucleus � � 111 111 111

Parafascicular nucleus 111 111 111 111 111

Lateral geniculate nucleus, dorsal � � 111 111 111

Lateral geniculate nucleus, ventral � � 11 11 11

Medial geniculate nucleus � � 111 111 111

Lateroposterior nucleus 2 2 111 111 111

Habenula 11 11 111 111 111

Hypothalamus
Preoptic nuclei 111 111 111 11 11

Magnocellular preoptic nucleus � � 1 11 11

Anterior hypothalamic area 111 11 11 11 111

Lateral hypothalamic area � � 11 11 11

Arcuate nucleus 11 11 11 11 11

Ventromedial hypothalamic nucleus 111 111 111 11 111

Dorsomedial hypothalamic nucleus 111 111 111 11 11

Tuberomammillary nucleus � � 11 111 11

Premammillary nucleus 11 11 11 11 11

Medial mammillary nucleus 111 111 111 111 111

Lateral mammillary nucleus 1 1 1 111 111

Magnocellular nucleus of lateral hypothalamus � � 2 2 11

Zona incerta 11 11 11 1 1

Brainstem
Reticular formation and related tegmental nuclei

Medullary reticular formation � � 1 1 1

Gigantocellular reticular nucleus 1 1 1 1 1

Paragigantocellular reticular nucleus � � 2 2 2

Intermediate reticular nucleus � � 2 2 2

Parvocellular reticular nucleus 2 2 2 2 2

Pontine reticular formation 2 2 2 2 2

Dorsomedial tegmental field � � 2 2 2

Laterodorsal tegmental nuclei � � 111 � 111

Dorsal tegmental nucleus 111 111 111 � 111
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At E15, the subicular neuroepithelium displays

moderate levels of SK2 (Table 2) and weak expres-

sion of SK1 and SK3 transcripts (Tables 1, 3). At

E17, as the cortical plate invades the hippocampal

primordium (Bayer and Altman, 1995), all three SK

channel subunits are strongly expressed in the subic-

ular differentiating field (Fig. 8C,G,K, Tables 1–3),

with strong signals for SK2 in differentiating cells

likely to become deep neurons of the para-, pre-, and

subicula proper (Fig. 8G). The expression of all three

SK transcripts persists at moderate (SK1, SK3) to

strong levels (SK2) at E19 and E21 (Fig. 3, Tables 1–

3). After birth, the subiculum displays strong signals

for SK1 (Fig. 5, Table 4) and SK2 (Fig. 6, Table 5)

transcripts, with SK3 levels increasing from moderate

to strong (Fig. 7, Table 6), and this expression pat-

tern is preserved in all parts of the adult subiculum

(Stocker and Pedarzani, 2000).

The neuroepithelium of the hippocampal primordium

was visible from E15 as a bulge in the medial telence-

phalic wall, displaying a moderate expression of SK2

(Fig. 8E, Table 2) and a weak expression of SK1 (Fig.

8A, Table 1) and SK3 transcripts (Fig. 8I, Table 3). At

E17, the cortical plate invades the hippocampal primor-

dium, and strong expression of SK2 can be observed in

differentiating neurons, most likely belonging to the

CA3 layer at this stage (Fig. 8G, Table 2). Strong

expression of SK1 (Fig. 8C, Table 1) and SK3 (Fig. 8K,

Table 3) transcripts is also present in differentiating hip-

pocampal neurons at this stage. At E19 and E21,

expression of all three SK subunits in the forming CA

layers is clear, with strong (SK2, Fig. 11B,E; SK1, Fig.

11A,D) and moderate (SK3, Fig. 11C,F) signals (Tables

1–3). In the postnatal period, P1–P24, strong SK1 and

SK2 signals develop in the CA1–CA3 layers, (Tables 4,

5) but SK3 displays an overall weak expression, which

TABLE 6. Continued

Brain region P1 P3 P6 P12 P24

Monoaminergic systems
Dorsal raphe nucleus 11 11 11 111 111

Locus coeruleus 111 111 111 111 111

Ventral tegmental area 111 111 111 111 111

Nuclei associated with respiratory, cardiovascular and other autonomic functions
Nucleus of the solitary tract 11 111 111 111 111

