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Abstract

During central nervous system development, extracellular matrix (ECM) receptors and their 

ligands play key roles as guidance molecules, informing neurons where and when to send axonal 

and dendritic projections, establish connections, and form synapses between pre- and postsynaptic 

cells. Once stable synapses are formed, many ECM receptors transition in function to control the 

maintenance of stable connections between neurons and regulate synaptic plasticity. These 

receptors bind to and are activated by ECM ligands. In turn, ECM receptor activation modulates 

downstream signaling cascades that control cytoskeletal dynamics and synaptic activity to regulate 

neuronal structure and function and thereby impact animal behavior. The activities of cell 

adhesion receptors that mediate interactions between pre- and post-synaptic partners are also 

strongly influenced by ECM composition. This chapter highlights a number of ECM receptors, 

their roles in the control of synapse structure and function, and the impact of these receptors on 

synaptic plasticity and animal behavior.
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1 INTRODUCTION

During early postnatal development, the nervous system is highly plastic, continuously 

forming, eliminating, and remodeling dendrites and dendritic spines. This plasticity allows 

for proper synaptic connectivity to develop in an experience-dependent fashion. At early 

developmental ages, the extracellular matrix (ECM) provides a dynamic and permissive 

environment to allow for heightened neuronal plasticity (Dansie and Ethell, 2011; 
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Kochlamazashvili et al., 2010). As the brain matures, the ECM is remodeled and replaced by 

an adult form that is localized to the intercellular space between neurons and glia. 

Additionally, the adult ECM is found in specialized structures, including perineuronal nets 

(PNNs) that surround interneurons. This adult ECM provides an external physical barrier to 

restrict dendrite and dendritic spine plasticity (Dityatev and Schachner, 2003). In addition to 

acting as a scaffold, ECM proteins can bind specifically to cell surface receptors, activating 

signaling cascades to regulate neuronal function (Dansie and Ethell, 2011). This chapter will 

review the functions of important ECM receptors in the brain, including integrins, 

syndecans, agrin, lipoprotein receptors (LPRs), and tetraspanins.

2 INTEGRINS

2.1 INTRODUCTION

Integrins are a class of adhesion receptors that serve as physical and functional links 

between the ECM and the cytoskeletal control pathways. They are expressed in nearly every 

cell type in the body and regulate diverse functions including cell survival, migration, 

attachment, focal adhesion assembly, and cell differentiation (Anton et al., 1999; Campbell 

and Humphries, 2011). There are 24 known integrin heterodimers of αβ subunits, and a 

subset of these are expressed in the brain, including in the hippocampus, cortex, thalamus, 

and cerebellum (Chan et al., 2003; Dansie and Ethell, 2011; McGeachie et al., 2011). In 

neurons, some integrins are enriched at synaptic membranes and localized to the 

postsynaptic density of dendritic spines (Bernard-Trifilo et al., 2005; Bourgin et al., 2007; 

Chavis and Westbrook, 2001; Kerrisk et al., 2013; Mortillo et al., 2012; Pinkstaff et al., 

1999; Warren et al., 2012). In particular, integrin subunits α3, α5, α8, α(V), β1, and β3 

function in a variety of roles in the brain, including neuronal migration, synapse and 

dendrite development, morphogenesis and stability, and synaptic plasticity (Gupton and 

Gertler, 2010; McCarty et al., 2005; Rehberg et al., 2014; Wu and Reddy, 2012). 

Perturbation of integrin function impacts learning and memory, likely by affecting 

underlying neuronal structure, function, and synaptic plasticity.

2.2 INTEGRIN STRUCTURE

Integrins are composed of noncovalently bonded heterodimers of α and β subunits. Integrin 

β subunits contain intracellular tails that bind to cytoplasmic signaling proteins and activate 

signaling cascades, while integrin α subunit extracellular head domains bind to and confer 

ligand specificity. Additionally, there are a number of integrin-binding proteins that can act 

as coreceptors, providing additional ligand specificity or altering integrin function, including 

N-cadherin (Mortillo et al., 2012) and tetraspanin (Bassani and Cingolani, 2012; 

Berditchevski et al., 2001). When inactive, integrins are thought to adopt a compact 

conformation that occludes both extracellular ligand-binding and intracellular effector 

binding sites (Shattil et al., 2010). Integrin receptors can be activated bidirectionally and 

activation causes major conformational changes in the heterodimer structure (Hynes, 2002; 

Kim et al., 2003). Inside-out signaling is initiated by talin or the kindlin family of proteins 

binding to intracellular β tails (Kim et al., 2003; Moser et al., 2008). Intracellular binding of 

these molecules to integrin β tails translates force across the plasma membrane into a 

conformational change in the integrin head domains, promoting binding to extracellular 

Kerrisk et al. Page 2

Prog Brain Res. Author manuscript; available in PMC 2015 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ligands (Calderwood et al., 2013; Kong et al., 2013). Once bound to β integrins, talin 

interacts with F-actin, thus establishing a mechanical link between the ECM and the 

intracellular cytoskeleton (Calderwood et al., 2013). While talin and kindlin favor integrin 

activation, other proteins stabilize integrins in an inactive state by competing with talin or 

kindlin for binding to β integrin tails. For example, the actin-binding protein filamin binds β 

integrin C-termini at a site overlapping that for talin, thus inhibiting talin-dependent 

activation and establishing an alternative linkage between integrins and actin (Kiema et al., 

2006).

From the extracellular side, ECM proteins and other soluble ligands can bind to integrin 

head domains and activate the receptor via an outside-in mechanism. This separates the 

intracellular tails, allowing them to bind to and initiate signaling cascades typically to 

regulate cytoskeletal control pathways (Hynes, 2002). The two alternative conformations of 

integrin structure have been elucidated using X-ray crystallography (Xiong et al., 2001), 

nuclear magnetic resonance (Lau et al., 2009), and electron microscopy (Choi et al., 2013) 

of active and inactive forms. Integrins have been finely tuned by evolution to respond 

quickly to changes in both intracellular and extracellular environments, making them ideal 

receptors to respond to activity-dependent signaling events and mediate synaptic plasticity.

2.3 INTEGRIN ECM LIGANDS

While numerous integrin ligands have been identified in vitro and in nonneuronal cells, 

identifying and characterizing ECM receptor interactions in neurons of the central nervous 

system (CNS) have proven more difficult. This difficulty stems in large part from the lack of 

extensive basement membranes in the CNS, making the purification of large amounts of 

ECM receptor complexes difficult. Recent progress has been made in developing methods to 

extract chondroitin sulfate proteoglycans (CSPGs) from the dense ECM-containing PNNs 

that surround parvalbumin-expressing fast-spiking interneurons (Deepa et al., 2006; Hartig 

et al., 1999). PNNs, which are composed mainly of CSPGs, tenascin-R, and hyaluronic acid 

(Yamaguchi, 2000), will be discussed in more detail in the subsequent chapters.

