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Abstract

High volumes of wide varieties of valuable data of different veracity (e.g., imprecise and uncertain data) can be easily generated

or collected at a high velocity for various knowledge-based and intelligent information & engineering systems in many real-life

situations. Embedded in these big data is valuable knowledge and useful information, which can be discovered by data science

solutions. As a popular data science task, frequent pattern mining aims to discover implicit, previously unknown and potentially

useful information and valuable knowledge in terms of sets of frequently co-occurring items. Many of the existing frequent pattern

mining algorithms use a transaction-centric mining approach to find frequent patterns from precise data. However, there are

situations in which an item-centric mining approach is more appropriate, and there are also situations in which data are imprecise

and uncertain. In this article, we present an item-centric algorithm for mining frequent patterns from big uncertain data. Evaluation

results show the effectiveness of our algorithm in item-centric mining of frequent patterns from big uncertain data.
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1. Introduction

As technology advances, high volumes of a wide variety of data of different veracity (e.g., uncertain data [25, 31] in

social networks [4, 24]) can be easily generated or collected at a high velocity from rich sources of data in various real-

life big data applications and services. Embedded in these big data are useful information and valuable knowledge.

Hence, data science [33] is in demand. In general, a data science solution applies the following to big data for data

analytics [5, 22]:

• data mining [10, 41],
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• database [18],

• machine learning [32],

• mathematical modelling [3],

• statistical techniques [37], and/or

• visualization [15].

Among popular data science tasks, frequent pattern mining [2, 36] aims to discover sets of frequently co-occurring

items. The mined patterns help data scientists understand consumer behavior, know the web surfing patterns, and get

an insight about popular events. In other words, the mined patterns help the data scientists to get better understanding

of the behaviors of their users.

Early frequent pattern mining algorithms (e.g., Apriori [2]) mostly execute the mining process in serial on a single

local computer. To improve algorithmic efficiency, later algorithms perform the computation in distributed and parallel

environments by using computer clusters or grids [14]. As volumes of big data can go beyond the ability of commonly-

used software to capture, manage, and process within a tolerable elapsed time, new forms of processing, mining and

analyzing data—such as MapReduce-based frequent pattern mining algorithms [8] that usually run in clouds [12]—

have been developed to enable enhanced decision making, insight, knowledge discovery, and process optimization. In

general, cloud computing makes use of a network of remote servers hosted on the Internet to store, manage, process,

and mine the data.

With the aforementioned traditional databases of precise data, users definitely know whether an item is present in

(or is absent from) a transaction. In contrast, data in many real-life applications are riddled with uncertainty [28, 34,

39]. It is partially due to the following:

• inherent measurement inaccuracies,

• sampling and duration errors,

• network latencies [13], and/or

• intentional blurring of data to preserve anonymity.

As such, the presence or absence of items in a dataset is uncertain. Moreover, with the increasing number of uncertain

objects for sensor devices and noisy data management technologies such as DUST [35] in recent years, uncertain

data-mining [6, 40] is in demand. As a concrete example, a physician may highly suspect (but cannot guarantee) that

a coughing patient suffers from a cold. The uncertainty of such suspicion can be expressed in terms of existential

probability (e.g., a 60% likelihood of suffering from the cold). With this notion, each item in a transaction t j in

databases containing precise data can be viewed as an item with a 100% likelihood of being present in t j. To find

frequent itemsets from these uncertain data, several uncertain data-mining algorithms (e.g., U-Apriori [11] and UF-

growth [31] algorithms) have been proposed. Among them, UF-growth captures the contents of the uncertain data in

a tree structure, from which frequent itemsets can be mined recursively.

Most (serial, parallel, and/or MapReduce-based) algorithms find frequent patterns from precise data rather than

imprecise or uncertain data. For those that handles imprecise or uncertain data, they mine the data “horizontally” (i.e.,

in a transaction-centric fashion). However, there are situations in which it is more appropriate to mine the data “verti-

cally” (i.e., in an item-centric fashion). Our key contribution of this article includes our algorithm for mining frequent

patterns “vertically” from big uncertain data in an item-centric fashion. Evaluation results show that effectiveness of

our algorithm.