Parabrachial nucleus 2 2 2 2 2

Dorsal motor nucleus of vagus 2 11 111 111 111

Ambiguus nucleus � � 111 111 111

Orofacial motor nuclei
Motor trigeminal nucleus 111 11 111 111 11

Facial nucleus 111 11 111 111 111

Hypoglossal nucleus 11 11 11 � 11

Nuclei belonging to the somatosensory system
Gracile/cuneate nucleus 11 111 111 11 11

Principal sensory trigeminal nucleus 2 2 2 2 2

Spinal trigeminal nucleus 111 111 11 11 1

Nuclei belonging to the auditory system
Cochlear nuclei 111 11 111 11 11

Lateral superior olive 2 2 2 2 2

Nucleus trapezoid body 2 2 2 2 2

Nuclei of the lateral lemniscus 2 2 2 2 2

Inferior colliculus 11 11 1 2 2

Nuclei belonging to the visual system
Superior colliculus 111 111 11 11 1

Parabigeminal nucleus 2 2 2 2 2

Vestibular and precerebellar nuclei
Vestibular nuclei 111 111 11 111 11

Pontine nuclei 1 1 1 1 2

Inferior olivary nucleus 111 111 111 111 111

Red nucleus 2 2 2 2 2

Cerebellum
Deep nuclei 1 11 11 11 1

Purkinje cells 2 2 2 22 2

Golgi cells 2 1 11 111 111

Granule cells 1 1 1 11 2

1111, strong; 11, moderate; 1, weak; 2, signals very low or below the threshold limit of detection; np, not present; �, not clearly identifiable.
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seems to have a transient strong peak at about P12 (Table

6). In the dentate gyrus granule cells, which are largely

generated after birth, expression of SK1 and SK2 tran-

scripts is weak (Tables 4, 5), but SK3 mRNA increases and

reaches high levels starting from P6 (Table 6).

Basal ganglia
The basal telencephalic structures display a striking dif-

ferential expression of the three SK channel transcripts

during embryonic development. SK1 transcripts are

detectable as strong signals (Figs. 3A,D, 8A,C, Table 1)

and SK2 transcripts as moderate (Figs. 3B,E, 8E,G,

Table 2) between E15 and E19 in the striatum and pal-

lidum, with SK2 levels declining between E15 and E19.

SK3 is below the detection limit or weak throughout

embryonic development in these regions (Figs. 3C,F,

8I,K, Table 3). However, during postnatal development,

the expression pattern of SK channel transcripts in the

basal ganglia radically changes. SK1 mRNA persists at

high levels only in the entopeduncular nucleus, persists

at moderate levels in the caudate-putamen (Fig. 5), and

drops from moderate to weak expression between P6

and P12 in the nucleus accumbens (Table 4). SK2 tran-

scripts are present at moderate levels only in the ento-

peduncular nucleus, and they are weakly expressed in

the caudate-putamen and absent or weak in all other

basal ganglia structures after birth (Fig. 6, Table 5). By

contrast, the expression of SK3 transcripts is clearly

upregulated during postnatal development, being strong

in the caudate-putamen (e.g., Fig. 7F) and in the

nucleus accumbens (e.g., Fig. 7I) and moderate in the

globus pallidus (Table 6).

Thalamus
Expression of all three SK channel subunits is detecta-

ble in the anterior and posterior thalamic differentiating

Figure 8. Differential expression of SK1 (A–D), SK2 (E–H), and SK3 (I–L) in the embryonic forebrain and cerebral cortex at stages E15

(A,B,E,F,I,J) and E17 (C,D,G,H,K,L). The darkfield photomicrographs show that, at E15, SK2 is strongly expressed in the primordial plexi-

form layer (PPL; E,F), together with a weaker expression of SK1 (A,B), and in the cortical neuroepithelium (cx). SK3 shows a more diffuse

expression throughout the differentiating cortex (I,J). Strong expression of SK1 is visible in the striatal differentiating field (Str), with a

weaker one in the adjacent striatal neuroepithelium lining the lateral ventricle (A). SK2 is strongly expressed in both striatal neuroepithe-

lium and differentiating field (E). By contrast, SK3 is hardly detectable in the striatum but is expressed at weak to moderate levels in the

adjacent differentiating amygdala (Amg; I). At E17, all three channels are present in the subiculum (S) and hippocampal primordium (Hi;