Each distinct integrin receptor has different ligand-binding specificities, with some receptors 

binding to only one ligand and others binding to several. Receptors with α5, α8, and α(V) 

subunits are considered “RGD” receptors because they recognize an Arg-Gly-Asp binding 

motif found in many extracellular ligands. This includes fibronectin, vitronectin, tenascins, 

and thrombospondins. Integrins with α1, α2, α10, and α11 are collagen receptors that 

recognize the peptide sequence “GFOGER.” Finally, integrins with α3, α6, and α7 subunits 

bind to the laminin family proteins (Belkin and Stepp, 2000; Campbell and Humphries, 

2011; Humphries et al., 2006; Hynes, 2002).

Within “RGD” receptors, integrin αVβ3 has been shown to interact with several different 

ECM ligands and counterreceptors on adjacent cells. For example, in dorsal root ganglion 

neurons, integrin αVβ3 binds to the L1 cell adhesion molecule of the immunoglobulin 

superfamily. This RGD-dependent interaction involves the sixth immunoglobulin-like 

domain of L1 (Blaess et al., 1998), and it is important for promoting neurite outgrowth in 

culture (Yip et al., 1998). L1 is expressed in many neurons of the CNS at the onset of 

differentiation, where it interacts with multiple extracellular partners to regulate several 
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aspects of neuronal migration, axon growth, and synaptic transmission (Dityatev et al., 

2008). Thus, it is tempting to speculate that a specific interaction between integrin αVβ3 and 

L1 might contribute to neurite outgrowth also in vivo.

More recently, the astrocyte-secreted protein SPARC (secreted protein, acidic and rich in 

cysteine) has been shown to inhibit integrin αVβ3 at excitatory hippocampal synapses to 

control the levels of AMPA-type glutamate receptor (AMPAR) expression (Jones et al., 

2011). Astrocytes release SPARC in response to changes in neuronal network activity and, 

in turn, SPARC acts on neurons to downregulate surface expression of β3 integrin subunit 

and of GluA1- and GluA2-containing AMPARs (Jones et al., 2011). Notably, in retinal 

ganglion cells, SPARC antagonizes the synaptogenic function of another member of the 

SPARC family, hevin. Similar to SPARC, hevin is released by astrocytes (Kucukdereli et 

al., 2011); however, it affects synapses by interacting with the cell adhesion molecules 

neuroligins and neurexins (Clarke and Barres, 2013). Thus, integrin αVβ3 appears to 

cooperate with other synaptic cell adhesion molecules to regulate synaptic function in 

response to astrocyte-released factors.

Many of the integrins present at developing and mature synapses are heterodimers 

containing the β1 subunit (Mortillo et al., 2012; Ning et al., 2013). In olfactory bulb axons, 

β1 subunit-containing integrins have been shown to interact with Semaphorin 7A (Sema7A), 

which is a secreted and glycosylphosphatidylinositol-anchored semaphorin expressed during 

neural development (Pasterkamp et al., 2003). Whereas many semaphorins are repellent to 

growing axons, Sema7A boosts axon growth and is required for proper lateral olfactory tract 

formation during embryonic development. These effects on axon outgrowth require Sema7A 

to interact with β1 integrins in an RGD-dependent manner and to activate downstream MAP 

kinase signaling pathways (Pasterkamp et al., 2003). It appears therefore that integrins 

expressed on the growth cone can regulate axon guidance in part by interacting directly with 

the cues that stimulate axonal outgrowth (Myers et al., 2011).

Recently, β1 integrins, most likely α5β1, have been shown to interact directly also with 

telencephalin (TLCN; aka intercellular adhesion molecule-5, ICAM-5), which is a member 

of the immunoglobulin superfamily of cell adhesion molecules selectively expressed in the 

mammalian forebrain (Conant et al., 2011; Ning et al., 2013). TLCN is enriched in the soma, 

dendritic shafts, dendritic filopodia, and immature dendritic spines of excitatory neurons. 

Symmetrically, β1 integrins is expressed predominantly at presynaptic sites in nascent 

synapses (Hellwig et al., 2011; Matsuno et al., 2006; Ning et al., 2013). At early stages of 

synapse formation, TLCN and β1 integrins likely start forming loose and dynamic contacts 

between filopodia tips and axonal terminals (Conant et al., 2011; Ning et al., 2013). Notably, 

either deletion of cell adhesion molecules or inhibition of their interactions with function-

blocking antibodies promotes structural and functional maturation of dendritic spines 

(Matsuno et al., 2006; Ning et al., 2013). Thus, a key function of the TLCN–β1 integrin 

interaction is likely to maintain filopodia and immature spines in a highly dynamic state and 

to oppose their development into larger and more stable mushroom spines.

Another β1 integrin, α3β1, binds with high affinity to laminins in vitro (Nishiuchi et al., 

2006). Laminins are complexed with integrin α3 at the neuromuscular junction (NMJ) and 
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in hippocampal synapses (Carlson et al., 2010; Yang et al., 2011). Additionally, integrin 

α3β1 can bind to the ECM protein reelin and regulate neuron–glia interactions necessary for 

proper cortical lamination. The effects of reelin on cortical migration require its interaction 

with integrin α3, and loss of integrin α3β1 reduces phosphorylation of DAB1, a well-

characterized effector downstream of reelin signaling (Dulabon et al., 2000).

CSPGs, the major components of PNNs, have also recently been implicated in integrin β1 

signaling. Digestion of CSPGs with chondroitinase ABC (ChABC) in live hippocampal 

slices increases the motility of dendritic spines and causes the appearance of abnormal spine 

head protrusions. Interestingly, these changes to dendritic spines correlate with activation of 

integrin β1 receptors and focal adhesion kinase (FAK) at synaptic sites (Orlando et al., 

2012). These data suggest that CSPGs may be ligands for integrin β1-containing receptors or 

may regulate access of other ligands to the receptor to control dendritic spine dynamics. 

Future studies will determine which of these mechanisms mediate the effects of CSPGs on 

integrin activation and spine morphology.