The remainder of this article is organized as follows. Next section reviews some related works. Section 3 describes

our algorithm for mining frequent patterns “vertically” from big uncertain data in an item-centric fashion. Section 4

shows our evaluation. Finally, conclusions are drawn in Section 5.

2. Related works

As the first step of association rule mining [19, 29], frequent pattern mining aims to discover sets of frequently co-

occurring items. Many frequent pattern mining algorithms [20, 21] were Apriori-based [2], which rely on a generate-

and-test paradigm to discover frequent patterns from transaction datasets by first generating candidates and then
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checking their actual frequency (i.e., occurrences) against the datasets. To improve algorithmic efficiency, other serial

frequent pattern mining algorithms (e.g., tree-based algorithms [16]) have been developed. In addition, there are also

distributed and parallel algorithms [30, 38]. They find frequent patterns by using multiple processors that have either

of the following:

• access to a shared memory with which information is exchanged among processors, or

• their own private memory (i.e., distributed memory) with which for information is exchanged via message

passing among the processors.

These algorithms are mainly implemented using Open Multi-Processing (OpenMP) or Message Passing Interface

(MPI), and run in computer clusters or grids. Cluster computing usually involves a group of distributed or parallel

computers that are interconnected through high-speed networks such as local area networks; grid computing coordi-

nates heterogeneous networked loosely coupled computers.

For precise data mining, while there are algorithms that view the transaction database TDB “horizontally” (e.g.,

Apriori, FP-growth), there are also algorithms (e.g., Eclat [42]) that view the TDB “vertically” [42] as a col-

lection of items (i.e., TDB = {tidset(x) | ∀x ∈ domain items}), where a tidset is a set of transaction IDs. Each

item is associated with a set or vector that indicates the transactions containing such an item. For example, TDB

={tidset(a), tidset(b), . . .}, and tidset(a)={t1, t3, t4, t5} representing that item a appears in four transactions t1, t3, t4 and

t5. More specifically, Eclat first uses a set of transaction IDs (i.e., tidset) for every domain items to represent all the

transactions containing x, and then finds frequent patterns in a bottom-up fashion. A pattern X is frequent if its actual

support (i.e., its number of occurrence) in the TDB meets the user-specified threshold minsup. Although Eclat mines

frequent patterns from the TDB, it does not mine the uncertain data.

To handle big data, MapReduce-based frequent pattern mining algorithms [8] read input data, divide them into

several partitions (sub-problems), and assign them to different processors. Each processor executes the “map” function

on each partition by taking a pair of �key1, value1� and returning a list of �key2, value2�-pairs as an intermediate result,

which is then shuffled and sorted:

map: �key1, value1� �→ list of �key2, value2�

where

• key1 and key2 are keys on some domains; and

• value1 and value2 are the coressponding values associated with key1 and key2, respectively.

Each processor then executes the “reduce” function on a single key2 from this intermediate result by combining,

aggregating, summarizing, filtering, and/or transforming the list of values associated with a given key key2 (for all

keys). As a result, a single (aggregated or summarized) value value3 is returned:

reduce: �key2, list of value2� �→ list of �key3, value3�

where

• key2 and key3 are keys on some domains; and

• value2 and value3 are the coressponding values associated with key2 and key3, respectively.

Many of these algorithms are run in (public, private, or hybrid) clouds. Cloud computing [7] involves a group of

interconnected and virtualized computers to provide on-demand services such as the following:

• function-as-a-service (FaaS),

• infrastructure-as-a-service (IaaS),

• network-as-a-service (NaaS),

• platform-as-a-service (PaaS),

• software-as-a-service (SaaS), and



1894 Peter Braun  et al. / Procedia Computer Science 126 (2018) 1891–1900
1878 Peter Braun et al. / Procedia Computer Science 126 (2018) 1875–1884

• mining-as-a-service (MaaS) [17].