C,G,K). Cortical expression of the three SK channel transcripts at E17 is shown in D,H,L, with SK2 displaying maximal expression levels in

the cortical plate (CP; H). For details on the distribution see Tables 1–3. For abbreviations see list. Scale bars 5 250 lm in I (applies to

A,E,I); 100 lm in J (applies to B,F,J); 250 lm in K (applies to C,G,K); 100 lm in L (applies to D,H,L).
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fields starting from E17, with SK2 and SK3 transcripts

expressed strongly and SK1 at moderate levels (Fig.

2M–O, Tables 1–3). At E19 and E21, strong expression

of SK1 is present in the anterior thalamus, with moder-

ate to weak signals in the intermediate and posterior

thalamus (Fig. 3A,D, Table 1). Moderately strong

expression of SK2 transcripts is detectable in all tha-

lamic differentiating areas at these developmental

stages (Fig. 3B,E, Table 2), whereas SK3 transcripts

show a decrease, from strong to moderate levels,

between E19 and E21 in the anterior and intermediate

thalamic areas (Fig. 3C,F, Table 3). During postnatal

development, SK1 shows strong expression, which is

maintained from P1 to P24 in the reticular thalamic

nucleus and the anterodorsal, anteroventral (Fig. 5H),

mediodorsal, and paraventricular nuclei (Table 4). SK1

transcripts show instead a progressive decrease during

postnatal development in the ventrolateral, central

medial, ventromedial, ventroposterolateral, ventropos-

teromedial (Fig. 5D–F), posterior, lateroposterior, and

Figure 9. Distribution of SK1, SK2, and SK3 subunit transcripts in the immature embryonic neocortex showing changes in the distribution

of the three subunits in the transition from stage E19 (A–C) to E21 (D–F). In particular, SK1 (A,D) decreases in the subventricular zone

(SV) and increases in the intermediate zone (IZ); SK2 (B,E) displays a similar decrease of expression in the subventricular zone but also in

the cortical plate (CP), accompanied by an increase in the intermediate zone; finally, SK3 shows a decreased expression in the subventric-

ular zone at E21 (C,F). For abbreviations see list. For details on the distribution see Tables 1–3. Scale bar 5 200 lm.
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centrolateral nuclei (Table 4). Similarly, SK1 levels

decline from P6 to P24 in the dorsolateral and medial

geniculate nuclei (Table 4). SK2 shows its strongest

expression in the reticular thalamic nucleus, where it

does not change throughout postnatal development

(Figs. 6H,I, 12, Table 5). Strong signals for SK2 tran-

scripts are also present in the anterodorsal, ventropos-

terolateral, and ventroposteromedial nuclei (Table 5).

SK3 signals are strong in several thalamic nuclei

throughout postnatal development. These include the

anterodorsal (Fig. 7G), anteromedial, laterodorsal, ante-

rior paraventricular, lateroposterior, posterior, centrolat-

eral, and parafascicular nuclei in addition to the

dorsolateral and medial geniculate nuclei (Fig. 7, Table

6). In most thalamic nuclei (Fig. 7B,H,I) signals for SK3

expression appear constant during postnatal develop-

ment, with the exception of the anteroventral, central

medial, and lateroposterior nuclei, where an increase in

expression is observed between P1 and P24 (Table 6).

Cerebellum and precerebellar nuclei
Cerebellar neurons are generated and migrate at differ-

ent time points, with the deep cerebellar nuclei neurons

appearing first, with a neurogenesis peak at about E14;

the Purkinje cells of the cerebellar cortex immediately

following, with a peak at about E15; and Golgi cells

appearing between E19 and P2, whereas granule cells

have a late time of origin at P8–15 (Bayer and Altman,

1995). Expression of SK channel subunits was first

detected at E15 (Figs. 2, 13A–C), with moderate levels

of SK1 and strong signals for SK2 transcripts present in

the cerebellar differentiating field, whereas SK3 was

hardly detectable at this age (Tables 1–3). Similar

expression levels for the three SK channel subunits per-

sist at E17 (Fig. 13D–F, Tables 1–3). At E19 and E21,

SK1 expression is strong in the deep nuclei (Fig. 13G,J,

Table 1), and SK2 predominates in the differentiating

Purkinje cells (Figs. 3B,E, 13H,K, Table 2). At these

stages, SK3 expression in the cerebellar region is still

weak (Fig. 13I,L, Table 3), and none of the SK subunits

is expressed at detectable levels in the external germi-

nal layer (Fig. 13, Tables 1–3).