2.4 INTEGRINS IN SYNAPTIC PLASTICITY

2.4.1 Early Research—The role of integrin receptors in synaptic function and plasticity 

first became evident in the early 1990s. Studies from several laboratories used integrin-

blocking peptides containing the RGD-motif or function-blocking anti-integrin antibodies to 

demonstrate that integrin inhibition caused significant impairment in long-term potentiation 

(LTP) in hippocampal slices (Peng et al., 1991; Staubli et al., 1990). A seminal study by 

Chavis and Westbrook in 2001 provided important clues regarding the molecular 

mechanisms by which integrins may influence LTP. The authors first found that a high 

probability of glutamate release from immature synaptic boutons correlated with high 

expression of the NMDA receptor GluN2B subunit at postsynaptic sites. As synapses 

matured, glutamate release probability decreased, while NMDA receptor subunit 

composition transitioned to those containing predominantly GluN2A subunits, which have 

faster kinetics (Cull-Candy et al., 2001). Importantly, chronic inhibition of the integrin β3 

receptor blocked the coordinated maturation of hippocampal synapses, preventing both the 

decrease in release probability and the switch in NMDA receptor subunit composition, 

resulting in hypersensitivity to glutamate, a phenotype representative of more immature 

hippocampal synapses (Chavis and Westbrook, 2001). These observations implicated 

integrin receptors in the control of glutamate release, NMDA receptor function, and synapse 

maturation.

2.4.2 Integrin αSubunits in Synaptic Plasticity—Several studies have demonstrated 

important roles for integrins in both structural synaptic plasticity and functional synaptic 

plasticity. Application of the disintegrins echistatin, which inhibits β1- and β3-containing 

receptors, and triflavin, which targets preferentially integrin α5β1 receptors, to hippocampal 

slices rapidly suppresses LTP (Chun et al., 2001). Additionally, blocking integrin receptors 

with RGD peptides yields a twofold increase in the amplitude and duration of NMDA 

receptor synaptic currents (Lin et al., 2003, but see Cingolani et al., 2008), and genetic 

disruption of integrin β1 in mature excitatory neurons impairs selectively LTP (Chan et al., 

2006; Huang et al., 2006). When integrin β1 is instead deleted in excitatory neurons from 
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early stages of embryonic development, deficits in both LTP and presynaptic release 

probability are observed in the hippocampus (Huang et al., 2006). Thus, β1-class integrins 

appear to be important for presynaptic function at early stages of development and for LTP 

in mature synapses (Huang et al., 2006; Ning et al., 2013).

Activating β1-containing integrins in synaptosome preparations or acute hippocampal slices 

results in rapid activation of Src family kinases (SFKs) and phosphorylation of NMDA 

receptor subunits GluN2A and GluN2B (Bernard-Trifilo et al., 2005). Furthermore, 

application of the SFK inhibitor PP2 can prevent the NMDA receptor current increase in 

RGD-inhibited slices (Lin et al., 2003). Taken together, these results suggest that integrin β1 

receptors may signal via SFKs to control LTP and synaptic function.

Integrins also regulate dynamic changes in dendrite and dendritic spine morphology. In 

cultured neurons, activation of integrin β1 induces dendritic spine elongation, an effect that 

can be blocked using integrin function-blocking antibodies or NMDA receptor antagonists 

(Shi and Ethell, 2006). Inhibiting integrin β1 in retinal ganglion neurons causes rapid 

dendrite retraction and overall reduction of dendrite arborization (Marrs et al., 2006). 

Integrin β1 knockout mice exhibit an age-dependent loss of hippocampal dendrite 

arborization and synapse density (Warren et al., 2012). Together, these results suggest that 

synaptic integrins regulate kinase signaling cascades to modulate NMDA receptor function, 

dendritic spine morphology, dendrite arborization, and synaptic plasticity.

A recent study reported that integrin β1 receptors have a more specific temporal control on 

synaptic plasticity than previously appreciated. Babayan et al. (2012) used a specific 

antibody that recognizes the active integrin β1 conformation to quantitate integrin activation 

at various time points following theta burst stimulation (TBS) in CA1 hippocampal slices. 

Interestingly, integrin β1 became activated immediately, in less than 2 min, following TBS, 

but activation levels returned to baseline after 7 min. Following a second TBS, integrin β1 

was resistant to further activation for at least 30 min but could once again be activated by 60 

min poststimulation. Interestingly, the pattern of integrin activation in response to TBS was 

unaffected by protein synthesis inhibitors, but could be disrupted by inhibitors of endosomal 

trafficking. These observations suggest that TBS promotes increased integrin trafficking to 

the plasma membrane and support a hypothesis that integrin β1 participates in both the rapid 

response to TBS and the slower consolidation of LTP over time (Babayan et al., 2012).

Integrin β3 has been shown to be a central regulator of homeostatic synaptic plasticity (HSP) 

(Thalhammer and Cingolani, 2014). Blockade of neuronal network activity to induce HSP 

increases surface levels of integrin β3 subunits, and HSP itself, but not LTP or LTD, is 

blocked in β3 integrin knockout mice (Cingolani and Goda, 2008; Cingolani et al., 2008; 

McGeachie et al., 2012). At the synapse, β3 integrin subunits interact directly with the 

GluA2 subunit of AMPA receptors to regulate AMPA receptor trafficking and synaptic 

strength (Pozo et al., 2012). Moreover, the inhibition of integrin β3 with echistatin results in 

AMPA receptor endocytosis via a pathway requiring the Rap1 small GTPase, which yields 

overall decreased synaptic transmission (Cingolani et al., 2008). Interestingly, surface levels 

of integrin β3 subunits in neurons are also sensitive to astrocyte-secreted factors, such as 

tumor necrosis factor-α (Cingolani et al., 2008) and SPARC (Jones et al., 2011), suggesting 
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that integrin β3 might regulate HSP in response to astrocytic signals. These multifaceted 

studies indicate that integrin β1- and β3-containing receptors have both distinct and 

overlapping roles in regulating spine morphology, synaptic efficacy, and multiple forms of 

synaptic plasticity.

2.4.3 Integrin αSubunits in Synaptic Plasticity—Work over the last 15 years has 

begun to reveal roles for specific integrin α subunits in synaptic plasticity and LTP 

(Dityatev et al., 2010). For example, function-blocking antibodies to the integrin α5 subunit 

cause a 30% reduction in LTP after 45 min, but do not affect initial basal transmission. 

Furthermore, inhibiting integrin β1 with antagonist peptides produces the same effect as 

inhibiting integrin α5, suggesting that integrin α5β1 regulates LTP in the hippocampus 

(Chun et al., 2001). Conversely, blocking α(V) or α2 subunits does not alter either baseline 

transmission or synaptic plasticity (Chun et al., 2001).