The research problem of frequent itemset mining was first introduced [2] in 1993. The corresponding algorithm—

namely, Apriori—mined all frequent itemsets from a transaction database (TDB) consisting of precise data, in which

the contents of each transaction are precisely known. Specifically:

• If a transaction ti contains an item x (i.e., x ∈ ti), then x is precisely known to be present in ti.

• On the other hand, if a transaction ti does not contain an item y (i.e., y � ti), then y is precisely known to be

absent from ti.

However, this is not the case for probabilistic databases consisting of uncertain data [9]. A key difference between

precise and uncertain data is that each transaction of the latter contains items and their existential probabilities. The

existential probability P(x, ti) of an item x in a transaction ti indicates the likelihood of x being present in ti. For a

real-life example, each transaction ti represents a patient’s visit to a physician’s office. Each item x within ti represents

a potential disease, and is associated with P(x, ti) expressing the likelihood of a patient having that disease x in ti (say,

in t1, the patient has a 60% likelihood of having asthma, and a 90% likelihood of catching a cold regardless of having

asthma or not). With this notion, each item in a transaction ti in datasets of precise data can be viewed as an item with

a 100% likelihood of being present in ti. Given an item x and a transaction ti, there are two possible worlds when

using the possible world interpretation of uncertain data [1, 26]:

1. The possible world W1 where x ∈ ti, and

2. the possible world W2 where x � ti.

Although it is uncertain which of these two worlds would be the true world, the probability of any one of them being

the true world can be expressed as follows:

• the probability of W1 being the true world is P(x, ti), and

• the probability of W2 being the true world is 1 − P(x, ti).

Let (i) Item be a set of m domain items and (ii) X = {x1, x2, . . . , xk} be a k-itemset (i.e., a pattern consisting of

k items), where X ⊆ Item and 1 ≤ k ≤ m. Then, a transactional database is the set of n transactions, where each

transaction t j ⊆ Item (for 1 ≤ j ≤ n). The projected database of X is the set of all transactions containing X. Each item

xi in a transaction t j = {x1, x2, . . . , xh} in an uncertain database is associated with an existential probability P(xi, t j),

which represents the likelihood of the presence of xi in t j [26], with value:

0 < P(xi, t j) ≤ 1 (1)

The existential probability P(X, t j) of a pattern X in t j is then the product of the corresponding existential probabilities

of every item xi within X when these items are independent [25, 27]:

P(X, t j) =
�

xi∈X

P(xi, t j) (2)

Finally, the expected support expSup(X) of X is the sum of P(X, t j) over all n transactions in the database:

expSup(X) =

n�

j=1

P(X, t j) =

n�

j=1

⎛⎜⎜⎜⎜⎜⎜⎝
�

xi∈X

P(xi, t j)

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

With this notion of expected support, existing tree-based algorithms—such as UF-growth [31]—mine frequent pat-

terns from uncertain data by first scanning the uncertain database once to compute the expected support of all domain

items (i.e., singleton patterns). Infrequent items are pruned as their extensions/supersets are guaranteed to be infre-

quent. The algorithms then scan the database a second time to insert all transactions (with only frequent items) into a

tree (e.g., UF-tree [31]). Each node in the tree captures the following:
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• an item x,

• its existential probability P(x, t j), and

• its occurrence count.

At each step during the mining process, the frequent patterns are expanded recursively.

A pattern X is frequent in an uncertain database if expSup(X) ≥ minsup. Given a database and minsup, the research

problem of frequent pattern mining from uncertain data is to discover from the database a complete set of frequent

patterns having expected support ≥ minsup.

3. Our Spark-based vertical mining algorithm

In this section, let us first describe how we handle uncertain data, then describe how we mine these uncertain data

in the Spark environment.

3.1. Handle uncertain data

When mining precise data, Eclat uses a tidset for each domain item x to represent all the transactions containing x,

and finds frequent patterns from the transaction database (TDB) in a bottom-up candidate generation fashion. Here,

when mining uncertain data, it is important to capture the existential probability P(x, ti) associated with each item x

in each transaction ti of the uncertain database (UDB).