Postnatally, SK1 expression persists as strong in

large neurons of the deep cerebellar nuclei (Fig. 14A)

and is detectable as weak in the internal granule cell

layer (Fig. 5, Table 4). SK2 transcripts are strongly

expressed in Purkinje cells up to P12 and subsequently

decrease to moderate levels at P24 (Table 5; Cingolani

et al., 2002). SK2 signals increase from moderate to

strong between P6 and P12 in neurons of the deep cer-

ebellar nuclei and from weak to moderate in the inter-

nal granule cell layer (Fig. 6, Table 5). Finally, SK3 is

expressed at moderate levels in the deep cerebellar

nuclei (Fig. 14B, Table 6). In the cerebellar cortex, SK3

signals progressively increase from weak to strong in

the Golgi cells (Fig. 14C–F, Table 6), but they are weak

in the granule cells (Fig. 14C–F, Table 6).

At the level of the precerebellar nuclei, moderate lev-

els of SK1 transcript (Fig. 13A) and a strong expression

of SK2 (Fig. 13B) can be observed in the differentiating

anterior and posterior pons at E15 (Tables 1, 2). At this

stage, SK3 transcripts are more selectively strongly

expressed in the neuroepithelium and a small portion of

the posterior pons (Fig. 13C, Table 3). While the expres-

sion of SK3 persists as strong in the posterior pons

Figure 10. Laminar distribution of SK1, SK2, and SK3 transcripts

in the neocortex during postnatal development. SK1 (A,D,G,J,M)

and SK2 (B,E,H,K,N) display a similar developmental pattern,

starting with relatively strong expression in multiple layers at P1–

P3 and leading to signals that are predominant in layer V (V) neu-

rons at P24, but SK3 (C,F,I,L,O) shows a progressive decline in

expression in all layers, with a moderate level persisting in the

deep part of layer VI (VI) at P24. For abbreviations see list. For

details on the distribution see Tables 4–6. Scale bar 5 400 lm.
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and neuroepithelium also at E17 (Fig. 13F, Table 3), the

expression of SK2 in the differentiating pons drops to

moderate levels at this stage (Fig. 13E, Table 2), and a

moderate expression is observed also for SK1 (Fig.

13D, Table 1). Postnatally, the pontine nuclei display

gradually increasing expression levels of SK1 transcripts

(Fig. 5A,C,E,G, Table 4), strong signals for SK2 through-

out postnatal development (Fig. 6A,C,E,G, Table 5), and

weak or undetectable ones for SK3 (Table 6). Despite

originating from a common neuroepithelium (Bayer and

Altman, 1995), neurons of the inferior olive display a

different pattern of expression of SK channel subunits,

with strong expression of SK1 from P1 to P6, which

declines substantially at P12 (Fig. 15A,D, Table 4), and

SK2 (Fig. 15B,D, Table 5) and SK3 (Figs. 7G, 15C,F,

Table 6) transcripts giving persisting strong signals

throughout postnatal development.

DISCUSSION

This study shows that SK channels are expressed at

early stages of development of the CNS. The three SK

channel subunits display different developmental

expression gradients in distinct CNS regions, with time

points of expression and up- or downregulation that can

be associated with a range of diverse developmental

events, such as for example neurogenesis and differen-

tiation. In the case of SK1 and SK2, strongest expres-

sion at embryonic stages of development was observed

in the undifferentiated cortex and hippocampus starting

from E15 and was maintained throughout postnatal

development and in the adult brain (Stocker and Pedar-

zani, 2000; Sailer et al., 2004). By contrast, the SK3

subunit shows strikingly strong expression in the undif-

ferentiated cortex and hippocampal formation during

embryonic development, which decreases in the adult

(Stocker and Pedarzani, 2000). In particular, strong sig-

nals for SK3 were observed in the subventricular zone

up to E19–E21 and in the intermediate zone up to E17,

suggesting a link to regulation of the proliferation of

neuronal precursor cells and early neuronal differentia-

tion (Bayer and Altman, 1995). Further supporting this

hypothesis, SK3 is expressed predominantly in the neu-

roepithelia (e.g., cochlear and precerebellar). This is in

agreement with recent studies proposing a role for SK3

channels in early neurogenesis and differentiation of

neuronal progenitor cells (Liebau et al., 2011).