Local infusion of integrin α3 function-blocking antibodies into CA1 of rat hippocampal 

slices reduces LTP 40 min after induction (Kramar et al., 2002). Genetic disruption of 

integrin α3 from mice compromises hippocampal LTP, synapse and dendrite stability, and 

animal behavior (Chan et al., 2003, 2007; Kerrisk et al., 2013), but does not impact paired-

pulse facilitation (PPF), a parameter sensitive to changes in presynaptic neurotransmitter 

release probability (Chan et al., 2003). Reducing the gene dosage of integrins α3 and α5 

together is sufficient to cause defects in PPF, while simultaneous reduction of integrin α3, 

α5, and α8 gene dosage in a triple heterozygous animal yields defects in spatial memory and 

hippocampal LTP (Chan et al., 2003). Furthermore, genetic disruption of only integrin α8 

from excitatory neurons causes impairments in LTP, but not working memory, PPF, LTD, or 

basal synaptic transmission (Chan et al., 2010). Collectively, these results suggest both 

independent and redundant roles for integrin α subunits in the brain. For example, multiple 

α subunits contribute to LTP induction, but loss of specific individual subunits differentially 

impacts animal behavior and PPF.

2.5 INTEGRINS IN LEARNING AND MEMORY

Due to their important roles in dendrite structure, synapse stability, and synaptic plasticity, 

genetic disruption of specific integrin subunits causes impairments in animal behavior, 

particularly in tasks related to learning and memory. Selective knockout of integrin α3 in 

forebrain excitatory neurons yields defects in hippocampal LTP maintenance. These defects 

correlate with impairments in hippocampus-dependent working memory tasks (Chan et al., 

2007) and novel object recognition behavior (Kerrisk et al., 2013). Mice triply heterozygous 

for integrins α3, α5, and α8 have additional impairments in a water maze-based spatial 

memory task (Chan et al., 2003, 2010; Kramar et al., 2002). Furthermore, loss of integrin β1 

causes defects in novel object recognition behavior as well as heightened sensitivity to 

cocaine (Warren et al., 2012; Wiggins et al., 2009). In contrast, mice with loss of integrin β3 

have normal conditioned fear behavior (McGeachie et al., 2012). Thus far, most integrin 

mutants examined have impairments in a battery of behavioral tasks, consistent with their 

fundamental roles in neuronal and synapse morphogenesis, stability, and function.
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2.6 SIGNALING DOWNSTREAM OF INTEGRINS

Integrin β subunit cytoplasmic tails can bind to and activate kinase signaling cascades. For 

example, integrin β1, but not integrin β3, binds directly to the kinase domain of the 

Abl2/Arg nonreceptor tyrosine kinase, and these two genes interact to control long-term 

dendrite and synapse stability (Warren et al., 2012). Integrin binding activates Arg kinase 

activity to modulate multiple signaling pathways (Lin et al., 2013; Warren et al., 2012). For 

example, Arg phosphorylates p190RhoGAP (p190), a Rho GTPase inhibitor, which 

promotes p190 binding to p120RasGAP (p120) and attenuates RhoA GTPase activity 

(Bradley et al., 2006). Elevated RhoA activity in neurons destabilizes dendrites via 

downstream effectors including ROCKII (Sfakianos et al., 2007; Threadgill et al., 1997). 

Thus, Arg signaling through the p190–p120 complex in neurons acts as a clamp on RhoA 

activation to preserve long-term dendrite stability.

Additionally, dendritic spine destabilization resulting from Arg knockdown in cultured 

neurons can be rescued by blocking NMDA receptors (Lin et al., 2013). Furthermore, the 

actin regulatory protein cortactin was identified as a substrate of Arg in an unbiased 

proteomic screen (Boyle and Koleske, 2007), and subsequently, these two proteins were 

shown to interact through a series of binding and phosphorylation events to regulate the 

formation and stability of actin-rich cellular structures (Lapetina et al., 2009; MacGrath and 

Koleske, 2012; Weaver et al., 2001). In neurons, cortactin is enriched in dendritic spines 

(Hering and Sheng, 2003), but the knockdown of Arg reduces the amount of cortactin and F-

actin in spine heads by 40% (Lin et al., 2013). Fusion of the Arg C-terminal domain to 

cortactin lacking its SH3 domain mimics an “activated” Arg-bound cortactin. This 

cortactin–Arg fusion protein localizes to dendritic spine heads and prevents both the loss of 

F-actin and the reduction of dendritic spine density in Arg knockdown cultures (Lin et al., 

2013). These results support a model in which Arg regulates dendrites and dendritic spines 

downstream of integrin receptors via signaling to cytoskeletal regulatory pathways, 

including RhoA GTPase and cortactin. Finally, recent work has identified integrin α3 as the 

major partner for β1 that regulates this Arg-mediated dendrite and dendritic spine 

maintenance (Kerrisk et al., 2013).

Modulation of integrin β1 activity also regulates other biochemical cascades in neurons. For 

example, inhibition of integrin β1 in cultured neurons using ligand-blocking peptides 

destabilizes dendritic spines via inhibition of intracellular signaling cascades to CAMKII, 

SFKs, FAK, and the closely related proline-rich tyrosine kinase 2 (Pyk2) (Bernard-Trifilo et 

al., 2005; Shi and Ethell, 2006). Conversely, activation of these kinases downstream of 

integrin signaling induces rapid tyrosine phosphorylation of GluN2A and GluN2B 

intracellular tails (Bernard-Trifilo et al., 2005; Lin et al., 2003). Another consequence of 

blocking integrin β1 function using an RGD peptide is the dephosphorylation of Crk-

associated substrate (Cas), leading to decreased dendritic spine density and length (Bourgin 

et al., 2007). Clearly, integrin β1 is a critical regulator of multiple signaling cascades that 

control the actin cytoskeleton to regulate synaptic function and morphology.

Additional specific signaling mechanisms have also been determined for one of integrin β1’s 

heterodimeric partners, integrin α5. Integrin α5 activates SFK signaling to Rac1 GTPase and 

its adaptor protein GITI to regulate spine development and morphogenesis in developing 

Kerrisk et al. Page 8

Prog Brain Res. Author manuscript; available in PMC 2015 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurons. Knockdown of integrin α5 results in a dramatic loss of dendritic spines (Webb et 

al., 2007). Interestingly, treatment of hippocampal slices with AMPA increased levels of 

functional integrin α5β1 receptors via protein kinase C signaling (Lin et al., 2005). These 

results suggest that glutamate receptors and integrin receptors regulate each other 

reciprocally and that this positive feedback loop reinforces synaptic potentiation.