Our first issue is how to represent the UDB that contains these existential probability values? To deal with this

issue, it may be tempting to use a tidset for each distinct �domain item, existential probability value�-pair. However,

a potential problem of such an attempt is the huge number of pairs. Theoretically, it could be an uncountably infinite

number because the existential probability could take on a real number in the range of (0, 1]. It is fortunate that,

practically, the number of such pairs is countable and bounded above by the number of �domain item, existential

probability value�-pairs present in the UDB. Hence, we aim to find patterns having their expected support meeting the

user-specified threshold. In other words, we want to find every frequent pattern X (and its expected support) rather

than the occurrence count of every �domain item, existential probability value�-pair. As such, we do not need to keep

a tidset for each distinct �domain item, existential probability value�-pair. Instead, it is more logical to use a tidset for

each domain item x—than �x, existential probability�-pairs—in our proposed algorithm. Specifically, it augments to

each tidset (for x) the corresponding existential probability values associated with x in the transactions.

The next issue is how to compute the expected support of a singleton pattern (e.g., item a)? When mining precise

data, one can compute the actual support of an item x by knowing the cardinality of tidset(x) because the actual support

of x counts the number of transactions in which x occurs. However, the expected support of x cannot be obtained by

the cardinality of atidset(x). For example, |atidset({c})| = 4, but expSup({c})=2.9. The reason is that, for precise data,

each occurrence of x leads to an increment of 1 to its support count; for uncertain data, each occurrence of x does not

lead to an increment of 1 to its expected support value. An item x may occur twice, but if its existential probability

is low, then its expected support may be lower than another item y that only occurs once but has high existential

probability (e.g., x:0.1 appearing twice leads to expSup(x)=0.2 < 0.5 =expSup(y) for y:0.5 appearing only once). For

uncertain data, existential probability of x (instead of its occurrence) contributes to its expected support value. Hence,

we compute the expected support of an item x by summing its existential probability:

expSup(x) =
∑

ti

{P(x, ti)|�ti:P(x, ti)� ∈ atidset(x)} (4)

Once we computed the expected support of singleton patterns and found the frequent ones, the next issue is how to

generate candidate patterns of higher cardinalities (e.g., k-itemsets consisting of k items each)? When mining precise

data, one can generate candidate k-itemsets (say, α∪{x, y}, or αxy for short) by intersecting the tidsets of two frequent

(k − 1)-itemsets, i.e., tidset(αx) ∩ tidset(αy). However, when mining uncertain data, applying a similar approach that

expSup(αxy}) = |atidset(αx) ∩ atidset(αy)| may lead to incorrect results because atidset(Z) of any itemset Z is a set

of �ti:expSup(Z, ti)�-pairs (instead of a set of just ti). Intersecting the two augmented tidsets is more restrictive than

what we want. Note that intersecting the two augmented tidsets returns those transactions containing αx = αy and
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having the same existential probability value. However, what we want are transactions containing both αx and αy

regardless of their existential probability values. Hence, it is better to generate candidates by intersecting only the

tidset components of the augmented tidsets. The above approach partially solves the problem. Specifically, it gives the

intended set of transaction IDs for the intersection. However, it may still lead to inaccurate expected support value for

the resulting candidate. To completely solve this problem, we generate a candidate k-itemset by intersecting tidsets of

a frequent (k − 1)-itemset and a frequent 1-itemset, as shown below:

atidset(αxy) = {�ti : expSup(αx, ti) × P(y, ti)�| (5)

�ti : expS up(αx, ti)� ∈ atidset(αx) ∧ �ti : P(y, ti)� ∈ atidset(y)}

From atidset(αxy), we can then compute the expected support of αxy as follows:

expSup(X) =
�

ti

{expSup(X, ti)|�ti : expSup(X, ti) ∈ atidset(X)}

=
�

ti

⎧⎪⎪⎨⎪⎪⎩
�

x∈X

P(x, ti)|�ti : expSup(X, ti) ∈ atidset(X)

⎫⎪⎪⎬⎪⎪⎭ (6)

To recap, in this section, we pointed out three issues related to handling uncertain data, and we provided the

following solutions to each of these issues:

1. How to represent the UDB that contains these existential probability values?

We augment to each tidset(x) the corresponding existential probability value P(x, ti) associated with x in the

transaction ti.