SK1 and SK2 transcripts also showed strong expres-

sion starting from E15 in the striatum, where SK3 was

instead not detectable until after birth. While SK1 and

SK2 decreased throughout pre- and postnatal develop-

ment, SK3 strongly increased during postnatal develop-

ment, being the predominant SK channel subunit

expressed in the caudate-putamen and nucleus accum-

bens after birth and in the juvenile and adult rat brain

(Stocker and Pedarzani, 2000). Neurons of the anterior

thalamic complex are generated mainly on E16 and E17

and settle about 3 days later (Bayer and Altman, 1995),

when SK1 and SK3 subunits display strong expression,

maintained throughout postnatal development and in

Figure 11. All three SK channel transcripts are expressed in the hippocampal formation at E19 and E21. SK2 displays the strongest

expression in the subiculum (S) and CA1 layer (B,E). SK1 (A,D) and SK2 (B,E) subunits display overlapping expression patterns in the dif-

ferentiating CA1 and CA3 layers, and SK3 is expressed overall at lower levels in all hippocampal fields at these developmental stages

(C,F). For abbreviations see list. For details on the distribution see Tables 1–3. Scale bar 5 250 lm.
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the adult brain (Stocker and Pedarzani, 2000). Finally,

trigeminal ganglion neurons are born between E9.5 and

E14.5 and innervate their target regions and establish

receptive fields that, by E16, are similar to those in

adult animals (Waite, 2004). All three SK channel tran-

scripts are strongly expressed in the trigeminal ganglion

as early as E15, with SK1 and SK2 persisting at strong

levels until birth. Conversely, SK3 expression declines

at E17 and E19 following the establishment of receptive

fields.

During postnatal development a striking overall pat-

tern emerges for the three SK channel transcripts,

whereby the SK2 subunit is expressed at comparable

levels as in the adult brain in most regions starting

from P1. Few exceptions are represented by the facial

nucleus, where SK2 expression increases from P1 to

P12, and the cochlear nucleus and Purkinje neurons,

where SK2 expression decreases from P1 to P24 (Cin-

golani et al., 2002). By contrast, both SK1 and SK3

show major changes in expression during the perinatal

and postnatal period compared with the adult age in

several brain regions (Tables 4, 6; Stocker and

Pedarzani, 2000). As observed in the adult brain,

expression patterns of SK1 and SK2 subunits overlap

throughout postnatal development and coevolve in sev-

eral brain regions, whereas SK3 displays a rather dis-

tinct and complementary expression pattern.

The Allen Brain Atlas (Lein et al., 2007; www.brain-

map.org) and the GENSAT database (Gong et al., 2003;