2.7 INTEGRINS AND MATRIX METALLOPROTEASES

Matrix metalloproteases (MMPs) are a large family of extracellular proteases that cleave 

multiple ECM proteins and have important roles in synaptic plasticity, which will be 

discussed further in Chapter 8. In particular, MMP9 has prominent roles in both integrin 

signaling and regulation of synaptic plasticity. Direct application of purified MMP9 to 

hippocampal slices induces a potentiation of excitatory postsynaptic currents (Bozdagi et al., 

2007; Nagy et al., 2006; Szklarczyk et al., 2002) and leads to dendritic spine head 

enlargement (Wang et al., 2008), both of which are blocked by application of integrin 

inhibitors. MMPs cleave a large number of ECM proteins and integrin ligands, including 

laminin, N-cadherin, dystroglycans, ICAMs, and proteoglycans (Ethell and Ethell, 2007). 

Therefore, MMPs likely influence integrin signaling and synaptic plasticity by targeting one 

or more of these substrates.

2.8 CONCLUSION

In summary, integrin-mediated signaling events in neurons regulate glutamate receptor 

activity and downstream control of the neuronal cytoskeleton. These actions are critical for 

the proper development, function, and plasticity of dendrites and dendritic spines, and 

complex animal behaviors. It is important to note that many of the current studies use 

exogenous, nonnatural activators or inhibitors of integrins. Thus, a future priority must be to 

identify and characterize endogenous extracellular ligands that regulate the activities of 

integrins in the brain.

3 ADDITIONAL ECM RECEPTORS

3.1 MEMBRANE-BOUND HEPARAN SULFATE PROTEOGLYCANS

Heparan sulfate proteoglycans are composed of a protein core to which multiple linear 

polysaccharide heparan sulfate (HS) molecules are covalently linked (Ethell and 

Yamaguchi, 1999; Winzen et al., 2003). In the brain, the heparan sulfate proteoglycan 

(HSPG) family includes both syndecans and agrin receptors, which regulate diverse 

processes, discussed in detail here.

3.1.1 Syndecans—The syndecan receptor family is a class of transmembrane HSPGs 

with four family members, syndecans-1–4. Syndecan-2–3 are prominently expressed in the 

brain (Carey et al., 1997), where they play important roles in neuronal development and 

dendritic spine formation and structure (Ethell et al., 2001). Syndecans often act as 

coreceptors with integrins for many ECM proteins including heparin-binding growth-

associated molecule (HB-GAM) (Kaksonen et al., 2002; Raulo et al., 1994), laminin, 

fibronectin (Woods and Couchman, 2001), tenascin, collagen, and thrombospondins (Carey 

et al., 1997; Dansie and Ethell, 2011). Like integrins, the syndecan family proteins have 
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short cytoplasmic tails that interact with intracellular regulators of cytoskeletal structure 

(Dansie and Ethell, 2011).

Syndecan-3 (aka N-syndecan) is a receptor for HB-GAM, which promotes neurite 

outgrowth, guidance, and synaptic plasticity during development (Pavlov et al., 2004). 

Inhibiting syndecan-3 with function-blocking antibodies inhibits neurite growth and 

synaptogenesis in embryonic neurons cultured on HB-GAM-coated plates (Raulo et al., 

1994). Addition of syndecan-3 to hippocampal slices prevents LTP induction (Lauri et al., 

1999) and genetic loss of the protein in mice results in heighted LTP and impaired 

performance in hippocampal-based memory tasks (Kaksonen et al., 2002). Activation of 

syndecan-3 by HB-GAM induces Src and Fyn kinase activation and subsequent cortactin 

phosphorylation. This signaling trio provides critical regulatory control of the actin 

cytoskeleton and LTP, which ultimately impacts animal behavior (Kinnunen et al., 1998a,b).

Syndecan-2 is enriched at synapses, where it regulates dendritic spine development, 

excitatory synaptic function, and synaptic plasticity (Ethell and Yamaguchi, 1999; Hsueh et 

al., 1998). Overexpression of syndecan-2 induces the precocious transition of dendritic 

filopodia into mature mushroom spines, and this requires its interaction with EphB2 

receptors (Ethell and Yamaguchi, 1999; Ethell et al., 2001). In contrast, syndecan-2 

knockdown reduces the number of dendritic spines in cultured hippocampal neurons (Lin et 

al., 2007). Despite the effects of syndecan-2 on neuronal structure and stability, relatively 

little is known about the specific downstream signaling cascades regulated by this receptor. 

However, many PDZ domain-containing proteins, which anchor AMPA and NMDA 

receptors at the synapse, have been shown to interact with syndecan-2–3 (Gao et al., 2000; 

Grootjans et al., 2000; Hsueh et al., 1998). This observation suggests that the syndecans may 

help organize neurotransmitter receptor surface localization, trafficking, or stability via 

scaffolding to the postsynaptic density.

3.1.2 Agrin—The HSPG agrin regulates clustering of acetylcholine receptors at the NMJ 

(Singhal and Martin, 2011). The agrin extracellular domain has nine follistatin-like domains, 

a serine-/threonine-rich region, and EGF- and laminin-like repeats. Importantly, agrin 

contains both chondroitin sulfate and heparin glycosaminoglycan sugar side chains (Winzen 

et al., 2003). Agrin also binds to a number of ECM proteins, including laminin 

(Mascarenhas et al., 2003), as well as other cell surface receptors, including α dystroglycan 

(Deyst et al., 1995).

Several agrin splice isoforms are produced in the nervous system, including both soluble and 

membrane-bound forms (Bezakova and Ruegg, 2003). In addition to its prominent role at 

the NMJ, transmembrane agrin also localizes to the dendrites and axons of pyramidal 

neurons in the hippocampus and cortex. Agrin knockdown in hippocampal cultures reduces 

dendritic spine density (McCroskery et al., 2009), while brain-specific agrin conditional 

knockout mice exhibit a 30% reduction in cortical excitatory synapses relative to controls. 

Consistent with the reduction in synapse number, these agrin conditional knockout mice 

have significant decreases in miniature excitatory postsynaptic current (mEPSC) frequency 

(Ksiazek et al., 2007). Furthermore, the clustering of agrin with specific antibodies in 
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cultured neurons can induce the formation of filopodia along developing neurites, 

supporting a role for agrin in early synapse formation (Annies et al., 2006).

The observation that agrin knockout mice have reduced mEPSC frequency (Ksiazek et al., 

2007) raises the question of whether synaptic activity may, in turn, affect agrin function. The 

extracellular protease neurotrypsin, which is secreted in response to activity (Frischknecht et 

al., 2008), has been implicated in the cleavage of the C-terminal extracellular domain of 

agrin (Reif et al., 2007). Specifically, levels of the agrin C-terminal fragment are reduced in 

neurotrypsin knockout mice, and exogenous application of this fragment to knockout slices 

is sufficient to rescue LTP-dependent dendritic spine density increases in the hippocampus 

(Matsumoto-Miyai et al., 2009). Furthermore, the agrin N-terminus contains the HS chains 

and is necessary for dendritic filopodia formation in cultured neurons, a process that requires 

activation of the Rac1 and Cdc42 GTPases (Lin et al., 2010; McCroskery et al., 2009). In 

summary, the multidomain protein agrin is activated downstream of extracellular signaling, 

which promotes GTPase activity and regulates dendritic spine morphology and synaptic 

function.