2. How to compute the expected support of a singleton pattern x?

We compute the expected support expSup(x) of an item x by summing its existential probability: expSup(x) =�
ti
{P(x, ti)|�ti:P(x, ti)� ∈ atidset(x)}.

3. How to generate candidate patterns of higher cardinalities (e.g., k-itemsets consisting of k items each)?

We generate a candidate k-itemset α ∪ {x, y} by intersecting tidsets of a frequent (k − 1)-itemset α ∪ {x} and a

frequent 1-itemset {y}. Then, from atidset(α∪{x, y}), we can then compute the expected support expSup(α∪{x, y})

of (α ∪ {x, y}) by expSup(α ∪ {x, y}) =
�

ti

��
z∈α∪{x,y} P(z, ti)|�ti : expSup(α ∪ {x, y}, ti) ∈ atidset(α ∪ {x, y})

�
.

In other words, we perform the following steps when handling uncertain data:

1. We push uncertain mining inside the frequent pattern mining process by first building an augmented tidset for

each domain item x to capture

• every transaction ti that contains x and

• its existential probability P(x, ti) in that transaction.

2. Then, the expected support of a pattern X is computed by summing the expected support of X over all transactions

in atidset(X).

3. If expSup(X) meets the user-specified threshold minsup, then X is frequent; otherwise, X is pruned as an infre-

quent pattern.

4. Candidate k-itemsets are generated by intersecting the tidsets of frequent (k − 1)-itemsets with those of frequent

1-itemsets.

5. Repeat Steps 2–4 until no more candidate k-itemsets can be generated (i.e., no more frequent k-itemsets can be

discovered).

3.2. Handle big uncertain data

Next, we describe how to extend the above (for handling uncertain data) to handle big data by using the Spark-based

approach. Specifically, we scan the original database once and convert it into vertical representation. The algorithm
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having the same existential probability value. However, what we want are transactions containing both αx and αy

regardless of their existential probability values. Hence, it is better to generate candidates by intersecting only the

tidset components of the augmented tidsets. The above approach partially solves the problem. Specifically, it gives the

intended set of transaction IDs for the intersection. However, it may still lead to inaccurate expected support value for

the resulting candidate. To completely solve this problem, we generate a candidate k-itemset by intersecting tidsets of

a frequent (k − 1)-itemset and a frequent 1-itemset, as shown below:

atidset(αxy) = {�ti : expSup(αx, ti) × P(y, ti)�| (5)

�ti : expS up(αx, ti)� ∈ atidset(αx) ∧ �ti : P(y, ti)� ∈ atidset(y)}

From atidset(αxy), we can then compute the expected support of αxy as follows:

expSup(X) =
�

ti

{expSup(X, ti)|�ti : expSup(X, ti) ∈ atidset(X)}

=
�

ti

⎧⎪⎪⎨⎪⎪⎩
�

x∈X

P(x, ti)|�ti : expSup(X, ti) ∈ atidset(X)

⎫⎪⎪⎬⎪⎪⎭ (6)

To recap, in this section, we pointed out three issues related to handling uncertain data, and we provided the

following solutions to each of these issues:

1. How to represent the UDB that contains these existential probability values?

We augment to each tidset(x) the corresponding existential probability value P(x, ti) associated with x in the

transaction ti.

2. How to compute the expected support of a singleton pattern x?

We compute the expected support expSup(x) of an item x by summing its existential probability: expSup(x) =�
ti
{P(x, ti)|�ti:P(x, ti)� ∈ atidset(x)}.

3. How to generate candidate patterns of higher cardinalities (e.g., k-itemsets consisting of k items each)?

We generate a candidate k-itemset α ∪ {x, y} by intersecting tidsets of a frequent (k − 1)-itemset α ∪ {x} and a

frequent 1-itemset {y}. Then, from atidset(α∪{x, y}), we can then compute the expected support expSup(α∪{x, y})

of (α ∪ {x, y}) by expSup(α ∪ {x, y}) =
�

ti

��
z∈α∪{x,y} P(z, ti)|�ti : expSup(α ∪ {x, y}, ti) ∈ atidset(α ∪ {x, y})

�
.