www.gensat.org) provide extensive online collections of

gene expression maps for nearly all genes expressed in

the adult and developing mouse brain. The GENSAT

database does not report any information on SK chan-

nels, but the expression of all three SK channel subu-

nits has been analyzed by nonradioactive in situ

hybridizations in the Allen atlas. SK1 and SK2 are

shown to have low levels of expression limited to a few

regions of the adult mouse CNS, with SK3 displaying

instead ubiquitous expression. The expression levels

reported for SK1 and SK2 in the adult rat brain are

stronger and more widespread (Stocker and Pedarzani,

2000). An even stronger discrepancy is evident for SK3,

which displays a predominantly and rather restricted

subcortical expression pattern, as shown in in situ

hybridization studies on the adult rat brain (Stocker and

Pedarzani, 2000; Tacconi et al., 2001) and by immuno-

histochemistry in the mouse (Sailer et al., 2004) and

rat (Tacconi et al., 2001) brain. This difference could be

a consequence of the use of riboprobes when dealing

with highly homologous transcripts (Allen Atlas), a prob-

lem prevented by the use of shorter and more specific

oligonucleotides (Wisden and Morris, 1994; Stocker and

Pedarzani, 2000; Tacconi et al., 2001). For the develop-

ing mouse brain, the Allen Atlas provides information

only on the distribution on the SK2 channel transcript,

with little to no expression detectable during embryonic

development. The early expression of all SK subunits in

rat embryonic development reported in this study sug-

gests an involvement in the regulation of developmental

processes. Apamin is a bee venom toxin that binds and

selectively inhibits SK channels (for review see Pedar-

zani and Stocker, 2008). Our findings are consistent

with the results of apamin-binding studies, showing

labeling of E16–E17 neuronal cultures (Seagar et al.,

1984) and proliferative periventricular zones before

birth and of cortex and hippocampus already at birth

(Mourre et al., 1987).

The expression maps of the three SK channel tran-

scripts during pre- and postnatal development raise

questions concerning the potential function and subunit

composition of SK channels at various developmental

stages. There are only a few studies investigating the

function of pharmacologically defined apamin-sensitive

Ca21-activated K1 currents in developing neurons,

most of which support a role of SK channels in the

Figure 12. Darkfield photomicrographs showing strong expression

of SK2 transcripts in the reticular thalamic nucleus (Rt) at P3 (A)

and P24 (B). For abbreviations see list. Scale bar 5 100 lm.
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early regulation of membrane excitability and firing

properties. This is the case for neurons in the medial

vestibular nucleus, where SK channels counteract Na1

and Ca21 currents underlying the generation of depola-

rizing plateau potentials shortly after birth (P5; Dutia

and Johnston, 1998) and where all three SK channel

subunits are expressed as early as at birth (this study).

Similarly, in neocortical neurons of layers II/III and V,

an apamin-sensitive current contributes to the medium-

duration afterhyperpolarization at P7 and persists with

similar properties until adulthood (Lorenzon and

Foehring, 1993). This is in good agreement with the

expression of SK channel subunits detected from P6 in

layer II/III and as early as P1 in layer V neurons (this

study). In phrenic motoneurons, apamin-sensitive Ca21-

activated K1 currents were measured as early as at

E18, when they contributed to shaping firing and after-

potentials upon the start of inspiratory drive transmis-

sion (Martin-Caraballo and Greer, 2000). Also in this

case, the functional expression of SK channels in moto-

neurons matches the early expression of SK1–3 mRNAs

detected in the spinal cord (this study). Finally, the

presence of the SK2 channel transcript in the mouse

hippocampal formation has been shown by real-time

Figure 13. Expression of SK1, SK2, and SK3 in the embryonic differentiating cerebellum and precerebellar nuclei. SK1 displays a diffuse

expression pattern in the cerebellar differentiating field (Cb) at E15 (A) and E17 (D), with strong expression predominantly in the deep cer-

ebellar nuclei (DN) at E19 (G) and E21 (J). SK2 is expressed more strongly than SK1 in the cerebellar differentiating field at E15 (B) and

E17 (E). Its strongest expression is subsequently observed in the differentiating Purkinje cell layer (Pk) at E19 (H) and E21 (K). SK3 shows

an overall weak and diffuse expression in the cerebellar differentiating field from E15 (C) to E21 (L), in contrast to strong expression in

the precerebellar (C,F) and cochlear (I,L) neuroepithelia. For abbreviations see list. For details on the distribution see Tables 1–3. Scale

bars 5 400 lm in L (applies to D–J,L); 800 lm for A,B,C,K.
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PCR starting from P0 and progressively increasing dur-

ing the first 3 weeks of life, in agreement with our find-

ings in the rat hippocampus. Protein expression follows

a similar trend, with SK2-containing channels at synap-

tic locations increasing from P5 to P30 (Ballesteros-

Merino et al., 2012).

The largely overlapping expression patterns of SK

channel subunits, particularly SK1 and SK2, starting

from prenatal developmental stages, suggest the forma-

tion of heteromeric channels, formed by two or even

three different SK channel subunits. Heteromeric chan-

nels are formed upon coexpression of recombinant SK

channel subunits in heterologous expression systems

(Ishii et al., 1997; Benton et al., 2003; Monaghan et al.,

2004), but their existence in native systems is still

uncertain with biochemical evidence arguing in favor

and against (Sailer et al., 2002; Strassmaier et al.,

2005; Tuteja et al., 2010) and immunohistochemical

studies suggesting subcellular segregation of different

SK subunits (Sailer et al., 2002; Sailer et al., 2004). In

particular, the role of the SK1 subunit is still unclear.