3.2 LIPOPROTEIN RECEPTORS

LPRs are a class of single-pass transmembrane proteins that function in endocytosis, 

cholesterol transport, signal transduction, and synaptic plasticity. There are seven known 

LPR family members in mammals: low-density lipoprotein receptor (LDLR), very low-

density lipoprotein receptor (VLDLR), apolipoprotein E receptor 2 (ApoER2), multiple 

epidermal growth factor repeat-containing protein 7 (MEGF7), low-density lipoprotein-

related protein (LRP), LDL-related protein-1B (LRP-1B), and megalin (Rogers and Weeber, 

2008). The LPR extracellular domain consists of a cysteine-rich ligand-binding domain, an 

EGF precursor homology domain, and an oligosaccharide-rich domain, followed by a 

transmembrane domain. The intracellular tail contains a conserved NPxY motif that signals 

through tyrosine kinases to activate downstream signaling modules (Beffert et al., 2002) 

including MAP kinases and ligand-gated ion channels (Rogers and Weeber, 2008). Finally, 

LPRs have a domain required for receptor internalization, which is employed by these 

receptors to endocytose their ligands (Zhuo et al., 2000).

The best characterized LPR ligand is reelin, a 400-kDa ECM protein that plays an essential 

regulatory role in the laminar organization of neurons in the cortex and hippocampus. 

During early development, cortical neurons migrate in an inside-out manner, with early-born 

neurons positioned in the inner layers of the cortex and later-born neurons migrating to the 

outer layers. In contrast, neurons in reelin-deficient mice have an inverted cortical laminar 

pattern and defects in neuronal polarization, contributing to synaptic and behavioral defects 

(Herz and Chen, 2006; Matsuki et al., 2010; Ramos-Moreno et al., 2006). Reelin binds to 

multiple cell surface receptors including VLDLR, ApoER2 (Herz and Chen, 2006), and 

integrin α3β1 (Dulabon et al., 2000), which activate SFKs to phosphorylate the reelin 

cytoplasmic adaptor protein Disabled-1 (DAB1) and other substrates (Franco et al., 2011).

In addition to targeting DAB1, reelin activates SFKs, which phosphorylate the GluN2B 

subunit of NMDA receptors, implicating reelin in NMDA-mediated LTP. Exogenous 

application of reelin to wild-type hippocampal slices induces increased field excitatory 
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postsynaptic potentials and heightens the level of LTP following high-frequency stimulation 

(Niu et al., 2004; Weeber et al., 2002). Cultured reelin knockout neurons have shorter and 

less branched dendrites. These defects are rescued by adding exogenous reelin to cultures 

but are blocked by inhibiting reelin’s interactions with LPR receptors (Niu et al., 2004). 

Together, these experiments implicate reelin activation of LPR signaling in controlling LTP 

and dendrite structure.

3.2.1 ApoER2—ApoER2 is enriched in the postsynaptic densities of hippocampal 

excitatory synapses, where it forms a complex with NMDA receptors and PSD95 (Herz and 

Chen, 2006). Application of reelin to hippocampal slices activates the ApoER2 receptor and 

leads to tyrosine phosphorylation of NMDA receptor subunits, mostly likely via SFKs. 

Reelin application to slices also induces alternative splicing of the intracellular domain 

ApoER2 and enhances LTP (Bock and Herz, 2003). Interestingly, genetic deletion of this 

alternatively spliced ApoER2 prevents phosphorylation of the NMDA receptor and results in 

mice that have poor performance in learning and memory tasks (Beffert et al., 2005), 

suggesting that this specific ApoER2 splice isoform is responsible for enhancing LTP and 

regulating animal behavior. Additionally, reelin application heightens the insertion of 

AMPA receptors into the postsynaptic membrane, leading to the maturation of silent 

synapses, and heightens glutamatergic transmission, a process that can be blocked by 

phosphoinositide 3-kinase (PI3K) inhibitors (Qiu et al., 2006). ApoER2 overexpression in 

primary neuronal cultures causes an increase in dendritic spine density, while ApoER2 

knockout mice have a decrease in spine density (Dumanis et al., 2011; Trotter et al., 2011). 

Taken together, these results suggest that ApoER2 functions to regulate dendritic spine 

structural stability and that loss of this control leads to aberrant neuronal function and 

animal behavior.

3.2.2 VLDLR—Loss of both VLDLR and ApoER2 is required to yield the inverted cortical 

lamination phenotype found in reelin knockout mice (Trommsdorff et al., 1999), suggesting 

that these receptors play overlapping roles in regulating neuronal migration in response to 

reelin. However, to test if VLDLR and ApoER2 may have subtler, more specific roles in the 

cortex, Hack et al. (2007) used a variety of labeling techniques to precisely track receptor 

localization within the cortex at various points during development in single and double 

receptor mutants. They found that VLDLR acts as a stop signal for early migrating neurons 

in the cortex, while ApoER2 is essential for the migration of late-generated neurons (Hack et 

al., 2007). Furthermore, recent research has found that VLDLR and ApoER2 can form 

complexes with ephrin-B1–3 receptors, which are essential for receptor clustering, 

recruitment of DAB1, and proper neuronal migration (Senturk et al., 2011), suggesting that 

multiple receptors coordinately control intracellular signaling and neuronal migration 

downstream of reelin (Figs. 1 and 2).

3.2.3 Low-Density LRP—LRP is one of the largest receptors in the LPR family at 600 

kDa, and it recognizes over 40 distinct ligands, including TGF-β, the protease tissue 

plasminogen activator (tPA), and apolipoprotein E (ApoE). In the brain, LRP is expressed in 

pyramidal neurons and plays an important role in synaptic transmission (Harris-White and 

Frautschy, 2005). LRP is believed to act as a scavenger in the brain, binding to and 
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removing cholesterol and lipid products and in some cases even scavenging extracellular 

proteases (Harris-White and Frautschy, 2005). LRP knockout mice have heightened 

locomotor activity (Elder et al., 2008) and impaired learning and memory behavior (Mulder 

et al., 2004), suggesting an underlying defect with neuronal structure, function, or plasticity. 