In other words, we perform the following steps when handling uncertain data:

1. We push uncertain mining inside the frequent pattern mining process by first building an augmented tidset for

each domain item x to capture

• every transaction ti that contains x and

• its existential probability P(x, ti) in that transaction.

2. Then, the expected support of a pattern X is computed by summing the expected support of X over all transactions

in atidset(X).

3. If expSup(X) meets the user-specified threshold minsup, then X is frequent; otherwise, X is pruned as an infre-

quent pattern.

4. Candidate k-itemsets are generated by intersecting the tidsets of frequent (k − 1)-itemsets with those of frequent

1-itemsets.

5. Repeat Steps 2–4 until no more candidate k-itemsets can be generated (i.e., no more frequent k-itemsets can be

discovered).

3.2. Handle big uncertain data

Next, we describe how to extend the above (for handling uncertain data) to handle big data by using the Spark-based

approach. Specifically, we scan the original database once and convert it into vertical representation. The algorithm
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only keeps track of items exist in transactions. In order to form new itemset, we intersect two vectors having those

entries that have the same transaction IDs. When forming the vector �ab, we intersect vector �a with vector �b. We

eliminate (3, 0.3) in vector �a as it can not find any transaction ID match in vector �b. As the result, we have �ab, (1,

0.1×0.2), (2, 0.2×0.3)�. We observe that the following two key matching behaviors:

1. The item key need to be matched.

2. The transaction IDs have to be matched.

Hence, in our proposed MR-UV-Eclat algorithm, the key of the mapped record becomes “item|transactionID”. Con-

sequently, it reduces phase to map not only the item keys but also transactionIDs. Hence, this algorithm first convert

original data to be the format in �item|transactionID, value�. In the reduce phase, it collects data with the same key of

“item|transactionID” and performs the multiplication.

For the way forming new candidates, we find the last entry of b and then base on the position of b presented in

{a, b, c, d, e}, we find the subset of {c, d, e}. The candidate 3-itemsets generated from ab are formed by doing concate-

nation of ab with one of {c, d, e}. As the result, we get candidates of {abc, abd, abe}. We observe that the key matching

process of the map-reduce behavior in MR-UV-Eclat is in transaction level.

Items are stored in a trie structure so as to speed up the search. Only frequent nodes continue to expend for next

level’s examinations. One of the main advantage of using a trie structure is that it can reduce candidate generation

range.

As we try to match item key and transaction ID when doing reduce operation, the map key needs to con-

tain item key and transaction ID. In addition, we need to store the support value on the corresponding the

item and the specific transaction, this value is stored in the mapped key. Hence, the format of the key is like

“itemKey|transactionID|supportValue”.

What should store in the value of the mapped record? Trie. Each mapped record represent a node in the trie structure

and each trie structure only represents a transaction. Thus, the value of each mapped record contains potential suffix

items. Here, each suffix item not only contains the singleton but also its support value in the corresponding transaction.

There is a “remap” process in each mining process. The “remap” process is as follow:

1. Form new key by concatenating item key with each of suffix item,

2. multiply the support value with each of uncertain value of each suffix item.

The potential suffix singletons with their support values are store in the mapped value in the mapped record. For

example, the value for node a is (b:0.8, c:0.7, d:0.6). Notice that the node d has empty set in the mapped value

because no item is after item d. In order to generate the next level of candidates, our algorithm concatenates the item

key with each of suffix items. The support value for the new candidate in the current transaction is calculated by

multiplying the support value with the uncertain value of the suffix item. For example, node a generates the following

3 nodes for next level because there are 3 suffix items in the mapped value:

1. {a, b}, with its support value 0.8 × 0.8 = 0.64;

2. {a, c}, with its support value 0.8 × 0.7 = 0.56; and

3. {a, d}, with its support value 0.8 × 0.6 = 0.48.