Unlike the human homologous SK1 subunit, the rat SK1

(rSK1) does not form functional homomeric SK1 chan-

nels in heterologous expression systems (Benton et al.,

2003; D’hoedt et al., 2004). Chimeric rSK1 channels

are capable of membrane expression and are insensi-

tive to the specific SK channel toxin inhibitor apamin

(D’hoedt et al., 2004), unlike their human counterparts.

Putative rSK1/rSK2 heteromeric channels in heterol-

ogous systems display a sensitivity to apamin (Benton

et al., 2003; Weatherall et al., 2011) comparable to

that observed for the native, SK-mediated current in

CA1 pyramidal neurons of young adult rats (Stocker

et al., 1999), suggesting that heteromeric rSK1/rSK2

channels are formed in these neurons.

In heterologous expression systems, the coexpres-

sion of rSK1 and rSK2 subunits leads to larger currents

(Benton et al., 2003), whereas coexpression of rSK1

and rSK3 subunits results in smaller currents (Mona-

ghan et al., 2004). Our findings on the ontogeny of SK

channel expression, in particular the relatively stable

levels of SK2 associated in several brain regions with

decreasing or increasing levels of SK1 during perinatal

and postnatal development, might result in significant

changes in the functional expression of SK-mediated

currents. Similar regulatory mechanisms might take

place in neurons coexpressing SK1 and SK3 and dis-

playing relative changes in the ratio of these two tran-

scripts. Whether this finely tuned regulation of SK

channel transcript coexpression in developing neurons

has a functional consequence requires future work

using electrophysiology in combination with pharmaco-

logical tools specific for channels with defined subunit

compositions, to shed light on the molecular makeup

and function of SK channels in neurons at different

developmental stages.

A further potential source of developmentally regu-

lated diversity in the molecular makeup of SK channels

is suggested by the distinct developmental time

courses of embryonic and postnatal expression of multi-

ple transcripts observed in the Northern blot analysis.

The presence of a single gene for each SK subunit in

the rat genome (for review see Stocker, 2004) suggests

that the multiple bands observed in the Northern blot

are the consequence of alternative splicing and the use

of alternative promoters. Indeed, both alternative splic-

ing (Shmukler et al., 2001; Kolski-Andreaco et al.,

2004; Wittekindt et al., 2004) and the use of alternative

promoters (Strassmaier et al., 2005) have been

described for SK subunits. A detailed study on specific

SK channel splice variants and their functional corre-

lates in developing neurons is still needed.

SK channels are the center of multiprotein signaling

complexes that, in addition to the pore-forming SK

Figure 14. Expression of SK1 and SK3 subunits in the postnatal

cerebellum. SK1 shows strong expression in large neurons of the

deep cerebellar nuclei (DN) at P12 (A). SK3 is also expressed at

moderate levels in the deep nuclei at P12 (B). C–E: Darkfield

photomicrographs displaying strong signal for the expression of

SK3 transcripts in scattered Golgi cells at P6 (C), P12 (D), and

P24 (E). Golgi cells are depicted at higher magnification in F,

using brightfield optics that reveal clear clusters of silver grains

on scattered cell nuclei (arrowheads). For abbreviations see list.

For details on the distribution see Tables 4 and 6. Scale

bars 5 300 lm in E (applies to A–E); 40 lm in F.
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channel subunits, include calmodulin as a constitutively