Furthermore, overexpression of LRP heightens the activity of tPA, while inhibition of LRP 

via infusion of the receptor antagonist receptor-associated protein (RAP) blocks the ability 

of tPA to induce acute LTP in hippocampal slices (Zhuo et al., 2000). LRP binds directly to 

the NMDA receptor-associated scaffolding protein PSD95 (Gotthardt et al., 2000), 

suggesting it may directly impact NMDA receptor function to modulate synaptic signaling.

3.3 TETRASPANINS

Tetraspanins are a family of conserved membrane proteins that regulate cell motility, 

morphology, signaling, plasma membrane dynamics, and protein trafficking (Boucheix and 

Rubinstein, 2001; Hemler, 2008). Tetraspanins get their name from their four 

transmembrane domains, which are interspersed with short intra- and extracellular loops that 

form binding sites for other proteins (Berditchevski et al., 2001). Interestingly, tetraspanins 

can interact with integrin receptors, opening the possibility of coordination between multiple 

different ECM receptors (Bassani and Cingolani, 2012). Specifically, tetraspanin 7 

(TSPAN7) interacts with the extracellular head domain on integrin α3 and regulates 

intracellular signaling pathways to phosphoinositide 4-kinase (Yauch and Hemler, 2000; 

Yauch et al., 2000). TSPAN7 is highly enriched in cortical and hippocampal neurons, and 

TSPAN7 mRNA is dramatically upregulated following treatment with kainic acid (Boda et 

al., 2002), implicating TSPAN7 in the neuronal responses to activity. TSPAN7 is also 

essential for dendritic spine stability and synaptic transmission. For example, overexpression 

of TSPAN7 in cultured hippocampal neurons is sufficient to promote dendritic spine 

formation and increase dendritic spine head size (Bassani et al., 2012). Additionally, 

TSPAN7 interacts with PICK1, which controls the trafficking and recycling of AMPA 

receptors (Bassani et al., 2012), suggesting a mechanism by which TSPAN7 might influence 

synaptic activity.

3.4 L-TYPE VOLTAGE-DEPENDENT CALCIUM CHANNELS

L-type voltage-dependent calcium channels (LVDCCs) promote the induction of LTP by 

contributing to the increase in intracellular calcium levels following high-frequency 

stimulation (Huber et al., 1995). Mice lacking the ECM protein tenascin C (TNC) have 

impairments in LVDCC-dependent hippocampal synaptic plasticity (Evers et al., 2002), 

suggesting that TNC may signal through LVDCC. Furthermore, direct injection of TNC into 

the hippocampus also impairs LTP (Strekalova et al., 2002), suggesting that TNC may 

interact with LVDCCs to control receptor properties. Enzymatic removal of hyaluronic acid 

from the hippocampus impairs LTP, alters ERK1 and CREB signaling, and reduces 

hippocampus-dependent contextual fear conditioning. These phenotypes can be rescued by 

pharmacological potentiation of LVDCCs (Kochlamazashvili et al., 2010), suggesting that 

hyaluronic acid might act through these channels to mediate synaptic plasticity and animal 

behavior. In support of this hypothesis, recordings from Chinese hamster ovary cells found 

that hyaluronic acid potentiates the activity of Cav1.2 channels (Kochlamazashvili et al., 

2010), which are the predominant type of LVDCC in the hippocampus (Moosmang et al., 
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2005). There is currently no direct evidence that LVDCC directly interacts with TNC or 

hyaluronic acid; however, all three components are present in the synaptic cleft, and based 

on their roles in synaptic plasticity, it has been suggested they may make up a larger 

complex needed to regulate calcium signaling in the hippocampus (Dityatev et al., 2010).

4 LINK TO HUMAN BRAIN DISEASE

Studies of knockout mice or knockdown of ECM receptors in cultured neurons reveal that 

they play critical roles in the development of synaptic connectivity, long-term synapse and 

dendrite maintenance, synaptic plasticity, and overall learning and memory. These 

observations strongly suggest that dysfunction of ECM receptors plays central roles in brain 

diseases that are associated with defects in dendrite, dendritic spine, and synapse 

development, function, stability, and plasticity. These defects are hallmarks of schizophrenia 

(Glantz and Lewis, 2000; Kalus et al., 2000; Law et al., 2004), depression (Cotter et al., 

2001; Duman and Aghajanian, 2012), intellectual disability (Kaufmann and Moser, 2000; 

Kaufmann et al., 2000; Ramakers, 2000), autism spectrum disorders (ASDs) (Won et al., 

2013), and Alzheimer’s disease (AD) (Thies and Bleiler, 2012; Uylings and de Brabander, 

2002). Indeed, ECM ligands have been implicated in diverse disorders from AD to epilepsy 

(Bonneh-Barkay and Wiley, 2009). Surprisingly, there are few examples of well-

characterized genetic links between ECM receptors and human brain diseases. In some 

cases, genetic disruption of ECM receptors likely leads to early lethality before defects in 

brain development or function become evident. In addition, it is likely that ECM receptors 

play important roles in diseases with complex etiologies (e.g., ASDs and many psychiatric 

diseases) likely caused by contributions from collections of genes acting in combination 

with environmental factors.

4.1 INTEGRIN LINKS TO HUMAN BRAIN DISEASE

Chromosomal microdeletions involving the integrin α3 gene and duplications of integrin α3 

coding regions have been found in patients with intellectual disability (Preiksaitiene et al., 

2012; Zahir et al., 2009). Likewise, microdeletions involving the gene for integrin β1 

(Megarbane et al., 2001; Talkowski et al., 2012) and its downstream signaling partner Arg 

kinase (Chaabouni et al., 2006; Scarbrough et al., 1988; Takano et al., 1997) have been 

identified in cases of intellectual disability that are associated with developmental disorders 

in human patients. Mice with mutations in key components of this pathway exhibit defects 

in dendrite stability and dendritic spine density and morphology that resemble those 

observed in neurodevelopmental disorders and also exhibit widespread problems with 

learning, memory, and behavioral flexibility (Gourley et al., 2009, 2012; Kerrisk et al., 

2013; Moresco and Koleske, 2003; Moresco et al., 2005; Sfakianos et al., 2007; Warren et 

al., 2012).

Integrins have also been implicated in the field of addiction, specifically in structural 

changes produced in response to cocaine administration. Integrin β1 receptor shows 

increased levels following cocaine exposure (Wiggins et al., 2009), while integrin β3 has 

decreased levels (Wiggins et al., 2011). Genetic loss of integrin β1 in mice results in 

exaggerated psychomotor sensitivity to cocaine (Warren et al., 2012), likely due to the 

underlying impairments in neuronal structure and plasticity observed in these mice. 
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Interestingly, inhibiting integrin activation by injecting an RGD peptide into the nucleus 

accumbens core can prevent the relapse of cocaine-seeking behavior in mice (Wiggins et al., 

2011), suggesting that integrin-mediated signaling may serve as a therapeutic target in the 

treatment of addiction.