The suffix items for the each node are items after the visited item. For example, the suffix items for {a, b} are (c:0.7,

d:0.6), the suffix items for {a, c} are (d:0.6), and no suffix item for {a, d}.

How to calculate the total frequency of the itemset? Through “remap” process, we expand each node to generate

candidates and calculate their support values for specific transactions. In order to calculate the final support values

for the candidates, we require the other “remap” process. We observe that each mapped key contains the itemset key,

transaction ID and its support value. To get the final support value, we need to sum up these values with the same

itemset key. This means that we need one more map-reduce process to conduct this calculation. First of all, we need

to build up the other resilient distributed dataset (RDD) which is with the format of (itemsetKey, supportValue). We
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can get all these from just mapped key from RDD we just created before. Simply, we calculate the final support value

in the reduce process.

3.2.1. Details

MR-UV-Eclat first reads each transaction of original database. When reading each transaction, it constructs tree

projection for the first level. Each node becomes the mapped data. As this is for the level 1 data, the trie is only

expanded to 1 level below “NULL” node. The value of each mapped record contains potential suffix items for the

other level of expansion. After expansion is done, the next operation is frequency examination. This through the other

map-reduce operation. First, the algorithm goes over each mapped key and put item key as new key, and support

value as the new value. In the reduce phase, it sums up the frequency in all transactions. The final support values are

compared with minimum support threshold. Only frequent items are kept in L and Lk.

After vertical data conversion, each node is free to expand. From the mapped key, we extract the current itemset,

support value and transaction ID. The value of the mapped record is a list of nodes that each of them are potential

suffix singletons with its support value in the current transaction. The tree expansion is to concatenate the current

itemset with each item in the list. This new candidate is then verified by a pruning process with the input of Lk−1. If

this candidate passes the examination of the pruning process, the new support value is then calculated by multiplying

the current support value with the support value in a node in the list. The new candidate, the new support value and

the current transaction ID together form the new mapped key. The new value of the mapped record is the list from

the one after the current visited node until the end of the list. After this tree expansion, all these candidate nodes are

generated. We still need to utilize map-reduce operation to conduct frequency examination. First, through the “map”

process, we extract candidate itemset and its support value from the mapped records formed previously. Second,

through the reduce process, the algorithm sums up all support value and form the final output format of (itemset,

value). In between, the value of this mapped record is compared with minimum support threshold. Only ones that are

large than minimum support threshold are kept. These data are then kept in Lk.

4. Evaluation

First, we evaluated our MR-UV-Eclat algorithm with the horizontal big data mining algorithm (say, a MapReduce

version of U-Apriori [11]). We ran both algorithms in Spark, which mainly handles big data and enable in-memory

computation. As most of data are stored on the hard disk in each worker in the master-worker environment. Most of

in-memory computations happen in “map” and “reduce” processes. Each worker fetches data from its hard disk or

from shuffles and then build RDD in memory. If the RDD cannot fit into memory, it will store them in temperate hard

disk storage and bring them to main memory again when there are room available in main memory.

4.1. Analytical evaluation

In this memory usage evaluation, we examined the process on each algorithm that consumes the most memory

usage. Specifically, we count how many nodes each algorithm create for its peak time (the time that the algorithm

consumes the most memory). We find out that the reduce phase on each algorithm create nodes that at most the

number of total transactions. We find out that the peak time for each algorithm is the mapping process on generating

candidates. For this evaluation, we use the worst-case scenario approach to exanimate memory usage. We use m to

denote the total number of items, k denote the current level of candidates. Then, the total number of nodes in the

mapping phase of MR-U-Apriori is:

k∑

j=1

m∑

i=1

2(m − j + 1 − (i − 1)) =

k∑

j=1

m∑

i=1

2(m − j − i + 2) (7)

In contrast, as MR-UV-Eclat is based on the current level of itemsets to generate the next level candidates, the total

number of nodes in the mapping phase of our MR-UV-Eclat is much smaller, as follows:

m∑

i=1

(m − k + 1 − (i − 1)) =

m∑

i=1

(m − k − i + 2) (8)
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can get all these from just mapped key from RDD we just created before. Simply, we calculate the final support value

in the reduce process.