bound calcium sensor and casein kinase and protein-

phosphatase 2A as closely associated enzymes modu-

lating the calcium sensitivity of the channels (Bildl

et al., 2004; Allen et al., 2007). Calmodulin transcripts

have been detected in the rat brain as early as E14 by

Northern blot analysis (Weinman et al., 1991), with

mRNAs from different calmodulin-encoding genes show-

ing region-specific developmental expression patterns

(Ni et al., 1992). Calmodulin immunoreactivity has been

found in the neural tube of developing mouse embryos

as early as E9.5 (Seto-Ohshima et al., 1987), and in the

rat brain it was detected at P1 and shown to increase

during the first 2 postnatal weeks (Berry and Brown,

1995). Thus, based on these ontogenetic studies,

expression of calmodulin most likely is not a temporal

limiting step for the assembly of functional SK channels

at embryonic and postnatal neuronal developmental

stages. Similarly to calmodulin, the casein kinase 2

alpha subunit (CK2a) is expressed at very early stages

of embryonic neuronal development (Dominguez et al.,

2011). A second gene encoding for the casein kinase 2

alpha subunit (CK2a’) appears at a later developmental

stage, at the time of dendrite maturation and synapto-

genesis (Diaz-Nido et al., 1994; Moreno et al., 1999).

Finally, the regulatory subunit casein kinase 2 beta

(CK2b) is essential at very early stages of embryonic

development for proliferation and differentiation of neu-

ral progenitor cells (Huillard et al., 2010). Protein phos-

phatase 2A (PP2A) is already expressed during

gastrulation and neurulation (Gotz and Kues, 1999).

PP2A regulatory subunits instead display different

expression patterns, with Ba and Bb detectable in

embryonic brains, whereas Bg increases sharply after

birth (Strack et al., 1998). Based on these studies, it is

likely that the SK channel multiprotein signaling com-

plexes observed in the adult brain form already during

embryonic development, when the SK channel subunits

first appear.

In the adult brain, SK channels are activated by intra-

cellular calcium elevations whose origin varies from cell

type to cell type, or even within different subcellular

compartments in the same neuron (for review see Ped-

arzani and Stocker, 2008). The calcium sources that

are functionally coupled to the activation of SK chan-

nels in neurons include voltage-gated Ca21 channels,

N-methyl-D-aspartate (NMDA) glutamate receptors, and

ryanodine-sensitive and IP3-sensitive stores (for review

see Adelman et al., 2012). Most neuronal voltage-gated

Ca21 channels (CaV1.2, CaV1.3, CaV2.1, CaV2.2,

CaV2.3, CaV3.1, and CaV3.3) are expressed in different

brain regions during early embryonic development

(Vance et al., 1998; Meacham et al., 2003; Yunker

et al., 2003; Schlick et al., 2010). Similarly, several

NMDA receptor subunits are expressed during embry-

onic development of the CNS (Monyer et al., 1994).

Channels responsible for the release of calcium from

intracellular stores, such as IP3 receptors (Dent et al.,

1996; Faure et al., 2001) and ryanodine-sensitive chan-

nels (Faure et al., 2001), have been found in neurons

as early as at stage E11. For all these calcium-

permeable channels, changes in expression levels,

Figure 15. Expression of SK channel subunits in the inferior olivary nucleus (IO). SK1 shows a strong hybridization signal in inferior olivary

neurons up to P6 (A), which clearly declines at P12 (D). Conversely, both SK2 (B,E) and SK3 (C,F) display strong expression throughout

postnatal development. For details on the distribution see Tables 4–6. Scale bar 5 250 lm.
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subunit composition, or subcellular distribution have

been reported in the course of the perinatal and post-

natal development of the nervous system. At which

stage SK channels are first functionally coupled to

these calcium sources and how this coupling evolves in

the course of neuronal development are still largely

unresolved issues.

In conclusion, this study reports an early expression

of SK channel subunit transcripts, starting from E12. If

channel translation and translocation to the membrane

follow shortly after the appearance of transcripts, SK

channels are ideally suited to respond to the calcium

transients that have been implicated in various stages

of neuronal development, including proliferation, migra-

tion, differentiation, and survival (Rosenberg and Spit-

zer, 2011). In Drosophila, different types of voltage- and

calcium-dependent potassium channels have been

shown to regulate the size and dynamics of calcium

transients in different subcellular compartments, influ-

encing activity-dependent neuronal differentiation

(Berke et al., 2006). We propose that, given their early

and wide expression, sensitivity to calcium, and roles

played in mature neurons, SK channels might play a

key role in shaping the temporal dynamics and spatial

spread of early calcium transients in mammalian neu-

rons, thereby influencing the specific effects of calcium

signaling in neuronal development.
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