Several studies have found a genetic association between ITGB3, the gene encoding for 

integrin β3, and ASDs in a number of population cohorts (Abrahams and Geschwind, 2008; 

Aldinger et al., 2011; Cantor et al., 2005; Weiss et al., 2006), and a rare missense mutation 

in ITGB3 has recently been identified in an individual with ASD (O’Roak et al., 2012). 

Notably, constitutive knockout mice for integrin β3 display lack of preference for social 

novelty in the three-chamber social test and increased grooming behavior in novel 

environments (Carter et al., 2011). These abnormalities have strong analogies with the two 

criteria used to diagnose ASDs in humans (abnormal social interactions and repetitive 

behaviors (American Psychiatric Association, 2013)), making integrin β3 knockout mice a 

good animal model for investigating the neurobiology of ASDs. Future studies should 

determine whether integrin β3 knockout mice display autism-related abnormalities because 

of impairments in HSP (Ramocki and Zoghbi, 2008; Toro et al., 2010) or because of 

alterations in synaptic connectivity, as it occurs for mutations in other cell adhesion 

molecules (Betancur et al., 2009).

4.2 LDLRs AND ALZHEIMER’s DISEASE

While not itself an ECM receptor, the glycoprotein ApoE has a critical role in AD. ApoE is 

a ligand for many LDLRs, including the reelin receptors ApoER2 and LRP, and plays an 

important role in phospholipid and cholesterol homeostasis in the brain (Harris-White and 

Frautschy, 2005). The apolipoprotein E (APOE) gene has been genetically linked to 

sporadic AD, which accounts for over 95% of AD cases. The E4 allele of the APOE gene 

has been identified as the most important risk factor for developing late-onset AD (Saunders 

et al., 1993). One copy of the APOE4 allele increases the risk of developing AD, while two 

copies further heighten that risk (Farrer et al., 1997). Conversely, the E2 allele of APOE 

serves a protective role in the development of AD (Corder et al., 1994).

AD is characterized by aberrant production of amyloid-β (Aβ) peptide and accumulation of 

Aβ-containing plaques in the brains of affected individuals eventually leading to cognitive 

decline. ApoE physically binds to toxic Aβ species and plays an essential role in the 

clearance of this peptide from the brain. Binding of ApoE–Aβ complex to LRP promotes 

endocytosis of the complex and subsequent lysosomal degradation of Aβ-peptide (Rebeck et 

al., 1993). Loss of all ApoE alleles or overexpression of its LRP receptor dramatically 

reduces amyloid-peptide aggregation and alters disease pathology in AD model mice (Bales 

et al., 1997, 2009; Kim et al., 2009). Exactly how different isoforms of APOE influence AD 

risk is still unclear, although the leading hypothesis is that ApoE controls Aβ aggregation in 

the brain by promoting Aβ-peptide clearance through LPRs (Castellano et al., 2011).

5 QUESTIONS AND DIRECTIONS FOR FUTURE RESEARCH

ECM molecules and their receptors play important roles in the formation, maintenance, and 

plasticity of the nervous system. As ECM receptors are cell surface receptors, they make 
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ideal drug targets for small molecules that could either prevent or mimic ligand binding to 

impact intracellular signaling cascades and treat human brain diseases. Also, the 

downstream signaling cascades by which they function will also be key potential targets for 

therapeutic intervention. Some ECM receptor signaling cascades have been well 

characterized, such as integrin α3β1 activation of Arg kinase (Kerrisk and Koleske, 2013) or 

extracellular reelin signaling to ApoER2/ VLDLR and DAB1 (Niu et al., 2004). However, 

surprisingly little is known about the molecular mechanisms by which other receptors signal. 

Additionally, many ECM receptors interact with each other, and determining which receptor 

is responsible for a particular neuronal phenotype is often difficult. Improved technologies, 

including improvements in mass spectrometry, superresolution microscopy, optogenetics, 

and optical reporters of biochemical activities and protein–protein interactions, will be 

instrumental in elucidating the molecules and signaling events that act downstream of ECM 

receptors to coordinate changes in synaptic function. A major goal will be to determine 

whether these receptor-mediated mechanisms in the brain can be therapeutically targeted, as 

they have been in other tissues, to stabilize neuronal structure, restore synaptic function, and 

ameliorate disease (Desgrosellier and Cheresh, 2010; Wu and Reddy, 2012).
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FIGURE 1. Overview of ECM and transsynaptic receptors in the brain
(A) Many of the ECM receptors that are localized to the postsynaptic membrane and their 

ECM ligands are depicted: Reelin signals to very low-density lipoprotein (VLDLR) and 

apolipoprotein E (ApoER2); HSPGs signal via NCAM; integrin receptors are activated by a 

number of ECM ligands including laminin and fibronectin and can be modulated by 

transmembrane tetraspanin proteins; HB-GAM can activate syndecan receptors; tenascin C 

and hyaluronic acid act upstream of L-type voltage-dependent calcium channels (LVDCC). 

(B) Transsynaptic adhesion molecules engage their partners across the synaptic cleft and can 

be influenced by the ECM and ECM receptors: Presynaptic neurexins bind to postsynaptic 

neuroligins; synaptic cell adhesion molecules (SynCAMs) can bind in trans (shown here) or 

in cis; cadherins bind transsynaptically in a calcium-dependent manner; presynaptic ephrins 

bind to postsynaptic ephrin receptors (EphR); presynaptic or secreted semaphorins can bind 

to postsynaptic plexins.
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FIGURE 2. Biochemical signaling cascades downstream of ECM receptors
ECM receptors control a key set of biochemical signaling modules, shown here within a 

dendritic spine. Integrins can activate a number of kinase signaling cascades that regulate 

downstream proteins to modulate the actin cytoskeleton and control dendrite and synapse 

stability. Additionally, some of these cascades activate NMDA receptors via 

phosphorylation of different NMDA subunit intracellular tails, which leads to calcium 

(Ca2+) influx and the induction of LTP. Very low-density lipoprotein (VLDLR) and 

apolipoprotein E (ApoER2) signal through a well-characterized pathway to Disabled-1 

(DAB1). Finally, syndecans can activate the actin regulatory molecule cortactin to control F-

actin stability and impact synaptic function. Together, these pathways impact cytoskeletal 

regulation, LTP induction, neuronal morphology, and stability.
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