3.2.1. Details

MR-UV-Eclat first reads each transaction of original database. When reading each transaction, it constructs tree

projection for the first level. Each node becomes the mapped data. As this is for the level 1 data, the trie is only

expanded to 1 level below “NULL” node. The value of each mapped record contains potential suffix items for the

other level of expansion. After expansion is done, the next operation is frequency examination. This through the other

map-reduce operation. First, the algorithm goes over each mapped key and put item key as new key, and support

value as the new value. In the reduce phase, it sums up the frequency in all transactions. The final support values are

compared with minimum support threshold. Only frequent items are kept in L and Lk.

After vertical data conversion, each node is free to expand. From the mapped key, we extract the current itemset,

support value and transaction ID. The value of the mapped record is a list of nodes that each of them are potential

suffix singletons with its support value in the current transaction. The tree expansion is to concatenate the current

itemset with each item in the list. This new candidate is then verified by a pruning process with the input of Lk−1. If

this candidate passes the examination of the pruning process, the new support value is then calculated by multiplying

the current support value with the support value in a node in the list. The new candidate, the new support value and

the current transaction ID together form the new mapped key. The new value of the mapped record is the list from

the one after the current visited node until the end of the list. After this tree expansion, all these candidate nodes are

generated. We still need to utilize map-reduce operation to conduct frequency examination. First, through the “map”

process, we extract candidate itemset and its support value from the mapped records formed previously. Second,

through the reduce process, the algorithm sums up all support value and form the final output format of (itemset,

value). In between, the value of this mapped record is compared with minimum support threshold. Only ones that are

large than minimum support threshold are kept. These data are then kept in Lk.

4. Evaluation

First, we evaluated our MR-UV-Eclat algorithm with the horizontal big data mining algorithm (say, a MapReduce

version of U-Apriori [11]). We ran both algorithms in Spark, which mainly handles big data and enable in-memory

computation. As most of data are stored on the hard disk in each worker in the master-worker environment. Most of

in-memory computations happen in “map” and “reduce” processes. Each worker fetches data from its hard disk or

from shuffles and then build RDD in memory. If the RDD cannot fit into memory, it will store them in temperate hard

disk storage and bring them to main memory again when there are room available in main memory.

4.1. Analytical evaluation

In this memory usage evaluation, we examined the process on each algorithm that consumes the most memory

usage. Specifically, we count how many nodes each algorithm create for its peak time (the time that the algorithm

consumes the most memory). We find out that the reduce phase on each algorithm create nodes that at most the

number of total transactions. We find out that the peak time for each algorithm is the mapping process on generating

candidates. For this evaluation, we use the worst-case scenario approach to exanimate memory usage. We use m to

denote the total number of items, k denote the current level of candidates. Then, the total number of nodes in the

mapping phase of MR-U-Apriori is:

k∑

j=1

m∑

i=1

2(m − j + 1 − (i − 1)) =

k∑

j=1

m∑

i=1

2(m − j − i + 2) (7)

In contrast, as MR-UV-Eclat is based on the current level of itemsets to generate the next level candidates, the total

number of nodes in the mapping phase of our MR-UV-Eclat is much smaller, as follows:

m∑

i=1

(m − k + 1 − (i − 1)) =

m∑

i=1

(m − k − i + 2) (8)
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4.2. Experimental evaluation

In addition, experimental evaluation was also conducted. Fig. 1 shows that the runtime decreased with an increase

of minsup for two datasets. MR-U-Apriori took much longer than our MR-UV-Eclat, especially for low minsup.

Fig. 1. Evaluation: runtime vs. minsup.

5. Conclusions

In this article, we presented an item-centric mining algorithm called MR-UV-Eclat for finding frequent patterns

from big uncertain data in the Apache Spark environment. Both analyticsal and experimental evaluation results show

its effectiveness and practicality.

As ongoing and future work, we are continue to conduct more extensive evaluation and explore more functional

features to be provided to the users.
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